#!/usr/bin/env python # coding: utf-8 # # Import # In[ ]: import os # os.environ["CUDA_VISIBLE_DEVICES"] = "-1" import numpy as np from pdg_const import pdg import matplotlib import matplotlib.pyplot as plt import pickle as pkl import sys import time from helperfunctions import display_time, prepare_plot import cmath as c import scipy.integrate as integrate from scipy.optimize import fminbound from array import array as arr import collections from itertools import compress import tensorflow as tf import zfit from zfit import ztf from IPython.display import clear_output import os import tensorflow_probability as tfp tfd = tfp.distributions # In[ ]: # chunksize = 1000000 # zfit.run.chunking.active = True # zfit.run.chunking.max_n_points = chunksize # # Build model and graphs # ## Create graphs # In[ ]: def formfactor( q2, subscript): #returns real value #check if subscript is viable if subscript != "0" and subscript != "+" and subscript != "T": raise ValueError('Wrong subscript entered, choose either 0, + or T') #get constants mK = ztf.constant(pdg['Ks_M']) mbstar0 = ztf.constant(pdg["mbstar0"]) mbstar = ztf.constant(pdg["mbstar"]) b0 = ztf.constant(pdg["b0"]) bplus = ztf.constant(pdg["bplus"]) bT = ztf.constant(pdg["bT"]) mmu = ztf.constant(pdg['muon_M']) mb = ztf.constant(pdg['bquark_M']) ms = ztf.constant(pdg['squark_M']) mB = ztf.constant(pdg['Bplus_M']) #N comes from derivation in paper N = 3 #some helperfunctions tpos = (mB - mK)**2 tzero = (mB + mK)*(ztf.sqrt(mB)-ztf.sqrt(mK))**2 z_oben = ztf.sqrt(tpos - q2) - ztf.sqrt(tpos - tzero) z_unten = ztf.sqrt(tpos - q2) + ztf.sqrt(tpos - tzero) z = tf.divide(z_oben, z_unten) #calculate f0 if subscript == "0": prefactor = 1/(1 - q2/(mbstar0**2)) _sum = 0 for i in range(N): _sum += b0[i]*(tf.pow(z,i)) return tf.complex(prefactor * _sum, ztf.constant(0.0)) #calculate f+ or fT else: prefactor = 1/(1 - q2/(mbstar**2)) _sum = 0 if subscript == "T": b = bT else: b = bplus for i in range(N): _sum += b[i] * (tf.pow(z, i) - ((-1)**(i-N)) * (i/N) * tf.pow(z, N)) return tf.complex(prefactor * _sum, ztf.constant(0.0)) def resonance(q, _mass, width, phase, scale): q2 = tf.pow(q, 2) mmu = ztf.constant(pdg['muon_M']) p = 0.5 * ztf.sqrt(q2 - 4*(mmu**2)) p0 = 0.5 * ztf.sqrt(_mass**2 - 4*mmu**2) gamma_j = tf.divide(p, q) * _mass * width / p0 #Calculate the resonance _top = tf.complex(_mass * width, ztf.constant(0.0)) _bottom = tf.complex(_mass**2 - q2, -_mass*gamma_j) com = _top/_bottom #Rotate by the phase r = ztf.to_complex(scale*tf.abs(com)) _phase = tf.angle(com) _phase += phase com = r * tf.exp(tf.complex(ztf.constant(0.0), _phase)) return com def bifur_gauss(q, mean, sigma_L, sigma_R, scale): _exp = tf.where(q < mean, ztf.exp(- tf.pow((q-mean),2) / (2 * sigma_L**2)), ztf.exp(- tf.pow((q-mean),2) / (2 * sigma_R**2))) #Scale so the total area under curve is 1 and the top of the cusp is continuous dgamma = scale*_exp/(ztf.sqrt(2*np.pi))*2*(sigma_L*sigma_R)/(sigma_L+sigma_R) com = ztf.complex(dgamma, ztf.constant(0.0)) return com def axiv_nonres(q): GF = ztf.constant(pdg['GF']) alpha_ew = ztf.constant(pdg['alpha_ew']) Vtb = ztf.constant(pdg['Vtb']) Vts = ztf.constant(pdg['Vts']) C10eff = ztf.constant(pdg['C10eff']) mmu = ztf.constant(pdg['muon_M']) mb = ztf.constant(pdg['bquark_M']) ms = ztf.constant(pdg['squark_M']) mK = ztf.constant(pdg['Ks_M']) mB = ztf.constant(pdg['Bplus_M']) q2 = tf.pow(q, 2) #Some helperfunctions beta = ztf.sqrt(tf.abs(1. - 4. * mmu**2. / q2)) kabs = ztf.sqrt(mB**2. +tf.pow(q2, 2)/mB**2. + mK**4./mB**2. - 2. * (mB**2. * mK**2. + mK**2. * q2 + mB**2. * q2) / mB**2.) #prefactor in front of whole bracket prefactor1 = GF**2. *alpha_ew**2. * (tf.abs(Vtb*Vts))**2. * kabs * beta / (128. * np.pi**5.) #left term in bracket bracket_left = 2./3. * kabs**2. * beta**2. *tf.abs(tf.complex(C10eff, ztf.constant(0.0))*formfactor(q2, "+"))**2. #middle term in bracket _top = 4. * mmu**2. * (mB**2. - mK**2.) * (mB**2. - mK**2.) _under = q2 * mB**2. bracket_middle = _top/_under *tf.pow(tf.abs(tf.complex(C10eff, ztf.constant(0.0)) * formfactor(q2, "0")), 2) #Note sqrt(q2) comes from derivation as we use q2 and plot q return prefactor1 * (bracket_left + bracket_middle) * 2 *ztf.sqrt(q2) def vec(q, funcs): q2 = tf.pow(q, 2) GF = ztf.constant(pdg['GF']) alpha_ew = ztf.constant(pdg['alpha_ew']) Vtb = ztf.constant(pdg['Vtb']) Vts = ztf.constant(pdg['Vts']) C7eff = ztf.constant(pdg['C7eff']) mmu = ztf.constant(pdg['muon_M']) mb = ztf.constant(pdg['bquark_M']) ms = ztf.constant(pdg['squark_M']) mK = ztf.constant(pdg['Ks_M']) mB = ztf.constant(pdg['Bplus_M']) #Some helperfunctions beta = ztf.sqrt(tf.abs(1. - 4. * mmu**2. / q2)) kabs = ztf.sqrt(mB**2. + tf.pow(q2, 2)/mB**2. + mK**4./mB**2. - 2 * (mB**2 * mK**2 + mK**2 * q2 + mB**2 * q2) / mB**2) #prefactor in front of whole bracket prefactor1 = GF**2. *alpha_ew**2. * (tf.abs(Vtb*Vts))**2 * kabs * beta / (128. * np.pi**5.) #right term in bracket prefactor2 = kabs**2 * (1. - 1./3. * beta**2) abs_bracket = tf.abs(c9eff(q, funcs) * formfactor(q2, "+") + tf.complex(2.0 * C7eff * (mb + ms)/(mB + mK), ztf.constant(0.0)) * formfactor(q2, "T"))**2 bracket_right = prefactor2 * abs_bracket #Note sqrt(q2) comes from derivation as we use q2 and plot q return prefactor1 * bracket_right * 2 * ztf.sqrt(q2) def c9eff(q, funcs): C9eff_nr = tf.complex(ztf.constant(pdg['C9eff']), ztf.constant(0.0)) c9 = C9eff_nr c9 = c9 + funcs return c9 # In[ ]: def G(y): def inner_rect_bracket(q): return tf.log(ztf.to_complex((1+tf.sqrt(q))/(1-tf.sqrt(q)))-tf.complex(ztf.constant(0), -1*ztf.constant(np.pi))) def inner_right(q): return ztf.to_complex(2 * tf.atan(1/tf.sqrt(-q))) big_bracket = tf.where(y > ztf.const(0.0), inner_rect_bracket(y), inner_right(y)) return ztf.to_complex(tf.sqrt(tf.abs(y))) * big_bracket def h_S(m, q): return ztf.to_complex(2) - G(ztf.to_complex(1) - 4*tf.pow(m, 2) / ztf.to_complex(tf.pow(q, 2))) def h_P(m,q): return ztf.to_complex(2/3) + (ztf.to_complex(1) - 4*tf.pow(m, 2) / ztf.to_complex(tf.pow(q, 2))) * h_S(m,q) def two_p_ccbar(mD, m_D_bar, m_D_star, q): #Load constants nu_D_bar = ztf.to_complex(pdg["nu_D_bar"]) nu_D = ztf.to_complex(pdg["nu_D"]) nu_D_star = ztf.to_complex(pdg["nu_D_star"]) phase_D_bar = ztf.to_complex(pdg["phase_D_bar"]) phase_D = ztf.to_complex(pdg["phase_D"]) phase_D_star = ztf.to_complex(pdg["phase_D_star"]) #Calculation left_part = nu_D_bar * tf.exp(tf.complex(ztf.constant(0.0), phase_D_bar)) * h_S(m_D_bar, q) right_part_D = nu_D * tf.exp(tf.complex(ztf.constant(0.0), phase_D)) * h_P(m_D, q) right_part_D_star = nu_D_star * tf.exp(tf.complex(ztf.constant(0.0), phase_D_star)) * h_P(m_D_star, q) return left_part + right_part_D + right_part_D_star # ## Build pdf # In[ ]: class total_pdf(zfit.pdf.ZPDF): _N_OBS = 1 # dimension, can be omitted _PARAMS = ['jpsi_mass', 'jpsi_scale', 'jpsi_phase', 'jpsi_width', 'psi2s_mass', 'psi2s_scale', 'psi2s_phase', 'psi2s_width'#, #'cusp_mass', 'sigma_L', 'sigma_R', 'cusp_scale' ] # the name of the parameters def _unnormalized_pdf(self, x): x = x.unstack_x() def jpsi_res(q): return resonance(q, _mass = self.params['jpsi_mass'], scale = self.params['jpsi_scale'], phase = self.params['jpsi_phase'], width = self.params['jpsi_width']) def psi2s_res(q): return resonance(q, _mass = self.params['psi2s_mass'], scale = self.params['psi2s_scale'], phase = self.params['psi2s_phase'], width = self.params['psi2s_width']) def cusp(q): return bifur_gauss(q, mean = self.params['cusp_mass'], sigma_L = self.params['sigma_L'], sigma_R = self.params['sigma_R'], scale = self.params['cusp_scale']) funcs = jpsi_res(x) + psi2s_res(x) #+ cusp(x) vec_f = vec(x, funcs) axiv_nr = axiv_nonres(x) tot = vec_f + axiv_nr return tot # ## Load data # In[ ]: x_min = 2*pdg['muon_M'] x_max = (pdg["Bplus_M"]-pdg["Ks_M"]-0.1) obs = zfit.Space('q', limits = (x_min, x_max)) # with open(r"./data/slim_points/slim_points_toy_0_range({0}-{1}).pkl".format(int(x_min), int(x_max)), "rb") as input_file: # part_set = pkl.load(input_file) # x_part = part_set['x_part'] # x_part = x_part.astype('float64') # data = zfit.data.Data.from_numpy(array=x_part, obs=obs) # ## Setup parameters # In[ ]: #jpsi jpsi_mass, jpsi_width, jpsi_phase, jpsi_scale = pdg["jpsi"] # jpsi_scale *= pdg["factor_jpsi"] jpsi_m = zfit.Parameter("jpsi_m", ztf.constant(jpsi_mass), floating = False) jpsi_w = zfit.Parameter("jpsi_w", ztf.constant(jpsi_width), floating = False) jpsi_p = zfit.Parameter("jpsi_p", ztf.constant(jpsi_phase), floating = False) jpsi_s = zfit.Parameter("jpsi_s", ztf.constant(jpsi_scale)) #psi2s psi2s_mass, psi2s_width, psi2s_phase, psi2s_scale = pdg["psi2s"] psi2s_m = zfit.Parameter("psi2s_m", ztf.constant(psi2s_mass), floating = False) psi2s_w = zfit.Parameter("psi2s_w", ztf.constant(psi2s_width), floating = False) psi2s_p = zfit.Parameter("psi2s_p", ztf.constant(psi2s_phase), floating = False) psi2s_s = zfit.Parameter("psi2s_s", ztf.constant(psi2s_scale)) #cusp # cusp_mass, sigma_R, sigma_L, cusp_scale = 3550, 3e-7, 200, 0 # cusp_m = zfit.Parameter("cusp_m", ztf.constant(cusp_mass), floating = False) # sig_L = zfit.Parameter("sig_L", ztf.constant(sigma_L), floating = False) # sig_R = zfit.Parameter("sig_R", ztf.constant(sigma_R), floating = False) # cusp_s = zfit.Parameter("cusp_s", ztf.constant(cusp_scale), floating = False) # ## Setup pdf # In[ ]: total_f = total_pdf(obs=obs, jpsi_mass = jpsi_m, jpsi_scale = jpsi_s, jpsi_phase = jpsi_p, jpsi_width = jpsi_w, psi2s_mass = psi2s_m, psi2s_scale = psi2s_s, psi2s_phase = psi2s_p, psi2s_width = psi2s_w)#, #cusp_mass = cusp_m, sigma_L = sig_L, sigma_R = sig_R, cusp_scale = cusp_s) # print(total_pdf.obs) # ## Test if graphs actually work and compute values # In[ ]: def total_test_tf(xq): def jpsi_res(q): return resonance(q, jpsi_m, jpsi_s, jpsi_p, jpsi_w) def psi2s_res(q): return resonance(q, psi2s_m, psi2s_s, psi2s_p, psi2s_w) def cusp(q): return bifur_gauss(q, cusp_m, sig_L, sig_R, cusp_s) funcs = jpsi_res(xq) + psi2s_res(xq) + cusp(xq) vec_f = vec(xq, funcs) axiv_nr = axiv_nonres(xq) tot = vec_f + axiv_nr return tot def jpsi_res(q): return resonance(q, jpsi_m, jpsi_s, jpsi_p, jpsi_w) # calcs = zfit.run(total_test_tf(x_part)) test_q = np.linspace(x_min, x_max, 200000) probs = total_f.pdf(test_q) calcs_test = zfit.run(probs) res_y = zfit.run(jpsi_res(test_q)) f0_y = zfit.run(formfactor(test_q,"0")) fplus_y = zfit.run(formfactor(test_q,"+")) fT_y = zfit.run(formfactor(test_q,"T")) # In[ ]: plt.clf() # plt.plot(x_part, calcs, '.') plt.plot(test_q, calcs_test, label = 'pdf') # plt.plot(test_q, f0_y, label = '0') # plt.plot(test_q, fT_y, label = 'T') # plt.plot(test_q, fplus_y, label = '+') # plt.plot(test_q, res_y, label = 'res') plt.legend() # plt.ylim(0.0, 6e-6) plt.yscale('log') # plt.xlim(3080, 3110) plt.savefig('test.png') # print(jpsi_width) # In[ ]: dtype = tf.float64 mixture = tfd.MixtureSameFamily(mixture_distribution=tfd.Categorical(probs=[tf.constant(0.007, dtype=dtype), tf.constant(0.965, dtype=dtype), tf.constant(0.04, dtype=dtype), tf.constant(0.03, dtype=dtype), tf.constant(0.006, dtype=dtype)]), components_distribution=tfd.Uniform(low=[tf.constant(x_min, dtype=dtype), tf.constant(3092, dtype=dtype), tf.constant(3682, dtype=dtype), tf.constant(3070, dtype=dtype), tf.constant(3660, dtype=dtype)], high=[tf.constant(x_max, dtype=dtype), tf.constant(3100, dtype=dtype), tf.constant(3690, dtype=dtype), tf.constant(3110, dtype=dtype), tf.constant(3710, dtype=dtype)])) # probs = mixture.prob(test_q) # probs_np = zfit.run(probs) # probs_np *= np.max(calcs_test) / np.max(probs_np) # plt.figure() # plt.semilogy(test_q, probs_np,label="importance sampling") # plt.semilogy(test_q, calcs_test, label = 'pdf') # ## Adjust scaling of different parts # In[ ]: # total_f.update_integration_options(draws_per_dim=20000000, mc_sampler=None) # inte = total_f.integrate(limits = (3080, 3112), norm_range=False) # inte_fl = zfit.run(inte) # print(inte_fl) # print(pdg["jpsi_BR"]/pdg["NR_BR"], inte_fl*pdg["psi2s_auc"]/pdg["NR_auc"]) # In[ ]: # print("jpsi:", inte_fl) # print("Increase am by factor:", np.sqrt(pdg["jpsi_BR"]/pdg["NR_BR"]*pdg["NR_auc"]/inte_fl)) # print("New amp:", pdg["jpsi"][3]*np.sqrt(pdg["jpsi_BR"]/pdg["NR_BR"]*pdg["NR_auc"]/inte_fl)) # print("psi2s:", inte_fl) # print("Increase am by factor:", np.sqrt(pdg["psi2s_BR"]/pdg["NR_BR"]*pdg["NR_auc"]/inte_fl)) # print("New amp:", pdg["psi2s"][3]*np.sqrt(pdg["psi2s_BR"]/pdg["NR_BR"]*pdg["NR_auc"]/inte_fl)) # print(x_min) # print(x_max) # # total_f.update_integration_options(draws_per_dim=2000000, mc_sampler=None) # total_f.update_integration_options(mc_sampler=lambda dim, num_results, # dtype: tf.random_uniform(maxval=1., shape=(num_results, dim), dtype=dtype), # draws_per_dim=1000000) # # _ = [] # # for i in range(10): # # inte = total_f.integrate(limits = (x_min, x_max)) # # inte_fl = zfit.run(inte) # # print(inte_fl) # # _.append(inte_fl) # # print("mean:", np.mean(_)) # _ = time.time() # inte = total_f.integrate(limits = (x_min, x_max)) # inte_fl = zfit.run(inte) # print(inte_fl) # print("Time taken: {}".format(display_time(int(time.time() - _)))) # ## Tensorflow scaling # In[ ]: # def scaling_func(x): # funcs = resonance(x, _mass = ztf.constant(jpsi_mass), scale = ztf.constant(jpsi_scale), phase = ztf.constant(jpsi_phase), width = ztf.constant(jpsi_width)) + resonance(x, _mass = ztf.constant(psi2s_mass), scale = ztf.constant(psi2s_scale), phase = ztf.constant(psi2s_phase), width = ztf.constant(psi2s_width)) # vec_f = vec(x, funcs) # axiv_nr = axiv_nonres(x) # tot = vec_f + axiv_nr # return tot # def s_func(x): # q = ztf.constant(x) # return zfit.run(scaling_func(q)) # print(integrate.quad(s_func, x_min, x_max, limit = 50)) # In[ ]: # factor_jpsi = pdg["NR_auc"]*pdg["jpsi_BR"]/(pdg["NR_BR"]*pdg["jpsi_auc"]) # factor_jpsi = pdg["NR_auc"]*pdg["jpsi_BR"]/(pdg["NR_BR"]*inte_fl) # print(np.sqrt(factor_jpsi)*jpsi_scale) # print(np.sqrt(factor_jpsi)) # # print(psi2s_scale) # factor_psi2s = pdg["NR_auc"]*pdg["psi2s_BR"]/(pdg["NR_BR"]*pdg["psi2s_auc"]) # factor_psi2s = pdg["NR_auc"]*pdg["psi2s_BR"]/(pdg["NR_BR"]*inte_fl) # print(np.sqrt(factor_psi2s)*psi2s_scale) # print(np.sqrt(factor_psi2s)) # In[ ]: # def _t_f(xq): # def jpsi_res(q): # return resonance(q, jpsi_m, jpsi_s, jpsi_p, jpsi_w) # def psi2s_res(q): # return resonance(q, psi2s_m, psi2s_s, psi2s_p, psi2s_w) # funcs = psi2s_res(xq) + jpsi_res(xq) # vec_f = vec(xq, funcs) # axiv_nr = axiv_nonres(xq) # tot = vec_f + axiv_nr # return tot # def t_f(x): # _ = np.array(x) # probs = zfit.run(_t_f(_)) # return probs # In[ ]: # print(36000*(1+ pdg["jpsi_BR"]/pdg["NR_BR"] + pdg["psi2s_BR"]/pdg["NR_BR"])) # In[ ]: # start = time.time() # result, err = integrate.quad(lambda x: t_f(x), x_min, x_max, limit = 5) # print(result, "{0:.2f} %".format(err/result)) # print("Time:", time.time()-start) # # Sampling # ## One sample # ! total_f.sample() always returns the same set ! # In[ ]: # nevents = int(pdg["number_of_decays"]) # event_stack = 5000 # calls = int(nevents/event_stack + 1) # total_samp = [] # start = time.time() # samp = total_f.sample(n=event_stack) # s = samp.unstack_x() # for call in range(calls): # sam = zfit.run(s) # clear_output(wait=True) # # if call != 0: # # print(np.sum(_last_sam-sam)) # # _last_sam = sam # c = call + 1 # print("{0}/{1}".format(c, calls)) # print("Time taken: {}".format(display_time(int(time.time() - start)))) # print("Projected time left: {}".format(display_time(int((time.time() - start)/c*(calls-c))))) # with open("data/zfit_toys/toy_1/{}.pkl".format(call), "wb") as f: # pkl.dump(sam, f, pkl.HIGHEST_PROTOCOL) # In[ ]: # print("Time to generate full toy: {} s".format(int(time.time()-start))) # total_samp = [] # for call in range(calls): # with open(r"data/zfit_toys/toy_1/{}.pkl".format(call), "rb") as input_file: # sam = pkl.load(input_file) # total_samp = np.append(total_samp, sam) # total_samp = total_samp.astype('float64') # data2 = zfit.data.Data.from_numpy(array=total_samp[:int(nevents)], obs=obs) # print(total_samp[:nevents].shape) # In[ ]: # bins = int((x_max-x_min)/7) # # calcs = zfit.run(total_test_tf(samp)) # plt.hist(total_samp[:event_stack], bins = bins, range = (x_min,x_max)) # # plt.plot(sam, calcs, '.') # # plt.plot(test_q, calcs_test) # plt.ylim(0, 20) # # plt.xlim(3000, 3750) # plt.savefig('test2.png') # 1-(0.21+0.62) # ## Toys # In[ ]: # print(list_of_borders[:9]) # print(list_of_borders[-9:]) class UniformSampleAndWeights(zfit.util.execution.SessionHolderMixin): def __call__(self, limits, dtype, n_to_produce): # n_to_produce = tf.cast(n_to_produce, dtype=tf.int32) low, high = limits.limit1d low = tf.cast(low, dtype=dtype) high = tf.cast(high, dtype=dtype) # uniform = tfd.Uniform(low=low, high=high) # uniformjpsi = tfd.Uniform(low=tf.constant(3080, dtype=dtype), high=tf.constant(3112, dtype=dtype)) # uniformpsi2s = tfd.Uniform(low=tf.constant(3670, dtype=dtype), high=tf.constant(3702, dtype=dtype)) list_of_borders = [] _p = [] splits = 10 _ = np.linspace(x_min, x_max, splits) for i in range(splits): list_of_borders.append(tf.constant(_[i], dtype=dtype)) _p.append(tf.constant(1/splits, dtype=dtype)) # mixture = tfd.MixtureSameFamily(mixture_distribution=tfd.Categorical(probs=_p[:(splits-1)]), # components_distribution=tfd.Uniform(low=list_of_borders[:(splits-1)], # high=list_of_borders[-(splits-1):])) mixture = tfd.MixtureSameFamily(mixture_distribution=tfd.Categorical(probs=[tf.constant(0.007, dtype=dtype), tf.constant(0.95, dtype=dtype), tf.constant(0.07, dtype=dtype), tf.constant(0.025, dtype=dtype), tf.constant(0.006, dtype=dtype)]), components_distribution=tfd.Uniform(low=[tf.constant(x_min, dtype=dtype), tf.constant(3093, dtype=dtype), tf.constant(3683, dtype=dtype), tf.constant(3070, dtype=dtype), tf.constant(3660, dtype=dtype)], high=[tf.constant(x_max, dtype=dtype), tf.constant(3099, dtype=dtype), tf.constant(3690, dtype=dtype), tf.constant(3110, dtype=dtype), tf.constant(3710, dtype=dtype)])) # mixture = tfd.Uniform(tf.constant(x_min, dtype=dtype), tf.constant(x_max, dtype=dtype)) # sample = tf.random.uniform((n_to_produce, 1), dtype=dtype) sample = mixture.sample((n_to_produce, 1)) # sample = tf.random.uniform((n_to_produce, 1), dtype=dtype) weights = mixture.prob(sample)[:,0] # weights = tf.broadcast_to(tf.constant(1., dtype=dtype), shape=(n_to_produce,)) # sample = tf.expand_dims(sample, axis=-1) # print(sample, weights) # weights = tf.ones(shape=(n_to_produce,), dtype=dtype) weights_max = None thresholds = tf.random_uniform(shape=(n_to_produce,), dtype=dtype) return sample, thresholds, weights, weights_max, n_to_produce # In[ ]: total_f._sample_and_weights = UniformSampleAndWeights # In[ ]: # psi2s_mass # In[ ]: # zfit.settings.set_verbosity(10) # In[ ]: # zfit.run.numeric_checks = False nr_of_toys = 2 nevents = int(pdg["number_of_decays"]) nevents = pdg["number_of_decays"] event_stack = 1000000 # zfit.settings.set_verbosity(10) calls = int(nevents/event_stack + 1) total_samp = [] start = time.time() sampler = total_f.create_sampler(n=event_stack) for toy in range(nr_of_toys): dirName = 'data/zfit_toys/toy_{0}'.format(toy) if not os.path.exists(dirName): os.mkdir(dirName) print("Directory " , dirName , " Created ") for call in range(calls): sampler.resample(n=event_stack) s = sampler.unstack_x() sam = zfit.run(s) clear_output(wait=True) c = call + 1 print("{0}/{1}".format(c, calls)) print("Toy {}/{}".format(toy+1, nr_of_toys)) print("Time taken: {}".format(display_time(int(time.time() - start)))) print("Projected time left: {}".format(display_time(int((time.time() - start)/(c+calls*(toy))*((nr_of_toys-toy)*calls-c))))) with open("data/zfit_toys/toy_{0}/{1}.pkl".format(toy, call), "wb") as f: pkl.dump(sam, f, pkl.HIGHEST_PROTOCOL) # In[ ]: # with open(r"data/zfit_toys/toy_0/0.pkl", "rb") as input_file: # sam = pkl.load(input_file) # print(sam[:10]) # with open(r"data/zfit_toys/toy_0/1.pkl", "rb") as input_file: # sam2 = pkl.load(input_file) # print(sam2[:10]) # print(np.sum(sam-sam2)) # In[ ]: print("Time to generate full toy: {} s".format(int(time.time()-start))) total_samp = [] for call in range(calls): with open(r"data/zfit_toys/toy_0/{}.pkl".format(call), "rb") as input_file: sam = pkl.load(input_file) total_samp = np.append(total_samp, sam) total_samp = total_samp.astype('float64') data2 = zfit.data.Data.from_numpy(array=total_samp[:int(nevents)], obs=obs) data3 = zfit.data.Data.from_numpy(array=total_samp, obs=obs) print(total_samp[:nevents].shape) # In[ ]: plt.clf() bins = int((x_max-x_min)/7) # calcs = zfit.run(total_test_tf(samp)) print(total_samp[:nevents].shape) plt.hist(total_samp[:nevents], bins = bins, range = (x_min,x_max), label = 'data') # plt.plot(test_q, calcs_test*nevents , label = 'pdf') # plt.plot(sam, calcs, '.') # plt.plot(test_q, calcs_test) # plt.yscale('log') plt.ylim(0, 200) # plt.xlim(3080, 3110) plt.legend() plt.savefig('test2.png') # In[ ]: # sampler = total_f.create_sampler(n=nevents) # nll = zfit.loss.UnbinnedNLL(model=total_f, data=sampler, fit_range = (x_min, x_max)) # # for param in pdf.get_dependents(): # # param.set_value(initial_value) # sampler.resample(n=nevents) # # Randomise initial values # # for param in pdf.get_dependents(): # # param.set_value(random value here) # # Minimise the NLL # minimizer = zfit.minimize.MinuitMinimizer(verbosity = 10) # minimum = minimizer.minimize(nll) # In[ ]: # jpsi_width # In[ ]: # plt.hist(sample, weights=1 / prob(sample)) # # Fitting # In[ ]: nll = zfit.loss.UnbinnedNLL(model=total_f, data=data2, fit_range = (x_min, x_max)) minimizer = zfit.minimize.MinuitMinimizer() # minimizer._use_tfgrad = False result = minimizer.minimize(nll) param_errors = result.error() for var, errors in param_errors.items(): print('{}: ^{{+{}}}_{{{}}}'.format(var.name, errors['upper'], errors['lower'])) print("Function minimum:", result.fmin) # In[ ]: # probs = total_f.pdf(test_q) calcs_test = zfit.run(probs) res_y = zfit.run(jpsi_res(test_q)) # In[ ]: plt.clf() # plt.plot(x_part, calcs, '.') plt.plot(test_q, calcs_test, label = 'pdf') # plt.plot(test_q, res_y, label = 'res') plt.legend() plt.ylim(0.0, 5e-6) # plt.yscale('log') # plt.xlim(3080, 3110) plt.savefig('test3.png') # print(jpsi_width) # In[ ]: # _tot = 4.37e-7+6.02e-5+4.97e-6 # _probs = [] # _probs.append(6.02e-5/_tot) # _probs.append(4.97e-6/_tot) # _probs.append(4.37e-7/_tot) # print(_probs) # In[ ]: # dtype = 'float64' # # mixture = tfd.Uniform(tf.constant(x_min, dtype=dtype), tf.constant(x_max, dtype=dtype)) # mixture = tfd.MixtureSameFamily(mixture_distribution=tfd.Categorical(probs=[tf.constant(0.007, dtype=dtype), # tf.constant(0.917, dtype=dtype), # tf.constant(0.076, dtype=dtype)]), # components_distribution=tfd.Uniform(low=[tf.constant(x_min, dtype=dtype), # tf.constant(3080, dtype=dtype), # tf.constant(3670, dtype=dtype)], # high=[tf.constant(x_max, dtype=dtype), # tf.constant(3112, dtype=dtype), # tf.constant(3702, dtype=dtype)])) # # for i in range(10): # # print(zfit.run(mixture.prob(mixture.sample((10, 1))))) # In[ ]: print(zfit.run(jpsi_s)) print(zfit.run(psi2s_s)) # In[ ]: # In[ ]: