import ROOT #from ROOT import TTree, TFile, Double import numpy as np from pdg_const import pdg import matplotlib matplotlib.use("Qt5Agg") import matplotlib.pyplot as plt import pickle as pkl import sys import time from helperfunctions import display_time import cmath as c import raremodel as rm modl = rm.model() load_set = False draw = False mode = "slim_points" modl.mode = mode min_bin_scaling = 100 set_size = 1e5 x_min = 3182.0 x_max= 3600.0 jpsi_mass, jpsi_width, jpsi_phase, jpsi_scale = pdg["jpsi"] modl.add_resonance(jpsi_mass, jpsi_width, jpsi_phase, jpsi_scale) psi2s_mass, psi2s_width, psi2s_phase, psi2s_scale = pdg["psi2s"] modl.add_resonance(psi2s_mass, psi2s_width, psi2s_phase, psi2s_scale) modl.add_cusp(3525, 3e-7, 200, 7) modl.normalize_pdf() if load_set: with open(r"./data/set_{0}_range({1}-{2}).pkl".format(int(set_size), int(x_min), int(x_max)), "rb") as input_file: set_dic = pkl.load(input_file) part_set = (set_dic["x_part"], set_dic["y_part"]) counter_tot = set_dic["counter_tot"] else: x_part, y_part, counter = modl.generate_points(set_size, mode = mode, min_bin_scaling = min_bin_scaling, verbose = 1) part_set = (x_part, y_part) if draw: modl.draw_plots(part_set = part_set, counter = counter_tot, mode = mode, min_bin_scaling = min_bin_scaling) #cusp_amp_scan_y = [] #cusp_amp_scan_x = np.linspace(0, 10*modl.cusp_amp, 20) #for i in cusp_amp_scan_x: #cusp_amp_scan_y.append(modl.log_likelihood(x_part = set_dic["x_part"], cusp_amp = i)) #plt.clf() #plt.title("Cusp amp log_likelihood scan") ##plt.yscale("log") ##plt.ylim(0, 2*self._mean) #plt.grid() #plt.plot(cusp_amp_scan_x, cusp_amp_scan_y, label = "log_likelihood") #plt.legend() #plt.savefig("./cusp_amp_scan.png") #print(" pdf_and_parts.png created") #print(modl.log_likelihood(x_part = set_dic["x_part"], cusp_amp = modl.cusp_amp)) print("Run finished")