diff --git a/__pycache__/pdg_const.cpython-37.pyc b/__pycache__/pdg_const.cpython-37.pyc index 09392b0..1aae052 100644 --- a/__pycache__/pdg_const.cpython-37.pyc +++ b/__pycache__/pdg_const.cpython-37.pyc Binary files differ diff --git a/constants.nb b/constants.nb index f35e134..8eb75f2 100644 --- a/constants.nb +++ b/constants.nb @@ -10,280 +10,8097 @@ NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 158, 7] -NotebookDataLength[ 10273, 299] -NotebookOptionsPosition[ 9765, 284] -NotebookOutlinePosition[ 10108, 299] -CellTagsIndexPosition[ 10065, 296] +NotebookDataLength[ 463652, 8160] +NotebookOptionsPosition[ 460191, 8101] +NotebookOutlinePosition[ 460534, 8116] +CellTagsIndexPosition[ 460491, 8113] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell[BoxData[{ - RowBox[{"mbstar", "=", "5415.4"}], "\[IndentingNewLine]", - RowBox[{"mbstar0", "=", "5711.0"}], "\[IndentingNewLine]", - RowBox[{"B0M", "=", "5279.5"}], "\[IndentingNewLine]", - RowBox[{"BsM", "=", "5366.7"}], "\[IndentingNewLine]", - RowBox[{"BplusM", "=", "5279.3"}], "\[IndentingNewLine]", - RowBox[{"LbM", "=", "5619.4"}], "\[IndentingNewLine]", - RowBox[{"D0M", "=", "1864.8"}], "\[IndentingNewLine]", - RowBox[{"DstM", "=", "2010"}], "\[IndentingNewLine]", - RowBox[{"piM", "=", "139.6"}], "\[IndentingNewLine]", - RowBox[{"JpsiM", "=", "3096.9"}], "\[IndentingNewLine]", - RowBox[{"Psi2sM", "=", "3685.6"}], "\[IndentingNewLine]", - RowBox[{"kaonM", "=", "493.7"}], "\[IndentingNewLine]", - RowBox[{"KsM", "=", "497.6"}], "\[IndentingNewLine]", - RowBox[{"phiM", "=", "1019.5"}], "\[IndentingNewLine]", - RowBox[{"rhoM", "=", "775.26"}], "\[IndentingNewLine]", - RowBox[{"rhowidth", "=", "149.1"}], "\[IndentingNewLine]", - RowBox[{"omegaM", "=", "782.65"}], "\[IndentingNewLine]", - RowBox[{"omegawidth", "=", " ", "8.49"}], "\[IndentingNewLine]", RowBox[{ - RowBox[{"muonM", " ", "=", " ", "105.7"}], "\n"}], "\n", - RowBox[{"squarkM", " ", "=", " ", "95.0"}], "\n", - RowBox[{"bquarkM", " ", "=", " ", "4180.0"}], "\n", + RowBox[{"mbstar", "=", "5415.4"}], ";"}], "\[IndentingNewLine]", RowBox[{ - RowBox[{"cquarkM", " ", "=", " ", "1275.0"}], "\n"}], "\n", + RowBox[{"mbstar0", "=", "5711.0"}], ";"}], "\[IndentingNewLine]", RowBox[{ - RowBox[{"Bplustau", " ", "=", " ", - RowBox[{"1.638", "*", + RowBox[{"B0M", "=", "5279.5"}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"BsM", "=", "5366.7"}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"BplusM", "=", "5279.3"}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"LbM", "=", "5619.4"}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"D0M", "=", "1864.8"}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"DstM", "=", "2010"}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"piM", "=", "139.6"}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"JpsiM", "=", "3096.9"}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"Psi2sM", "=", "3685.6"}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"kaonM", "=", "493.7"}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"KsM", "=", "497.6"}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"phiM", "=", "1019.5"}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"rhoM", "=", "775.26"}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"rhowidth", "=", "149.1"}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"omegaM", "=", "782.65"}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"omegawidth", "=", " ", "8.49"}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"muonM", " ", "=", " ", "105.7"}], ";"}], "\n"}], "\n", + RowBox[{ + RowBox[{"squarkM", " ", "=", " ", "95.0"}], ";"}], "\n", + RowBox[{ + RowBox[{"bquarkM", " ", "=", " ", "4180.0"}], ";"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{"cquarkM", " ", "=", " ", "1275.0"}], ";"}], "\n"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{"Bplustau", " ", "=", " ", + RowBox[{"1.638", "*", + RowBox[{"10", "^", + RowBox[{"(", + RowBox[{"-", "12"}], ")"}]}]}]}], ";"}], "\n"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{"C7eff", " ", "=", " ", + RowBox[{"-", "0.306"}]}], ";"}], "\n"}], "\n", + RowBox[{ + RowBox[{"C9eff", " ", "=", " ", "4.211"}], ";"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{"C10eff", " ", "=", " ", + RowBox[{"-", "4.103"}]}], ";"}], "\n"}], "\n", + RowBox[{ + RowBox[{"GF", " ", "=", " ", + RowBox[{"1.1663787", "*", RowBox[{"10", "^", RowBox[{"(", - RowBox[{"-", "12"}], ")"}]}]}]}], "\n"}], "\n", + RowBox[{"-", "5"}], ")"}]}]}]}], ";"}], "\n", RowBox[{ - RowBox[{"C7eff", " ", "=", " ", - RowBox[{"-", "0.306"}]}], "\n"}], "\n", - RowBox[{"C9eff", " ", "=", " ", "4.211"}], "\n", + RowBox[{"alphaew", " ", "=", " ", + RowBox[{"1.0", "/", "137.0"}]}], ";"}], "\n", RowBox[{ - RowBox[{"C10eff", " ", "=", " ", - RowBox[{"-", "4.103"}]}], "\n"}], "\n", - RowBox[{"GF", " ", "=", " ", - RowBox[{"1.1663787", "*", - RowBox[{"10", "^", - RowBox[{"(", - RowBox[{"-", "5"}], ")"}]}]}]}], "\n", - RowBox[{"alphaew", " ", "=", " ", - RowBox[{"1.0", "/", "137.0"}]}], "\n", - RowBox[{"Vts", " ", "=", " ", "0.0394"}], "\n", - RowBox[{"Vtb", " ", "=", " ", "1.019"}], "\n", + RowBox[{"Vts", " ", "=", " ", "0.0394"}], ";"}], "\n", RowBox[{ - RowBox[{"numberofdecays", "=", " ", "5404696"}], "\n"}], "\n", + RowBox[{"Vtb", " ", "=", " ", "1.019"}], ";"}], "\n", RowBox[{ - RowBox[{"b01", " ", "=", " ", "0.292"}], " "}], "\[IndentingNewLine]", - RowBox[{"b02", " ", "=", " ", "0.281"}], "\[IndentingNewLine]", - RowBox[{"b03", " ", "=", " ", "0.150"}], "\n", - RowBox[{"bplus1", " ", "=", " ", "0.466"}], "\[IndentingNewLine]", - RowBox[{"bplus2", "=", - RowBox[{"-", "0.885"}]}], "\[IndentingNewLine]", - RowBox[{"bplus3", "=", - RowBox[{"-", "0.213"}]}], "\n", + RowBox[{ + RowBox[{"numberofdecays", "=", " ", "5404696"}], ";"}], + "\[IndentingNewLine]"}], "\n", RowBox[{ - RowBox[{"bT1", " ", "=", " ", "0.460"}], " "}], "\[IndentingNewLine]", + RowBox[{"b0", "=", " ", + RowBox[{"{", + RowBox[{"0.292", " ", ",", "0.281", ",", " ", "0.150"}], "}"}]}], + ";"}], "\n", RowBox[{ - RowBox[{"bT2", "=", - RowBox[{"-", "1.089"}]}], " "}], "\[IndentingNewLine]", + RowBox[{"bplus", "=", " ", + RowBox[{"{", + RowBox[{"0.466", ",", + RowBox[{"-", "0.885"}], ",", + RowBox[{"-", "0.213"}]}], "}"}]}], ";"}], "\n", RowBox[{ - RowBox[{"bT2", "=", - RowBox[{"-", "1.114"}]}], "\n"}], "\n", - RowBox[{"NRBR", "=", " ", - RowBox[{"4.37", "*", - RowBox[{"10", "^", - RowBox[{"(", - RowBox[{"-", "7"}], ")"}]}]}]}], "\n", + RowBox[{ + RowBox[{"bT", "=", " ", + RowBox[{"{", + RowBox[{"0.460", " ", ",", + RowBox[{"-", "1.089"}], " ", ",", + RowBox[{"-", "1.114"}]}], "}"}]}], ";"}], "\n"}], "\n", RowBox[{ - RowBox[{"NRauc", "=", " ", "0.00133"}], "\[IndentingNewLine]"}], "\n", - RowBox[{"jpsis", "=", " ", "3096.0"}], "\[IndentingNewLine]", + RowBox[{"NRBR", "=", " ", + RowBox[{"4.37", "*", + RowBox[{"10", "^", + RowBox[{"(", + RowBox[{"-", "7"}], ")"}]}]}]}], ";"}], "\n", RowBox[{ - RowBox[{"jpsiw", "=", "0.09"}], " "}], "\[IndentingNewLine]", - RowBox[{"jpsip", "=", - RowBox[{"-", "1.5"}]}], "\[IndentingNewLine]", - RowBox[{"jpsia", "=", "184.39"}], "\n", - RowBox[{"jpsiBR", "=", " ", - RowBox[{"6.02", "*", - RowBox[{"10", "^", - RowBox[{"(", - RowBox[{"-", "5"}], ")"}]}]}]}], "\n", + RowBox[{ + RowBox[{"NRauc", "=", " ", "0.00133"}], ";"}], + "\[IndentingNewLine]"}], "\n", RowBox[{ - RowBox[{"jpsiauc", "=", " ", "0.2126825758464027"}], "\n"}], "\n", - RowBox[{"psi2sm", "=", " ", "3686.0"}], "\[IndentingNewLine]", - RowBox[{"psi2sw", "=", - RowBox[{"-", "0.3"}]}], "\[IndentingNewLine]", - RowBox[{"psi2sp", " ", "=", " ", - RowBox[{"-", "1.5"}]}], "\[IndentingNewLine]", - RowBox[{"psi2sa", " ", "=", " ", "23.07"}], "\n", - RowBox[{"psi2sBR", "=", " ", - RowBox[{"4.97", "*", - RowBox[{"10", "^", - RowBox[{"(", - RowBox[{"-", "6"}], ")"}]}]}]}], "\n", - RowBox[{"psi2sauc", "=", " ", - RowBox[{"2.802257483178487", "*", - RowBox[{"10", "^", - RowBox[{"(", - RowBox[{"-", "10"}], ")"}]}]}]}]}], "Input", + RowBox[{"jpsim", "=", " ", "3096.0"}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"jpsiw", "=", "0.09"}], " ", ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"jpsip", "=", + RowBox[{"-", "1.5"}]}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"jpsia", "=", "184.39"}], ";"}], "\n", + RowBox[{ + RowBox[{"jpsiBR", "=", " ", + RowBox[{"6.02", "*", + RowBox[{"10", "^", + RowBox[{"(", + RowBox[{"-", "5"}], ")"}]}]}]}], ";"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{"jpsiauc", "=", " ", "0.2126825758464027"}], ";"}], "\n"}], "\n", + RowBox[{ + RowBox[{"psi2sm", "=", " ", "3686.0"}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"psi2sw", "=", + RowBox[{"-", "0.3"}]}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"psi2sp", " ", "=", " ", + RowBox[{"-", "1.5"}]}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"psi2sa", " ", "=", " ", "23.07"}], ";"}], "\n", + RowBox[{ + RowBox[{"psi2sBR", "=", " ", + RowBox[{"4.97", "*", + RowBox[{"10", "^", + RowBox[{"(", + RowBox[{"-", "6"}], ")"}]}]}]}], ";"}], "\n", + RowBox[{ + RowBox[{"psi2sauc", "=", " ", + RowBox[{"2.802257483178487", "*", + RowBox[{"10", "^", + RowBox[{"(", + RowBox[{"-", "10"}], ")"}]}]}]}], ";"}]}], "Input", CellChangeTimes->{{3.768042511440446*^9, 3.7680425886548386`*^9}, { 3.768042655722806*^9, 3.7680427829496317`*^9}, {3.768043469101739*^9, 3.7680434767802153`*^9}, {3.768043520665967*^9, 3.7680435461338577`*^9}, { - 3.7680438318670406`*^9, 3.7680438326758633`*^9}}, - CellLabel-> - "In[297]:=",ExpressionUUID->"037a651f-7204-4dd6-865b-a90153e54791"], + 3.7680438318670406`*^9, 3.7680438326758633`*^9}, {3.76823577028961*^9, + 3.768235831700453*^9}, {3.768236772772351*^9, 3.7682368423044157`*^9}, { + 3.76823944287317*^9, 3.768239442937003*^9}, {3.768244201338833*^9, + 3.768244216523238*^9}}, + CellLabel->"In[75]:=",ExpressionUUID->"037a651f-7204-4dd6-865b-a90153e54791"], Cell[BoxData[{ RowBox[{ - RowBox[{"N", "=", "3"}], "\n"}], "\[IndentingNewLine]", - RowBox[{"mB", " ", "=", " ", "BplusM"}], "\[IndentingNewLine]", - RowBox[{"mK", " ", "=", " ", "kaonM"}], "\[IndentingNewLine]", - RowBox[{"tpos", "=", - RowBox[{ - RowBox[{"(", - RowBox[{"mB", "-", "mK"}], ")"}], "**", "2"}]}], "\[IndentingNewLine]", - RowBox[{"tzero", "=", - RowBox[{ - RowBox[{"(", - RowBox[{"mB", "+", "mK"}], ")"}], "*", + RowBox[{"mB", " ", "=", " ", "BplusM"}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"mK", " ", "=", " ", "kaonM"}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"tpos", "=", RowBox[{ RowBox[{"(", - RowBox[{ - RowBox[{"sqrt", - RowBox[{"(", "mB", ")"}]}], "-", - RowBox[{"sqrt", - RowBox[{"(", "mK", ")"}]}]}], ")"}], "**", - "2"}]}]}], "\[IndentingNewLine]", + RowBox[{"mB", "-", "mK"}], ")"}], "^", "2"}]}], + ";"}], "\[IndentingNewLine]", RowBox[{ - RowBox[{"f0", "[", "x_", "]"}], ":=", "\[IndentingNewLine]", "\n", "\n", - "\n", "\[IndentingNewLine]", - RowBox[{"zoben", "=", + RowBox[{"tzero", "=", RowBox[{ + RowBox[{"(", + RowBox[{"mB", "+", "mK"}], ")"}], "*", RowBox[{ - RowBox[{"ztf", ".", "sqrt"}], RowBox[{"(", + RowBox[{ + RowBox[{"Sqrt", "[", "mB", "]"}], "-", + RowBox[{"Sqrt", "[", "mK", "]"}]}], ")"}], "^", "2"}]}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"z", "[", "x_", "]"}], ":=", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"Sqrt", "[", RowBox[{"tpos", "-", - RowBox[{"x", "**", "2"}]}], ")"}]}], "-", - RowBox[{ - RowBox[{"ztf", ".", "sqrt"}], - RowBox[{"(", - RowBox[{"tpos", "-", "tzero"}], ")"}]}]}]}]}], "\n", - RowBox[{"zunten", "=", - RowBox[{ - RowBox[{ - RowBox[{"ztf", ".", "sqrt"}], - RowBox[{"(", - RowBox[{"tpos", "-", - RowBox[{"x", "**", "2"}]}], ")"}]}], "+", - RowBox[{ - RowBox[{"ztf", ".", "sqrt"}], - RowBox[{"(", - RowBox[{"tpos", "-", "tzero"}], ")"}]}]}]}], "\n", - RowBox[{ - RowBox[{"z", "=", - RowBox[{"zoben", "/", "zunten"}]}], "\n"}], "\[IndentingNewLine]", - RowBox[{ - RowBox[{"#calculate", " ", "f0"}], "\n"}], "\[IndentingNewLine]", - RowBox[{ - RowBox[{ - RowBox[{ - RowBox[{"if", " ", "subscript"}], "\[Equal]", "\"\<0\>\""}], ":", - "prefactor"}], "=", - RowBox[{"1", "/", - RowBox[{"(", - RowBox[{"1", "-", - RowBox[{ - RowBox[{"x", "**", "2"}], "/", - RowBox[{"(", - RowBox[{"mbstar0", "**", "2"}], ")"}]}]}], ")"}]}]}], "\n", - RowBox[{ - RowBox[{"_sum", "=", "0"}], "\[IndentingNewLine]"}], "\n", - RowBox[{ - RowBox[{ - RowBox[{ - RowBox[{"for", " ", "i", " ", "in", " ", "range", - RowBox[{"(", "N", ")"}]}], ":", "_sum"}], "+=", - RowBox[{ - RowBox[{"b0", "[", "i", "]"}], "*", - RowBox[{"(", - RowBox[{ - RowBox[{"tf", ".", "pow"}], - RowBox[{"(", - RowBox[{"z", ",", "i"}], ")"}]}], ")"}]}]}], - "\[IndentingNewLine]"}], "\n", - RowBox[{ - RowBox[{"return", " ", - RowBox[{"tf", ".", "complex"}], + RowBox[{"x", "^", "2"}]}], "]"}], "-", + RowBox[{"Sqrt", "[", + RowBox[{"tpos", "-", "tzero"}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ - RowBox[{"prefactor", "*", "_sum"}], ",", - RowBox[{ - RowBox[{"ztf", ".", "constant"}], - RowBox[{"(", "0.0", ")"}]}]}], ")"}]}], "\[IndentingNewLine]"}], "\n", + RowBox[{"Sqrt", "[", + RowBox[{"tpos", "-", + RowBox[{"x", "^", "2"}]}], "]"}], "+", + RowBox[{"Sqrt", "[", + RowBox[{"tpos", "-", "tzero"}], "]"}]}], + ")"}]}]}], "\[IndentingNewLine]", RowBox[{ - RowBox[{ - RowBox[{"#calculate", " ", "f"}], "+", - RowBox[{"or", " ", "fT"}]}], "\[IndentingNewLine]"}], "\n", - RowBox[{ - RowBox[{"else", ":", "prefactor"}], "=", - RowBox[{"1", "/", - RowBox[{"(", - RowBox[{"1", "-", - RowBox[{"q2", "/", - RowBox[{"(", - RowBox[{"mbstar", "**", "2"}], ")"}]}]}], ")"}]}]}], "\n", - RowBox[{ - RowBox[{"_sum", "=", "0"}], "\[IndentingNewLine]"}], "\n", - RowBox[{ - RowBox[{ + RowBox[{"Pplus", "[", + RowBox[{"x_", ",", " ", "y_"}], "]"}], ":=", + RowBox[{"1", "-", RowBox[{ - RowBox[{"if", " ", "subscript"}], "\[Equal]", "\"\\""}], ":", "b"}], - "=", "bT"}], "\n", + RowBox[{"x", "^", "2"}], "/", + RowBox[{"y", "^", "2"}]}]}]}], "\n", RowBox[{ + RowBox[{"fT", "[", "x_", "]"}], ":=", " ", RowBox[{ - RowBox[{"else", ":", "b"}], "=", "bplus"}], "\[IndentingNewLine]"}], "\n", - RowBox[{ - RowBox[{ + RowBox[{"1", "/", + RowBox[{"Pplus", "[", + RowBox[{"x", ",", "mbstar"}], "]"}]}], "*", RowBox[{ - RowBox[{"for", " ", "i", " ", "in", " ", "range", - RowBox[{"(", "N", ")"}]}], ":", "_sum"}], "+=", - RowBox[{ - RowBox[{"b", "[", "i", "]"}], "*", + UnderoverscriptBox["\[Sum]", + RowBox[{"j", "=", "0"}], "2"], RowBox[{"(", RowBox[{ - RowBox[{ - RowBox[{"tf", ".", "pow"}], - RowBox[{"(", - RowBox[{"z", ",", "i"}], ")"}]}], "-", - RowBox[{ - RowBox[{"(", + RowBox[{"bT", "[", + RowBox[{"[", + RowBox[{"j", "+", "1"}], "]"}], "]"}], + RowBox[{"(", + RowBox[{ RowBox[{ + RowBox[{"z", "[", "x", "]"}], "^", "j"}], "-", + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{"-", "1"}], ")"}], "^", + RowBox[{"(", + RowBox[{"j", "-", "3"}], ")"}]}], "*", RowBox[{"(", - RowBox[{"-", "1"}], ")"}], "**", - RowBox[{"(", - RowBox[{"i", "-", "N"}], ")"}]}], ")"}], "*", - RowBox[{"(", - RowBox[{"i", "/", "N"}], ")"}], "*", - RowBox[{"tf", ".", "pow"}], - RowBox[{"(", - RowBox[{"z", ",", "N"}], ")"}]}]}], ")"}]}]}], - "\[IndentingNewLine]"}], "\n", - RowBox[{"return", " ", - RowBox[{"tf", ".", "complex"}], - RowBox[{"(", + RowBox[{"j", "/", "3"}], ")"}], "*", + RowBox[{ + RowBox[{"z", "[", "x", "]"}], "^", "3"}]}]}], ")"}]}], + ")"}]}]}]}], "\n", + RowBox[{ + RowBox[{"fplus", "[", "x_", "]"}], ":=", " ", + RowBox[{ + RowBox[{"1", "/", + RowBox[{"Pplus", "[", + RowBox[{"x", ",", "mbstar"}], "]"}]}], "*", RowBox[{ - RowBox[{"prefactor", "*", "_sum"}], ",", - RowBox[{ - RowBox[{"ztf", ".", "constant"}], - RowBox[{"(", "0.0", ")"}]}]}], ")"}]}]}], "Input", - CellChangeTimes->{{3.768043177248828*^9, 3.768043177259832*^9}, { - 3.768043906799721*^9, 3.768043999680481*^9}, {3.768044045580817*^9, - 3.7680441462058163`*^9}},ExpressionUUID->"8d2adb61-5946-4313-bd6e-\ -7ea714537656"], + UnderoverscriptBox["\[Sum]", + RowBox[{"j", "=", "0"}], "2"], + RowBox[{"(", + RowBox[{ + RowBox[{"bplus", "[", + RowBox[{"[", + RowBox[{"j", "+", "1"}], "]"}], "]"}], + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"z", "[", "x", "]"}], "^", "j"}], "-", + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{"-", "1"}], ")"}], "^", + RowBox[{"(", + RowBox[{"j", "-", "3"}], ")"}]}], "*", + RowBox[{"(", + RowBox[{"j", "/", "3"}], ")"}], "*", + RowBox[{ + RowBox[{"z", "[", "x", "]"}], "^", "3"}]}]}], ")"}]}], + ")"}]}]}]}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"f0", "[", "x_", "]"}], ":=", " ", + RowBox[{ + RowBox[{"1", "/", + RowBox[{"Pplus", "[", + RowBox[{"x", ",", "mbstar0"}], "]"}]}], "*", + RowBox[{ + UnderoverscriptBox["\[Sum]", + RowBox[{"j", "=", "0"}], "2"], + RowBox[{"(", + RowBox[{ + RowBox[{"b0", "[", + RowBox[{"[", + RowBox[{"j", "+", "1"}], "]"}], "]"}], + RowBox[{ + RowBox[{"z", "[", "x", "]"}], "^", "j"}]}], ")"}]}]}]}]}], "Input", + CellChangeTimes->CompressedData[" +1:eJxTTMoPSmViYGAQAWIQnfZN/eoPoTeO3QEaYDpgeqTBTyDdcOyrNYjmm7bJ +EUTzTHPzA9ECH6xfhwm/ceQ4Pg9MB81RFwkH0m0S15VAtNadED0QrcTpaAii +l57ytAXRecxFLiB63XZWfxDd5yUNpg++vB8Eog98nBoJoi9Y2aeBaI5v73JB +dOxH0SIQ/S9yRzuITj98aQ2ITjvrtR5EF+yq2QGifyn/2gmir1+YujwKSLNN +1lsDondq9u4B0UFmVftAtPJ7hTdvgLS/7ee3IHre43fhb4G0VH99LIh2+Xyl +AETf2BdUBKIrt2iWg2gha8VqEF1zvWM7iPYQeAymAUy5mnM= + "], + CellLabel->"In[49]:=",ExpressionUUID->"8d2adb61-5946-4313-bd6e-7ea714537656"], -Cell[BoxData[""], "Input", +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Plot", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"f0", "[", "x", "]"}], ",", + RowBox[{"fplus", "[", "x", "]"}], ",", + RowBox[{"fT", "[", "x", "]"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"x", ",", "xmin", ",", "xmax"}], "}"}], ",", + RowBox[{"PlotRange", "\[Rule]", + RowBox[{"{", + RowBox[{"0", ",", "5"}], "}"}]}]}], "]"}]], "Input", + CellChangeTimes->{{3.7682376421465816`*^9, 3.7682376439527864`*^9}, { + 3.768544739336843*^9, 3.768544758258254*^9}, {3.7685447936366663`*^9, + 3.7685447959544687`*^9}, {3.768546782832716*^9, 3.768546786192734*^9}, + 3.768546820592787*^9, {3.768546870700826*^9, 3.7685468872954226`*^9}}, + CellLabel-> + "In[142]:=",ExpressionUUID->"1bb2a22e-ee7e-457c-9fa5-3ad0259e7bb1"], + +Cell[BoxData[ + GraphicsBox[{{{}, {}, + TagBox[ + {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[ + 1.], LineBox[CompressedData[" +1:eJwV1nk01N8bB3DKUgop2rRYskUlikTdx65vKAolZEn27JWKRAgtFBKSnaxz +P6mEEqFSWmwz1sxnECFFUil+9/fHnDmvcz53ztznvp/nfiQdvc2dF3BxcQ2S +z/+/e2Xj45o93WFRyOoEh1YmClAbasd33OHi8puzAcRLDTTFkxrdwXqe7/IV +4t3Og7l2Eh5w2n9wpow4OVujaqLVA3r/RHpwtTHRYQl6UETTC7wbvoflEw9e +vbO+iMcH7vjvOyPUwUQMUT1YL+4DZlyX5mWIL6R9dbyx3Qe4wpsK9hCLFusW ++Nv5wLqoJDsvYp034ypaFT4QGC9v9Y44Y7GOUbOHLxRfHL6QxGQim8gvfhMt +fqDfXZaBOpmod1RgVG/UD2SNNmbZEtuZKTqlLPQH0ZSrTeeJj6/zPKS/wx9Q +snNcBbEjNa6amugPXtwq31S7mMil79sPgyMB0JGtza3SzUR+ajOn03sDIUZ1 +2nd/LxNFDS08bzJ8FpxfXWBNsZnI3UlWim/+LDRFwfxqmolM+41ePxMLgoAw +U6O9xKJd11Yp6wbBBjVT7WjirOZV5cvTg2Djdq73Ehwmqi5XHGceOgfq8ges +LQeY6FvYoeOONeehqL1Ho3uIiY5uzNY9kxQC+2uq3I3HmOhkhu7Hp8Uh8EAl +ySiI2E9ywI7nRQh4u1Ub5hHHSMuci58IgegFk/e5xpmoUi6fUWR0EQaMFece +Ea9VLlrf/+ciBO6W+awwwUReGZ3nc8pCoYR7pEF+kom2YLaFoGgY3CmbFo79 +xUTG0SUV+9ZEQHXdEZ2di1ioxqR6dvRLFEiwSypWr2GhD68ix3/9ioHdgir7 +v2xhod+vRMrqfl0DNWm79VN6LFTV5S0f5BgHIpomH5ptWGhfcfnBxqF4mD0s +FXIwiIW4fqx1MzC7BV313o1BSSykG+IwklOeAH0Lb/mFP2Shdg5v7S61JBhy +6TBb2MVC8TVvrszfvQ0jff/UmudY6O7pifxZ6TtwaIHYfK1CJ9rhM7W1IysF +TisPhclZdaLpT6vzOPxpMCLITDt3uRPxKqYFyMbehVtyHYZ8TzoRGgPVtB/p +UK4+tdx+vBM512fmSO/NAOskuzfdCl3om+otJ9e5DEicfz+7060LxdklpjTi +TNiRMGPBW9CFmKcNglFAFrwOqEq2/taFVP9bxPqokA0KXeG+gru6UfveypOt +3dlwd5mRiHdYN9ooKZ45kZYDL/QjVn5ldqOQZ1cPyZjlgjb/r2V+Sj3o8r4S +HCiaBzr9YYpnrvWgD9NPdXe25YF3qZ/DucketN32k4lQVD4o/9AxX2PZi3ZT +ZQsX7CsAiUpv64OvetGRurjtwnMFUBhy3Wt+Vx+qmnK4FVt2HxLKWrY6lvSh +xuV0hpRPIaQapR2NVfmEhsb8ZFuli8BfS/Y/94efUGk5ZZU+VASm6l9TzWT6 +Uaz6Qu7wtGKw26l/2PtUPyrp1u3rMC2B1B/1jfCkH53xUnXRX1YKyr0mFXmC +bGRZqeraXF8Kn7/utvprx0a9P2hRnytl4CpWGjVTwUYW8rV/YBMDDH/7KUaK +0KhRdU1+RzADjG7uSu93oNH775Kqxy4y4Py6JjNVJxqxyjbXfAplgHZAWlLE +CRp9UdRiDoczYMe/yWZ5FxoJbTrOPxvNgDYPtVdunjSyEs112ZjEgGhXqci2 +0zQa/qEs71rKAA3ryT3asTRa8sjo/u8+BlzJcUsVoGgUk6jteqKfATarc29s +fEAjgcDdcu/ZDKgSaKJUy2m0aIdSbs4AWc+1MfjoIxrxUMKZB74wIISzdCCl +kkZzJR3JudMM2CVpMztZR6PJ3BNXzJZiYK1w1/rcQiPfCFvDakHiQ+Gne1tp +9O2EJZ+cMIas9303WtpoNCFtdPmvCIbcF92Hn3TQaCxTMTR/FQbn/sn2s100 +Gro7eeafFAbfbWuEnrJp1JUY6nJfA8O77ePpuhM0SrNg8whqYvjuVlSw5BuN +7MR0sny0MMAtPvUWYnbCwl51hEHLZ0mr9SSpx61I80Y9DKtMSjKOTtPoZ/zV +PZwDGB6WpKsLzNKowmy8y8AMw92+/PoK4nMipmcLzTFclxdMdv5Lo39xwg98 +LTDMxizmrvxH6hF3U57rGIbS+gNOJlwctOJ68or1JzEodTy5tJaXg9pMfjNC +XTCIJD9zKiJOErQ2HXDFMCOQrbubj4PWXhOPLvLA4CFoMWLGz0FSV9PnNHwx +9N/OQq6LOWhg/3zqXT8MPuy9l4eJ85bYa3AHYNAZWJB+UoCDFGIlA16dxrDY +pUjTZgkHKcfkjFheIOs9V0YpCXLQ5D7eqMpgDCeFhnpSiMsXn9y04SKGW7O1 +3XxCHKQeLXd88BIGadcLT5nEe68UtvlHYRB6y/CwWcZBXEZL/JhXMEii+ROP +iev4PYU1YzD8agtlCotwkH7Ulv8WXMPgNzwn9ITYOJJRE3eT/J6jtejYcg4a +yXa9uTwBw+2W7Bn1FRwUWSvhnJCIwUGdyg4lfv43TiA5GcPaEUXVRaIcZLt2 +X++aFAwc/V4eQ+I/6tyM1FQMltN958OId/r7WtxLx7DEVmPnBHFLnIK8ZAaG +lUZczhJiHORTyv6TlYnBU3xK1JRY8O2d5k3ZGIJ1wzTPEheOmGXk5WCIlOF+ +n05syC/gL5+HIYWR21BLPLCpTr8wH0PMWJQYm/iSzrnVSvcxNERmlv8l3mCv +MlpSiOGzTXOy6EoOqgr+8nRbMYb1vC8fyxMfSc2KwyUYlA9v5tcgnq6wdlIt +w4DYfhf0iW92LFd7yCDnFTW71JR424+mReoUhnr6X4k58VuR8O6KBxjcPsQf +PkTstk2zdPdD4oHi6QPEfCZTodWPMDyjJSONiLPdiw7trcBgqJrxR4sYrjjJ +Pn+CwfzQA8MtxL254r+1q4j16hzWEJ970frmRTWGwhmhPdzEq9ix6frPMJx/ +/LB5gOyvfE7X92UNef5qMX89sfm6v7r7ajE8v1fX9/96TWiUr3xTh6Ei9Z5B +IPFVK88R43pSL74XKobEmwM3Vb9rwJCYGp4kSvzyZs/1gy8xOGUIOfeS8zrB +SHBoeYXBRM0lPpOY+53xjsNNGBwLnIUciNNHefg73mCIfvjonTgxSzawuPMd +qW+YDCeM5CVQb8vFYx8wPHGpFt9GvNxx0Kz3I6l3SZJ9B8mb8V2Lmf42DBsC +eTrE/p+/SsEmxw6Sp6NJIyUkn5GshrQBJgabipPvgfj5CjWd4S4M+w2T2y1J +vm23fxV178HA7+zI7BQm+TPN+zzai0GcV/OUFfGOmJXXJvoxTDWmiOuQfvmY +/+64L42BocUSKSP9daohUmWKg2Hzp+s2K4nvc80wfw5h8Na2Lm4l/Wmwoazw +7DAGjR7zGwrEA5ouwX9GMFgpxoQFkX7ecIYpNTeGwVSz1Zyf9PvN8cdevFMY +yv+5p7HI/MhVsvf3+oEhFuo/LyGu8FgU1D6N4Zt/QZQGDwd9GjlyOfcXhoFF +WZfDF3CQ0tDvFP05DAvDPmR/mKMRksnKKJnHYOzs29BG5pf5if/yxLgpCDvV +Ut5C5lsQnYIHF1Ig4TBQXvWH3E99mq8iFlPkfRd2wE8ada4faB4XoKBq1Y2a +ZWR+jtlcbbVYSgFrvP9S1xSNVnT39MkIU1BoNGJ99DuN7JnB0w2iFATf3rlm +wRiN/ryvkeKToOBBzuj1sU80EhR2lT8lSYG/R4W3QR+NJEyXbe2QoqBpFG1M +7qGR4Vt7jTwZCkRfPAuX6qRRwivugwaKFKxjjJ7/8JFG+fyFFqVKFESve/x1 +8D2NKg3Mj63cSoGMdY7VZDOZ//VZJ4eUKXg4Np808ZpGW2t1gyPVKJj42hB8 +tpZG2lxjYV/VKdBsHbDUqaHRYZRwxVKDAisPuW0LntLo/NOBW7JaFNh6W1k5 +VdDo1ZOIwkZtCvbYf6/OL6XJ+/NLJp8JBW9pkaDVd8h+xA9WJ5tS0FjhKdyV +SO6TcFbG5oMU/BvI2Xb1Jo2ELUbcTA9RcH/4nmgtuY+rZwT+Jh6lIDyBx/Jk +MI1c7G/1yx2joPy6lkJuEI2WvxZveGJDgUi7vE9LII1cU5Su9x6nIHBL5/YZ +LxqJ7TGVkDlJziN21UoHWxo9z+3geexCweLATdJLjtLIU+j4iJEb+b/S9QqZ +h2lU98mb8vSk4ES0RMON/TQ6FRavV+5Hgd288U6vXWR/L9tcdS9S4NXxcaJF +kEb+yrYm7aEU8P+Tp4QX0WjDncHtLmGk3t0mcioLaBTo/vNPTAQFdYJx3rI/ +2UhKcPW1llgKDFuuFzzvYaML5sewQzIFO+6J8PrmsJFcFSdx6g4FTmV+Zf1p +bNQi7XkuIpUCXkeX16qJbKQwfUH3fjoFU3vhfnQEG7XZ8sprZpB6nZp7GBfM +RqGN15Y2Z1JwY9VqvcuBbNRxO739Ww4F9ybj8wyd2egSl1xlWB4F9vmnKAVb +NlJyK0sXLaBAI2xweKMFGzE/qofn3adg+G5Et64JG4Xtfu6yq4iCFXqPJmr0 +2WhLtpFxUzHJq+ayB/172Yi15KOyTSlZrzU6rKfBRpcDjop9LaNg3w2esTtq +bLStl/37Iqag+U1IZ7sOG/0PQpAgrA== + "]]}, + Annotation[#, "Charting`Private`Tag$108405#1"]& ], + TagBox[ + {RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6], Opacity[ + 1.], LineBox[CompressedData[" +1:eJwVlXk0lXsXxwkps1LduDJLcb3mCP12ToXCJQ2akExR1zEPRZIpQ5kvQmS+ +OOd5nlflGjJUSpxjPEhLpsxjOOEk3vP+sdden7XXXvv73WuvtWUcPM477eDg +4Khkx//zoGJiAu2OG6SNlLpqz9OQj84EA89wg08Z2c+fsFngjL5EWrMbWBnO +/TXF5uNO44W20u6gXVLZm71AQ+n5ejWL3e5grFnRKrxEQxekR8dF9e/COVd9 +K5EVGhqPy5As4ybDw3LRX482aAgTOwWSEmTAJDnMl9h8P2vB4ak6GSjyGjo3 +WDQkVk4q8bYlgwz3wx7dnzRk1DqvYVBFhqmN8pNrmzSUu9vIhObuCVNjQeMJ +HHR0PXLGa7HLC8I1NJ8e20VHg7N8s6dmvcBmv/7nRjbbWinfyuTyhl8j5f1m +u+nI7vc71qe1vOGc+9aaIx8dORDzms9SvcH+FuXfbAE6cvm6tHrGxgdqs6Uu +qIvSkZfOml/OoC9IJ4ejEXE6iprgumc+FQCqgsVrzmp05HZLUXbndgAcc1Oi +7VGnI4thk5Y3+wLB6fsoqZ7NYgPxB9RIgTAnpLtPXJOOXtAOVO7JCQQvEsOk +T5uOaiuV5/usg+DChWfbHvp0tBRmbedQfw9YNav8EsZ0dEUqn+SfFgJSxwzb +r9rTkXMuqbOuPASKCyO0lW+y9cl8s+V+GwKlk2bHN9kcI6cQlLgYAgfxVKnc +W3RUfbgYKzN5ABcy315ddKYjcbUyyWHWA4h2ss4ru0tHd3M/3yughsL+sW9D +z+7R0R/4yEVBsTCo2j7UaZtBR2aPK6pMD0aAdXRSWvUoHdWb1/6cnYkCuXpm +sY1GO+r4GDm/vh4DyYKj3pDajjY+ilKb1uOBr5zrG4OzA9UMeCgFOiRA1Epv +31P9DmRaXmnZPJEIl9w4V8wediCOVfHbZ6ySodFddzSopQORQm5OF1SmwPH9 +K0FGBzoRY4ynUVcnDRiRNGtOn06UWN8avZ39N9xD2XxTXZ0o22+x+KdcBhwM +FpF/QupCWuQV1d4XmdDRwvF7W20XYg79VjTGmwVpTa/fyOt2Ix7lLB/F2GyY +fDUnL/apG6E50MxazQHFNzcbqbY9yOldXoHciVxYNPDvvifEQEuaybdct3LB +Po3zZFArAyXYpmY243nwUm1WZDa2F/X5nQlGPi9A+XZrMwe5D2me3dXfeSQf +mOIeuMqVfsQ4Ue3c/SUf3LZCyD3nPyMpGYm8xawC0Gs0nv95bwCFvImzVrAq +BGHV9mFm+RcUblqB+4oVAdMySiv54CDqYNaRtHuK4IDN09/Lir4i9RtD5kJR +xRDZYjjhJT2MjhNUrh2mJVB+48M4/cAIsmlKUBfeKoFk/9OCLw6OopqVm8mx +1FJosrsckqA5hpr3jObKkv8Bw6yJv+Njv6GJOS/Fbrky2FYiDTv8GEeUSuJy +zkQZNBdf8fn1chLFHuPifJRVDn5+ZT1DKdOo4gvpa69FBUjxvGSSqLPI/66m +y2kRCuiGqDIuXVxAl6o1XWnvKGDQ4CyYnb2EwH9i+csHChyLtw9yL1hCR7Uy +gmc+UeCM1LXaE2VLaKtiK4m3kwKaxP2ulaolVJzXUndykAIpcUx6es8SWo+2 +2/uKSYGNhLorXQLfUebl2Dc5ilRIDpXKPPzwOxpcHRUjR1OB+eGUR2LQMjLz +crpOjqXCxEjLQnrYMqpdnMwnP6FCzIV876KYZZQ5M6fhmUKFgNTKou7MZXRp ++IelVy4VWtQnnfxrllFHK1+8TxW7X5m+Y+bXMnr3QoMncIoK+v9s+pZFraCL +So0skMdAtFx35AS2isKivayKFTCQ80gduPzvKsKm5EoED2PA0SX62r9pFQmU +Rl4cOIKB+uCcTlvPKnp3xAzz/g8GAfZCci0bq0hDuc+p6DgGDp90Lh88zURC +qvMd/FYYcObatp0dYaJmzYPFvcEY9DQ1cPapr6H27zKa1x5g8Lr0bOZnwzXU +Tz1aPxSKgaeYy+SE6RqaUTbom3qEgXxKO0PGYQ0Jydvx/nyMwVPfqgjx5DV0 +WazQRSoNA/3suiS5tTU0taqm5ErBIDCKP37zwzr6TuhVzlExYKn5Tnky1hGL +bASeOAYl0b++rIyuI4F5a5ugSna9RbBdcmsdqY/7RcdVY7Cedv49v/YGCmLU +TmHNGLSpVl61K9xA/K9MSje+YqBBVTB0SWChmNSTro7DGPimUdwTcliIz/f4 +4fYRDIrvcr1oLmehXVoqhQXf2P6mLdyvtrAQNyGc9+cMBpsOC9dkuH6y76U3 +vZCJQXPywyCDwJ9oudAx2koAh81J9TYV8ibyjLhhXCuIg5Ns1YJ46CZacry0 +87AwDsmORY9+S9hEi3Im4ZuiOGhrDV4zwjbRXJ5yaPEBHNq+dahZf99EE9nL +/r9kcZD3e28d7PcLDaSGupTq4aC/sEMpK34LZV0c4RbUx+HTrRK5c8+3kO0+ +oxdkAxwc5eKn+fEtNJLCNXgM4WA/JWf4tmcLTSVHnm8+hcPn3NIFfslt9CMx +znDsTxzEwxYfS+LbaO+T9L2SzjjwvHl0iNeHA3rMN7BQFxxsu7M69odwQJrg +VYtvrjj0nY04pR7NAeLxEo/L3HFokhB+FZnFAbJxOVt6nuz5pvZFL99zgFpM +wfSl+zhUBSuQNcU5wSwSq09IwqEiVWxbq40TpvNdk/ak4DD7ILautp8TIhul +nVJScfC1PMF3YZwTGjYT+NLTcTjA6GrCtzhB29vz4vMcHHp6FL+raOyAQ/Ya +sxX/4GDG2rIyzNoBi3qV+1ubcBiMCd3Ggrkg7vKdabN3OJwLMDa9HccFR33l +a+nvcegf1iBrP+MCRyzlZtdHHLYpq6zd/3JBv6Jv+Wc6Dn/q3yoqYXJBw14d +o6kBHEY17aTGvLghaf71XZ4VHJzXLUrzQnigUMXe++4qDiWOmVM7nvJAlfuu +QAYTB9lA/5mg5zwwNG0TXriOw7s6Xg6sgQdUJjYyT2+x9d03lNLi3gnNX/U/ +RuwmIChRdan76U5gtdfL7pQmYK3Hf0y8hhcEhV2V/pIhID2pZvMdnRekLURU +e2UJyH95riZ+lBeM2+z1ihQIUMtRcLvPtwtSPnJanlEmYGDkfnHftV2g2kgK +jtQhoJZbwaCbezc4EB/6dpoTkKnMqCz24gNBCcvadAsCJjuvG72M54OqR/25 +Ry0JCNWp6N0o4QPhi9O3LawJ+IOxYKU8zAe1a3ybqVcIMCMvPDC24od9hhbS +Cs4EnG/sOqGHBKChsJf7tQsBxp3hAQq2AnBHyG7a5DYBshpvq22CBaBpyIO4 +c4eAobxDURm1AvBXWOKpSi+C/T9JCmUnBOHjhx5X0gMCuDmXGnzPC4G32g1z +RigBUZbPNWL9hOBQxri6SxgBrpYfA7ieCYGv2w9WTAQBg2caohXHhUBW8Lf4 +rlgCdFXdZsNDhIHmm+vpGE/A24TZ0K1CYQj4qnTpxxMCqk3TFVdowtBO1ZMS +TyLA2mV7iCIsAvfPX8NvphNA8VUruOEoAodrxlJXMgjQayjLMA4SgS65O0ER +z9h+uZUNwhNE4AjzPqk0hwCRtPx4njci0Pt3DmOpgIDh/z7hrpIUhYcch6vD +ighorE8wb9YRBZXb1ByxEgJIrStXrlmKQtjxBhfdMgI84gSFrCNE4Y98E7NP +5QQ88rSI+JorCv38nWrXKex9aas3m9aJQrjPlX0LVAJYLsyXHQOi8J/BkY0H +OAGxEiqjwixR+B9SU4nC + "]]}, + Annotation[#, "Charting`Private`Tag$108405#2"]& ], + TagBox[ + {RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[1.6], Opacity[ + 1.], LineBox[CompressedData[" +1:eJwVjnk41PsfxUfGkpkpSfeilCU7UVSWup93KXFjoq7SVYohstxkC8mSkiU3 +e3aTsSTLfL9f7iXNZMlSpKQskayJEGVffuP6/XGe85znvJ7nHFm7a6cdNpBI +pLh1/d97FWNjWlydwVwlmkN9yEFeB0ba8RRncJWfmR9cz1Qjg+1JDc7gp3ww +qzKZg/QdvuTayLgALp2i91cqByWz9J5NvXeBkP0RD0cyOOgPmcEvWwzcwK72 +oeCOXA76cj9FupDsDiVji6qpZRyEiR8D6e3uQJ8SOZr5DwcFpH+3e7DXHaxD +NV6x/uUg8SLDx5427kD9+EOptIKDjjZP7jtU4Q6fOtJUhjgcxNx41LjF5TpU +1c/Sw+s56ELYN4+pNg/4dMGp9GsnB/WOi4wfG/eAw/4ljdofOcjGQo2Ryu8J +ry1yHoR0c9ClHa5njut4wvWqrQZyvRxkR0xqpyV6QhVPj993kIMcP0/PGll5 +wY7yEQ/vSQ7yOLDgk9nrDYT2+4IKMhfdG+G/aTbqCwHDJxoddbnImaEoJ7jm +CxJqgW5kfS6i9xu/er7ND1pUfyZlG3CReHf0r1qGflByUsxr6Dcuym75tUws +0w/OhRB/3jjORZwytcnOM/7gtdA29/U0F03fPnPJruomxJ0aM538i4vO72IZ +3kgKBK98Dc2YQi66wjR8xy0KhHmV+id3irnIQ3bYhvwiEPrtJVj+bC6KlFfw +j50KhADFeyIupVxUqZSPFRoHQcTvzIqLz7hISqtQun85CL7umycim7nIjfnx +Zg47GPpslzXJk1ykgQ9Y0sRvw61DNeqBOs+RaURxhYnkXVh9K8ooGX6Oqsw4 +K+Pf7oFIQXr0GKsKtb4Mm1xcjARL1tJrrnE1Wnq5hV27GA0TwoXHLrRUo2fd +15T97GLgdJuDtZBVDTIpKjNvGIkFicvlrdFrNYg0K3XVyCIenFbOuk0X1SLD +QNuxnLIE2GNeGlPn+AK1DwnU6B5IgguuASfCjOpQbFVz+FrGQ9ANZZx0U61H +GT5T+SvyKZB32FD6i24D0nGf2dORnQqSg/YNY9aNaK5PIm9IKB1UbUee9oe+ +RAJq6V6KURmgv2r0anDgFUIToJ0+mwkVFzblSBk1I4e6RznyvzFhes5mVXv8 +NZrWjmc48Ziw4qJhcpf9BsXYJKY24I+gX0HpUevhVtTpY3QLeWVDevl3UWX6 +O6T9u3DXOxUWfCdvCdlj34baf6u88r6HBSbvfpxwiH6PdslufzSVngMmN+bV +A79/QIHP759RsMiFTRVW0RJWHeiOSTHuLZ4HcT2F0uZCXah1jmu4/0MejD9k +TIf1fER7L/aZbbqXDxKfbhQzuT1In2DzbzB5DFU+ENlE+oysamP2buY9BrSV +7/WIej96NmMbH8UugPK4lrQJzwHUIDbIlHN/Aio6PcoFpCE0MuGh+F6+ELaG +C7RfYQ6jkjLiXOZIIVwbbn7OyBhBUQf5+ULTi2DnvIWQ1tNRVNxj+LmDXgza +gxNZ+8TG0Q03bcfjoiXwU4UXas2bRGcrtZ1a6krgWO7JldG4adQ7OyjuHs6G +oC1k4bTYn8hSuWYZdmPQpWkoozs0i26He1jkK2AgErXAVzAxi7BR+cc0JQxW +m3gaMvOziFoQZtmtggHeKRYgu3EO1amYYp6aGHzzU4p315xD+9Q6HfL0MTDE +Gd3Hb82hTXsmWykWGNDzvrIXpOdRg7ZkfsctDMoU6qpHvRbQ2x+y2tZBGPiY +2geKhiygLrZqVV8wBgN6WSlHohfQN7VDnaOhGIS3Phatzl1Am3ZfElqJwEBN +1EpKs3MBnRPPddyVhIEL3hX/2WARjc5qKTuVrP8PaH/TQl1ClH+NC5Y+YxCT +HTfj/XYZRSYecbLvx6BU4c42895lJOKtr/R2AINg3+kZnfFlJKyjnpszjAHb +kyq+S2gFkYnNj059w+Cgo7+CD1pBvOKO5Nw5DLzI5wb1iBX0M9c+3IKKw1XW +VLMbcxV1JwY7FujhYJbT0nk9m4fSLQfINAMcqFkOLJFSHrLZdjTb/RAOB9Oa +yPgLHhpI4O89iHDI1xmsV/zCQ6PxYacbjuFws1Jnulx5Dc3H3j88dAoHHOxY +gcQa2vp38lbpKzi0CoxvCHciwQezJSzYcb3vc/qDe50ESbQ/6cNOOAgeZPot ++5NAKnp7RKELDruN3Rj3o0kgdz+Tp3cdh0h1ZtnmUhJoReaMnQ3AIeeam2/6 +GglMw7CqmDgcvHb6xItl8cEYyylOLAGHxXKhizpP+CCsRsYhIRGHG3UVrZf/ +4YPq1RiR5GQc5M4zJj8288F+z+uWWZk4JDCLgulLfLDz8r7x4ic4HHqL+5qd +3QBTemW/NNfiMJy7CCKS/HD/nOuYad06v8PfLUOBH1S9d3Pe1K/vq5DkD+/j +B3sswbbtJQ57DoQ4Z5/khy5F76KPb3CYzmrWEwzih+qtB46OduNQmzAfe2SU +H+Imy90EZnCQzCoQ46snQ676ZU+3WRziC2SbLNrIUOEi7Nc+t86X/H2G3UeG +vjGrO7mLOLCzRSRjl8mgPrKUepyHQ8AgTeqHlgA0fDZ4eXcjAa7zpq5aTAFY +flslJyhDgEFUCkUyQhDsiMZOQTMCdC7NfO+5Jwy07eacZDoBkRHl/e9ShaEi +tIupak5A1E/ajk/FwrDZcuwq/QwBe20nHmh8EAbOgshq4nkCDs3Rt9TLboRt +h+kyClcIaJLVEG2s3ggvGz84GQat982hIvk0CnhqXTRrDybA0+7azBZ5CuxM ++bLX8TYBm5WmgqN1KeDtPL8ceZeADLFf8ssYFJCjSUS3RRFwd4pOKa2kQMBp +a9w2mYDesN2lmDMVlJ4NJc6krPPbT5Y0BlOhTd7V/24aAQxKU1pvEhVU5gIM +CzIJ+J8l5cFKLRU6Hma2T+cQMPN04GiKFA1CSEqVt/PW/8qdw49o0UD9KjtT +/DEBmVSj3prjNLitX+2oW0iAqizDWtKdBhosY9OmIgLMNl872XKHBl2Ud1oX +SghoJvnuoqTQ4I7X+W3f2QRMtSpGpBXRQLN3YCkIJ+BBjvKTsec0+A8FF23k + + "]]}, + Annotation[#, "Charting`Private`Tag$108405#3"]& ]}, {}}, + AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], + Axes->{True, True}, + AxesLabel->{None, None}, + AxesOrigin->{0, 0}, + DisplayFunction->Identity, + Frame->{{False, False}, {False, False}}, + FrameLabel->{{None, None}, {None, None}}, + FrameTicks->{{Automatic, + Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic, + Charting`ScaledFrameTicks[{Identity, Identity}]}}, + GridLines->{None, None}, + GridLinesStyle->Directive[ + GrayLevel[0.5, 0.4]], + ImagePadding->All, + Method->{ + "DefaultBoundaryStyle" -> Automatic, + "DefaultGraphicsInteraction" -> { + "Version" -> 1.2, "TrackMousePosition" -> {True, False}, + "Effects" -> { + "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, + "Droplines" -> { + "freeformCursorMode" -> True, + "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> + AbsolutePointSize[6], "ScalingFunctions" -> None, + "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& ), "CopiedValueFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& )}}, + PlotRange->{{0., 4785.49990665102}, {0, 5}}, + PlotRangeClipping->True, + PlotRangePadding->{{ + Scaled[0.02], + Scaled[0.02]}, {0, 0}}, + Ticks->{Automatic, Automatic}]], "Output", + CellChangeTimes->{ + 3.7685447600793853`*^9, 3.7685447966506457`*^9, 3.768545791496478*^9, + 3.7685467931681166`*^9, {3.768546874732049*^9, 3.768546887784131*^9}}, + CellLabel-> + "Out[142]=",ExpressionUUID->"cb6b9de2-9043-4280-88ed-0c7952450d3a"] +}, Open ]], + +Cell[BoxData[{ + RowBox[{ + RowBox[{"p", "[", "x_", "]"}], ":=", + RowBox[{ + RowBox[{"1", "/", "2"}], "*", + RowBox[{"Sqrt", "[", + RowBox[{ + RowBox[{"x", "^", "2"}], "-", + RowBox[{"4", "*", + RowBox[{"muonM", "^", "2"}]}]}], "]"}]}]}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"delta", "[", + RowBox[{"x_", ",", "m_", ",", "w_"}], "]"}], ":=", + RowBox[{ + RowBox[{ + RowBox[{"p", "[", "x", "]"}], "/", + RowBox[{"p", "[", "m", "]"}]}], "*", + RowBox[{"m", "/", "x"}], "*", "w"}]}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"resonance", "[", + RowBox[{"x_", ",", "m_", ",", "w_", ",", "p_", ",", "a_"}], "]"}], ":=", + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{"a", "*", "m", "*", "w"}], ")"}], "/", + RowBox[{"(", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"m", "^", "2"}], "-", + RowBox[{"x", "^", "2"}]}], ")"}], "-", + RowBox[{"I", "*", "m", "*", + RowBox[{"delta", "[", + RowBox[{"x", ",", "m", ",", "w"}], "]"}]}]}], ")"}]}], "*", + RowBox[{"E", "^", + RowBox[{"(", + RowBox[{"I", "*", "p"}], ")"}]}]}]}]}], "Input", + CellChangeTimes->{{3.7682371323150387`*^9, 3.7682371468950562`*^9}, { + 3.768237196594181*^9, 3.768237231779109*^9}, {3.768237445770013*^9, + 3.7682375674153843`*^9}, {3.768237656319708*^9, 3.768237776733774*^9}, { + 3.768237831092414*^9, 3.7682379940058627`*^9}, {3.7682392100197325`*^9, + 3.7682392615389533`*^9}, {3.7682392963219557`*^9, 3.7682393604495034`*^9}, { + 3.768239612446779*^9, 3.7682396590901623`*^9}, {3.768239738097948*^9, + 3.768239740696974*^9}, {3.7682398263849115`*^9, 3.7682398281471663`*^9}}, + CellLabel->"In[59]:=",ExpressionUUID->"6c45ba6a-a2e4-4dfa-bf7a-543610b4d110"], + +Cell[BoxData[ + RowBox[{" ", + RowBox[{ + RowBox[{"--", + RowBox[{"--", + RowBox[{"--", + RowBox[{"--", + RowBox[{"--", + RowBox[{"--", + RowBox[{"--", + RowBox[{"--", + RowBox[{"--", + RowBox[{"--", + RowBox[{"--", "--"}]}]}]}]}]}]}]}]}]}]}], ">"}]}]], "Input", + CellChangeTimes->{{3.7683964786836996`*^9, 3.768396481869186*^9}, { + 3.768544862473649*^9, 3.7685448725247617`*^9}, + 3.7685459358385644`*^9},ExpressionUUID->"04e4efe9-ea24-435a-a90c-\ +3bf1b8c0b336"], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Plot", "[", + RowBox[{ + RowBox[{"Abs", "[", + RowBox[{ + RowBox[{"resonance", "[", + RowBox[{ + "x", ",", " ", "jpsim", ",", " ", "jpsiw", ",", " ", "jpsip", ",", " ", + "jpsia"}], "]"}], "+", + RowBox[{"resonance", "[", + RowBox[{ + "x", ",", " ", "psi2sm", ",", "psi2sw", ",", " ", "psi2sp", ",", + "psi2sa"}], "]"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"x", ",", "3000", ",", "3800"}], "}"}]}], "]"}]], "Input", CellChangeTimes->{{3.768043080378785*^9, 3.768043114235282*^9}, { 3.768043179283389*^9, 3.7680431802817307`*^9}, {3.768043605357559*^9, - 3.7680436055181303`*^9}, - 3.7680437130526094`*^9},ExpressionUUID->"44f1aff7-c138-4f4d-86fa-\ -5ca7df87f6ff"] + 3.7680436055181303`*^9}, 3.7680437130526094`*^9, {3.7682393713483644`*^9, + 3.76823958358294*^9}, {3.7682396821684923`*^9, 3.7682397127018566`*^9}, { + 3.768239743711955*^9, 3.7682397922361774`*^9}, {3.768239843480197*^9, + 3.7682398800733356`*^9}}, + CellLabel->"In[62]:=",ExpressionUUID->"44f1aff7-c138-4f4d-86fa-5ca7df87f6ff"], + +Cell[BoxData[ + GraphicsBox[{{{{}, {}, + TagBox[ + {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], + Opacity[1.], LineBox[CompressedData[" +1:eJwV0ns01HkYBvBhlnJsKSypDlvhOMLG2ljJ+5ZaW7osqejIuEWtg9wVIXLp +Jpe2RXYSdr8jnSjGmHGbGbmMIsOw5bZpkWs71t2E/e0f73nO59/neXd4Bjpe +kKfRaE7U/Z+Szl3ytMsEo04G9etvYENhdPnja5TvFbkV397GhhC9wwdklF04 +a7fohmxQjfCJmw8ieFajScPYjg0OW4tWJ0MI6vgE5/jFs6HN3UT2LoLg/YQb +0dzPbGiespwtiyUoyAqLFslxIOuBKNM0jqANC1cGVTngC+e+LaG87eoDPTVd +DiimRwU/uU5Q2rf/IP8HDhw2r5XmJRA086cV2N/lgPCq7dTdZIIbPiRLnHUq +oWbdiRHfewTDzgWo0Vy4sOo5pyGlHHoqw5IRyAWszbWLTCPI06Y3DCVy4WXo +BCslnaDFsFaedxkXXg+m+BVlEkwWiOIObuJBX1W9dPxXgl/Ej/4uEfNAW9Nv +R0gWwV52Xs6rcR64B6s6yiiDqcabf+hVMGTgUaacQ5DmVDAk2FsFE7+shhnl +EjT1zSvIYVbBcuD3Mv88gjeiN7MyI6rB+tX73fOUJ0uNbXMzqyFGP8U15jHB +Oa3K0p6SapDv765JzSf4203bINloNSgdDY0rKST4pjF808D5GtiiW6IwzSJY +ELvgWO1YCxZvdTeFPie40Sc1U9mCD3uOuFvNUFZbm0kcs+ODAe+hd/ALgv7r +i4RjznzYkqvKvVxGcCfPus4xig+LDJqnP5ug006l/A4BHyo/9pb5cAk26+RN +fjotgFJnzYFhyvzTxpH6lwTAEjmuv8AjmCL9UJ4cLYCsYpGrVxXBa6wEL1GB +AK4EchTcawhmD5opuswKwGoh46yLgOr7iJuFMVMIZhfbrr+lvBDjP3uoXAiG +75SenhUSHO9yVk9rEcLWqjjamXqCGf6pJ+oXhCCLCShybCAYpGSh98KpHqoV +j8rsRQSZYQ50D62XsF9D7pGNmCD7YovwvKQBDMV/HK2iLFcRUzU93QAad47N +W3QQjPdqTpCoNIJULuu4aSfB2kDeldvHGqFwyuTzri6CJ63Ee/8WNcKXDa4u +Su8Ibk/rMQrtaoKlWHmFJMrPNhzQyl5sghErVql8D0HFHhNt3e3NwC+dWfeZ +cqJrWHiIdzOE5t6q+NRH8Ot4v3bD5WboC6lUk7wnmFCf+KhmXwuITNzqfhqk +9kjy1jbxaYGKMbpfK+Xx8fX6+uktkMY4KWz8QNDjasZmzmgLHLIfucwdIiju +zhggzFfwdKd6G3OU4PCj5/YMg1bI7ude2TZG0PuGi2W+ayskZTH0sijn1zEj +mOmt4L6xODp9nOA3n/yTO1ZaQX35wO4bkwQzP0765f7VBlHiwJRLUoK5Sw4V +bj7t0GNj1CClPND28xP9W+1g9XRULnKa4KrJ/Ts3n7XDYpJHVNK/BNvMrb7a +s9QOodanAgpmCVYL1BQiH4ihs0il2HCO6rct4lxqnRjMNF9/fE75uKww3GtM +DNPThzz489R/dWfuYkAHBJC9Tv2LVB8M7eR9cx3Qqj6T5r1EUP2IivqIbicY +xZe0TlDmdARbxp7uhAlXA7vlZYK75R3asrmdcFF1q5XmCkGVxe+CfkyVQFNs +dziTMp2bsN+mUQL6UxlleqvUnqbmvV5rEhhuUjY2X6P2klrSfcK6wPPaio6D +HAsDbN2dQoK6QTDOdX1LWZlzxku1vBu+dg7PZsizUKrq8NB6sRsCQ2TyZ+gs +dNs+5Nsb+Sf8BzA1qkk= + "]], LineBox[CompressedData[" +1:eJw92Wk4Vd/bB3CUoZEyZiiUQlKGIuReJVJISYUMpQxFUpmSIlMJGSqFotoH +5+y9zfOUeZ5ChlD6RaQUlYzRs/5vnleuz3WOffZa9/291z5I2V4xseNgY2Ob +Ymdj+99P5UPqRl+tmMhafNih36sHDPV6utytmehPSOdmUrkHtA9KzD04y0Rn +zprlLuzuhs2IBRUXmMggP11rxustvCjzvnfIjom8CqbidfXegjgYtrdgFzyp +040SeAtC2hO2ffZMJMMZ6bgspxN4tHYH/3Zkos8SmW4xix0QWMzVduMiE1Vt +44ni6+gAds1eYbZLTBQnP+RqmtIB83tvslY7MVFEcNDcZtMOGFeraJa5zEQp +bn9mTua1g2N+tCCNHR4gERQZ2Q6f91ywVnZhomkjz/MuTu3wYTf3pPYVJqqf +/NuxbHM7vFEx4je7ykQrkAPX9tg3kLvznfl9dyYyjnNr+qHVBl+qtZ9xezBR +a+6qo+e52kDUgvEhEHvA+7/vsW9awS/wynlfTyb6trrn0T6HVjB4x3nZ7QYT +rR8e+zD1rAX+81f2s77FRMkCkkFbtzWDgMjTyn7sZ5k1OesXmkAvdXG5+W0m +unf7oUxYWxPQPfUhJ3yZqPx18Clx7ybwVLB5qH+HiditOI2duxphTXdosnIQ +E63zeHmh5VUDIKefX9KxBT1o0eu3G+Aa2+ntO4KZyF8gucHfogF65aUztt1l +ovi9Wyd6+RuA8C0oFA9hIjsfn4e7Quthr9znZq5wJpL1kN2/I7QO7Hy0f/c9 +YqI5ydcrpmtrYGV1Ua3tY/x5LsTtd2QNZKxSi/uK7Ub57uSJqIH5uJ3752OY +6JpkTcIBsxp4UCgZsSGWifr0CM/VP6ohb5pju9lz/PudCedXb62GM9q+S4PY +1JvT7ZvXVgNb8EK7QwIT3R69aOkxXQVHBKe8PBNx/aJfXmqoq4IPKp9rY14y +0WrBWBbf5Srgulpn25XERBo+hmu8KyqBKtDZY5XMRAEC47Of6Uo4xla+4jM2 +72v1nXeeVkJcREHGVAoTzRumzR1wrQTFNNYSP8lEVmnb+YekKuHUt9A4kzQm +0mu4bSgUXgHJdsc62vKYqEZB3KfetxzYq84mHs3HRmvZN10tB0vJq84t2Gf4 +bm6Ksi0H/v4orqYCJsqtE5iu1S0Hv2OdGrVFTKSTVjvsuqYczDVPESWvmWj/ +J312Np0yWL3O0o1Vy0QhB8Yux+eWgoOL837ZOia61VTZJp9QCpVNPmtTsH3I +ky3/BZfCjeDnTEY9EzFeOK2rMSuFkYUPA4mNTPTe65rWqaUSKB85pxvTykQW +nFVcJ46VwPUSB6GAbiY6Kmcz7LKmGKrPf7rwD5txRSSSOV8EAqussm/2MFHk +/p3eS6NFkGNucsytl4kmVUd5lyqLYGpa675dHxOZ9l2L0fUuAjel9UuHPjDR +aU7fX5XfC8EjueTz6hEmMrJ1zVsaKYBaIzXVEGxrDY74Ez0FIPQn059zFOel +j23L67oCyNNJ2bSEveX4KbdOZgHMfIwynxhjooYfnjbzTgXgJebQ0v4d92Oq +v5ngdD7ciFyXG/OHiRzUFT66ieSD1tdXjySmmQhZjuStW5kPSzqqbgzsaztD +fCsX8sB/5pRK1gzO4/cwXZvBPAizfpbZMsdET4+qnbyTkgcJCtvSli/h+dNn +eEZPMw+q67VSrnGx0LpIs5MfruRCsHRr8Bz2251cVVnnc+Gwj429HzcLhRc2 +tseczoXWnf4yD3hYiLhw1ToccqEnpo5grWShIfW3Qkp8ufD1gsmLj2tZ6Muh +CwsaOTnAx+4Ye1SYhbILtD2TuHLgnmv4tWbsNZVzJeN/s4H9Y5bBEREWCmkK +/0/7dzb8er24qLuBhcK4L95Z9jEb3vo8tN0nxkIcT3Zrri7KhtjZ19sVNrGQ +115tnjWu2SA9Kfh6xTYWkvEyumc9lAVxNppP7mLP3hd0+tSXBfxtZ105ZVno +vig3XOnIguVplDS7HAt9sskOJCqyYMRp/91ZeRYyPaQk6P4iC8hR52Ojivh+ +Ohh8mTZZoDJY9al6Dws5T75KUxvOhI3sbEZGaizEbjx5T2ogE3g2a+V3YXtl +x0gLvM2ED/Y5oSPqLKTR8cCavzoT7v9gqPJospBN//0QL0YmfFwMCjYAFjpS ++yKowz4TwsX15TsOsdDTDPNlV39mgJd24CMLfRZqIaTfWnzNANuz5UufsI/3 +8owZDGWAOkO98/dhFppWT8vV6cqA4e1yPoKGLBT5R6/kXmEGaGiubDU7xkLe +ww0tNgEZMGrefHXQjIUOa5Zos4lnQG3NNSs7cxaSu64o8F4wA5KVNhz+hq2/ +8WJzGW8G2K+wl5yxYKGRWO3amGX4+gX/Wtda4fvp0eUX6EmHT8IqCtrnWOhF +bXXcklc6vO+KHXl2kYX+6r7PGqlOg87jDmcsvFlI4WT1ezXvVHDsfIl6sB1V +35lLXk2FJdMBGdObLEQprT/F55gK8mbHJ418sL2007hOpYK/tWbQ/tsspGR0 +esFAORWUnHjTZf1ZKLHkz0blcRoiAvM5ZkJYaPuD7gQ1OxoM8rnJh7G4f92j +xl5dosD0m5mkWBwL3TpK7I6ypcByExnzCjtq7TvjYAsKnO8aBmTGs9DD7Nb2 +wCMUhJ2Osmx7zkLQIn6wQ56C1hlR3lWvWMj/r3Idc5yEY+qKbv4kC/1y9bgn +6E6CaaGp9tViFuIWk+qPecKC9cs00iawP5bZf3SPYsEbw00bXUrwfg7p+ZuH +ssDo49jipVIWEs96HKroywI9bt/SC2UslCbdqcPrwIK9J1laZlUsRA7s60lR +Y8HGn4sa0MRCzYmeM6IDTBiTTVFb089C9c/vchxUYoKoDKEegz193fJh+XYm +HJFK3LtpAOdzIvHe/q1MoDc80VR6z0LLe/2ijokxwWXlXTg5yEK3veRyX3Ey +4dc3+0PPh3B9E1xFBPpT4G/a1tM7xllINcT5x/qQFODdnexhtMhCvDot95sn +k0H15uq5Tuy8VLFqy/FksKi4dtNiiYWm5vndJ0eTgWEEfg7/cD9FfVWRHkwG +DfvekDvsJOoQOzCY1pIM9k9WPs/lJFFMXGPdJSoZXs+5VEmsJRFXgJK15cVk +cHmtxvdjI4neGSip0z+S4IiocpjTJhI17xfq0fuWBDIeCjxj2IE/LTiGR5Ng +YIcU27AkieSjxWdl/ksCg+crJ99Jk2hqX4xafWcSyPq8b6vZSiLDxz+rAwuT +YGhvQMRzRRL5Pgm8+DY4CcxyW9caaZOIWIx5EySbBMlVg2Jd2FpP3hT6yCTB +VPukrBWQ6EuB2gEP6SSI/LFe5zIikYCs8Par4klQv+20Z/gBElVyHlQL5ksC +tbjBwRY9EgVb/+ZTmGOAkO9kxlFjEl3huz5m1cyAt/rrTxw7S6LNJnpCG7wZ +0Oucb96G/e44+44eTwYMRFqePXqORFQvu9ETdwYM9yZfNrQlUe9Ec5LEVQb8 +cdS8p3+BRHNGL5IOOOLrh1woRY4keh5Yq/H9FAPMGvK2KbmS6NeKhwNluxlg ++f2MYgZ2hwhHcakKA86uY9+98yqJrt8uDitVYoCjucGBHddIlMcTx121gwE3 +xgYt5dxI5MQrceSzDAPiVqyIlvIi0Y2tYbeDhRjQf/jM33V+JKrP9CpXmyPg +bf6lwAfYw5lVzTdnCGiR8V696g6JPCSEmBV/CChjjxVf7k+ibS7LGk1+EUAU +dmtNB5CoTOdx2v1vBDjJmdzqu0siO5Xzccc+ELDAc3jpVQSJ/tzvUFCuIWDK +wyx4UySJ1giYGaZXEfB92GHtM+zznrqKipUEDJYHb3wcRaKSOxzqSmUEVHlV +a999SKKmfcPmhoUEhH4BX6cnJIq9AVHdqQSI1e9hU00k0c2vW1rVnxIQ/MVy +QzH2yYz4l+0xBPziCVA+8IJEezJe+Tg/JqD+cNuFYy/xfh7V0WdGE+DR5NDg +TOD1JB1QVA8n4E3r0+ikFBJdm574W+BPQGDX/BbhDBKlbdi7Zd8VAib+SGon +YPcbv/YQciHAQujQaZlMEm1wP9j405kApdMPQ1SySLRWp+t62iUCPvRu/2Gc +g/dntq8F7AlQH7DMv1dAoomEzfcqrQgY//T68Hw5iZCkYOqhowSs3XDD0quC +ROfc0064GhGw01jlyjR2cUBafpwhAdeKUx79qiRRkuC//KkjBMw+jBz8Wk2i +iw8+xJUeImCZrq17fz3uB/n0qVf7CdhyU/yeeQOJIt+t8BxFBOhldsf1YO9u +SM3fgX1PwqC8s5FE8zcV3Mq08edPq6xqbiaRuX7RwIwmAaIpnC9L3pBo0YYr +qGQPAVrvy7I12kkU75g5K45txe9dW4Dt2xWk4LubgBe+P77ldOD1bNXr0lcl +YKtZz57UtyT6V/hs508lApRXsJqf95JoHMoUY3YQYArnB8Xekehl2vHC9dju +7hK/YrE3Zv/kilIgoOC/KOGYPhL1dKiNR28nQLvI2/bBAIm6E7Z8puQIOOxk +OHv7I+7nSY1a5a0EDJyQeMb9H4lUpLnXVMkQ4Kr1AyKxn0QYXzqJ/XRN5N2X +n3B+X9Ve9NtCwEh6p1D1MIkcI0qCJ6QJ8H7KKDL8TKLM9W2hkdhr77hbd2Fv +F3UkVbB3mwgnj4xgl7bt9pPC/TFlsXvFGIm0U/ZGKUsSIPJ++7so7PTfe12G +NxFA1/z1Ef1Kosc/FRyfYnfGJFRv/0YiScbrHC5se98rjjnYr4QNeCo2EjDv +gFbvG8f1LknyvoUtvffTiaPfSZTsk1X6V4KAPKnsmW7sz+w2EWXYR1YGxtv8 +wP0X2XonEPtqv8yQ6wSJUvYsNgpgL6+eDp7Dtgmvkv4ojtdP18n7T5LI1fnM +81Ts8lsXrz38ieslILl4FNvUXkNI/BfO74ZzQ9LYX46uKmJgX5d+9mNWjAAf +tQGrHb9J9NHBZlM7Nq9kKnsedmO9hgeF/YrndpL2FM5fc9nvu9h7fh49XIct +Rdx5ao9tXTkZ2fuHRDPDfBby2L/ICtVz0yTKWLPGixc7+GF07xj29F2ibFoU +95/PeZ9rMyR6PXZF6SN26gVVyQVs05u8rU3YyIizOmCWRN/VpWIKsd/u7nZY +PYfz/Fb3PgvbcWPKqsfYVO4mKh77L5dXusQ8ieglk7kI7MgJ/RPJ2BH3g9yD +sbf0bphRXCCR36S1pC92QfnXuHzsVUH35m9gG7CKtdFfvN4zqcs9sT9EhX2q +x+Y57A0e2Ne8rYKPL5Lo0tBz6n+vc51XlO/DTgyqP3wTO87gX4vtEolEj9Gi +d7AVVd9c/YZdLL+4MQS7QvyloNs/Ej2tdT39ENuU81rhX+z8xNfVidhfvh+w +CmKjUOdSokMatk83P/tadgptXGhDZdh8ZcOMGGxhn1XHO7AZKbn6mzgodFxz +Xewotlpk8HgKtkntyw3/sMsrK9YpLqNQ6hm5UyJ4//X//N2Tgx0rtqlABbt9 +m7qlxnIKXXLQRsexLSyu3ynHXmtxcMIV+1NYWrIeJ4VqGiZqorGdysaamrE/ +Hmavyftfv2w5K/SOi0LxgeeAE/fT8tPxmjbcFDqzTaNkJ3Z4SPfZz9iWaWEX +LLETfhhSP3koNJxeq1Hyv/4s2ItWrqJQy1NOgRjcz/rf3OwisaVFRJZ1YLdL +ZNwXWk2hvkqpLXw4L5/8t3ZJr6FQcs3Nf9HYnEb8lzR58f0jC5VsnLcHvkcj +KrC38ss1suG8CmWF5Bzio1B+0X+xx7Blhdn+nVhHodGY1NFp7CP/jT905qdQ +ubT9KWuc/w5+2cJf2MPsO1pLsc/onf/gJUChNwOHgzdtJsCZeicbJEgh1/iz +xWPYEe61pc+FKRQx5WIai+ePCJN9aLMIhczyD35diefViz4tHhJby8+i/jZ2 +FmSb5G2gUNb9c+cub8P9vOLFaKsYhdRe8m2xx/POUqt/9UlxCv28tWrDV+zP +LkLK/dghy7KtXeUJmO4M8xmVwPVTsf8YgOelSMKNdWySFPos7jhQi+erlfIJ +TaUtFLordiKvVJmAZ97SFmnYuv4JlWdUCOir/Om1XYZCTb7+nxawzU5E5sls +pZBD1LpzB/B8N3VrURKVpZD2uXj3L2p4f/IOyS5TwOuXTRuO3UdAyJLQIT/s +1sb3Seb4PKnXG7FbxH6ALoWKAQG6PYHEzA4KXWheWZ+Ezx80W7FxfCeFal3G +t77VwfNCQ0uwS4VCHHrRt2Lx+ebuv0rVRBX3+8mGNT4GBOQ09pm0YVsXsned +xeeh0pkbkQ27cf247dYo4fNTwSdv1Ws1Ci3F/9AfP47n5+tdHCmaFNqyPH1F +mzmeVwdkJrx0KBS557CIsRPuL61ViWwH8f6wfgc9wuf3NbWfR+9hq6zqrBi4 +jPdfoTTtiS6FunpGKXdXPD+FT7rkHcL1apHza3AnQPJ74PffBhTy5D3/dd6P +gF1Ph7+5mFLoXlBc2MNYAv6LboyfxvaMVS7fE09AdHiGwe2TFDq1MYLr/TP8 +POTvQ4Wfwvm8JNul/ALPm8sCTrQZhX4z60uXpRCwX+fg1zFLCh25xPNVK5cA +kx/Elwt2FJIf8Gfb9JaAwiWJ6CHsOf64JK5ufD+8TzVt7Sl08ciOAz978PPK +zrAHNg4U4vrg7NTWT0DYVTdVi4u4/onplelDBNROHfQzvkwhUT3THI4pAjQW +PgtruFNI2Uf43zJhBrxcdbaiALtSoDHMeAMDeMT7Lql5UMgxktchQYwBPVqt +paqe/8uL1Bo9SQa43c47v/MGhRZuCV0vlWNAGvvd9C23KKT4Q9nUeB8DpHhk +D/EGUahfUvqboAMDbtuuvhaK/fRnr2nVRQb0lUw+4w7G/eJqd9TNmQHRVwt/ +/cN+co+19BE/L3P0H0mYvEch+0vlOZ99GDCUevlPexiFvJ12RCU+ZEDSiWzi +0SMKedVEikxU4fenPWnle4zzaro9VLCOAdY8PnNh2Ms6XblQI37eLj1oHBSD +15PWsu3lGwYEb+2ed39KIbkA4fBH7xngMDd7/PQznGcT/RydWQbIJWqziTLw +PCoueTa0Kwlmqb0lL7Bf3C66OKyaBLUFql7bkihks9ib/FU9CWw75CdVk/H7 +H0uFce9Pgmecwh+Nmbiez46VBxxPAj7nibIgmkKXfYc/h15Pgmn1F74/c/A8 +d+IsWFuSBNW68ZpeuRRabfTlelN5Ejw0iZlZwjYzb4x4UJMEu5zDrqzOp9CY +VPgK2bYkuJjoZbOtkEKZOt3TzE/4+xTncbAqpdD4fLnf15XJUNnB/q++hkLP +9Vsvp51NBr0/kTl6tdjqHClf7JKhSVjyUjV28ak9XnJOyfDWUrurrI5COqDD +VeaeDCMj3lReA4V2/zZo1QhNhlULv08zWiiUztureis/GUw3j2T4duF+1w68 +f00wBXp13e0XsSXV1JyixVLAynG5+M1ufD58+yVTJJUC9qnSdz16KMT58vxp +KcUUuKFmY3X5HYX+BNyfND6UAgkGvSvOvKeQZintp34zBUavN9ru+Uwhga8T +6ZFjKfBB35X1Gju08pGxzc8UeCshNKk3QiFz1SjBvXMpUFl37tbpUQoZcK88 +t3YFExLE5p54jeH5udJD+IAcE0yrtrUUfafQwV9n6UEnJlSuD1KDaQqtaVF1 +DZ1nQuGo/O06bLmVZXGjy1iQUfKm2ngG1zfaL+v4GhYk2IubnJ3F51fB4rpj +kiy4UZTtfGeeQoPWkt6zeizYZfvpZdUSzuuze9J8T1jwPBNW63PT6IAH234F +HRKOPLthWIe9XVvoVakRCbPB2WF6PNgbcm9Zm5FgYrltje4KGoULqYu1XSaB +i5t37YFVNOKL3wVXYklwsfzAq8VLI3mpibza3yRoc9/i3yVMI/UD/ZwVuRR8 ++5l3Ih37y6u64DuVFDwdmHyoKEKjw21H/jvZRsGvzAsCOzbQaOTqmwaNMQqS +LQ0F5cVoFNF/aP28BA1rs8SEt2yiUdYzm4vuoTQMWhaJimyj0TmVbalZnqng +F2U98Aj7ZtOGy/PBqSBdy5GwTpZGp5flaJ+JSQX7nQZSq+RodHHIZ94xNxV+ +sA9sW5Kn0fHwU6rFU6mwlLyoOqxIo9HiS+tcvdJA/CcyzthDo4bG5ScnH6fD +a5nPfDvUaCTsMT/XzUyHsxYhHSzsdW/OnxgsTgdGVftJQp1GFpsUPU99Soft +MbaWMRo0emo5wOkm8r+/lwVe9NGmEW8LcdztUgaYB9UF6OvRyC7S881DiUxw +cfbvbsO2f5diHSifCf4n9smdPkSjx91ZwZFqmUBKZbfa6dPIynnFzN/jmTBf +mrAh4Ah+3Zx7bOe9THg27Z5eepRGiuO2l43nMyHj/S4OXWMaHZOxNtqyIguq +q7+ZNmMfHH5XJiqSBePR5+b7jtGoRENA0GVPFuzbaaQ7a0KjRomCuSK3LPjg +sKVf+TSNhFZ2aJrNZsGvo4M7irAljA9I3l6RDVx74vz2m9HIdlna5RbRbNi5 +nG/rMXMaDTpWh37dlw1+LxZcL5/BvlHouDM4G6TedXAxbWhEehBzVzflwIUj +d5QlHGlk4Dk0xu6dC4qH3tyOx/6tOV0nFJkLczqbmjZcpJFIi7eJXXIuPNhX +el7oEo0sV7wezerMhfxdc494nWlUf5/TVU4pD1YKX51hd6XR1glfJZvZPHjL +X67jh/38LP+ZO+vzIZGPN3IJW1B8/cXvCvmgujJVduEqjULTXVczbfPBavGL ++dR1nAc7i++N7fmQMXS2ZMSTRu1dv2YXygrA+2M6j50XjeJikYvVYAHovl8y +HcJ28WzP2/SvAPq6n30fvIGvr3enqAUKYVlj78Z3N2lE+eWUc9QWwqmMY3ea +fGnE6Rq8O3q0CCRTE1sO+9HI713O069riuEr68eGemwZ+QKTGtVi8CXCsqrv +0EjZnl9xdWAxMGPqh0oDaKT0OEpRQa4EFnyQXsZdGknl3NhhFVkK6grJm/fe +o1HQmejpg9Wl4Na/ir0Se6uIOy/HXCn82NtT3BlCo/7jif18dq/h4/RlpZlQ +Go1Pe6iK6ZeBeHLnWr8wGl3NYFTrBZSB+cm94zzhNDpjI5HhXlYGHdnLU0Qf +0OjUtxRNH4lyqHGNF9eOpNG2qgxmamI5cEiyz9di+xXxjeVUlIN2m32PcRSN +PrKxs1kOl0PBDuXoc9E0WpxPuxm/vQLIr/XcQY9olNbv0WhXWQERF6Z/NT2l +kZOEYwebUBU081u+MY3F+8mvOHnnYBXwVFWkvsdeCFcFDrcq8JcKd5yIo1E5 +g9Us1V0Fbh82f1j/nEYPq+Nd+lOqISM8pDgeW3UxiDYZrIbvWhNPtyTQyP+a +yjkhkRqwjy86sSeRRkVByk1Z4TVgbna8wfwljaZVTE6k3a+FGO785E/YeQc3 +PplqqYWOPPFAp1d4/0r2asysrwNDwS/atwg8n7rr5zxf1YF2x+2cF0k08pbX +rrj/rh687wxHySXTCKjD8+0KDbhfj1zJwh6ZkP12y78BdkUIylen4LxP/rvk +ursRNhvSiaMsGnWLLFgIlTaBqa7P0mWSRgqKp7L6tzRDsLah1RT26BG/lB8R +zTC2a1yUnaYRsyy9l3BtAVH5kht3sSXbAjRfjLSA4eaw3jWpNDrUp8mReLYV +0gUVYkTTaHRN9t23m+fa4OPav1MvsBMHFlrbvrTBep7mE9vSacSxf4dMiMYb +cJ93WqeagedpRNvd8tY3oDlIhRll0cimKy84QqwDnHtvfuvE3s014njNswMS +2g2OWGTTSOVfpjTq6QD26m/cDjl4vYK62SlEJyiXFtt/xz5r5xXazfcWLuSF +1lzPpVFZQRRTLOAt1DG3B/jl0SjS+Y+QvVcXzL5c+I8rn0bFon1T+/92gXx8 +EwrHPuZ3gRgK7ga7ouXb7Qvo//9/+f8BqggZhg== + "]], LineBox[CompressedData[" +1:eJwV1Hs81NkbB/AhtxWixqhcopBKIiG78px+iqxQUmoq1bQVuXaztetSkpSd +CuMuI8b9e6YJIXeiRAoZbSpJQtNIZEohe35/nNd5vV/nj+d5Pue8jh4rwO2I +NI1Gu0jW//ewTgcr614KeWoNHHt59jmUircuU39DoQQz+0r9A92QPiX4O5b4 +oEnm2K0WIUQqqnfN66OQ0RKzgAMbhLDT6HWE4lsKpa9T04637AIbq42vLxNv +o6/Gy6uegb59toVsP4XW8hbmGDs8g4nDfoOzxM0TQ+UrfDvh1ckO25B3FOIr +5LqFy3ZC4wWLxB/E9dabOpSyOiCOO+MgGaBQX7ZTbcWHdviLfyjj5HvS3+bR +rz6x7cCqbpocJTZvU7vnbdsOa1+y80WDFBootdU0gKewWDQm5TVEoUod5tFn +eU9A6vtO5nvid+kOHx9pPIF2hs7cvmFybmJwJVimDQLc+L5CEYWGcJbk6PxW +aF6wYtf+jxQ6EB6xRjuhBZYKs+A9sV+H+pJJ7Rbo9kieLxFTqO7cSk1X60dg +uog+HTxCoZGfO5t8HzfD1Z5r72U+UShQt6x3jNUMtvsjyumjFPKIYulxkh9C +ks7srTRi1zammpf1Qxh/cy5a/zOZP9wqW/XVA8hhBXiuG6OQSW0t7/CKB6Di +xZRx/0IhUXIRUnzbCF4rhCMvia+t6Qv25zRCg8j1+eEJCs1eKwt/7tgIQX6b +C05JKPQ1OjnUq+I+9J403Rb3jULiY3m+NwQNsH5dobXmJMnDoMZY+2QDxEoM +lmURpxVkuC23aAD7s5pfi75TSCu1Pyu0th74IXJpnVMUClINsRx8VwcKcOES +c5pCXmG2a+QEdcCiTfv3E1tfM09zCKkDxsWxjeMzFLpSaDf4i2YdhEa9GlKj +YTRInxFsaKqBfx09OpKJ5152n1fiVwNr53ZW6ElhZOBevFisUQOD7IdsM2mM +9AZ/YfqeqAbnuCLz7TIYjfzt5OJhVQU57qu1XxC7GvSPnBdXAo2RJ3dIFqOn +tuL7KlmVUJJ080WgHEaH+ek2pvRK0EqPCruhgNFKG3EMW7YCxHmerU+VMGrx +kQjva5fDdJgf30UZo9KPTdGzw2Wg5BEc00bc2iA7R+FuGRjLpni0qmBkf/fN +pK9rGfgdEr57oIrRXqvLxSrsUvi0aOt0NZ3MNzLhst3oLvz8zHxjo47RvDH5 +yTM/S0Cl2buhkniH6eLWVcISMAm6HHWPgVFPtcJBiCiBgM4G+t2FGHkmHr9y +b7gYPl+1Xk1pYbSwaeD64+YioLG2qK7SxshpX1RtW04RqFp7fMkn3qvWwra+ +VASmQ6fv5epgtK1XvNvRrghO2Ak2Z+li5GEZc4LReAfGpww9U/QxSvgtzHm0 +WwDSzyw2LjIg+Q3wdrZUCGB+wSb9JOKf2XyJJF0A5rtZonhDjDT3Vt6x9hLA +6ZKbQTFGGCUVCmy407dB4ku/HmWMkZVyd4JnAB9+sNlfZFaT/uuyjb8gPtBu +y+2+QHxVx6dsdj4fFMcmdf8ywag4/sn1c+UYdM68LvIxxejxvLHTdQoY7ENy +ul3WYZTHnmJYVReCU/qS31qJW6U1RZHxhbCtNonrYIGRtHXPkIV/ITClor2Q +JUYVhgVGlG4h+F8K+GG2HqMx271B3VcKIIG9XkfdBiM34yXui33zIZV/JzyG +WOUuo77VMR8ynq4cUt6A0R2WaPTR8nwoUNMWyNmS/M728/IG8qAmXup/k4CR +Zef+rq5DeTB4s+XISztSX1EmWNc7F6z4+/AtJ4z+dEvSmMnOBv4FcabRVoyW +OnPkfa5kg+HO4KTbxJNBS5cz/LKBPp16sdoZo+OF2d90LbJh3PHlnheuGD0K +Dk2beMgD6v0eOTV3jD4sLnOb+pYFutoeB87vI/e9oEbeISQTEj8Pusvvx+jU +6IejmscyQaUx6PdrxIW0VZJF2zNh5niCRZonRhdjea1xBpnQUy6cW34QI9mJ +zV/92m9BvLt7+egfGOU0dS3wXH0LFP/ZrnbAD6OqpvKeS1IZsP7MGdpr4vm3 +FXtV+rlwxDN5lOmP0TLZlKf29VyoM33btisAowmu/7Id57kQJAy86nKC5DUV +cLadxoV+nRtzbM9g1CwqqPqumA4Vd55ItEIwOsIrTTTamAbDKeMDKcSxuYsS +PxukgXoEo2thKEbeNmFhfYppELjLs4geRuYLnyi3FKaC4dSIv9IFjALiguuL +fVIhdpPy8FQERsOiKF4BNwW8nzv19PyD0RzLs/pX9ZKhamGP/zE2RkMrjjoz +FJJBlek1Z4KYl1Esbv6UBKWvIoyVr2N0s/EFZFQlgXR/dSjEYJQ7HGavwkyC +FPGaZbx4jOJao82zUhOhRYru65dO6q/qjSi1SgBtu0zaD+LHSlaxYUsTIDDC +ND6SS96nvtq6o8oJwJB3ruFmkPySPm6JfhcPLKVI1c5MjAbsolkmMfEwxZgs +scwl/9PNysTcMQ647I50vE+sUatxYk0vBzKT6b2ueRhx6PsDO1o4sEXLTN47 +H6P6mOcah3kc4Ogd35NaiNGlvdy8st0cGGJNjiynMIo/eN9prj0HfuVFhpcQ +xzLeXv/TnAN9hlmFbRijH8ERG5NVOGDuZYaYfIxmVLx2uEzHQWR+bdcgsf3v +P100RXHwQuTsfeo2RuPON+Rp/8aBsfGrmVlieq5w23RTHPwHy6QAcg== + "]]}, + Annotation[#, + "Charting`Private`Tag$3410#1"]& ]}, {{}, {}}, {{}, {}}}, {}}, + AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], + Axes->{True, True}, + AxesLabel->{None, None}, + AxesOrigin->{3000., 0}, + DisplayFunction->Identity, + Frame->{{False, False}, {False, False}}, + FrameLabel->{{None, None}, {None, None}}, + FrameTicks->{{Automatic, + Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic, + Charting`ScaledFrameTicks[{Identity, Identity}]}}, + GridLines->{None, None}, + GridLinesStyle->Directive[ + GrayLevel[0.5, 0.4]], + ImagePadding->All, + Method->{ + "DefaultBoundaryStyle" -> Automatic, + "DefaultGraphicsInteraction" -> { + "Version" -> 1.2, "TrackMousePosition" -> {True, False}, + "Effects" -> { + "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, + "Droplines" -> { + "freeformCursorMode" -> True, + "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> + AbsolutePointSize[6], "ScalingFunctions" -> None, + "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& ), "CopiedValueFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& )}}, + PlotRange->{{3000, 3800}, {0., 0.3667515291749107}}, + PlotRangeClipping->True, + PlotRangePadding->{{ + Scaled[0.02], + Scaled[0.02]}, { + Scaled[0.05], + Scaled[0.05]}}, + Ticks->{Automatic, Automatic}]], "Output", + CellChangeTimes->{{3.7682397534059963`*^9, 3.7682397927139344`*^9}, { + 3.7682398481955633`*^9, 3.768239880968974*^9}, 3.7683910661559143`*^9, + 3.7683964843555346`*^9, 3.768542800650896*^9, 3.7685431297734756`*^9, + 3.768543227688693*^9, 3.768544258591204*^9, 3.7685443333752265`*^9, + 3.7685446624454374`*^9, 3.768545405955303*^9, 3.7685457964522715`*^9}, + CellLabel->"Out[62]=",ExpressionUUID->"d27e723d-41c6-4407-b1a7-e41abec2eae8"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[{ + RowBox[{ + RowBox[{ + RowBox[{"beta", "[", "x_", "]"}], ":=", " ", + RowBox[{"Sqrt", "[", + RowBox[{"Abs", "[", + RowBox[{"1", "-", + RowBox[{"4", "*", + RowBox[{ + RowBox[{"muonM", "^", "2"}], "/", + RowBox[{"x", "^", "2"}]}]}]}], "]"}], "]"}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"kabs", "[", "x_", "]"}], ":=", + RowBox[{"Abs", "[", + RowBox[{"Sqrt", "[", + RowBox[{ + RowBox[{"mB", "^", "2"}], "+", + RowBox[{ + RowBox[{"x", "^", "4"}], "/", + RowBox[{"mB", "^", "2"}]}], "+", + RowBox[{ + RowBox[{"mK", "^", "4"}], "/", + RowBox[{"mB", "^", "2"}]}], "-", + RowBox[{"2", "*", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"mB", "^", "2"}], "*", + RowBox[{"mK", "^", "2"}]}], "+", + RowBox[{ + RowBox[{"mK", "^", "2"}], "*", + RowBox[{"x", "^", "2"}]}], "+", + RowBox[{ + RowBox[{"mB", "^", "2"}], "*", + RowBox[{"x", "^", "2"}]}]}], ")"}], "/", + RowBox[{"mB", "^", "2"}]}]}]}], "]"}], "]"}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"prefactor", "[", "x_", "]"}], " ", "=", " ", + RowBox[{ + RowBox[{"GF", "^", "2"}], "*", + RowBox[{"alphaew", "^", "2"}], "*", + RowBox[{ + RowBox[{ + RowBox[{"Abs", "[", + RowBox[{"Vtb", "*", "Vts"}], "]"}], "^", "2"}], "/", + RowBox[{"(", + RowBox[{"128", "*", + RowBox[{"Pi", "^", "5"}]}], ")"}]}], "*", + RowBox[{"kabs", "[", "x", "]"}], "*", + RowBox[{"beta", "[", "x", "]"}]}]}]}], "Input", + CellChangeTimes->{ + 3.7682396648567677`*^9, 3.768239765260335*^9, {3.7682416978732758`*^9, + 3.7682417907539487`*^9}, {3.7682418554519696`*^9, 3.768241857059663*^9}, { + 3.7682419564249735`*^9, 3.768242000514103*^9}, {3.768242042934679*^9, + 3.7682420544937744`*^9}, {3.7682421147277317`*^9, 3.768242146636447*^9}, { + 3.768242205581859*^9, 3.7682423308100376`*^9}, {3.7682423792465105`*^9, + 3.7682423827242327`*^9}, {3.7685453661476965`*^9, 3.768545367009412*^9}, { + 3.768545620132639*^9, 3.768545648605514*^9}, 3.7685457311338654`*^9}, + CellLabel->"In[63]:=",ExpressionUUID->"a731069b-1b83-412b-b454-26db50b1cc27"], + +Cell[BoxData[ + RowBox[{"2.9827682008970683`*^-22", " ", + SqrtBox[ + RowBox[{"Abs", "[", + RowBox[{"1", "-", + FractionBox["44689.96`", + SuperscriptBox["x", "2"]]}], "]"}]], " ", + SqrtBox[ + RowBox[{"Abs", "[", + RowBox[{"2.7873140061109193`*^7", "+", + RowBox[{"3.58795771727742`*^-8", " ", + SuperscriptBox["x", "4"]}], "-", + RowBox[{"7.17591543455484`*^-8", " ", + RowBox[{"(", + RowBox[{"6.793270969339969`*^12", "+", + RowBox[{"2.8114748180000003`*^7", " ", + SuperscriptBox["x", "2"]}]}], ")"}]}]}], "]"}]]}]], "Output", + CellChangeTimes->{3.768545731553769*^9, 3.7685457986593285`*^9}, + CellLabel->"Out[65]=",ExpressionUUID->"861145d9-a838-4010-aacf-b313bfdb4b00"] +}, Open ]], + +Cell[BoxData[ + RowBox[{ + RowBox[{"bracketleft", "[", "x_", "]"}], ":=", + RowBox[{ + RowBox[{"2", "/", "3"}], "*", + RowBox[{ + RowBox[{"kabs", "[", "x", "]"}], "^", "2"}], "*", + RowBox[{ + RowBox[{"beta", "[", "x", "]"}], "^", "2"}], "*", + RowBox[{ + RowBox[{"Abs", "[", + RowBox[{"C10eff", "*", + RowBox[{"fplus", "[", "x", "]"}]}], "]"}], "^", "2"}]}]}]], "Input", + CellChangeTimes->{{3.768242392305615*^9, 3.768242419546789*^9}, { + 3.7682424703938184`*^9, 3.7682425443890257`*^9}}, + CellLabel-> + "In[123]:=",ExpressionUUID->"6fc8f691-fb14-4e78-ab99-1dc2d62ef10b"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"bracketmiddle", "[", "x_", "]"}], ":=", + RowBox[{"4", "*", + RowBox[{"muonM", "^", "2"}], "*", + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"mB", "^", "2"}], "-", + RowBox[{"mK", "^", "2"}]}], ")"}], "^", "2"}], "/", + RowBox[{"(", + RowBox[{ + RowBox[{"x", "^", "2"}], "*", + RowBox[{"mB", "^", "2"}]}], ")"}]}], "*", + RowBox[{ + RowBox[{"Abs", "[", + RowBox[{"C10eff", "*", + RowBox[{"f0", "[", "x", "]"}]}], "]"}], "^", "2"}]}]}]], "Input", + CellChangeTimes->{{3.768239766453149*^9, 3.7682397666555705`*^9}, { + 3.7682425600979843`*^9, 3.768242569498862*^9}, {3.768242617189344*^9, + 3.7682426786500216`*^9}, {3.768242747896909*^9, 3.768242771416026*^9}}, + CellLabel-> + "In[124]:=",ExpressionUUID->"cc0a0d90-49af-490d-8c27-e1b8c06612e1"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"bracketright", "[", "x_", "]"}], ":=", + RowBox[{ + RowBox[{ + RowBox[{"kabs", "[", "x", "]"}], "^", "2"}], "*", + RowBox[{"(", + RowBox[{"1", "-", + RowBox[{ + RowBox[{"1", "/", "3"}], "*", + RowBox[{ + RowBox[{"beta", "[", "x", "]"}], "^", "2"}]}]}], ")"}], "*", + RowBox[{ + RowBox[{"Abs", "[", + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{"C9eff", "+", + RowBox[{"resonance", "[", + RowBox[{ + "x", ",", " ", "jpsim", ",", " ", "jpsiw", ",", " ", "jpsip", ",", + " ", "jpsia"}], "]"}], "+", + RowBox[{"resonance", "[", + RowBox[{ + "x", ",", " ", "psi2sm", ",", "psi2sw", ",", " ", "psi2sp", ",", + "psi2sa"}], "]"}]}], ")"}], "*", + RowBox[{"fplus", "[", "x", "]"}]}], "+", + RowBox[{"2", "*", "C7eff", "*", + RowBox[{ + RowBox[{"(", + RowBox[{"bquarkM", "+", "squarkM"}], ")"}], "/", + RowBox[{"(", + RowBox[{"mB", "+", "mK"}], ")"}]}], "*", + RowBox[{"fT", "[", "x", "]"}]}]}], "]"}], "^", "2"}]}]}]], "Input", + CellChangeTimes->{{3.7682427790974894`*^9, 3.7682429622488227`*^9}, + 3.7685448390602207`*^9, {3.768545914397888*^9, 3.7685459390869055`*^9}}, + CellLabel-> + "In[131]:=",ExpressionUUID->"3223564e-c632-41a1-86b2-1263eda30155"], + +Cell[BoxData[{ + RowBox[{ + RowBox[{"dgamma", "[", "x_", "]"}], ":=", + RowBox[{ + RowBox[{"prefactor", "[", "x", "]"}], "*", + RowBox[{"(", + RowBox[{ + RowBox[{"bracketleft", "[", "x", "]"}], "+", + RowBox[{"bracketmiddle", "[", "x", "]"}], "+", + RowBox[{"bracketright", "[", "x", "]"}]}], ")"}], "*", "2", "*", + "x"}]}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"xmin", " ", "=", " ", + RowBox[{"2", "*", "muonM"}]}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"xmax", " ", "=", " ", + RowBox[{"mB", "-", "mK", "-", "0.1"}]}], ";"}]}], "Input", + CellChangeTimes->{{3.768242980810162*^9, 3.768243023073167*^9}, { + 3.7682442257595415`*^9, 3.7682442795088024`*^9}, {3.7685453887732053`*^9, + 3.7685453922469177`*^9}, {3.768545423906273*^9, 3.7685454277350364`*^9}, + 3.7685456437873955`*^9, {3.7685457196475735`*^9, 3.7685457198251004`*^9}, { + 3.7685481204155617`*^9, 3.7685481246821136`*^9}}, + CellLabel-> + "In[143]:=",ExpressionUUID->"5a733281-bb2b-4eac-bf46-072d6163fbcd"], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"dgamma", "[", "500.0", "]"}]], "Input", + CellChangeTimes->{{3.7685429465912046`*^9, 3.7685430409190083`*^9}}, + CellLabel-> + "In[146]:=",ExpressionUUID->"de858e80-3c44-4ea0-a374-ba372a5e43fa"], + +Cell[BoxData["6.030442790985047`*^-8"], "Output", + CellChangeTimes->{ + 3.76854309618328*^9, 3.768543145064603*^9, 3.768543241926592*^9, + 3.768544258752746*^9, 3.7685443334450407`*^9, 3.768544673532812*^9, { + 3.7685448196601267`*^9, 3.7685448444837556`*^9}, {3.7685454182085066`*^9, + 3.7685454313813143`*^9}, 3.768545503597211*^9, {3.7685455481880245`*^9, + 3.7685455732869415`*^9}, 3.768545805051238*^9, 3.768545884562702*^9, + 3.7685459520143557`*^9, 3.768548129296776*^9}, + CellLabel-> + "Out[146]=",ExpressionUUID->"a234b46c-2591-4717-b3ce-58eb977ba7d5"] +}, Open ]], + +Cell[BoxData[""], "Input", + CellChangeTimes->{{3.768545468760371*^9, 3.7685454914207835`*^9}, + 3.76854552149939*^9, {3.768545556395049*^9, 3.7685455644196005`*^9}, + 3.768545819343046*^9},ExpressionUUID->"d5c88e0e-f64c-4c7b-a72d-\ +9d86409b15d6"], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Plot", "[", + RowBox[{ + RowBox[{"dgamma", "[", "x", "]"}], ",", + RowBox[{"{", + RowBox[{"x", ",", "xmin", ",", "xmax"}], "}"}]}], "]"}]], "Input", + CellChangeTimes->{{3.7682430301472535`*^9, 3.768243057826251*^9}, { + 3.7682431094532557`*^9, 3.768243134577377*^9}, {3.7682435853432064`*^9, + 3.7682436366859035`*^9}, {3.768243725722874*^9, 3.768243730282658*^9}, { + 3.76824379944876*^9, 3.768243800061116*^9}, {3.76824389602855*^9, + 3.7682439722529855`*^9}, {3.7682440086985445`*^9, 3.768244048323577*^9}, { + 3.7683964521316905`*^9, 3.7683964531200514`*^9}, {3.7685429262236595`*^9, + 3.7685429348515916`*^9}, 3.7685432550794444`*^9, {3.76854559178942*^9, + 3.768545595049706*^9}}, + CellLabel-> + "In[147]:=",ExpressionUUID->"2c1e3732-16d5-42ed-930d-8f72fb168b51"], + +Cell[BoxData[ + GraphicsBox[{{{{}, {}, + TagBox[ + {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], + Opacity[1.], LineBox[CompressedData[" +1:eJwVyX04EwgcwPEp7tR1XE53FSVXaCQ6b/NyP79MMp0KuVKajJnZzDYzb9Op +GDFseRvR4y26Uih3ee/oRT2Foigl5KXyki7zckmu++P7fP746tJC3OnLCATC +vi/9b5++TNrGDsKcmjCXut62XwSWo0+qcoJQdbeKSybDDlY52Wpl3QnCQQ4p +x0JBhmJP6bGo6SC8V86VKzs7gw195Dx1EwuHntfnbXyxBzoFNuMOriw0cj6E +Goq9wIxLMzWIYqGPG30i8Nl+IGQMh31TxsKQv7yWSn9wB3mxdf1UFwsXxdsG +S0geYHotlfCYwEaOvLbB3PEAtLYM7aoxZmNkVsXQgJ0nzA6mPIxNYKM2YNnf +S79B6j+v1tCr2Sjao7Sjpe0g6CmRjlAG2ThwWLalRXoIDmx6NbLaNhjX27ay +DD56wYSJldEsIxjrZw05B4sOwyl7Cbc3IxgFEoL7NvIRuEq1XCh6F4zZb6q1 +t/K8gcJJxgQtDi5zVQy5L3nDQMxAPMuZg7QjJJJp4lFQz0/6zryIg81iNauo +ZCqUlvd7ru3goE/+OnLyVz4ADeZnPy1w0ES9Rz83xgfYz1/q3fYMwagGlSVP +02MwIsnZcEmZiyaPmG9NCL5QqemIG7S42HGzUrXM1BdEee9oaTu4eEsy1t3n +4wua5eQLoVQurshaEN2v8wWH+5M/29Vw0ai+nWDmTwM1D7nnlXYuCmvzh+0k +NOjtdYjYNMJFfWtiZcg1GvDGshuVNXio/8zbRbhEg4IVDs5tLB4qzPr0ZlP9 +gC2bCLI/ycO5taTDNlV+QFqXnVIl5yGzWE3wutMPOrZOdGbe5qG/Rm9LhqY/ +fN6ddZSqw0ex0jyxW+YP3uIx/lQnH7nWhqKFcDr0ja8cdxzno5+/+mlGJh2o +bkZ+uctD0XY7r1pwlQ4+2myPXeahuNJYayJ2nA60q5NmZzO/fLLv9UavAGC8 +fK9wOiRAeaP9TiQygG85JzzXF4atNuoC5eJA+HD2x6npmTCMexVryKwNhFAl +EoOiJsTINnlUZUcgCB5EHFSAEA0aHoyOLQRCOO2jlUuBEN/nSpSIHkwQpS7O +z9DC0c08rfLEIhMSRpdHu76JQLeb8ZO6Tizw0ikmh2cdR41jmjvnnoaAcdWg +57eaJ1GUqkszIPLh19OXayjr4vH1iaZ9H0sFcMO1YWF8LAFTmi9+Eq8Kh4d3 +xZPz80loRKHH7amNhH/vrq5omU9ByZm6MFKwCOp7Q7ZG0qRINB9epqz8O1DK +q/ffGZVhF66KHvkQCwTFeqaTWzpOFnZ5BRw4CeTjvm9LqjNwl5HB66brp+DJ +kEozyTILrfgvLorI8SC7cT9xKT8bn7r/sXixSQz5wqmyhc056ESYnHvnnwjm +3Ont3UW5KAoI73RVT4KZ/rWlQ1/n4fdr/NqHy5JBxShPoJ+cj4lLRUXMkBSw +n0CzPMU5HOmx/un0ljSg3yos2QwF2PiSEd0aL4X3Zul+gZ8LEM0mk5qjZSCl +ZubeqSpEbZUzDRGMM9AjdIqxFxRhMrHgUn9wOpi5qD59RCzG3Hj7vcjMgCdQ +F9D1vBip2HpZSs8EHV2twqm8EqQYOm44H5MFx5skHnpu53Gjl35MRWI2xFEu +V4VplmI6v1H1TYUcHs40ki0el+KpmzWQ1JMDO472u6ollKHNvbk/n03nwmpT +F4s1xhewvXv9g7sWV+A/JuhOSw== + "]], LineBox[CompressedData[" +1:eJwBgQF+/iFib1JlAgAAABcAAAACAAAA78+1yuoyqECi1xYy1pOrPljCkDEP +/qhAtHGaEpcknT6782GTi6+pQMhC68oXOZ4+xhLioCJwqkAw7hDbvlyfPubs +cibTI6tA8wLk/B4xoD6utLJXnuarQBx8NP//taA+izcDAYOcrEBRaGbdIiOh +Phw6eFBMn6xAbjkQQqEkoT6sPO2fFaKsQO5n744jJqE+PT9i796krECUijn+ +rCehPs5B1z6op6xAxCL2gUIpoT5eREyOcaqsQDEEQc7rKqE+70bB3TqtrECJ +z8MltSyhPoBJNi0EsKxA1vS4lbIuoT4QTKt8zbKsQOR7Yg0GMaE+oE4gzJa1 +rEDOz5B/6zOhPjFRlRtguKxAkrfEwNI3oT7CUwprKbusQJhUnKGbPaE+UlZ/ +uvK9rEDzmRT9MUehPuJY9Am8wKxAgdX2fWRZoT5zW2lZhcOsQFDf0uDGgqE+ +BF7eqE7GrEBUhXIRFQCiPhAwSjUVyaxA01SQ36yzpD5jnLXD + "]], LineBox[CompressedData[" +1:eJwV1nk4VN8bAHAihaRCiRJJhLKWFMer8k0phUposdXQZl8SkS0JZTfZ5o5s +mZl757ZYQ0LSIktSWdqztlmj9Du/P+aZ5/M8c88973LOO0rOHtYn5ggICEzj +z/+/v7XcbR58zoH9V+otPokWoM5TqpuMOzhgGyZgICzORifPZkWJvOJAO1tM +gq4j0KTH4pctrzmwK2Sy2YBFoBjv6DXMbg7UnKYC1sUTSNZvxse5jwNx7Wyl +gksEKgrwfKjxgQM6sVIZe4IIZBj0ecn4Jw7kl9Vt9fUjUHOwvXP1Vw60XMuz +NPAmkH1oC//yIAfcLZrGJD0JNHhph6DVCAdGAo+Gl5wj0IXI8v1yPzhQuXjK +u+MsgRZc3sD6+IsD5KHiupPYWVfyvnPGOZCRacfYha0ZJ2viP8UBR/uNF05h +30+ITzCZ4YB1m9SnKmzLxDm982dxfK0/Ozfh9XuTA9a3CXDh4y7fvhfY59KG +gzOFuFDy8D/DKA8C/ctweuoqwoXeydKj+/D+rmd2ym8Q5YJx3NXbGl4EUsyx +OD0pzgWNjHsHl+F4KFZtRe1CLtRtaBqQ9CGQad5GsdjFXEgYM7ok5Usg56JV +xSuWceFefGf6Rn8C3aRHv5iu5kIn9YJoxPnSv+u2SVyFC/pe+aYTFwjUUNoT +1aHKhVHmLdN1IQT6UvVoDWM9F5rdElnpoQRSe5TpHLeZC2mbhHbGRRKI+3Z7 +b6clF25fN05kJxBojMnI6LbC+1dLXjjnOoGMDl+1/nCAC3f1f3o7JeJ6dLQ1 +jthzQSZ1UcyqFLz+MydSmMEFzwcWgWlMHF9taJhuKBdO5n9rcbxJoKSblasT +SC685BYrriwn0Gvnvu5kmgvPmTL7j1bg3ysJpTPvcsG7jy2YVUkgXvZu8fxK +LiTG+3VJVxPoSdrr0cpHXAiSTOgaxf0lfGWyfqCPC25mG2JdnhIo4Kwew2wR +D04wJuf96CHQrXMGl5dJ8cBk0GvH115cL4+thQMyPNhRMPKsu49AO7y3f42X +54HGeOr9uvcEWhJgw+hcix1+/9H5z/j9YT4MhjEPttU4WCQNE+jDpYDLhsAD +Z+Eba86OEEgm4kKh+HYeCM37o/TfNwIFR0V8Jc15ECs7c/HXdwLtjk1mTNnw +oKPAN0h/FOcn+Tbjyike1GUtMnT4TSC51NLLDmfxevWWSsumCbQ3rbJwvScP +DFxihVux72Q8/Nrqx4NRrUg++kOg8Ox2htwlHkQwBx0E/xFIoXCUUZLOg0qZ +u7lKwmxkXTR5OeQGD1T2GE1XYkcVzxTuy+ZBv/gilQNz2Wi4RKh/lM2Dpa8L +3oWIsFEFJeVmxOMBJ20f+958NjpUoef2rJ4H/wiznooFbAQBX369fcSDY8vn +3dkiwUbq+syQwWYeXC91qS/FnuXOJs1rxfkpV44oXshGhcTj+6Y9PLggZLPo +9CI2SjoWbL7/HQ++K2RbdGAHy2u1H/vIg+4dEewti9lof2pK/4UBHsiVdyTP +Yk/FHJe6N86D5L8esi5SbPTBbElO/RQPfj/IrL+D/XROg1r7DA8mnG3OCkmz +EStYHf0QJEElP+ZmOnasYU/TrDAJmz+Ja/Rg+05cs5GYT0Kf6tqcVTJstMtz +3E19IQmX1kwaZmLrry8a3byYhHsZ8fYd2AqD9hd3SpPA8Q2yFVvKRvMLJUQP +LcPreROaxti/XGqTXeVIED3+/uUZ7G5FHwWflfj5JdL7mNiNPSrFlxRJKDmx +MKUOm7rRpXddmYQoVRarH/uG7dXqnLUkJMukeIovY6NIabSLu46E463kP3Xs +c60/2is1SUCvbu/aiX04Ie9YsxYJk74Oux2xt1kcGujSJWGk5shfP2zN+aK+ +XzeScCTO7VgM9tKGytnxzSSsdFF3T8cWCD93RdiIhIpA8+V52ENISVrKhITu +PJdTJdi1ZdHrtM1ICIz+3cPHTtEdRnstSNgqGM26hX3xe85jB0sSpKugg8B2 +41gdOGWF8/N0d0IqtrW7cF/gARLOn1NojsI2WlvqftmWhC5d7Qhv7LUf3cdS +7UnIm/x2xwF7EWtF6M2jJMT2PLQ3xZ4+0iJ625EEP7TEUxn70/LwlAcuJNB5 +Bj8EsZ936q96cZKE4Kqrnd04f2XJX4t73UnYfcBR4Q52nMTemhkPEqbD7tTY +Yvs3/9sl5oPr8b5ccg2242W6Q9afBK6ZBW/4//UWlB3cGEyCueTbh97/r3d1 +s++OUBLsbmzQ0caefyHkn3U4ju942esB3D89Yx+kPWNIaLzW0WSFvcf7xBHP +qzgfuW1XBbGrvn/N80wgoUdxlMnF/XljcFjXK4WEsWtk5PQSNhJ18wjySifh +UHyjbSZ24OefD7xu4PXEJpw3Yx96N7Hfm0VC+bjVQgbu/4aj5zO880jY9rDp +5hQ+L/pvZ/q8C0houT98PBpbqlPAw4eD+6EoTjtNko1ePBGL9y3Dz4vMktH4 +PJrsiu/wrSRhh8Xbd1P4/PIaJVf4VZPwy81pIQM7/oF0iV897l+7od0GeF7v +LlV47P+ChFvpy8sL8Pkv1ycWBbST8J6XgKbmsZEarXw4oJMErdtz082w53HV +vgZ0k+BxKr+kHd8n9Wzduef7STBxevO0ag4b6Sne3XN+iAQFl/s2w4JsxM42 +SDn/jQSz8B3hy7AvZRgpB42RIGQvWuuI769VO/NYxgIUPBU7plQ9Q6DOKNf6 ++4IUPEmMNG/G919CvUq/sRAF/s4qg634vpw1LdJCIhSsvHU7qn2SQN1G3Gq0 +gIKUW25Bufh+Tblw7kO1BAVDlTOt0b8IZFGhJWIiScGeLX993X8SqMKA3muy +hILZSJ0oRXw/Z+iWdpvIUqATM6h8cJBAB9UeTMMaChrNdg234fkQHuNtVahC +wddcyi4Szw+qX7lIQpWCz9Wah3XwfFlQHH3wzToKRL6sHQ15Q6D6dXsoHy0K +OjeKir/vIJCuxqsTBVso6JHKnnncRCDHqzFVC4woUDx4+LvOIxzfkKGUjzEF +ev5rV6Q2EGigJKvWBCjQPDBPbC+ebyxNZ/nXZhSE7c5MCcfzcOGGkRfiVhRQ +omNb/nHwPE7IUfW2pkChQ0lAtoRAp77tu9hlQ4HHyNZcjWI8/3m0Rv4hCl4o +OFtvz8fzSSswGh2h4NyX39162fj/kraQkReDgqhJgxGpOAI16i0v7AyhgLsf +0okTBGr5qaTnEEpBjbA894UzgbpI9Zq+MArGHqSUTR3Hz2sYveqPoKDSee9V +PXu8vzXH581coaBUw2G5jSWBbKXzGavSKNCeq3VeZyOOv407mpdOQehtDb8h +Hbzf6/dC1ZgU2A15P83egPe3oCldJ4uCdZNerkOqOH7hoUfb2RSM+C5dsU6O +QP1j2mpuPArcGzRiVf6y0E/a8M4wScGJVGtHx98sNO25Dbz4FDgaXR5IGmeh +BSM2h4Pu4PUm5g70jrCQzmf/mLgKClYL+rgu7mWhoJdV/VQjBSrx9fadVSwk +fs+8+Hcvrp+1DiPeh4ViU03dXN9R4BmmTcycYyExvy2qLe8pOB/y3MrpFAvN +19fMv/kJO8t2eIkTCwnTksS+QQqcCspfS1iy8HzszMgfp8BX2kHQbi0L/cp3 +jbFawIcnhaYTA7m5yCvq6M4qCT5YDF17FJiSi364HhJRleQDb/Bw4WhMLvqu +bB75ZzEfnrq1b+B65aJhQiOscBkfnN8J52huy0Vfsn8F/F3NhyNu/7L+68tB +b1LDGMWGfDClTcn1ojko6+B7YYmtfPA/6KZmM5ONjslsY3sa8YHB6wHnkWz0 +PkWox8CED/x90h+NWrNRf3K0deMOPhTffjbyLj0bTSTGGX/cx4cXcU8ePlHM +RlIJGVIrT/JhvOVBrotiFurY+5sKY/Dh2Cb/TdGSWShNwt7ykxt+v7xLS8Js +JpKLl79ScpoP20ab4qy6M9HquJxZQy8+dJkubWOmZSLt2JsDh4L5IGOeKCUn +kon2RFM115P4AM3qfVMtTDSQ55a0JIUP69L8TD6UM1H0A8UTKal8OJVf819R +HhPV/rkulpHBh5jelbmP/Zloo4/XwdwcPtzKvF9/RJ6JFBx1h7i3+NCybfea +3KMZ6LvhnaVP6viw2bnF4kRDGoqzPTOwp54Pts6//ly7lYbU/dZUPW/ggzcx +byzxWhpypVKc2pr44PPUZoG8XRrqWuvHef2cD2GZGvbGg6moVmrTtv43fPCd +8HmVI5yKkkZKz84d5cNnoY0vm2WTUb6mo8/ZMZyfhsS8yukkVHZ6/vmX43wQ +Lk6ZE9WdhPoGDkfmT/GBfFIvT+QmIc0vv2+YzfKhf7lc5B/lJNTYu7UpSpSG +Rf6hmjoqiWi6pWa1iCINsv5vT7OXJCBn+tErkb00VM4w9pmURSIJ+f1VGZY0 +bAni3007HonKIrpY6vtpyHgRXkaIRCLJgwPuljY0VBxoaHltE4GqJsX+pNrR +cGOLXrnY0CUkY2ypqHKSBtfTY156Ky+i2vxO4VIGDe4p01ujXEPQmYXHB8zd +aUgLXNaQWhKM6vo86DNnaBBeLdImbXgBnQtP3HHHmwYf5pR2knUganrU4bY9 +lAa2uefTsiveyEf76N6XYTSIBBS5y7V5IQXmZx1GOA1dr7daiMt7Ib9TE9Ox +UTQM386X7z3qgVZLyMa3XaWhqOytcnWdO3rmx/JyjafBaWr1y0InNxTYq3Zo +IoEG9aUhIrZCDNRCGq6SS6JhUlygRn2/Kwq2duA7ZdBwQbeAqa57DKlWfkwd +ZdLwJ7wpc4bngNqUzwRFZdKwjbFW39/ADq0bD95enEPD56AzcbKeB1DH0blq +W1k0jC+KkBhdbY3CGuMXPCNomJ5of9f5bB/qTM95+eMmDdJ3l9Y9sdmJLgmo +VoQX0FBldB6tctiONN3JHOkiGvTkP+Wd1jJBr1oNIgqKaSjZucnhk9JmFL6l +lrG5hAY7nwgDV5YOWp9nvqeZQ4Pf3nFXzmVV1CXeqn2ER8PV5DNERY0civS1 +k/lG0nDMutrc6rcw0up5/zuUT4PaqCoUJJUZ/w8n+I0F + "]]}, + Annotation[#, + "Charting`Private`Tag$109142#1"]& ], {}}, {{}, {}}, {{}, {}}}, {}}, + AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], + Axes->{True, True}, + AxesLabel->{None, None}, + AxesOrigin->{211.4, 0}, + DisplayFunction->Identity, + Frame->{{False, False}, {False, False}}, + FrameLabel->{{None, None}, {None, None}}, + FrameTicks->{{Automatic, + Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic, + Charting`ScaledFrameTicks[{Identity, Identity}]}}, + GridLines->{None, None}, + GridLinesStyle->Directive[ + GrayLevel[0.5, 0.4]], + ImagePadding->All, + Method->{ + "DefaultBoundaryStyle" -> Automatic, + "DefaultGraphicsInteraction" -> { + "Version" -> 1.2, "TrackMousePosition" -> {True, False}, + "Effects" -> { + "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, + "Droplines" -> { + "freeformCursorMode" -> True, + "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> + AbsolutePointSize[6], "ScalingFunctions" -> None, + "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& ), "CopiedValueFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& )}}, + PlotRange->{{211.4, 4785.5}, {0., 9.00330995720893*^-7}}, + PlotRangeClipping->True, + PlotRangePadding->{{ + Scaled[0.02], + Scaled[0.02]}, { + Scaled[0.05], + Scaled[0.05]}}, + Ticks->{Automatic, Automatic}]], "Output", + CellChangeTimes->{ + 3.7682430588455515`*^9, {3.7682431166410356`*^9, 3.768243135486945*^9}, + 3.768243529546382*^9, 3.7682435606681747`*^9, {3.768243600825775*^9, + 3.7682436376044683`*^9}, {3.768243716202337*^9, 3.768243730741431*^9}, + 3.768243801253951*^9, {3.768243911465245*^9, 3.768243916832893*^9}, { + 3.7682439581324754`*^9, 3.7682440494006968`*^9}, 3.768244086632202*^9, + 3.7683910898293076`*^9, 3.768396455565508*^9, 3.7683964962287903`*^9, + 3.768542936127215*^9, 3.7685432555342445`*^9, 3.7685442275064507`*^9, + 3.7685442588754454`*^9, 3.768544333540786*^9, {3.7685446748403177`*^9, + 3.7685446829695807`*^9}, {3.7685447153480153`*^9, + 3.7685447230703335`*^9}, {3.768544820728234*^9, 3.768544847998358*^9}, + 3.7685454336392765`*^9, {3.7685454945943155`*^9, 3.7685455079067216`*^9}, { + 3.7685455509376764`*^9, 3.7685455963662157`*^9}, 3.7685458074518476`*^9, + 3.7685458868156705`*^9, 3.7685459540898037`*^9, 3.768548131293475*^9}, + CellLabel-> + "Out[147]=",ExpressionUUID->"8dc41d3e-6f51-416e-b35f-8d0b7a84ebe6"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Integrate", "[", + RowBox[{ + RowBox[{"dgamma", "[", "x", "]"}], ",", + RowBox[{"{", + RowBox[{"x", ",", + RowBox[{"xmin", "+", "0.01"}], ",", "y"}], "}"}]}], "]"}]], "Input", + CellChangeTimes->{{3.768243742674552*^9, 3.7682437731480513`*^9}, { + 3.768244104933549*^9, 3.7682441630531597`*^9}, {3.7682443392505217`*^9, + 3.7682443620356054`*^9}, {3.76854672978654*^9, 3.7685467321013517`*^9}}, + CellLabel-> + "In[138]:=",ExpressionUUID->"1f401330-d01a-41d9-92dc-375db5b59cd7"], + +Cell[BoxData["$Aborted"], "Output", + CellChangeTimes->{3.7685442239689226`*^9, 3.7685446205664234`*^9, + 3.768546593251582*^9, 3.7685467905790057`*^9}, + CellLabel-> + "Out[138]=",ExpressionUUID->"24628233-8038-4700-8387-fc589ee91f56"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"NIntegrate", "[", + RowBox[{ + RowBox[{"dgamma", "[", "x", "]"}], ",", + RowBox[{"{", + RowBox[{"x", ",", "xmin", ",", "y"}], "}"}]}], "]"}]], "Input", + CellChangeTimes->{{3.768244285328244*^9, 3.768244346314646*^9}}, + CellLabel-> + "In[332]:=",ExpressionUUID->"e8d9247c-81d3-45ea-b40d-269423746d1f"], + +Cell[BoxData[ + TemplateBox[{ + "NIntegrate","nlim", + "\:f3b5x = y is not a valid limit of integration.\:f3b5",2,332,17, + 30451589600358312201,"Local"}, + "MessageTemplate"]], "Message", "MSG", + GeneratedCell->False, + CellAutoOverwrite->False, + CellChangeTimes->{ + 3.7682443082021313`*^9, {3.768247322541181*^9, 3.7682473229431057`*^9}, + 3.768391961619032*^9},ExpressionUUID->"0f0125de-9962-48b1-8548-\ +ddbcf39d76a4"] +}, Open ]], + +Cell[BoxData[ + RowBox[{"Integrate", "[", + RowBox[{ + RowBox[{"prefactor", "*", + RowBox[{"bracketleft", "[", "x", "]"}]}], ",", + RowBox[{"{", + RowBox[{"x", ",", "400", ",", "4500"}], "}"}]}], "]"}]], "Input", + CellChangeTimes->{{3.7683965120195723`*^9, 3.768396530237864*^9}, { + 3.768396562836707*^9, 3.768396640109146*^9}}, + CellLabel->"In[78]:=",ExpressionUUID->"112b93a5-9a00-4ce2-8bd3-4700707f2f5b"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"dgammaapprox", "[", "x_", "]"}], ":=", + RowBox[{"Evaluate", "[", + RowBox[{"Series", "[", + RowBox[{ + RowBox[{"dgamma", "[", "x", "]"}], ",", + RowBox[{"{", + RowBox[{"x", ",", "0", ",", "10"}], "}"}]}], "]"}], "]"}]}]], "Input", + CellChangeTimes->{{3.7683971926398563`*^9, 3.7683972119392576`*^9}, { + 3.7683973094256167`*^9, 3.7683973200821247`*^9}, {3.768397448380106*^9, + 3.7683974655372353`*^9}, 3.768397496115326*^9, {3.7683984852983713`*^9, + 3.768398508044559*^9}, {3.76839863281896*^9, 3.7683986341963015`*^9}, { + 3.768400241121296*^9, 3.768400250925091*^9}}, + CellLabel-> + "In[100]:=",ExpressionUUID->"28a4a194-a354-42bf-8db1-6082ef9fae81"], + +Cell[BoxData[ + RowBox[{"Evaluate", "[", + RowBox[{"Series", "[", + RowBox[{ + RowBox[{"dgamma", "[", "x", "]"}], ",", + RowBox[{"{", + RowBox[{"x", ",", "0", ",", "10"}], "}"}]}], "]"}], "]"}]], "Input", + CellChangeTimes->{{3.768397479401168*^9, 3.768397492263625*^9}, { + 3.7683981316092587`*^9, 3.76839818001584*^9}, {3.7683985118942623`*^9, + 3.768398536566328*^9}, 3.7683986364423*^9, 3.768399962013547*^9, { + 3.768400263369813*^9, 3.7684002668445215`*^9}, 3.768401412060625*^9}, + CellLabel-> + "In[102]:=",ExpressionUUID->"1c5e8b38-0475-420a-a988-7faf1f33823d"], + +Cell[BoxData[ + InterpretationBox[ + TagBox[ + FrameBox[GridBox[{ + { + ItemBox[ + TagBox[ + TagBox[GridBox[{ + {"\[Piecewise]", GridBox[{ + { + RowBox[{ + RowBox[{"4.586187924509184`*^-19", " ", + RowBox[{"Abs", "[", + RowBox[{"1.`", "\[VeryThinSpace]", "-", + FractionBox["44689.96`", + SuperscriptBox["x", "2"]]}], "]"}], " ", + RowBox[{"Abs", "[", + RowBox[{"2.787314006110919`*^7", "+", + RowBox[{"3.58795771727742`*^-8", " ", + SuperscriptBox["x", "4"]}], "-", + RowBox[{"7.17591543455484`*^-8", " ", + RowBox[{"(", + RowBox[{"6.793270969339969`*^12", "+", + RowBox[{"2.811474818`*^7", " ", + SuperscriptBox["x", "2"]}]}], ")"}]}]}], "]"}], " ", + SuperscriptBox[ + RowBox[{"Abs", "[", + FractionBox[ + RowBox[{"0.466`", "\[VeryThinSpace]", "-", + FractionBox[ + RowBox[{"0.355`", " ", + SuperscriptBox[ + TemplateBox[{"1"}, + "OutputSizeLimit`Skeleton"], "2"]}], + SuperscriptBox[ + RowBox[{"(", + TemplateBox[{"1"}, + "OutputSizeLimit`Skeleton"], ")"}], "2"]], "-", + FractionBox[ + RowBox[{"0.59`", " ", + RowBox[{"(", + RowBox[{ + SqrtBox[ + RowBox[{ + RowBox[{ + RowBox[{"-", "1.`"}], " ", + SuperscriptBox["x", "2"]}], "+", + RowBox[{"4785.6`", "^", "2"}]}]], "-", + RowBox[{"1.`", " ", + SqrtBox[ + TemplateBox[{"1"}, + "OutputSizeLimit`Skeleton"]]}]}], ")"}]}], + RowBox[{ + SqrtBox[ + RowBox[{ + RowBox[{ + RowBox[{"-", "1.`"}], " ", + SuperscriptBox["x", "2"]}], "+", + RowBox[{"4785.6`", "^", "2"}]}]], "+", + SqrtBox[ + RowBox[{ + RowBox[{ + RowBox[{"-", "5773.`"}], " ", + TemplateBox[{"1"}, + "OutputSizeLimit`Skeleton"]}], "+", + TemplateBox[{"1"}, + "OutputSizeLimit`Skeleton"]}]]}]]}], + RowBox[{"1.`", "\[VeryThinSpace]", "-", + RowBox[{"3.409878611199379`*^-8", " ", + SuperscriptBox["x", "2"]}]}]], "]"}], "2"]}], "+", + RowBox[{"4.086392435228984`*^-20", " ", + RowBox[{"Abs", "[", + RowBox[{"2.787314006110919`*^7", "+", + RowBox[{"3.58795771727742`*^-8", " ", + SuperscriptBox["x", "4"]}], "-", + RowBox[{"7.17591543455484`*^-8", " ", + RowBox[{"(", + RowBox[{"6.793270969339969`*^12", "+", + RowBox[{"2.811474818`*^7", " ", + SuperscriptBox["x", "2"]}]}], ")"}]}]}], "]"}], " ", + SuperscriptBox[ + RowBox[{"Abs", "[", + InterpretationBox[ + RowBox[{ + FractionBox[ + RowBox[{"4.814654274380738`", " ", + RowBox[{"(", + TemplateBox[{"1"}, + "OutputSizeLimit`Skeleton"], ")"}]}], + SuperscriptBox[ + RowBox[{"(", + TemplateBox[{"1"}, + "OutputSizeLimit`Skeleton"], ")"}], "2"]], "+", + TemplateBox[{"10"}, + "OutputSizeLimit`Skeleton"], "+", + TemplateBox[{"1"}, + "OutputSizeLimit`Skeleton"], "+", + InterpretationBox[ + SuperscriptBox[ + RowBox[{"O", "[", "x", "]"}], "11"], + SeriesData[$CellContext`x, 0, {}, 0, 11, 1], + Editable->False]}], + + SeriesData[$CellContext`x, + 0, {(4.814654274380738 ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[ + 1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-2)) ((-3903.9246292336447`) + NonCommutativeMultiply[50.439430695308474`, 2] + + 0.457098084745592 + NonCommutativeMultiply[4785.6, 2] + (1. + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2]) ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]), + 0. + (Complex[-0.11372839935870264`, 1.603731919276721] ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[ + 1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-2)) ((-2464.599878197321) + NonCommutativeMultiply[50.439430695308474`, 2] + + 0.13520097442143736` + NonCommutativeMultiply[4785.6, 2] + (1. + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2]) ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]), (( + Complex[-17.793749745669817`, 250.9171409718755] + NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[ + 1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( + Complex[1.377512709543011, 19.424885460978636`] + NonCommutativeMultiply[50.439430695308474`, 2] + + Complex[-0.0002386129758432377, -0.0033647818224456323`] + NonCommutativeMultiply[4785.6, 2] + ( + Complex[-7256.512339097185, -5.836572684787645*^-7] + NonCommutativeMultiply[50.439430695308474`, 2]) + NonCommutativeMultiply[4785.6, 2] + + Complex[1., 0.] + NonCommutativeMultiply[4785.6, 2]^2 + ( + Complex[-0.0009736593535405198, -0.013729979614351108`] + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2]) ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2] + (( + Complex[-2171.0692059743997`, 4.820577002371502*^-7] + NonCommutativeMultiply[50.439430695308474`, 2]) + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2]) ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2] + ( + Complex[1., -1.6241365107797606`*^-18] + NonCommutativeMultiply[4785.6, 2]^ + Rational[3, 2]) ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]), + 0. + (Complex[-2706.4944257244497`, 38165.41448181983] ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[ + 1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-2)) ((-2464.599878197321) + NonCommutativeMultiply[50.439430695308474`, 2] + + 0.13520097442143736` + NonCommutativeMultiply[4785.6, 2] + (1. + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2]) ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + + Complex[-0.06926211897606739, + 0.9766942261124977] (((1.2999999999999998` + NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( + 532.8923076923078 + NonCommutativeMultiply[50.439430695308474`, 2] - + 0.09230769230769227 + NonCommutativeMultiply[ + 4785.6, 2] + (1. + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2]) ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + ( + 5.5990206795893796`*^-8 ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-2)) ((-2464.599878197321) + NonCommutativeMultiply[50.439430695308474`, 2] + + 0.13520097442143736` + NonCommutativeMultiply[4785.6, 2] + (1. + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2]) ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])), ( + Complex[-429996.4106908003, 6.063559962927495*^6] ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[ + 1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-2)) ((-2464.599878197321) + NonCommutativeMultiply[50.439430695308474`, 2] + + 0.13520097442143736` + NonCommutativeMultiply[4785.6, 2] + (1. + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2]) ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + + Complex[-9.54600321077642, + 134.6122000922079] (((1.2999999999999998` + NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( + 532.8923076923078 + NonCommutativeMultiply[50.439430695308474`, 2] - + 0.09230769230769227 + NonCommutativeMultiply[ + 4785.6, 2] + (1. + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2]) ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + ( + 5.5990206795893796`*^-8 ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-2)) ((-2464.599878197321) + NonCommutativeMultiply[50.439430695308474`, 2] + + 0.13520097442143736` + NonCommutativeMultiply[4785.6, 2] + (1. + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2]) ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) - + 0.45319591200415726` (((1.5137587781317778`*^-7 + NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( + 3884.7894578765577` + NonCommutativeMultiply[50.439430695308474`, 2] - + 0.672923862441808 + NonCommutativeMultiply[ + 4785.6, 2] + (1. + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2]) ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + ( + 5.387302759643285*^-15 ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( + 835.6313669064749 + NonCommutativeMultiply[50.439430695308474`, 2] - + 0.6028776978417266 + NonCommutativeMultiply[ + 4785.6, 2] + (1. + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2]) ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + + 1. ((-0.726) (((-0.25)/NonCommutativeMultiply[ + 4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) - + 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) + (( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) ((0.25/NonCommutativeMultiply[ + 4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) - + 1.8566666666666667` ((((-1)/NonCommutativeMultiply[ + 4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-3) + ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) ( + 0.25/NonCommutativeMultiply[4785.6, 2] - (0.25 + NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + Rational[1, 4] ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^2) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( + 0. + (3./NonCommutativeMultiply[ + 4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))))) + + 4.211 (((4.432842194559192*^-8 + NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( + 532.8923076923078 + NonCommutativeMultiply[50.439430695308474`, 2] - + 0.09230769230769227 + NonCommutativeMultiply[ + 4785.6, 2] + (1. + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2]) ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + ( + 1.9091980858994836`*^-15 ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-2)) ((-2464.599878197321) + NonCommutativeMultiply[50.439430695308474`, 2] + + 0.13520097442143736` + NonCommutativeMultiply[4785.6, 2] + (1. + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2]) ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + + 1. ((-0.59) (((-0.25)/NonCommutativeMultiply[ + 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) - + 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) + (( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) ((0.25/NonCommutativeMultiply[ + 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) - + 0.355 ((((-1)/NonCommutativeMultiply[4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-3) + ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) ( + 0.25/NonCommutativeMultiply[4785.6, 2] - (0.25 + NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + Rational[1, 4] ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^2) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( + 0. + (3./NonCommutativeMultiply[ + 4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))))), + 0. + (Complex[-7.035253225548905*^7, + 9.920706016815953*^8] ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[ + 1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-2)) ((-2464.599878197321) + NonCommutativeMultiply[50.439430695308474`, 2] + + 0.13520097442143736` + NonCommutativeMultiply[4785.6, 2] + (1. + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2]) ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + + Complex[-1648.291367676279, + 23243.24877090124] (((1.2999999999999998` + NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( + 532.8923076923078 + NonCommutativeMultiply[50.439430695308474`, 2] - + 0.09230769230769227 + NonCommutativeMultiply[ + 4785.6, 2] + (1. + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2]) ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + ( + 5.5990206795893796`*^-8 ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-2)) ((-2464.599878197321) + NonCommutativeMultiply[50.439430695308474`, 2] + + 0.13520097442143736` + NonCommutativeMultiply[4785.6, 2] + (1. + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2]) ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + + Complex[-0.06926211897606739, + 0.9766942261124977] (((4.432842194559192*^-8 + NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( + 532.8923076923078 + NonCommutativeMultiply[50.439430695308474`, 2] - + 0.09230769230769227 + NonCommutativeMultiply[ + 4785.6, 2] + (1. + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2]) ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + ( + 1.9091980858994836`*^-15 ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-2)) ((-2464.599878197321) + NonCommutativeMultiply[50.439430695308474`, 2] + + 0.13520097442143736` + NonCommutativeMultiply[4785.6, 2] + (1. + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2]) ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + + 1. ((-0.59) (((-0.25)/NonCommutativeMultiply[ + 4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) - + 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) + (( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) ((0.25/NonCommutativeMultiply[ + 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) - + 0.355 ((((-1)/NonCommutativeMultiply[4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-3) + ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) ( + 0.25/NonCommutativeMultiply[4785.6, 2] - (0.25 + NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + Rational[1, 4] ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^2) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( + 0. + (3./NonCommutativeMultiply[ + 4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))))), ( + Complex[-1.1389763095700577`*^10, 1.606118325112725*^11] ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[ + 1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-2)) ((-2464.599878197321) + NonCommutativeMultiply[50.439430695308474`, 2] + + 0.13520097442143736` + NonCommutativeMultiply[4785.6, 2] + (1. + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2]) ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + + Complex[-261873.57532935464`, + 3.692789258786538*^6] (((1.2999999999999998` + NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( + 532.8923076923078 + NonCommutativeMultiply[50.439430695308474`, 2] - + 0.09230769230769227 + NonCommutativeMultiply[ + 4785.6, 2] + (1. + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2]) ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + ( + 5.5990206795893796`*^-8 ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-2)) ((-2464.599878197321) + NonCommutativeMultiply[50.439430695308474`, 2] + + 0.13520097442143736` + NonCommutativeMultiply[4785.6, 2] + (1. + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2]) ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + + Complex[-9.54600321077642, + 134.6122000922079] (((4.432842194559192*^-8 + NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( + 532.8923076923078 + NonCommutativeMultiply[50.439430695308474`, 2] - + 0.09230769230769227 + NonCommutativeMultiply[ + 4785.6, 2] + (1. + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2]) ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + ( + 1.9091980858994836`*^-15 ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-2)) ((-2464.599878197321) + NonCommutativeMultiply[50.439430695308474`, 2] + + 0.13520097442143736` + NonCommutativeMultiply[4785.6, 2] + (1. + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2]) ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + + 1. ((-0.59) (((-0.25)/NonCommutativeMultiply[ + 4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) - + 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) + (( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) ((0.25/NonCommutativeMultiply[ + 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) - + 0.355 ((((-1)/NonCommutativeMultiply[4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-3) + ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) ( + 0.25/NonCommutativeMultiply[4785.6, 2] - (0.25 + NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + Rational[1, 4] ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^2) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( + 0. + (3./NonCommutativeMultiply[ + 4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))))) - + 0.45319591200415726` (((5.161733680066854*^-15 + NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( + 3884.7894578765577` + NonCommutativeMultiply[50.439430695308474`, 2] - + 0.672923862441808 + NonCommutativeMultiply[ + 4785.6, 2] + (1. + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2]) ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + ( + 1.8370048452163027`*^-22 ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( + 835.6313669064749 + NonCommutativeMultiply[50.439430695308474`, 2] - + 0.6028776978417266 + NonCommutativeMultiply[ + 4785.6, 2] + (1. + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2]) ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + + 3.409878611199379*^-8 ((-0.726) (((-0.25)/ + NonCommutativeMultiply[ + 4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) - + 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) + (( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) ((0.25/NonCommutativeMultiply[ + 4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) - + 1.8566666666666667` ((((-1)/NonCommutativeMultiply[ + 4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-3) + ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) ( + 0.25/NonCommutativeMultiply[4785.6, 2] - (0.25 + NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + Rational[1, 4] ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^2) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( + 0. + (3./NonCommutativeMultiply[ + 4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))))) + + 1. ((-0.726) (((-0.0625) + NonCommutativeMultiply[4785.6, 2]^(-2)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) - + 0.0625 (NonCommutativeMultiply[4785.6, 2]^ + Rational[-5, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) + (( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) ((0.125 + NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-3) + (0.125 + NonCommutativeMultiply[4785.6, 2]^(-2)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.0625 (NonCommutativeMultiply[4785.6, 2]^ + Rational[-5, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) - (( + 0.5 NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) ((0.25/NonCommutativeMultiply[ + 4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) - + 1.8566666666666667` (( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) ( + 0.125 NonCommutativeMultiply[4785.6, 2]^(-2) - (0.125 + NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( + 0.25/NonCommutativeMultiply[4785.6, 2] - (0.25 + NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) - ((( + 0.25 NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( + 0. + (3./NonCommutativeMultiply[ + 4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) + (( + Rational[1, 6] ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^2) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( + 0. + (1.25 + NonCommutativeMultiply[4785.6, 2]^(-2)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.75 (NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + 0. + (3./NonCommutativeMultiply[ + 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))))))) + + 4.211 (((1.5115453786049503`*^-15 + NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( + 532.8923076923078 + NonCommutativeMultiply[50.439430695308474`, 2] - + 0.09230769230769227 + NonCommutativeMultiply[ + 4785.6, 2] + (1. + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2]) ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + ( + 6.510133717651443*^-23 ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-2)) ((-2464.599878197321) + NonCommutativeMultiply[50.439430695308474`, 2] + + 0.13520097442143736` + NonCommutativeMultiply[4785.6, 2] + (1. + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2]) ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + + 3.409878611199379*^-8 ((-0.59) (((-0.25)/ + NonCommutativeMultiply[ + 4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) - + 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) + (( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) ((0.25/NonCommutativeMultiply[ + 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) - + 0.355 ((((-1)/NonCommutativeMultiply[4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-3) + ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) ( + 0.25/NonCommutativeMultiply[4785.6, 2] - (0.25 + NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + Rational[1, 4] ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^2) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( + 0. + (3./NonCommutativeMultiply[ + 4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))))) + + 1. ((-0.59) (((-0.0625) + NonCommutativeMultiply[4785.6, 2]^(-2)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) - + 0.0625 (NonCommutativeMultiply[4785.6, 2]^ + Rational[-5, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) + (( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) ((0.125 + NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-3) + (0.125 + NonCommutativeMultiply[4785.6, 2]^(-2)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.0625 (NonCommutativeMultiply[4785.6, 2]^ + Rational[-5, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) - (( + 0.5 NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) ((0.25/NonCommutativeMultiply[ + 4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) - + 0.355 ((NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) ( + 0.125 NonCommutativeMultiply[4785.6, 2]^(-2) - (0.125 + NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( + 0.25/NonCommutativeMultiply[4785.6, 2] - (0.25 + NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) - ((( + 0.25 NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( + 0. + (3./NonCommutativeMultiply[ + 4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) + (( + Rational[1, 6] ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^2) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( + 0. + (1.25 NonCommutativeMultiply[4785.6, 2]^(-2)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.75 (NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + 0. + (3./NonCommutativeMultiply[ + 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))))))), + 0. + (Complex[-1.8509043208942212`*^12, + 2.61003791109641*^13] ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[ + 1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-2)) ((-2464.599878197321) + NonCommutativeMultiply[50.439430695308474`, 2] + + 0.13520097442143736` + NonCommutativeMultiply[4785.6, 2] + (1. + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2]) ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + + Complex[-4.284563474755728*^7, + 6.041842884784381*^8] (((1.2999999999999998` + NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( + 532.8923076923078 + NonCommutativeMultiply[50.439430695308474`, 2] - + 0.09230769230769227 + NonCommutativeMultiply[ + 4785.6, 2] + (1. + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2]) ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + ( + 5.5990206795893796`*^-8 ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-2)) ((-2464.599878197321) + NonCommutativeMultiply[50.439430695308474`, 2] + + 0.13520097442143736` + NonCommutativeMultiply[4785.6, 2] + (1. + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2]) ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + + Complex[-1648.291367676279, + 23243.24877090124] (((4.432842194559192*^-8 + NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( + 532.8923076923078 + NonCommutativeMultiply[50.439430695308474`, 2] - + 0.09230769230769227 + NonCommutativeMultiply[ + 4785.6, 2] + (1. + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2]) ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + ( + 1.9091980858994836`*^-15 ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-2)) ((-2464.599878197321) + NonCommutativeMultiply[50.439430695308474`, 2] + + 0.13520097442143736` + NonCommutativeMultiply[4785.6, 2] + (1. + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2]) ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + + 1. ((-0.59) (((-0.25)/NonCommutativeMultiply[ + 4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) - + 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) + (( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) ((0.25/NonCommutativeMultiply[ + 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) - + 0.355 ((((-1)/NonCommutativeMultiply[4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-3) + ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) ( + 0.25/NonCommutativeMultiply[4785.6, 2] - (0.25 + NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + Rational[1, 4] ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^2) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( + 0. + (3./NonCommutativeMultiply[ + 4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))))) + + Complex[-0.06926211897606739, + 0.9766942261124977] (((1.5115453786049503`*^-15 + NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( + 532.8923076923078 + NonCommutativeMultiply[50.439430695308474`, 2] - + 0.09230769230769227 + NonCommutativeMultiply[ + 4785.6, 2] + (1. + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2]) ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + ( + 6.510133717651443*^-23 ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-2)) ((-2464.599878197321) + NonCommutativeMultiply[50.439430695308474`, 2] + + 0.13520097442143736` + NonCommutativeMultiply[4785.6, 2] + (1. + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2]) ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + + 3.409878611199379*^-8 ((-0.59) (((-0.25)/ + NonCommutativeMultiply[ + 4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) - + 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) + (( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) ((0.25/NonCommutativeMultiply[ + 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) - + 0.355 ((((-1)/NonCommutativeMultiply[4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-3) + ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) ( + 0.25/NonCommutativeMultiply[4785.6, 2] - (0.25 + NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + Rational[1, 4] ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^2) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( + 0. + (3./NonCommutativeMultiply[ + 4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))))) + + 1. ((-0.59) (((-0.0625) + NonCommutativeMultiply[4785.6, 2]^(-2)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) - + 0.0625 (NonCommutativeMultiply[4785.6, 2]^ + Rational[-5, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) + (( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) ((0.125 + NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-3) + (0.125 + NonCommutativeMultiply[4785.6, 2]^(-2)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.0625 (NonCommutativeMultiply[4785.6, 2]^ + Rational[-5, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) - (( + 0.5 NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) ((0.25/NonCommutativeMultiply[ + 4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) - + 0.355 ((NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) ( + 0.125 NonCommutativeMultiply[4785.6, 2]^(-2) - (0.125 + NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( + 0.25/NonCommutativeMultiply[4785.6, 2] - (0.25 + NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) - ((( + 0.25 NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( + 0. + (3./NonCommutativeMultiply[ + 4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) + (( + Rational[1, 6] ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^2) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( + 0. + (1.25 NonCommutativeMultiply[4785.6, 2]^(-2)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.75 (NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + 0. + (3./NonCommutativeMultiply[ + 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2]))))))), ( + Complex[-3.0037845520468*^14, 4.235762739923902*^15] ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[ + 1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-2)) ((-2464.599878197321) + NonCommutativeMultiply[50.439430695308474`, 2] + + 0.13520097442143736` + NonCommutativeMultiply[4785.6, 2] + (1. + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2]) ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + + Complex[-6.936518328684883*^9, + 9.781475792403928*^10] (((1.2999999999999998` + NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( + 532.8923076923078 + NonCommutativeMultiply[50.439430695308474`, 2] - + 0.09230769230769227 + NonCommutativeMultiply[ + 4785.6, 2] + (1. + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2]) ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + ( + 5.5990206795893796`*^-8 ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-2)) ((-2464.599878197321) + NonCommutativeMultiply[50.439430695308474`, 2] + + 0.13520097442143736` + NonCommutativeMultiply[4785.6, 2] + (1. + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2]) ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + + Complex[-261873.57532935464`, + 3.692789258786538*^6] (((4.432842194559192*^-8 + NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( + 532.8923076923078 + NonCommutativeMultiply[50.439430695308474`, 2] - + 0.09230769230769227 + NonCommutativeMultiply[ + 4785.6, 2] + (1. + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2]) ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + ( + 1.9091980858994836`*^-15 ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-2)) ((-2464.599878197321) + NonCommutativeMultiply[50.439430695308474`, 2] + + 0.13520097442143736` + NonCommutativeMultiply[4785.6, 2] + (1. + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2]) ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + + 1. ((-0.59) (((-0.25)/NonCommutativeMultiply[ + 4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) - + 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) + (( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) ((0.25/NonCommutativeMultiply[ + 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) - + 0.355 ((((-1)/NonCommutativeMultiply[4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-3) + ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) ( + 0.25/NonCommutativeMultiply[4785.6, 2] - (0.25 + NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + Rational[1, 4] ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^2) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( + 0. + (3./NonCommutativeMultiply[ + 4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))))) + + Complex[-9.54600321077642, + 134.6122000922079] (((1.5115453786049503`*^-15 + NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( + 532.8923076923078 + NonCommutativeMultiply[50.439430695308474`, 2] - + 0.09230769230769227 + NonCommutativeMultiply[ + 4785.6, 2] + (1. + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2]) ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + ( + 6.510133717651443*^-23 ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-2)) ((-2464.599878197321) + NonCommutativeMultiply[50.439430695308474`, 2] + + 0.13520097442143736` + NonCommutativeMultiply[4785.6, 2] + (1. + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2]) ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + + 3.409878611199379*^-8 ((-0.59) (((-0.25)/ + NonCommutativeMultiply[ + 4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) - + 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) + (( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) ((0.25/NonCommutativeMultiply[ + 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) - + 0.355 ((((-1)/NonCommutativeMultiply[4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-3) + ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) ( + 0.25/NonCommutativeMultiply[4785.6, 2] - (0.25 + NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + Rational[1, 4] ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^2) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( + 0. + (3./NonCommutativeMultiply[ + 4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))))) + + 1. ((-0.59) (((-0.0625) + NonCommutativeMultiply[4785.6, 2]^(-2)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) - + 0.0625 (NonCommutativeMultiply[4785.6, 2]^ + Rational[-5, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) + (( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) ((0.125 + NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-3) + (0.125 + NonCommutativeMultiply[4785.6, 2]^(-2)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.0625 (NonCommutativeMultiply[4785.6, 2]^ + Rational[-5, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) - (( + 0.5 NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) ((0.25/NonCommutativeMultiply[ + 4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) - + 0.355 ((NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) ( + 0.125 NonCommutativeMultiply[4785.6, 2]^(-2) - (0.125 + NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( + 0.25/NonCommutativeMultiply[4785.6, 2] - (0.25 + NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) - ((( + 0.25 NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( + 0. + (3./NonCommutativeMultiply[ + 4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) + (( + Rational[1, 6] ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^2) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( + 0. + (1.25 NonCommutativeMultiply[4785.6, 2]^(-2)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.75 (NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + 0. + (3./NonCommutativeMultiply[ + 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))))))) - + 0.45319591200415726` (((1.7600885272367424`*^-22 + NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( + 3884.7894578765577` + NonCommutativeMultiply[50.439430695308474`, 2] - + 0.672923862441808 + NonCommutativeMultiply[ + 4785.6, 2] + (1. + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2]) ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + ( + 6.263963530372696*^-30 ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( + 835.6313669064749 + NonCommutativeMultiply[50.439430695308474`, 2] - + 0.6028776978417266 + NonCommutativeMultiply[ + 4785.6, 2] + (1. + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2]) ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + + 1.1627272143115003`*^-15 ((-0.726) (((-0.25)/ + NonCommutativeMultiply[ + 4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) - + 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) + (( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) ((0.25/NonCommutativeMultiply[ + 4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) - + 1.8566666666666667` ((((-1)/NonCommutativeMultiply[ + 4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-3) + ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) ( + 0.25/NonCommutativeMultiply[4785.6, 2] - (0.25 + NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + Rational[1, 4] ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^2) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( + 0. + (3./NonCommutativeMultiply[ + 4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))))) + + 3.409878611199379*^-8 ((-0.726) (((-0.0625) + NonCommutativeMultiply[4785.6, 2]^(-2)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) - + 0.0625 (NonCommutativeMultiply[4785.6, 2]^ + Rational[-5, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) + (( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) ((0.125 + NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-3) + (0.125 + NonCommutativeMultiply[4785.6, 2]^(-2)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.0625 (NonCommutativeMultiply[4785.6, 2]^ + Rational[-5, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) - (( + 0.5 NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) ((0.25/NonCommutativeMultiply[ + 4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) - + 1.8566666666666667` (( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) ( + 0.125 NonCommutativeMultiply[4785.6, 2]^(-2) - (0.125 + NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( + 0.25/NonCommutativeMultiply[4785.6, 2] - (0.25 + NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) - ((( + 0.25 NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( + 0. + (3./NonCommutativeMultiply[ + 4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) + (( + Rational[1, 6] ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^2) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( + 0. + (1.25 + NonCommutativeMultiply[4785.6, 2]^(-2)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.75 (NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + 0. + (3./NonCommutativeMultiply[ + 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))))) + + 1. ((-0.726) (((-0.03125) + NonCommutativeMultiply[4785.6, 2]^(-3)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) - + 0.0390625 ( + NonCommutativeMultiply[4785.6, 2]^Rational[-7, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) + (( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) ((0.0625 + NonCommutativeMultiply[4785.6, 2]^(-2)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-4) + (0.09375 + NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-3) + (0.078125 + NonCommutativeMultiply[4785.6, 2]^(-3)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.0390625 (NonCommutativeMultiply[4785.6, 2]^ + Rational[-7, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) - (( + 0.5 NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) ((0.125 + NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-3) + (0.125 + NonCommutativeMultiply[4785.6, 2]^(-2)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.0625 (NonCommutativeMultiply[4785.6, 2]^ + Rational[-5, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) - (( + 0.125 NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) ((0.25/NonCommutativeMultiply[ + 4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) - + 1.8566666666666667` (( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) ( + 0.078125 NonCommutativeMultiply[4785.6, 2]^(-3) - ( + 0.078125 NonCommutativeMultiply[4785.6, 2]^ + Rational[-7, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( + 0.125 NonCommutativeMultiply[4785.6, 2]^(-2) - (0.125 + NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + Rational[1, 4] ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( + 0.25/NonCommutativeMultiply[4785.6, 2] - (0.25 + NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) ( + 0. + (3./NonCommutativeMultiply[ + 4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) - ((( + 0.16666666666666666` + NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( + 0. + (1.25 + NonCommutativeMultiply[4785.6, 2]^(-2)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.75 (NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + 0. + (3./NonCommutativeMultiply[ + 4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) + (( + Rational[1, 8] ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^2) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( + 0. + (0.875 + NonCommutativeMultiply[4785.6, 2]^(-3)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.625 (NonCommutativeMultiply[4785.6, 2]^Rational[-7, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + 0.375 NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + 0. + (3./NonCommutativeMultiply[ + 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) + (( + 0.8333333333333333 + NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + 0. + (1.25 NonCommutativeMultiply[4785.6, 2]^(-2)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.75 (NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + 0. + (3./NonCommutativeMultiply[ + 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))))))) + + 4.211 (((5.154186256362287*^-23 + NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( + 532.8923076923078 + NonCommutativeMultiply[50.439430695308474`, 2] - + 0.09230769230769227 + NonCommutativeMultiply[ + 4785.6, 2] + (1. + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2]) ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + ( + 2.2198765719867552`*^-30 ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-2)) ((-2464.599878197321) + NonCommutativeMultiply[50.439430695308474`, 2] + + 0.13520097442143736` + NonCommutativeMultiply[4785.6, 2] + (1. + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2]) ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + + 1.1627272143115003`*^-15 ((-0.59) (((-0.25)/ + NonCommutativeMultiply[ + 4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) - + 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) + (( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) ((0.25/NonCommutativeMultiply[ + 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) - + 0.355 ((((-1)/NonCommutativeMultiply[4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-3) + ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) ( + 0.25/NonCommutativeMultiply[4785.6, 2] - (0.25 + NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + Rational[1, 4] ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^2) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( + 0. + (3./NonCommutativeMultiply[ + 4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))))) + + 3.409878611199379*^-8 ((-0.59) (((-0.0625) + NonCommutativeMultiply[4785.6, 2]^(-2)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) - + 0.0625 (NonCommutativeMultiply[4785.6, 2]^ + Rational[-5, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) + (( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) ((0.125 + NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-3) + (0.125 + NonCommutativeMultiply[4785.6, 2]^(-2)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.0625 (NonCommutativeMultiply[4785.6, 2]^ + Rational[-5, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) - (( + 0.5 NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) ((0.25/NonCommutativeMultiply[ + 4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) - + 0.355 ((NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) ( + 0.125 NonCommutativeMultiply[4785.6, 2]^(-2) - (0.125 + NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( + 0.25/NonCommutativeMultiply[4785.6, 2] - (0.25 + NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) - ((( + 0.25 NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( + 0. + (3./NonCommutativeMultiply[ + 4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) + (( + Rational[1, 6] ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^2) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( + 0. + (1.25 NonCommutativeMultiply[4785.6, 2]^(-2)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.75 (NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + 0. + (3./NonCommutativeMultiply[ + 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))))) + + 1. ((-0.59) (((-0.03125) + NonCommutativeMultiply[4785.6, 2]^(-3)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) - + 0.0390625 ( + NonCommutativeMultiply[4785.6, 2]^Rational[-7, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) + (( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) ((0.0625 + NonCommutativeMultiply[4785.6, 2]^(-2)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-4) + (0.09375 + NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-3) + (0.078125 + NonCommutativeMultiply[4785.6, 2]^(-3)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.0390625 (NonCommutativeMultiply[4785.6, 2]^ + Rational[-7, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) - (( + 0.5 NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) ((0.125 + NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-3) + (0.125 + NonCommutativeMultiply[4785.6, 2]^(-2)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.0625 (NonCommutativeMultiply[4785.6, 2]^ + Rational[-5, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) - (( + 0.125 NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) ((0.25/NonCommutativeMultiply[ + 4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) - + 0.355 ((NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) ( + 0.078125 NonCommutativeMultiply[4785.6, 2]^(-3) - ( + 0.078125 NonCommutativeMultiply[4785.6, 2]^ + Rational[-7, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( + 0.125 NonCommutativeMultiply[4785.6, 2]^(-2) - (0.125 + NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + Rational[1, 4] ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( + 0.25/NonCommutativeMultiply[4785.6, 2] - (0.25 + NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) ( + 0. + (3./NonCommutativeMultiply[ + 4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) - ((( + 0.16666666666666666` + NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( + 0. + (1.25 + NonCommutativeMultiply[4785.6, 2]^(-2)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.75 (NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + 0. + (3./NonCommutativeMultiply[ + 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) + (( + Rational[1, 8] ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^2) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( + 0. + (0.875 + NonCommutativeMultiply[4785.6, 2]^(-3)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.625 (NonCommutativeMultiply[4785.6, 2]^Rational[-7, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + 0.375 NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + 0. + (3./NonCommutativeMultiply[ + 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) + (( + 0.8333333333333333 + NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + 0. + (1.25 NonCommutativeMultiply[4785.6, 2]^(-2)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.75 (NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + 0. + (3./NonCommutativeMultiply[ + 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))))))), + 0. + (Complex[-4.8771088174541816`*^16, + 6.877415956297549*^17] ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[ + 1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-2)) ((-2464.599878197321) + NonCommutativeMultiply[50.439430695308474`, 2] + + 0.13520097442143736` + NonCommutativeMultiply[4785.6, 2] + (1. + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2]) ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + + Complex[-1.1272255303862493`*^12, + 1.5895480579149879`*^13] (((1.2999999999999998` + NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( + 532.8923076923078 + NonCommutativeMultiply[50.439430695308474`, 2] - + 0.09230769230769227 + NonCommutativeMultiply[ + 4785.6, 2] + (1. + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2]) ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + ( + 5.5990206795893796`*^-8 ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-2)) ((-2464.599878197321) + NonCommutativeMultiply[50.439430695308474`, 2] + + 0.13520097442143736` + NonCommutativeMultiply[4785.6, 2] + (1. + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2]) ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + + Complex[-4.284563474755728*^7, + 6.041842884784381*^8] (((4.432842194559192*^-8 + NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( + 532.8923076923078 + NonCommutativeMultiply[50.439430695308474`, 2] - + 0.09230769230769227 + NonCommutativeMultiply[ + 4785.6, 2] + (1. + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2]) ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + ( + 1.9091980858994836`*^-15 ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-2)) ((-2464.599878197321) + NonCommutativeMultiply[50.439430695308474`, 2] + + 0.13520097442143736` + NonCommutativeMultiply[4785.6, 2] + (1. + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2]) ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + + 1. ((-0.59) (((-0.25)/NonCommutativeMultiply[ + 4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) - + 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) + (( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) ((0.25/NonCommutativeMultiply[ + 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) - + 0.355 ((((-1)/NonCommutativeMultiply[4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-3) + ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) ( + 0.25/NonCommutativeMultiply[4785.6, 2] - (0.25 + NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + Rational[1, 4] ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^2) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( + 0. + (3./NonCommutativeMultiply[ + 4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))))) + + Complex[-1648.291367676279, + 23243.24877090124] (((1.5115453786049503`*^-15 + NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( + 532.8923076923078 + NonCommutativeMultiply[50.439430695308474`, 2] - + 0.09230769230769227 + NonCommutativeMultiply[ + 4785.6, 2] + (1. + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2]) ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + ( + 6.510133717651443*^-23 ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-2)) ((-2464.599878197321) + NonCommutativeMultiply[50.439430695308474`, 2] + + 0.13520097442143736` + NonCommutativeMultiply[4785.6, 2] + (1. + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2]) ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + + 3.409878611199379*^-8 ((-0.59) (((-0.25)/ + NonCommutativeMultiply[ + 4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) - + 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) + (( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) ((0.25/NonCommutativeMultiply[ + 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) - + 0.355 ((((-1)/NonCommutativeMultiply[4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-3) + ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) ( + 0.25/NonCommutativeMultiply[4785.6, 2] - (0.25 + NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + Rational[1, 4] ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^2) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( + 0. + (3./NonCommutativeMultiply[ + 4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))))) + + 1. ((-0.59) (((-0.0625) + NonCommutativeMultiply[4785.6, 2]^(-2)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) - + 0.0625 (NonCommutativeMultiply[4785.6, 2]^ + Rational[-5, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) + (( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) ((0.125 + NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-3) + (0.125 + NonCommutativeMultiply[4785.6, 2]^(-2)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.0625 (NonCommutativeMultiply[4785.6, 2]^ + Rational[-5, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) - (( + 0.5 NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) ((0.25/NonCommutativeMultiply[ + 4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) - + 0.355 ((NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) ( + 0.125 NonCommutativeMultiply[4785.6, 2]^(-2) - (0.125 + NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( + 0.25/NonCommutativeMultiply[4785.6, 2] - (0.25 + NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) - ((( + 0.25 NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( + 0. + (3./NonCommutativeMultiply[ + 4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) + (( + Rational[1, 6] ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^2) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( + 0. + (1.25 NonCommutativeMultiply[4785.6, 2]^(-2)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.75 (NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + 0. + (3./NonCommutativeMultiply[ + 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))))))) + + Complex[-0.06926211897606739, + 0.9766942261124977] (((5.154186256362287*^-23 + NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( + 532.8923076923078 + NonCommutativeMultiply[50.439430695308474`, 2] - + 0.09230769230769227 + NonCommutativeMultiply[ + 4785.6, 2] + (1. + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2]) ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + ( + 2.2198765719867552`*^-30 ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-2)) ((-2464.599878197321) + NonCommutativeMultiply[50.439430695308474`, 2] + + 0.13520097442143736` + NonCommutativeMultiply[4785.6, 2] + (1. + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2]) ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + + 1.1627272143115003`*^-15 ((-0.59) (((-0.25)/ + NonCommutativeMultiply[ + 4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) - + 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) + (( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) ((0.25/NonCommutativeMultiply[ + 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) - + 0.355 ((((-1)/NonCommutativeMultiply[4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-3) + ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) ( + 0.25/NonCommutativeMultiply[4785.6, 2] - (0.25 + NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + Rational[1, 4] ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^2) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( + 0. + (3./NonCommutativeMultiply[ + 4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))))) + + 3.409878611199379*^-8 ((-0.59) (((-0.0625) + NonCommutativeMultiply[4785.6, 2]^(-2)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) - + 0.0625 (NonCommutativeMultiply[4785.6, 2]^ + Rational[-5, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) + (( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) ((0.125 + NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-3) + (0.125 + NonCommutativeMultiply[4785.6, 2]^(-2)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.0625 (NonCommutativeMultiply[4785.6, 2]^ + Rational[-5, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) - (( + 0.5 NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) ((0.25/NonCommutativeMultiply[ + 4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) - + 0.355 ((NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) ( + 0.125 NonCommutativeMultiply[4785.6, 2]^(-2) - (0.125 + NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( + 0.25/NonCommutativeMultiply[4785.6, 2] - (0.25 + NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) - ((( + 0.25 NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( + 0. + (3./NonCommutativeMultiply[ + 4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) + (( + Rational[1, 6] ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^2) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( + 0. + (1.25 NonCommutativeMultiply[4785.6, 2]^(-2)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.75 (NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + 0. + (3./NonCommutativeMultiply[ + 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))))) + + 1. ((-0.59) (((-0.03125) + NonCommutativeMultiply[4785.6, 2]^(-3)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) - + 0.0390625 ( + NonCommutativeMultiply[4785.6, 2]^Rational[-7, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) + (( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) ((0.0625 + NonCommutativeMultiply[4785.6, 2]^(-2)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-4) + (0.09375 + NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-3) + (0.078125 + NonCommutativeMultiply[4785.6, 2]^(-3)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.0390625 (NonCommutativeMultiply[4785.6, 2]^ + Rational[-7, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) - (( + 0.5 NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) ((0.125 + NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-3) + (0.125 + NonCommutativeMultiply[4785.6, 2]^(-2)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.0625 (NonCommutativeMultiply[4785.6, 2]^ + Rational[-5, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) - (( + 0.125 NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) ((0.25/NonCommutativeMultiply[ + 4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) - + 0.355 ((NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) ( + 0.078125 NonCommutativeMultiply[4785.6, 2]^(-3) - ( + 0.078125 NonCommutativeMultiply[4785.6, 2]^ + Rational[-7, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( + 0.125 NonCommutativeMultiply[4785.6, 2]^(-2) - (0.125 + NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + Rational[1, 4] ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( + 0.25/NonCommutativeMultiply[4785.6, 2] - (0.25 + NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) ( + 0. + (3./NonCommutativeMultiply[ + 4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) - ((( + 0.16666666666666666` + NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( + 0. + (1.25 + NonCommutativeMultiply[4785.6, 2]^(-2)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.75 (NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + 0. + (3./NonCommutativeMultiply[ + 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) + (( + Rational[1, 8] ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^2) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( + 0. + (0.875 + NonCommutativeMultiply[4785.6, 2]^(-3)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.625 (NonCommutativeMultiply[4785.6, 2]^Rational[-7, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + 0.375 NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + 0. + (3./NonCommutativeMultiply[ + 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) + (( + 0.8333333333333333 + NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + 0. + (1.25 NonCommutativeMultiply[4785.6, 2]^(-2)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.75 (NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + 0. + (3./NonCommutativeMultiply[ + 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])))))))), ( + Complex[-7.917379416470458*^18, 1.1164629203274333`*^20] ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[ + 1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-2)) ((-2464.599878197321) + NonCommutativeMultiply[50.439430695308474`, 2] + + 0.13520097442143736` + NonCommutativeMultiply[4785.6, 2] + (1. + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2]) ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + + Complex[-1.8293450377873325`*^14, + 2.57963626061139*^15] (((1.2999999999999998` + NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( + 532.8923076923078 + NonCommutativeMultiply[50.439430695308474`, 2] - + 0.09230769230769227 + NonCommutativeMultiply[ + 4785.6, 2] + (1. + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2]) ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + ( + 5.5990206795893796`*^-8 ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-2)) ((-2464.599878197321) + NonCommutativeMultiply[50.439430695308474`, 2] + + 0.13520097442143736` + NonCommutativeMultiply[4785.6, 2] + (1. + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2]) ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + + Complex[-6.936518328684883*^9, + 9.781475792403928*^10] (((4.432842194559192*^-8 + NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( + 532.8923076923078 + NonCommutativeMultiply[50.439430695308474`, 2] - + 0.09230769230769227 + NonCommutativeMultiply[ + 4785.6, 2] + (1. + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2]) ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + ( + 1.9091980858994836`*^-15 ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-2)) ((-2464.599878197321) + NonCommutativeMultiply[50.439430695308474`, 2] + + 0.13520097442143736` + NonCommutativeMultiply[4785.6, 2] + (1. + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2]) ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + + 1. ((-0.59) (((-0.25)/NonCommutativeMultiply[ + 4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) - + 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) + (( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) ((0.25/NonCommutativeMultiply[ + 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) - + 0.355 ((((-1)/NonCommutativeMultiply[4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-3) + ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) ( + 0.25/NonCommutativeMultiply[4785.6, 2] - (0.25 + NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + Rational[1, 4] ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^2) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( + 0. + (3./NonCommutativeMultiply[ + 4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))))) + + Complex[-261873.57532935464`, + 3.692789258786538*^6] (((1.5115453786049503`*^-15 + NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( + 532.8923076923078 + NonCommutativeMultiply[50.439430695308474`, 2] - + 0.09230769230769227 + NonCommutativeMultiply[ + 4785.6, 2] + (1. + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2]) ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + ( + 6.510133717651443*^-23 ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-2)) ((-2464.599878197321) + NonCommutativeMultiply[50.439430695308474`, 2] + + 0.13520097442143736` + NonCommutativeMultiply[4785.6, 2] + (1. + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2]) ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + + 3.409878611199379*^-8 ((-0.59) (((-0.25)/ + NonCommutativeMultiply[ + 4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) - + 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) + (( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) ((0.25/NonCommutativeMultiply[ + 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) - + 0.355 ((((-1)/NonCommutativeMultiply[4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-3) + ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) ( + 0.25/NonCommutativeMultiply[4785.6, 2] - (0.25 + NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + Rational[1, 4] ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^2) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( + 0. + (3./NonCommutativeMultiply[ + 4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))))) + + 1. ((-0.59) (((-0.0625) + NonCommutativeMultiply[4785.6, 2]^(-2)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) - + 0.0625 (NonCommutativeMultiply[4785.6, 2]^ + Rational[-5, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) + (( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) ((0.125 + NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-3) + (0.125 + NonCommutativeMultiply[4785.6, 2]^(-2)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.0625 (NonCommutativeMultiply[4785.6, 2]^ + Rational[-5, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) - (( + 0.5 NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) ((0.25/NonCommutativeMultiply[ + 4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) - + 0.355 ((NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) ( + 0.125 NonCommutativeMultiply[4785.6, 2]^(-2) - (0.125 + NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( + 0.25/NonCommutativeMultiply[4785.6, 2] - (0.25 + NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) - ((( + 0.25 NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( + 0. + (3./NonCommutativeMultiply[ + 4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) + (( + Rational[1, 6] ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^2) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( + 0. + (1.25 NonCommutativeMultiply[4785.6, 2]^(-2)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.75 (NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + 0. + (3./NonCommutativeMultiply[ + 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))))))) + + Complex[-9.54600321077642, + 134.6122000922079] (((5.154186256362287*^-23 + NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( + 532.8923076923078 + NonCommutativeMultiply[50.439430695308474`, 2] - + 0.09230769230769227 + NonCommutativeMultiply[ + 4785.6, 2] + (1. + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2]) ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + ( + 2.2198765719867552`*^-30 ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-2)) ((-2464.599878197321) + NonCommutativeMultiply[50.439430695308474`, 2] + + 0.13520097442143736` + NonCommutativeMultiply[4785.6, 2] + (1. + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2]) ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + + 1.1627272143115003`*^-15 ((-0.59) (((-0.25)/ + NonCommutativeMultiply[ + 4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) - + 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) + (( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) ((0.25/NonCommutativeMultiply[ + 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) - + 0.355 ((((-1)/NonCommutativeMultiply[4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-3) + ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) ( + 0.25/NonCommutativeMultiply[4785.6, 2] - (0.25 + NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + Rational[1, 4] ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^2) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( + 0. + (3./NonCommutativeMultiply[ + 4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))))) + + 3.409878611199379*^-8 ((-0.59) (((-0.0625) + NonCommutativeMultiply[4785.6, 2]^(-2)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) - + 0.0625 (NonCommutativeMultiply[4785.6, 2]^ + Rational[-5, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) + (( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) ((0.125 + NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-3) + (0.125 + NonCommutativeMultiply[4785.6, 2]^(-2)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.0625 (NonCommutativeMultiply[4785.6, 2]^ + Rational[-5, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) - (( + 0.5 NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) ((0.25/NonCommutativeMultiply[ + 4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) - + 0.355 ((NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) ( + 0.125 NonCommutativeMultiply[4785.6, 2]^(-2) - (0.125 + NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( + 0.25/NonCommutativeMultiply[4785.6, 2] - (0.25 + NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) - ((( + 0.25 NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( + 0. + (3./NonCommutativeMultiply[ + 4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) + (( + Rational[1, 6] ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^2) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( + 0. + (1.25 NonCommutativeMultiply[4785.6, 2]^(-2)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.75 (NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + 0. + (3./NonCommutativeMultiply[ + 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))))) + + 1. ((-0.59) (((-0.03125) + NonCommutativeMultiply[4785.6, 2]^(-3)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) - + 0.0390625 ( + NonCommutativeMultiply[4785.6, 2]^Rational[-7, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) + (( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) ((0.0625 + NonCommutativeMultiply[4785.6, 2]^(-2)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-4) + (0.09375 + NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-3) + (0.078125 + NonCommutativeMultiply[4785.6, 2]^(-3)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.0390625 (NonCommutativeMultiply[4785.6, 2]^ + Rational[-7, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) - (( + 0.5 NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) ((0.125 + NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-3) + (0.125 + NonCommutativeMultiply[4785.6, 2]^(-2)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.0625 (NonCommutativeMultiply[4785.6, 2]^ + Rational[-5, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) - (( + 0.125 NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) ((0.25/NonCommutativeMultiply[ + 4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) - + 0.355 ((NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) ( + 0.078125 NonCommutativeMultiply[4785.6, 2]^(-3) - ( + 0.078125 NonCommutativeMultiply[4785.6, 2]^ + Rational[-7, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( + 0.125 NonCommutativeMultiply[4785.6, 2]^(-2) - (0.125 + NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + Rational[1, 4] ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( + 0.25/NonCommutativeMultiply[4785.6, 2] - (0.25 + NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) ( + 0. + (3./NonCommutativeMultiply[ + 4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) - ((( + 0.16666666666666666` + NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( + 0. + (1.25 + NonCommutativeMultiply[4785.6, 2]^(-2)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.75 (NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + 0. + (3./NonCommutativeMultiply[ + 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) + (( + Rational[1, 8] ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^2) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( + 0. + (0.875 + NonCommutativeMultiply[4785.6, 2]^(-3)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.625 (NonCommutativeMultiply[4785.6, 2]^Rational[-7, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + 0.375 NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + 0. + (3./NonCommutativeMultiply[ + 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) + (( + 0.8333333333333333 + NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + 0. + (1.25 NonCommutativeMultiply[4785.6, 2]^(-2)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.75 (NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + 0. + (3./NonCommutativeMultiply[ + 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))))))) - + 0.45319591200415726` (((6.001688222841983*^-30 + NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( + 3884.7894578765577` + NonCommutativeMultiply[50.439430695308474`, 2] - + 0.672923862441808 + NonCommutativeMultiply[ + 4785.6, 2] + (1. + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2]) ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + ( + 2.1359355263550803`*^-37 ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( + 835.6313669064749 + NonCommutativeMultiply[50.439430695308474`, 2] - + 0.6028776978417266 + NonCommutativeMultiply[ + 4785.6, 2] + (1. + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2]) ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + + 3.964758658740221*^-23 ((-0.726) (((-0.25)/ + NonCommutativeMultiply[ + 4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) - + 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) + (( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) ((0.25/NonCommutativeMultiply[ + 4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) - + 1.8566666666666667` ((((-1)/NonCommutativeMultiply[ + 4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-3) + ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) ( + 0.25/NonCommutativeMultiply[4785.6, 2] - (0.25 + NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + Rational[1, 4] ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^2) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( + 0. + (3./NonCommutativeMultiply[ + 4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))))) + + 1.1627272143115003`*^-15 ((-0.726) (((-0.0625) + NonCommutativeMultiply[4785.6, 2]^(-2)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) - + 0.0625 (NonCommutativeMultiply[4785.6, 2]^ + Rational[-5, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) + (( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) ((0.125 + NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-3) + (0.125 + NonCommutativeMultiply[4785.6, 2]^(-2)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.0625 (NonCommutativeMultiply[4785.6, 2]^ + Rational[-5, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) - (( + 0.5 NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) ((0.25/NonCommutativeMultiply[ + 4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) - + 1.8566666666666667` (( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) ( + 0.125 NonCommutativeMultiply[4785.6, 2]^(-2) - (0.125 + NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( + 0.25/NonCommutativeMultiply[4785.6, 2] - (0.25 + NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) - ((( + 0.25 NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( + 0. + (3./NonCommutativeMultiply[ + 4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) + (( + Rational[1, 6] ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^2) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( + 0. + (1.25 + NonCommutativeMultiply[4785.6, 2]^(-2)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.75 (NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + 0. + (3./NonCommutativeMultiply[ + 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))))) + + 3.409878611199379*^-8 ((-0.726) (((-0.03125) + NonCommutativeMultiply[4785.6, 2]^(-3)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) - + 0.0390625 ( + NonCommutativeMultiply[4785.6, 2]^Rational[-7, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) + (( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) ((0.0625 + NonCommutativeMultiply[4785.6, 2]^(-2)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-4) + (0.09375 + NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-3) + (0.078125 + NonCommutativeMultiply[4785.6, 2]^(-3)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.0390625 (NonCommutativeMultiply[4785.6, 2]^ + Rational[-7, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) - (( + 0.5 NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) ((0.125 + NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-3) + (0.125 + NonCommutativeMultiply[4785.6, 2]^(-2)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.0625 (NonCommutativeMultiply[4785.6, 2]^ + Rational[-5, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) - (( + 0.125 NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) ((0.25/NonCommutativeMultiply[ + 4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) - + 1.8566666666666667` (( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) ( + 0.078125 NonCommutativeMultiply[4785.6, 2]^(-3) - ( + 0.078125 NonCommutativeMultiply[4785.6, 2]^ + Rational[-7, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( + 0.125 NonCommutativeMultiply[4785.6, 2]^(-2) - (0.125 + NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + Rational[1, 4] ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( + 0.25/NonCommutativeMultiply[4785.6, 2] - (0.25 + NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) ( + 0. + (3./NonCommutativeMultiply[ + 4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) - ((( + 0.16666666666666666` + NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( + 0. + (1.25 + NonCommutativeMultiply[4785.6, 2]^(-2)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.75 (NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + 0. + (3./NonCommutativeMultiply[ + 4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) + (( + Rational[1, 8] ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^2) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( + 0. + (0.875 + NonCommutativeMultiply[4785.6, 2]^(-3)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.625 (NonCommutativeMultiply[4785.6, 2]^Rational[-7, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + 0.375 NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + 0. + (3./NonCommutativeMultiply[ + 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) + (( + 0.8333333333333333 + NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + 0. + (1.25 NonCommutativeMultiply[4785.6, 2]^(-2)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.75 (NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + 0. + (3./NonCommutativeMultiply[ + 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))))))) + + 1. ((-0.726) (((-0.01953125) + NonCommutativeMultiply[4785.6, 2]^(-4)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) - + 0.02734375 ( + NonCommutativeMultiply[4785.6, 2]^Rational[-9, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) + (( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) ((0.03125 + NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-5) + (0.0625 + NonCommutativeMultiply[4785.6, 2]^(-3)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-4) + (0.0703125 + NonCommutativeMultiply[4785.6, 2]^Rational[-7, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-3) + (0.0546875 + NonCommutativeMultiply[4785.6, 2]^(-4)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.02734375 ( + NonCommutativeMultiply[4785.6, 2]^Rational[-9, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) - (( + 0.5 NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) ((0.0625 + NonCommutativeMultiply[4785.6, 2]^(-2)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-4) + (0.09375 + NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-3) + (0.078125 + NonCommutativeMultiply[4785.6, 2]^(-3)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.0390625 ( + NonCommutativeMultiply[4785.6, 2]^Rational[-7, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) - (( + 0.125 NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) ((0.125 + NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-3) + (0.125 + NonCommutativeMultiply[4785.6, 2]^(-2)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.0625 (NonCommutativeMultiply[4785.6, 2]^ + Rational[-5, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) - (( + 0.0625 NonCommutativeMultiply[4785.6, 2]^ + Rational[-5, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) ((0.25/NonCommutativeMultiply[ + 4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) - + 1.8566666666666667` (( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) ( + 0.0546875 NonCommutativeMultiply[4785.6, 2]^(-4) - ( + 0.0546875 + NonCommutativeMultiply[4785.6, 2]^Rational[-9, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( + 0.078125 NonCommutativeMultiply[4785.6, 2]^(-3) - ( + 0.078125 NonCommutativeMultiply[4785.6, 2]^ + Rational[-7, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + Rational[1, 4] ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( + 0.125 NonCommutativeMultiply[4785.6, 2]^(-2) - (0.125 + NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) ( + 0. + (3./NonCommutativeMultiply[ + 4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) + (( + Rational[1, 6] ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( + 0.25/NonCommutativeMultiply[4785.6, 2] - (0.25 + NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) ( + 0. + (1.25 + NonCommutativeMultiply[4785.6, 2]^(-2)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.75 (NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + 0. + (3./NonCommutativeMultiply[ + 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])))) - (((0.125 + NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( + 0. + (0.875 + NonCommutativeMultiply[4785.6, 2]^(-3)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.625 (NonCommutativeMultiply[4785.6, 2]^Rational[-7, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + 0.375 NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + 0. + (3./NonCommutativeMultiply[ + 4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) + (( + 0.8333333333333333 + NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + 0. + (1.25 NonCommutativeMultiply[4785.6, 2]^(-2)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.75 (NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + 0. + (3./NonCommutativeMultiply[ + 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2]))))) + (( + Rational[1, 10] ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^2) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( + 0. + (0.703125 + NonCommutativeMultiply[4785.6, 2]^(-4)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.546875 (NonCommutativeMultiply[4785.6, 2]^ + Rational[-9, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + 0.25 NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + 0. + (3./NonCommutativeMultiply[ + 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) + (( + 0.29166666666666663` + NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + 0. + (1.25 NonCommutativeMultiply[4785.6, 2]^(-2)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.75 (NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + 0. + (3./NonCommutativeMultiply[ + 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) + (( + 0.75 NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + 0. + (0.875 NonCommutativeMultiply[4785.6, 2]^(-3)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.625 (NonCommutativeMultiply[4785.6, 2]^Rational[-7, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + 0.375 NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + 0. + (3./NonCommutativeMultiply[ + 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) + (( + 0.8333333333333333 + NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + 0. + (1.25 NonCommutativeMultiply[4785.6, 2]^(-2)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.75 (NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + 0. + (3./NonCommutativeMultiply[ + 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2]))))))))) + + 4.211 (((1.757514947370756*^-30 + NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( + 532.8923076923078 + NonCommutativeMultiply[50.439430695308474`, 2] - + 0.09230769230769227 + NonCommutativeMultiply[ + 4785.6, 2] + (1. + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2]) ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + ( + 7.569509642320234*^-38 ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-2)) ((-2464.599878197321) + NonCommutativeMultiply[50.439430695308474`, 2] + + 0.13520097442143736` + NonCommutativeMultiply[4785.6, 2] + (1. + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2]) ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + + 3.964758658740221*^-23 ((-0.59) (((-0.25)/ + NonCommutativeMultiply[ + 4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) - + 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) + (( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) ((0.25/NonCommutativeMultiply[ + 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) - + 0.355 ((((-1)/NonCommutativeMultiply[4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-3) + ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) ( + 0.25/NonCommutativeMultiply[4785.6, 2] - (0.25 + NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + Rational[1, 4] ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^2) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( + 0. + (3./NonCommutativeMultiply[ + 4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))))) + + 1.1627272143115003`*^-15 ((-0.59) (((-0.0625) + NonCommutativeMultiply[4785.6, 2]^(-2)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) - + 0.0625 (NonCommutativeMultiply[4785.6, 2]^ + Rational[-5, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) + (( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) ((0.125 + NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-3) + (0.125 + NonCommutativeMultiply[4785.6, 2]^(-2)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.0625 (NonCommutativeMultiply[4785.6, 2]^ + Rational[-5, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) - (( + 0.5 NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) ((0.25/NonCommutativeMultiply[ + 4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) - + 0.355 ((NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) ( + 0.125 NonCommutativeMultiply[4785.6, 2]^(-2) - (0.125 + NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( + 0.25/NonCommutativeMultiply[4785.6, 2] - (0.25 + NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) - ((( + 0.25 NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( + 0. + (3./NonCommutativeMultiply[ + 4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) + (( + Rational[1, 6] ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^2) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( + 0. + (1.25 NonCommutativeMultiply[4785.6, 2]^(-2)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.75 (NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + 0. + (3./NonCommutativeMultiply[ + 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))))) + + 3.409878611199379*^-8 ((-0.59) (((-0.03125) + NonCommutativeMultiply[4785.6, 2]^(-3)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) - + 0.0390625 ( + NonCommutativeMultiply[4785.6, 2]^Rational[-7, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) + (( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) ((0.0625 + NonCommutativeMultiply[4785.6, 2]^(-2)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-4) + (0.09375 + NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-3) + (0.078125 + NonCommutativeMultiply[4785.6, 2]^(-3)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.0390625 (NonCommutativeMultiply[4785.6, 2]^ + Rational[-7, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) - (( + 0.5 NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) ((0.125 + NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-3) + (0.125 + NonCommutativeMultiply[4785.6, 2]^(-2)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.0625 (NonCommutativeMultiply[4785.6, 2]^ + Rational[-5, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) - (( + 0.125 NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) ((0.25/NonCommutativeMultiply[ + 4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) - + 0.355 ((NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) ( + 0.078125 NonCommutativeMultiply[4785.6, 2]^(-3) - ( + 0.078125 NonCommutativeMultiply[4785.6, 2]^ + Rational[-7, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( + 0.125 NonCommutativeMultiply[4785.6, 2]^(-2) - (0.125 + NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + Rational[1, 4] ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( + 0.25/NonCommutativeMultiply[4785.6, 2] - (0.25 + NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) ( + 0. + (3./NonCommutativeMultiply[ + 4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) - ((( + 0.16666666666666666` + NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( + 0. + (1.25 + NonCommutativeMultiply[4785.6, 2]^(-2)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.75 (NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + 0. + (3./NonCommutativeMultiply[ + 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) + (( + Rational[1, 8] ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^2) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( + 0. + (0.875 + NonCommutativeMultiply[4785.6, 2]^(-3)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.625 (NonCommutativeMultiply[4785.6, 2]^Rational[-7, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + 0.375 NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + 0. + (3./NonCommutativeMultiply[ + 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) + (( + 0.8333333333333333 + NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + 0. + (1.25 NonCommutativeMultiply[4785.6, 2]^(-2)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.75 (NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + 0. + (3./NonCommutativeMultiply[ + 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))))))) + + 1. ((-0.59) (((-0.01953125) + NonCommutativeMultiply[4785.6, 2]^(-4)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) - + 0.02734375 ( + NonCommutativeMultiply[4785.6, 2]^Rational[-9, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) + (( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) ((0.03125 + NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-5) + (0.0625 + NonCommutativeMultiply[4785.6, 2]^(-3)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-4) + (0.0703125 + NonCommutativeMultiply[4785.6, 2]^Rational[-7, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-3) + (0.0546875 + NonCommutativeMultiply[4785.6, 2]^(-4)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.02734375 (NonCommutativeMultiply[4785.6, 2]^ + Rational[-9, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) - (( + 0.5 NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) ((0.0625 + NonCommutativeMultiply[4785.6, 2]^(-2)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-4) + (0.09375 + NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-3) + (0.078125 + NonCommutativeMultiply[4785.6, 2]^(-3)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.0390625 (NonCommutativeMultiply[4785.6, 2]^ + Rational[-7, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) - (( + 0.125 NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) ((0.125 + NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])^(-3) + (0.125 + NonCommutativeMultiply[4785.6, 2]^(-2)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.0625 (NonCommutativeMultiply[4785.6, 2]^ + Rational[-5, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) - (( + 0.0625 NonCommutativeMultiply[4785.6, 2]^ + Rational[-5, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])) ((0.25/NonCommutativeMultiply[ + 4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) - + 0.355 ((NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) ( + 0.0546875 NonCommutativeMultiply[4785.6, 2]^(-4) - ( + 0.0546875 NonCommutativeMultiply[4785.6, 2]^ + Rational[-9, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( + 0.078125 NonCommutativeMultiply[4785.6, 2]^(-3) - ( + 0.078125 NonCommutativeMultiply[4785.6, 2]^ + Rational[-7, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + Rational[1, 4] ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( + 0.125 NonCommutativeMultiply[4785.6, 2]^(-2) - (0.125 + NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) ( + 0. + (3./NonCommutativeMultiply[ + 4785.6, 2]) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) + (( + Rational[1, 6] ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( + 0.25/NonCommutativeMultiply[4785.6, 2] - (0.25 + NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) ( + 0. + (1.25 NonCommutativeMultiply[4785.6, 2]^(-2)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.75 (NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + 0. + (3./NonCommutativeMultiply[ + 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])))) - (((0.125 + NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( + 0. + (0.875 + NonCommutativeMultiply[4785.6, 2]^(-3)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.625 (NonCommutativeMultiply[4785.6, 2]^Rational[-7, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + 0.375 NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + 0. + (3./NonCommutativeMultiply[ + 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) + (( + 0.8333333333333333 + NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + 0. + (1.25 NonCommutativeMultiply[4785.6, 2]^(-2)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.75 (NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + 0. + (3./NonCommutativeMultiply[ + 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2]))))) + (( + Rational[1, 10] ( + NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - + 1. ((-5773.) NonCommutativeMultiply[ + 50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^2) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( + 0. + (0.703125 + NonCommutativeMultiply[4785.6, 2]^(-4)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.546875 (NonCommutativeMultiply[4785.6, 2]^ + Rational[-9, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + 0.25 NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + 0. + (3./NonCommutativeMultiply[ + 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) + (( + 0.29166666666666663` + NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + 0. + (1.25 NonCommutativeMultiply[4785.6, 2]^(-2)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.75 (NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + 0. + (3./NonCommutativeMultiply[ + 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) + (( + 0.75 NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + 0. + (0.875 NonCommutativeMultiply[4785.6, 2]^(-3)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.625 (NonCommutativeMultiply[4785.6, 2]^Rational[-7, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + 0.375 NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + 0. + (3./NonCommutativeMultiply[ + 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) + (( + 0.8333333333333333 + NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + 0. + (1.25 NonCommutativeMultiply[4785.6, 2]^(-2)) ( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 0.75 (NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( + 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( + 0. + (3./NonCommutativeMultiply[ + 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + + 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( + NonCommutativeMultiply[4785.6, 2]^ + Rational[1, 2] + ((-5773.) + NonCommutativeMultiply[50.439430695308474`, 2] + + NonCommutativeMultiply[4785.6, 2])^ + Rational[1, 2])))))))))}, 0, 11, 1], + Editable->False], "]"}], "2"]}], "-", + TemplateBox[{"1"}, + "OutputSizeLimit`Skeleton"], "+", + RowBox[{ + SuperscriptBox[ + RowBox[{"Abs", "[", + FractionBox[ + RowBox[{"0.292`", "\[VeryThinSpace]", "+", + FractionBox[ + TemplateBox[{"1"}, + "OutputSizeLimit`Skeleton"], + SuperscriptBox[ + TemplateBox[{"1"}, + "OutputSizeLimit`Skeleton"], "2"]], "+", + FractionBox[ + RowBox[{"0.281`", " ", + RowBox[{"(", + TemplateBox[{"1"}, + "OutputSizeLimit`Skeleton"], ")"}]}], + RowBox[{ + SqrtBox[ + RowBox[{ + TemplateBox[{"1"}, + "OutputSizeLimit`Skeleton"], "+", + TemplateBox[{"1"}, + "OutputSizeLimit`Skeleton"]}]], "+", + TemplateBox[{"1"}, + "OutputSizeLimit`Skeleton"]}]]}], + RowBox[{"1.`", "\[VeryThinSpace]", "-", + RowBox[{"3.0660249149477024`*^-8", " ", + SuperscriptBox["x", "2"]}]}]], "]"}], "2"], " ", + RowBox[{"(", + InterpretationBox[ + RowBox[{ + FractionBox["8.419306000241433`*^-7", + SuperscriptBox["x", "2"]], "+", + InterpretationBox[ + SuperscriptBox[ + RowBox[{"O", "[", "x", "]"}], "11"], + SeriesData[$CellContext`x, 0, {}, -2, 11, 1], + Editable->False]}], + + SeriesData[$CellContext`x, 0, {8.419306000241433*^-7}, -2, + 11, 1], + Editable->False], ")"}]}]}], + RowBox[{ + RowBox[{"Im", "[", + SuperscriptBox["x", "2"], "]"}], "<", "0"}]}, + { + TemplateBox[{"1"}, + "OutputSizeLimit`Skeleton"], + TagBox["True", + "PiecewiseDefault", + AutoDelete->True]} + }, + AllowedDimensions->{2, Automatic}, + Editable->True, + + GridBoxAlignment->{ + "Columns" -> {{Left}}, "Rows" -> {{Baseline}}}, + GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{1.}}}, + GridBoxSpacings->{"Columns" -> { + Offset[0.27999999999999997`], { + Offset[0.84]}, + Offset[0.27999999999999997`]}, "Rows" -> { + Offset[0.2], { + Offset[0.4]}, + Offset[0.2]}}, + Selectable->True]} + }, + GridBoxAlignment->{"Columns" -> {{Left}}, "Rows" -> {{Baseline}}}, + GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{1.}}}, + GridBoxSpacings->{"Columns" -> { + Offset[0.27999999999999997`], { + Offset[0.35]}, + Offset[0.27999999999999997`]}, "Rows" -> { + Offset[0.2], { + Offset[0.4]}, + Offset[0.2]}}], + "Piecewise", + DeleteWithContents->True, + Editable->False, + SelectWithContents->True, + Selectable->False, + StripWrapperBoxes->True], + Short[#, 5]& ], + BaseStyle->{Deployed -> False}, + StripOnInput->False]}, + {GridBox[{ + { + PaneBox[ + TagBox[ + TooltipBox[ + StyleBox[ + StyleBox[ + DynamicBox[ToBoxes[ + FEPrivate`FrontEndResource[ + "FEStrings", "sizeBriefExplanation"], StandardForm], + ImageSizeCache->{65., {3., 9.}}], + StripOnInput->False, + DynamicUpdating->True, + LineSpacing->{1, 2}, + LineIndent->0, + LinebreakAdjustments->{1., 100, 0, 0, 0}], "OSLText", + StripOnInput->False], + StyleBox[ + DynamicBox[ + ToBoxes[ + FEPrivate`FrontEndResource["FEStrings", "sizeExplanation"], + StandardForm]], DynamicUpdating -> True, LineIndent -> 0, + LinebreakAdjustments -> {1., 100, 0, 0, 0}, + LineSpacing -> {1, 2}, StripOnInput -> False]], + Annotation[#, + Style[ + Dynamic[ + FEPrivate`FrontEndResource["FEStrings", "sizeExplanation"]], + DynamicUpdating -> True, LineIndent -> 0, + LinebreakAdjustments -> {1., 100, 0, 0, 0}, + LineSpacing -> {1, 2}], "Tooltip"]& ], + Alignment->Center, + BaselinePosition->Baseline, + ImageSize->{Automatic, {25, Full}}], + ButtonBox[ + PaneSelectorBox[{False-> + StyleBox[ + StyleBox[ + DynamicBox[ToBoxes[ + FEPrivate`FrontEndResource["FEStrings", "sizeShowLess"], + StandardForm], + ImageSizeCache->{52., {1., 9.}}], + StripOnInput->False, + DynamicUpdating->True, + LineSpacing->{1, 2}, + LineIndent->0, + LinebreakAdjustments->{1., 100, 0, 0, 0}], "OSLControl", + StripOnInput->False], True-> + StyleBox[ + StyleBox[ + DynamicBox[ToBoxes[ + FEPrivate`FrontEndResource["FEStrings", "sizeShowLess"], + StandardForm]], + StripOnInput->False, + DynamicUpdating->True, + LineSpacing->{1, 2}, + LineIndent->0, + LinebreakAdjustments->{1., 100, 0, 0, 0}], "OSLControlActive", + StripOnInput->False]}, Dynamic[ + CurrentValue["MouseOver"]], + Alignment->Center, + FrameMargins->0, + ImageSize->{Automatic, {25, Full}}], + Appearance->None, + BaselinePosition->Baseline, + + ButtonFunction:>OutputSizeLimit`ButtonFunction[ + OutputSizeLimit`Defer, 102, 30452638846179461121, 5/2], + Enabled->True, + Evaluator->Automatic, + Method->"Queued"], + ButtonBox[ + PaneSelectorBox[{False-> + StyleBox[ + StyleBox[ + DynamicBox[ToBoxes[ + FEPrivate`FrontEndResource["FEStrings", "sizeShowMore"], + StandardForm], + ImageSizeCache->{62., {1., 9.}}], + StripOnInput->False, + DynamicUpdating->True, + LineSpacing->{1, 2}, + LineIndent->0, + LinebreakAdjustments->{1., 100, 0, 0, 0}], "OSLControl", + StripOnInput->False], True-> + StyleBox[ + StyleBox[ + DynamicBox[ToBoxes[ + FEPrivate`FrontEndResource["FEStrings", "sizeShowMore"], + StandardForm], + ImageSizeCache->{62., {1., 9.}}], + StripOnInput->False, + DynamicUpdating->True, + LineSpacing->{1, 2}, + LineIndent->0, + LinebreakAdjustments->{1., 100, 0, 0, 0}], "OSLControlActive", + StripOnInput->False]}, Dynamic[ + CurrentValue["MouseOver"]], + Alignment->Center, + FrameMargins->0, + ImageSize->{Automatic, {25, Full}}], + Appearance->None, + BaselinePosition->Baseline, + + ButtonFunction:>OutputSizeLimit`ButtonFunction[ + OutputSizeLimit`Defer, 102, 30452638846179461121, 5 2], + Enabled->True, + Evaluator->Automatic, + Method->"Queued"], + ButtonBox[ + PaneSelectorBox[{False-> + StyleBox[ + StyleBox[ + DynamicBox[ToBoxes[ + FEPrivate`FrontEndResource["FEStrings", "sizeShowAll"], + StandardForm], + ImageSizeCache->{44., {1., 9.}}], + StripOnInput->False, + DynamicUpdating->True, + LineSpacing->{1, 2}, + LineIndent->0, + LinebreakAdjustments->{1., 100, 0, 0, 0}], "OSLControl", + StripOnInput->False], True-> + StyleBox[ + StyleBox[ + DynamicBox[ToBoxes[ + FEPrivate`FrontEndResource["FEStrings", "sizeShowAll"], + StandardForm], + ImageSizeCache->{44., {1., 9.}}], + StripOnInput->False, + DynamicUpdating->True, + LineSpacing->{1, 2}, + LineIndent->0, + LinebreakAdjustments->{1., 100, 0, 0, 0}], "OSLControlActive", + StripOnInput->False]}, Dynamic[ + CurrentValue["MouseOver"]], + Alignment->Center, + FrameMargins->0, + ImageSize->{Automatic, {25, Full}}], + Appearance->None, + BaselinePosition->Baseline, + + ButtonFunction:>OutputSizeLimit`ButtonFunction[ + OutputSizeLimit`Defer, 102, 30452638846179461121, Infinity], + Enabled->True, + Evaluator->Automatic, + Method->"Queued"], + ButtonBox[ + PaneSelectorBox[{False-> + StyleBox[ + StyleBox[ + DynamicBox[ToBoxes[ + FEPrivate`FrontEndResource["FEStrings", "sizeChangeLimit"], + StandardForm], + ImageSizeCache->{78., {1., 9.}}], + StripOnInput->False, + DynamicUpdating->True, + LineSpacing->{1, 2}, + LineIndent->0, + LinebreakAdjustments->{1., 100, 0, 0, 0}], "OSLControl", + StripOnInput->False], True-> + StyleBox[ + StyleBox[ + DynamicBox[ToBoxes[ + FEPrivate`FrontEndResource["FEStrings", "sizeChangeLimit"], + StandardForm]], + StripOnInput->False, + DynamicUpdating->True, + LineSpacing->{1, 2}, + LineIndent->0, + LinebreakAdjustments->{1., 100, 0, 0, 0}], "OSLControlActive", + StripOnInput->False]}, Dynamic[ + CurrentValue["MouseOver"]], + Alignment->Center, + FrameMargins->0, + ImageSize->{Automatic, {25, Full}}], + Appearance->None, + BaselinePosition->Baseline, + ButtonFunction:>FrontEndExecute[{ + FrontEnd`SetOptions[ + FrontEnd`$FrontEnd, + FrontEnd`PreferencesSettings -> {"Page" -> "Advanced"}], + FrontEnd`FrontEndToken["PreferencesDialog"]}], + Evaluator->None, + Method->"Preemptive"]} + }, + AutoDelete->False, + FrameStyle->GrayLevel[0.85], + GridBoxDividers->{"Columns" -> {False, {True}}}, + GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + GridBoxSpacings->{"Columns" -> {{2}}}]} + }, + DefaultBaseStyle->"Column", + GridBoxAlignment->{"Columns" -> {{Left}}, "Rows" -> {{Baseline}}}, + GridBoxDividers->{"Columns" -> {{False}}, "Rows" -> {{False}}}, + GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{1.}}}, + GridBoxSpacings->{"Columns" -> { + Offset[0.27999999999999997`], { + Offset[0.5599999999999999]}, + Offset[0.27999999999999997`]}, "Rows" -> { + Offset[0.2], + Offset[1.2], { + Offset[0.4]}, + Offset[0.2]}}], + BaseStyle->"OutputSizeLimit", + FrameMargins->{{12, 12}, {0, 15}}, + FrameStyle->GrayLevel[0.85], + RoundingRadius->5, + StripOnInput->False], + Deploy, + DefaultBaseStyle->"Deploy"], + If[30452638846179461121 === $SessionID, + Out[102], Message[ + MessageName[Syntax, "noinfoker"]]; Missing["NotAvailable"]; Null]]], \ +"Input", + CellChangeTimes->{{3.768543087777726*^9, + 3.7685430879442806`*^9}},ExpressionUUID->"6554b1a2-4ef3-4028-b6d7-\ +fb29421dd8b6"], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Evaluate", "[", + RowBox[{"Integrate", "[", + RowBox[{ + RowBox[{"dgammaapprox", "[", "x", "]"}], ",", + RowBox[{"{", + RowBox[{"x", ",", "xmin", ",", "y"}], "}"}], ",", + RowBox[{"Assumptions", "\[Rule]", + RowBox[{"{", + RowBox[{ + RowBox[{"y", "\[LessEqual]", "xmax"}], ",", + RowBox[{"y", "\[GreaterEqual]", " ", "xmin"}]}], "}"}]}]}], "]"}], + "]"}]], "Input", + CellChangeTimes->{{3.7683985434030504`*^9, 3.7683986072433367`*^9}, { + 3.7683987122645473`*^9, 3.7683987207159576`*^9}, {3.76839886944032*^9, + 3.768398892933509*^9}, {3.7683990098878174`*^9, 3.7683990336223617`*^9}, { + 3.7684001261407275`*^9, 3.768400130011361*^9}, 3.76840018234347*^9}, + CellLabel->"In[98]:=",ExpressionUUID->"e5a90656-1849-48dd-b31b-5210c25cb5e6"], + +Cell[BoxData[ + RowBox[{"dgammaapprox", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "211.4`"}], "+", "y"}], ")"}]}]], "Output", + CellChangeTimes->{3.768400132142707*^9}, + CellLabel->"Out[98]=",ExpressionUUID->"43ab291e-14f1-44d4-944c-b6e7b367f516"] +}, Open ]], + +Cell[BoxData[""], "Input", + CellChangeTimes->{{3.7683999486093597`*^9, 3.768399995543908*^9}, + 3.768401511411*^9, + 3.7684015501165133`*^9},ExpressionUUID->"6ec1ff3f-fd33-4925-b360-\ +3bd71dbbb9b6"], + +Cell[BoxData[""], "Input", + CellChangeTimes->{{3.768399999754644*^9, + 3.7683999997626295`*^9}},ExpressionUUID->"bab53862-b037-401f-bad7-\ +c3c6b54a0b12"] }, -WindowSize->{760, 697}, -WindowMargins->{{Automatic, 355}, {-7, Automatic}}, +WindowSize->{1536, 781}, +WindowMargins->{{-8, Automatic}, {Automatic, -8}}, FrontEndVersion->"12.0 for Microsoft Windows (64-bit) (April 8, 2019)", StyleDefinitions->"Default.nb" ] @@ -298,9 +8115,53 @@ *) (*NotebookFileOutline Notebook[{ -Cell[558, 20, 4410, 107, 1207, "Input",ExpressionUUID->"037a651f-7204-4dd6-865b-a90153e54791"], -Cell[4971, 129, 4506, 146, 675, InheritFromParent,ExpressionUUID->"8d2adb61-5946-4313-bd6e-7ea714537656"], -Cell[9480, 277, 281, 5, 28, InheritFromParent,ExpressionUUID->"44f1aff7-c138-4f4d-86fa-5ca7df87f6ff"] +Cell[558, 20, 5316, 156, 1093, "Input",ExpressionUUID->"037a651f-7204-4dd6-865b-a90153e54791"], +Cell[5877, 178, 4010, 129, 291, "Input",ExpressionUUID->"8d2adb61-5946-4313-bd6e-7ea714537656"], +Cell[CellGroupData[{ +Cell[9912, 311, 779, 18, 28, "Input",ExpressionUUID->"1bb2a22e-ee7e-457c-9fa5-3ad0259e7bb1"], +Cell[10694, 331, 13904, 252, 261, "Output",ExpressionUUID->"cb6b9de2-9043-4280-88ed-0c7952450d3a"] +}, Open ]], +Cell[24613, 586, 1734, 44, 67, "Input",ExpressionUUID->"6c45ba6a-a2e4-4dfa-bf7a-543610b4d110"], +Cell[26350, 632, 543, 17, 28, "Input",ExpressionUUID->"04e4efe9-ea24-435a-a90c-3bf1b8c0b336"], +Cell[CellGroupData[{ +Cell[26918, 653, 967, 21, 28, "Input",ExpressionUUID->"44f1aff7-c138-4f4d-86fa-5ca7df87f6ff"], +Cell[27888, 676, 16852, 296, 236, "Output",ExpressionUUID->"d27e723d-41c6-4407-b1a7-e41abec2eae8"] +}, Open ]], +Cell[CellGroupData[{ +Cell[44777, 977, 2266, 62, 67, "Input",ExpressionUUID->"a731069b-1b83-412b-b454-26db50b1cc27"], +Cell[47046, 1041, 732, 18, 59, "Output",ExpressionUUID->"861145d9-a838-4010-aacf-b313bfdb4b00"] +}, Open ]], +Cell[47793, 1062, 595, 16, 28, "Input",ExpressionUUID->"6fc8f691-fb14-4e78-ab99-1dc2d62ef10b"], +Cell[48391, 1080, 847, 23, 28, "Input",ExpressionUUID->"cc0a0d90-49af-490d-8c27-e1b8c06612e1"], +Cell[49241, 1105, 1356, 37, 48, "Input",ExpressionUUID->"3223564e-c632-41a1-86b2-1263eda30155"], +Cell[50600, 1144, 1020, 23, 67, "Input",ExpressionUUID->"5a733281-bb2b-4eac-bf46-072d6163fbcd"], +Cell[CellGroupData[{ +Cell[51645, 1171, 216, 4, 28, "Input",ExpressionUUID->"de858e80-3c44-4ea0-a374-ba372a5e43fa"], +Cell[51864, 1177, 570, 9, 32, "Output",ExpressionUUID->"a234b46c-2591-4717-b3ce-58eb977ba7d5"] +}, Open ]], +Cell[52449, 1189, 250, 4, 28, "Input",ExpressionUUID->"d5c88e0e-f64c-4c7b-a72d-9d86409b15d6"], +Cell[CellGroupData[{ +Cell[52724, 1197, 811, 15, 28, "Input",ExpressionUUID->"2c1e3732-16d5-42ed-930d-8f72fb168b51"], +Cell[53538, 1214, 10280, 188, 223, "Output",ExpressionUUID->"8dc41d3e-6f51-416e-b35f-8d0b7a84ebe6"] +}, Open ]], +Cell[CellGroupData[{ +Cell[63855, 1407, 512, 11, 28, "Input",ExpressionUUID->"1f401330-d01a-41d9-92dc-375db5b59cd7"], +Cell[64370, 1420, 235, 4, 32, "Output",ExpressionUUID->"24628233-8038-4700-8387-fc589ee91f56"] +}, Open ]], +Cell[CellGroupData[{ +Cell[64642, 1429, 331, 8, 28, "Input",ExpressionUUID->"e8d9247c-81d3-45ea-b40d-269423746d1f"], +Cell[64976, 1439, 424, 11, 21, "Message",ExpressionUUID->"0f0125de-9962-48b1-8548-ddbcf39d76a4"] +}, Open ]], +Cell[65415, 1453, 417, 9, 28, "Input",ExpressionUUID->"112b93a5-9a00-4ce2-8bd3-4700707f2f5b"], +Cell[65835, 1464, 714, 15, 28, "Input",ExpressionUUID->"28a4a194-a354-42bf-8db1-6082ef9fae81"], +Cell[66552, 1481, 583, 12, 28, "Input",ExpressionUUID->"1c5e8b38-0475-420a-a988-7faf1f33823d"], +Cell[67138, 1495, 391593, 6563, 270, "Input",ExpressionUUID->"6554b1a2-4ef3-4028-b6d7-fb29421dd8b6"], +Cell[CellGroupData[{ +Cell[458756, 8062, 800, 17, 28, "Input",ExpressionUUID->"e5a90656-1849-48dd-b31b-5210c25cb5e6"], +Cell[459559, 8081, 254, 6, 32, "Output",ExpressionUUID->"43ab291e-14f1-44d4-944c-b6e7b367f516"] +}, Open ]], +Cell[459828, 8090, 202, 4, 28, "Input",ExpressionUUID->"6ec1ff3f-fd33-4925-b360-3bd71dbbb9b6"], +Cell[460033, 8096, 154, 3, 28, "Input",ExpressionUUID->"bab53862-b037-401f-bad7-c3c6b54a0b12"] } ] *) diff --git a/pdg_const.py b/pdg_const.py index 910d7b4..f831ad0 100644 --- a/pdg_const.py +++ b/pdg_const.py @@ -36,13 +36,13 @@ "C3" : -0.005, "C4" : -0.078, -# "C7eff" : -0.306, -"C7eff": 0.0, +"C7eff" : -0.306, +# "C7eff": 0.0, -# "C9eff" : 4.211, -# "C10eff" : -4.103, -"C9eff": 0.0, -"C10eff": 0.0, +"C9eff" : 4.211, +"C10eff" : -4.103, +# "C9eff": 0.0, +# "C10eff": 0.0, ###Other constants @@ -67,8 +67,8 @@ #Resonances format(mass, width, phase, scale) # "jpsi": (3096.0, 0.09, -1.5, 2e-2), #---> prescaling -# "jpsi": (3096.0, 0.09, -1.5, 184.39), #---> after scaling -"jpsi": (3096.0, 0.09, -1.5, 0.0), +"jpsi": (3096.0, 0.09, -1.5, 184.39), #---> after scaling +# "jpsi": (3096.0, 0.09, -1.5, 0.0), "jpsi_BR": 6.02e-5, "jpsi_auc": 0.2126825758464027, diff --git a/raremodel-nb.ipynb b/raremodel-nb.ipynb index 5fdb27e..35e06f0 100644 --- a/raremodel-nb.ipynb +++ b/raremodel-nb.ipynb @@ -77,12 +77,14 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 13, "metadata": {}, "outputs": [], "source": [ - "def formfactor( q2, subscript): #returns real value\n", + "def formfactor(q, subscript): #returns real value\n", " #check if subscript is viable\n", + " \n", + " q2 = tf.pow(q,2)\n", "\n", " if subscript != \"0\" and subscript != \"+\" and subscript != \"T\":\n", " raise ValueError('Wrong subscript entered, choose either 0, + or T')\n", @@ -151,7 +153,7 @@ "\n", " p0 = 0.5 * ztf.sqrt(_mass**2 - 4*mmu**2)\n", "\n", - " gamma_j = tf.divide(p, q2) * _mass * width / p0\n", + " gamma_j = tf.divide(p, p0) * _mass * width / q\n", "\n", " #Calculate the resonance\n", "\n", @@ -205,7 +207,7 @@ "\n", " beta = ztf.sqrt(tf.abs(1. - 4. * mmu**2. / q2))\n", "\n", - " kabs = ztf.sqrt(mB**2. +tf.pow(q2, 2)/mB**2. + mK**4./mB**2. - 2. * (mB**2. * mK**2. + mK**2. * q2 + mB**2. * q2) / mB**2.)\n", + " kabs = tf.abs(ztf.sqrt(mB**2. + tf.pow(q2, 2)/mB**2. + mK**4./mB**2. - 2. * (mB**2. * mK**2. + mK**2. * q2 + mB**2. * q2) / mB**2.))\n", "\n", " #prefactor in front of whole bracket\n", "\n", @@ -213,15 +215,15 @@ "\n", " #left term in bracket\n", "\n", - " bracket_left = 2./3. * kabs**2. * beta**2. *tf.abs(tf.complex(C10eff, ztf.constant(0.0))*formfactor(q2, \"+\"))**2.\n", + " bracket_left = 2./3. * kabs**2. * beta**2. * tf.abs(tf.complex(C10eff, ztf.constant(0.0))*formfactor(q, \"+\"))**2.\n", "\n", " #middle term in bracket\n", "\n", - " _top = 4. * mmu**2. * (mB**2. - mK**2.) * (mB**2. - mK**2.)\n", + " _top = 4. * mmu**2. * (mB**2. - mK**2.)**2\n", "\n", " _under = q2 * mB**2.\n", "\n", - " bracket_middle = _top/_under *tf.pow(tf.abs(tf.complex(C10eff, ztf.constant(0.0)) * formfactor(q2, \"0\")), 2)\n", + " bracket_middle = _top/_under *tf.pow(tf.abs(tf.complex(C10eff, ztf.constant(0.0)) * formfactor(q, \"0\")), 2)\n", "\n", " #Note sqrt(q2) comes from derivation as we use q2 and plot q\n", "\n", @@ -477,7 +479,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 17, "metadata": {}, "outputs": [], "source": [ @@ -512,17 +514,20 @@ "probs = total_f.pdf(test_q)\n", "\n", "calcs_test = zfit.run(probs)\n", - "res_y = zfit.run(jpsi_res(test_q))" + "res_y = zfit.run(jpsi_res(test_q))\n", + "f0_y = zfit.run(formfactor(test_q,\"0\"))\n", + "fplus_y = zfit.run(formfactor(test_q,\"+\"))\n", + "fT_y = zfit.run(formfactor(test_q,\"T\"))" ] }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 18, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZkAAAD8CAYAAACl69mTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xl4VdW5+PHvS+YQSCAJJJAAAQIYBBHCJNaLVQuOtBYrjsggXivXtvZXh3tvbeutvdp6tdWqiKKiBYGitqkTdawTUxgljGEOUyCEhBAynOT9/XE2EGJCDpCwz/B+nieP+6yz9trv2ZLzZu219tqiqhhjjDEtoZXbARhjjAlelmSMMca0GEsyxhhjWowlGWOMMS3GkowxxpgWY0nGGGNMi/EpyYjIaBHZICL5IvJgA+9Hichc5/3FItKtznsPOeUbRGTUabT5jIiU+XIMY4wx/qnJJCMiYcCzwJVAFnCTiGTVqzYJKFbVnsBTwOPOvlnAOKAvMBp4TkTCmmpTRLKBBF+OYYwxxn/50pMZAuSr6hZVrQLmAGPq1RkDzHS25wOXiYg45XNUtVJVtwL5TnuNtukkoD8A9/t4DGOMMX4q3Ic6nYGddV4XAEMbq6OqHhEpARKd8kX19u3sbDfW5lQgR1X31MshjR3jQN1KIjIFmALQunXrQX369PHhIxpjjtl/uJK9pRUkxUWRGh/tdjgn8dQq6/aUAtCvc7zL0QSvZcuWHVDV5OZoy5ck01Bvof5aNI3Vaay8oR6Uikgn4AZg5BnGgapOB6YDZGdna25ubgO7GWMaM+1fm3ns/fVMuaQ7/3nVeW6Hc5L9hysZ/OhHAOQ+drXL0QQvEdneXG35crmsAEiv8zoN2N1YHREJB+KBg6fYt7HyC4GeQL6IbANiRSS/iWMYY5qRP1+D1m//XWn8nC9JZimQKSIZIhKJdyA/p16dHGC8sz0W+ES9K2/mAOOcmWEZQCawpLE2VfVdVU1R1W6q2g0odwb6T3UMY0yosN/4gNPk5TJn/GMqsAAIA15W1TwReQTIVdUcYAbwutPrOIg3aeDUmwesBTzAPapaA9BQm02E0uAxjDGhw3JM4PFlTAZVfQ94r17Zw3W2K/COpTS076PAo7602UCdOF+OcTqqq6spKCigoqLibJtyXXR0NGlpaURERLgdiglC/nihwA9DMk3wKckEk4KCAtq0aUO3bt0I5BnQqkpRUREFBQVkZGS4HY4x54SNyQSekFtWpqKigsTExIBOMAAiQmJiYlD0yIzxlfVkAk/IJRkg4BPMMcHyOYx/8ed/VpZjAk9IJhljTGDyx3Eic2qWZPzUZ599xjXXXANAZWUll19+OQMGDGDu3LkuR2ZChT9+n/tjTObUQm7gPxCtWLGC6upqVq5c6XYoJgSIH9+OaUkm8FhPxgXbtm2jT58+jB8/nv79+zN27FjKy8v54IMP6NOnDxdffDFvvfUWAIWFhdx6662sXLmSAQMGsHnzZpejN6HCH7/PPbW1bodgTlNI92R+84881u4ubdY2szq15VfX9m2y3oYNG5gxYwYjRoxg4sSJPPnkk7zwwgt88skn9OzZkxtvvBGADh068NJLL/HEE0/wzjvvNGusxgSamlp/TH3mVEI6ybgpPT2dESNGAHDrrbfy9NNPk5GRQWZm5vGy6dOnuxmiMX7H0wxJ5nBFNSt2HGLjvsNs3n+EkqNVlFXWEBXeirbREXRPbs15qW0YmpFI6yj7ijxbIX0GfelxtJT6049LSkpsSrLxC8f+Gfrj+MeZ9mQKSyt4e8UuPl5XyPIdxceTVfvWkbSLjSAuKpxKTy2Hyqt5c3kBAJFhrfhOZhK3De/KJZnJtGplv59nIqSTjJt27NjBwoULGT58OG+88QaXX345L7zwAps3b6ZHjx688cYbbodoQtSx5OKPf/OcTk9GVfkqv4gZX27hXxv3U6twfue2TLmkOxf1SOK81DYkxkV9a7/DFdWsLijhk/WF5KzazR2vLCUrtS2/vCaL4T0Sm/PjhARLMi4577zzmDlzJnfddReZmZn86U9/YtCgQVx99dUkJSVx8cUXs2bNGrfDNCHMD3MMNT4M/KsqC/L28dxn+awuKCG5TRR3j+zBDwem0T05rsn920RHMKJnEiN6JvHA6D68s3o3//fPjdz04iJ+lJ3Gr6/rS2ykfXX6ys6US1q1asW0adNOKhs9ejTr16//Vt2RI0cycuTIcxSZMf6r0nPqJLNy5yF++85acrcXk5HUmseu78cPBnYmKjzsjI4XGd6K6wemcVW/VJ7+eBPP/2szuduLeXn8YLoltT6jNkONJRljzEmOLULpj5fLyio8ANQfHik+UsX/vLuWt5bvIikuiseu78cN2emENdM4SnREGPeP7sN3MpO5Z/Zyrn/+a2aMz+bCLu2apf1gZvfJuKBbt252Kcz4rRNjMv6XZcoqvUmmdZ3LVe99s4crnvoXOSt3c/fIHnz2i5GMG9Kl2RJMXcN7JPLm3RcRFxXObTOW8E1BSbMfI9iEZJIJlvWPguVzGOOrA2WVAERFhFFe5eG+uSv58azlpMRHkzP1Yh4Y3Ye4Fp52nJHUmrl3DSM+JoLbX15MfuHhFj1eoAu5JBMdHU1RUVHAf0Efe55MdHS026GYIOPPvxkb95UB3mTz/We/4u2Vu/jJZZn87ccjyOrU9pzFkRofw+w7hxLWqhWTZ+ZScrT6nB070ITcmExaWhoFBQXs37/f7VDO2rEnYxrTnPz1769D5VV8tG7f8df7D1fy2sQhfCcz2ZV4uia25vlbB3LT9EX8bO5KXro92+6laYBPSUZERgN/AsKAl1T1sXrvRwGvAYOAIuBGVd3mvPcQMAmoAe5V1QWnalNEZgDZeGdQbgTuUNUyEbkD+AOwyznsn1X1pdP9wBEREfYkSWNO4fjAv8tx1HXwSBUTXl3K4QoPsyYPZfHWg9w4OJ3OCTGuxjW4W3sevjaLh/+ex6tfb2PixfbdUl+Tl8tEJAx4FrgSyAJuEpGsetUmAcWq2hN4Cnjc2TcLGAf0BUYDz4lIWBNt/kxVL1DV/sAOYGqd48xV1QHOz2knGGNM0/ytJ7PzYDljn/+a9XtKef6WgYzomcR9V/RyPcEcc9uwrlzWpwOPf7CezfvL3A7H7/gyJjMEyFfVLapaBcwBxtSrMwaY6WzPBy4T79SUMcAcVa1U1a1AvtNeo22qaimAs38M/n2J2BjTgtbuLuX657/mQFklsyYP5Xt9U9wO6VtEhP+9vh8xkWH8fN4qam0Rz5P4kmQ6AzvrvC5wyhqso6oeoARIPMW+p2xTRF4B9gJ9gGfq1PuhiKwWkfkiku5D7MaY03R8UozL18sWbi7ixhcWEt5KmH/3RWR3a+9uQKfQoW00D1+Txcqdh5i/rMDtcPyKL0mmoX9q9VN1Y3VOt9y7oToB6ASsA250iv8BdHMuo33EiZ7TyYGITBGRXBHJDYbBfWPOtdrjOca9LPPeN3sY//ISOsZH8+bdF9GrYxvXYvHVDy7szKCu7fj9gvWUVthss2N8STIFQN1eQxqwu7E6IhIOxAMHT7Fvk22qag0wF/ih87pIVSudt1/EO8ngW1R1uqpmq2p2crI7s06MCWRuj8m8vnAb98xeTr+0eOb/+3A6+cnYS1NEhF9f25eiI1X8+ZN8t8PxG74kmaVApohkiEgk3oH8nHp1coDxzvZY4BP19rlzgHEiEiUiGUAmsKSxNsWrJxwfk7kWWO+8Tq1zvOvw9nKMMc3MrWVlVJUn/7mBX/49j8v6dOAvk4aSEBt5boM4S/3S4rn+wjRmfr2NwtIKt8PxC00mGWeMZSqwAO8X+zxVzRORR0TkOqfaDCBRRPKB+4AHnX3zgHnAWuAD4B5VrWmsTbyX0WaKyDfAN0Aq8IhzjHtFJE9EVgH3Anec9ac3xnyLGz2ZmlrlP99ew9Of5POj7DSm3TqImMgzW9TSbT+5LBNPrfLcZ/aodPDxPhlVfQ94r17Zw3W2K4AbGtn3UeBRH9usBUY00s5DwEO+xGuMOXPHcsy5SjYV1TX8ZM4KFuTt455Le/D/vtfbL9dN81WXxFhuGJTG7MU7uOvfupMaHxiX+1pKyC0rY4xpwjnsypQcreb2l5ewIG8fv7o2i1+M6hPQCeaYey7tSY0qM77Y6nYorrMkY4w5yfGeTAvfolZYWsGNLyxkxY5i/jRuABNGBM/d8untY7m6Xypzlu7kcIjPNLMkY4w5Se2xnkwL5pidB8sZO20hOw6WM2P8YMYMqH/rXeCb/J0Myio9zF26s+nKQcySjDHmJC19tWzrgSPc+MJCDpVXMWvyUC7pFZy3GvRPS2BIt/a88tU2PDVNPzY6WFmSMcacROv9tzlt3HeYH72wkApPLW9MGRb0T5aceHE3dh06ymcbQvfGcEsyxpiTHL9a1sxdmjW7Shg3fREAc6cMo2+n+GZt3x9ddl5HkuKimJsbupfMLMkYY07SEgP+K3YUc/OLi4gOb8W8u4aTGQDLxDSHiLBWjB2UxifrC0P25kxLMsaYkx3vyTRPc4u3FHHrS4tJiI1k3r8PJyOpdfM0HCBuHJxOTa0yf3loLpxpScYYc5Jjs8uaI8d8uekA419ZQkp8NPPuGk5au9hmaDWwZCS1ZmhGe/6aWxDwj30/E5ZkjDEn8TjLMJ/t9+GXmw4waeZSuiW2Zu5dw0mJj26G6ALTDwemsfXAEdbsKnU7lHPOkowx5iQ1zfDQra/yvQkmI6k1s+8cRlJcVDNEFrhG9U0hIkz4x+r6C9gHP0syxpiTHO/JnOEFs6/rJJhZk4fSvnVgraTcEuJjI7gkM5l3Vu0OuSdnWpIxxpykpubML5d9nX+AiTOX0rW9N8EkhngPpq5rL+jE7pIKlu8odjuUc8qSjDHmJDVnOBizcHMRE2cupUv7WGbdaQmmvsuzOhIV3oqcVaF1ycySjDHmJGcyJrNoSxETX11KertYG4NpRFxUOCN7J/PPvH0hNcvMkowx5iTHxmRqffwiXLSliAmvLCWtXYwlmCZcfl5H9pZWkLc7dGaZWZIxxpykpta7mKPHhx7NYifBdHYSTHIbSzCncmmfDojAR+v2uR3KOWNJxhhzEo8z8F/tOfXKwct3FDPh1aV0Sohm9p1DLcH4ICkuioFd2lmSMcaErqqapnsyebtLuOPlJSS3ieKNO4fRoU3o3mh5ui4/ryNrdpWyp+So26GcEz4lGREZLSIbRCRfRB5s4P0oEZnrvL9YRLrVee8hp3yDiIxqqk0RmSEiq0RktYjMF5G4po5hjGk+R6tqgBPJpr78wsPcPmMJcVHhzJo8lA5tLcGcjsvP6wDAx+sKXY7k3GgyyYhIGPAscCWQBdwkIln1qk0CilW1J/AU8LizbxYwDugLjAaeE5GwJtr8mapeoKr9gR3A1FMdwxjTvI5We5NMQ5fLdhSVc8tLixERZt05LCTXIjtbPTvEkdYuhs83hsYzZnzpyQwB8lV1i6pWAXOAMfXqjAFmOtvzgctERJzyOapaqapbgXynvUbbVNVSAGf/GE6s09fYMYwxzehYT6a6Xk9m96Gj3PzSIio9tcyaPDTkVlNuLiLCdzKTWLilKCSemOlLkukM1H3iToFT1mAdVfUAJUDiKfY9ZZsi8gqwF+gDPNPEMU4iIlNEJFdEcvfvD42/FIxpTuXHk8yJMZn9hyu59aXFlJRX8/rEofROCY3nwbSUET2TOFzhYfWuErdDaXG+JJmGegv1RwQbq3O65d4N1QlAJ2AdcONpxIGqTlfVbFXNTk4OzmeHG9NSVJWiI5XAiTGZQ+VV3DZjMXtKKnh5wmD6pQX/Ey1b2ogeSYh4V6oOdr4kmQIgvc7rNKD+ugjH64hIOBAPHDzFvk22qao1wFzgh00cwxjTTMoqPVRUe5NLeZWHwxXVjH95CVv2H+HF27MZ3K29yxEGh3atIzm/U7wlGcdSIFNEMkQkEu9Afk69OjnAeGd7LPCJetdNyAHGOTPDMoBMYEljbYpXTzg+JnMtsL6JYxhjmsmOg+WAdwmULfuPMOnVXPJ2l/LcLQO5ODPJ5eiCy4ieSSzfUcyRSo/bobSoJpOMM/4xFViA9/LVPFXNE5FHROQ6p9oMIFFE8oH7gAedffOAecBa4APgHlWtaaxNvJfEZorIN8A3QCrwyKmOYYxpPmucMYKr+6VSXlXDkm0H+eO4AVye1dHlyILPdzKT8NQqi7cWuR1Kiwr3pZKqvge8V6/s4TrbFcANjez7KPCoj23WAiMaaafRYxhjmseCvH2kxkfz0FV9iIkMY2TvZEb27uB2WEFpUNd2RIQJi7ce5Lt9gjeJ+5RkjDHBb82uEj7dUMg9I3uSEBvJr6/r63ZIQS06Ioz+aQks3RrcQ8u2rIwxhorqGh54czUJMRHceUl3t8MJGYO7teebXSVUODfABiNLMsaEOFXlN/9YS97uUp644QLiYyLcDilkDO7WjuoaZcWOQ26H0mIsyRgT4l74fAtvLNnB3SN7cNl5wTs24I+yu7ZHBJZuC95LZpZkjAlh83J38tj767n2gk784nu93Q4n5MTHRtC7YxtLMsaY4PPh2n089NY3fCczif+74QJatbKlAN0wuFt7lm8vDtp1zCzJGBOClmw9yNTZyzm/U1um3TqIyHD7KnDL4Iz2HKmqYd2ew26H0iLsX5YxIWblzkNMfHUpnRNiePmOwbSOsjsZ3HRhegIAK3cWuxxJy7AkY0wIWbOrhNtnLKZd6whm3TmUxDh7ZLLb0trFkBQXycqdwbkisyUZY0LE+r2l3DpjMW2iI5g9eRip8TFuh2TwPl/mgrQEVhUE5zRmSzLGhID8wsPc8uJiosJbMfvOoaS3tyda+pML0hPYvL+M0opqt0NpdpZkjAlyWw8c4eYXvY9Mnn3nMLom2hMt/c0F6QmowjcFwXfJzJKMMUFsR1E5N7+4CE+tMvvOofRIjnM7JNOAC5wHwa3cGXyXzCzJGBOkCorLuenFRRytruEvk4bSq6M9MtlfJcRGkpHUmlWWZIwxgWBvSQU3v7iY0opq/jJpKFmd2rodkmnCBWnxQTn4b0nGmCBTeLiCm19cxMEjVbw2cQjnd453OyTjgwvSE9hXWsm+0gq3Q2lWlmSMCSL7D1dyy4uL2VtawSsTBnNhl3Zuh2R81LeT94+BtbtLXY6keVmSMSZIFB6u4KYXF1FQfJQZ4wczuFt7t0Myp+G8VO+YWd7u4Jph5lOSEZHRIrJBRPJF5MEG3o8SkbnO+4tFpFud9x5yyjeIyKim2hSRWU75GhF5WUQinPKRIlIiIiudn4cxxgBQWFrBTdMXsav4KK9MGMzwHoluh2ROU5voCLomxrJ2T4j1ZEQkDHgWuBLIAm4Skax61SYBxaraE3gKeNzZNwsYB/QFRgPPiUhYE23OAvoA/YAYYHKd43yhqgOcn0fO5AMbE2wKSysY9+Ii9pRU8OqEwQzrbgkmUGWltg3Jy2VDgHxV3aKqVcAcYEy9OmOAmc72fOAyERGnfI6qVqrqViDfaa/RNlX1PXUAS4C0s/uIxgSvfaUVjJu+iL0lFbw6YQhDLcEEtKzUtmwrKqes0uN2KM3GlyTTGdhZ53WBU9ZgHVX1ACVA4in2bbJN5zLZbcAHdYqHi8gqEXlfRPo2FKyITBGRXBHJ3b9/vw8fz5jAtM+5RLavtIKZE4cwJMPGYALdsanm64LokpkvSaahJxmpj3VOt7yu54DPVfUL5/VyoKuqXgA8A/ytoWBVdbqqZqtqdnJyckNVjAl4e0u8PZhjCcYG+YNDMM4w8yXJFADpdV6nAbsbqyMi4UA8cPAU+56yTRH5FZAM3HesTFVLVbXM2X4PiBCRJB/iNyao7Ck5yrjpC9l/uJLXJg0h2xJM0OjYNor2rSNDLsksBTJFJENEIvEO5OfUq5MDjHe2xwKfOGMqOcA4Z/ZZBpCJd5yl0TZFZDIwCrhJVY8/j1REUpxxHkRkiBN70Zl8aGMC1e5DRxk3fREHyqqYOXEIg7paggkmIkJWalvy9gTPNOYmH4mnqh4RmQosAMKAl1U1T0QeAXJVNQeYAbwuIvl4ezDjnH3zRGQesBbwAPeoag1AQ206h5wGbAcWOjnlLWcm2VjgbhHxAEeBcU4iMyYkHEswxUeqeG3SEAbajZZBKatTW179ahuemlrCwwL/VkYJ5u/p7Oxszc3NdTsMY87azoPl3PzSIg4dqea1SUPsTv4gNn9ZAf/vr6v4+Of/5tqq2SKyTFWzm6OtwE+TxgS5rQeOcOMLCykpr+b1yUMtwQS5Xh29iWXTvsMuR9I8LMkY48c27TvMj15YSIWnljlThjMgPcHtkEwL69nBm2Q27itzOZLm0eSYjDHGHXm7S7htxhLCWglzpwwj054HExJiI8NJbx/DRuvJGGNaysqdh7hp+iKiw1sx767hlmBCTK8ObdgUJD0ZSzLG+Jml2w5y60uLSYiNZO5dw8lIau12SOYcy+zYhi0HyqiuqW26sp+zJGOMH/kq/wC3z1hCh7ZRzLtrOOntY90OybigV8c4qmuUbQeOuB3KWbMkY4yf+HR9IRNeXUrXxFjmThlOSny02yEZl/RyLo8Gw+C/JRlj/MAHa/Yy5fVcenWM4407h5HcJsrtkIyLenaIo5UQFIP/NrvMGJf9bcUufv7XVVyQFs8rE4YQHxPhdkjGZdERYXRpH8umwsBPMtaTMcZFry3cxk/nrmRIt/a8NmmoJRhzXGbHNna5zBhzZlSVZz7exMN/z+OKrI68MmEwcVF2YcGc0LNDHNuLjuAJ8BlmlmSMOcdqa5XfvruO//twI9cP7MzztwwkOiLM7bCMn8lIak11jVJQfNTtUM6KJRljziFPTS33v7maGV9u5Y6LuvHE2AuCYqVd0/x6JHvvj9pyILAvmdm/bmPOkYrqGu6ZvZz5ywr42eW9+NW1WbRq1dBDYo2BjCTvGmZb9gf2vTJ2EdiYc6Cs0sNdr+fyVX4Rv7o2iwkjMtwOyfi59q0jSYiNYEuA35BpScaYFlZ8pIo7Xl3Kml0lPPmjC7h+YJrbIZkAkZHUmq0B3pOxy2XGtKB9pRXcOH0h6/aUMu3WQZZgzGnpnhRnYzLGmIblF5Zx/XNfs6v4KK9OGMwVWR3dDskEmO7JrdlXWklZpcftUM6YT0lGREaLyAYRyReRBxt4P0pE5jrvLxaRbnXee8gp3yAio5pqU0RmOeVrRORlEYlwykVEnnbqrxaRgWfzwY1pScu2FzN22tdUemqZe9dwLuqR5HZIJgB1d1bgDuSFMptMMiISBjwLXAlkATeJSFa9apOAYlXtCTwFPO7smwWMA/oCo4HnRCSsiTZnAX2AfkAMMNkpvxLIdH6mAM+fyQc2pqV9vG4ft7y0iISYCN66+yLO7xzvdkgmQGU405g37w/cS2a+9GSGAPmqukVVq4A5wJh6dcYAM53t+cBlIiJO+RxVrVTVrUC+016jbarqe+oAlgBpdY7xmvPWIiBBRFLP8HMb0yLmLt3BlNeX0btjG+bffRFdEm2pfnPmuiW2RgS2BnNPBugM7KzzusApa7COqnqAEiDxFPs22aZzmew24IPTiAMRmSIiuSKSu3//fh8+njFnT1V5+uNNPPDmN1zcM4nZdw4jKc5WUjZnJzoijE7xMQF9r4wvSaahu8XUxzqnW17Xc8DnqvrFacSBqk5X1WxVzU5OTm5gF2OaV02t8t9/W8OTzjIxL43PprWtQ2aaSffk1gE9w8yX34QCIL3O6zRgdyN1CkQkHIgHDjaxb6NtisivgGTgrtOMw5hzqqK6hnvfWME/1+7j7pE9uH9Ub7xXio1pHt0SW7Ny5yFUNSD/bfnSk1kKZIpIhohE4h3Iz6lXJwcY72yPBT5xxlRygHHO7LMMvIP2S07VpohMBkYBN6lqbb1j3O7MMhsGlKjqnjP4zMY0i5Lyam6bsZgP1+3jV9dm8cDoPgH5JWD8W9fEWA5XeDhUXu12KGekyZ6MqnpEZCqwAAgDXlbVPBF5BMhV1RxgBvC6iOTj7cGMc/bNE5F5wFrAA9yjqjUADbXpHHIasB1Y6PzCvqWqjwDvAVfhnTxQDkxojhNgzJnYUVTOHa8uoeDgUZ656UKu6d/J7ZBMkEpv7508suNgOe1aR7oczenz6cKxqr6H90u+btnDdbYrgBsa2fdR4FFf2nTKG4zJ6Rnd40u8xrSkFTuKmTwzF0+t8vqkIQztnuh2SCaIdXVmKG4/WM4F6QkuR3P6bHTSmNPw/jd7+OnclXRsG80rEwbTIznO7ZBMkOvi9GR2Hix3OZIzY0nGGB+oKi99sZXfvb+OAekJvHR7Nok2RdmcA7GR4STFRbG9KDCnMVuSMaYJnppafv2PPP6yaAdX9UvhyR8NsCdZmnOqa2Is24usJ2NM0DlS6WHq7OV8umE/d/1bdx4Y1cceNGbOua7tY1m0pcjtMM6IrcJsTCP2llRww7SFfL7pAL/7QT8euvI8SzDGFentY9lTWkGlp8btUE6b9WSMacDa3aVMmrmU0qPVzBifzcjeHdwOyYSwromxqMLOg0fp2SGwJptYT8aYehbk7WXstK8B+Ou/X2QJxrju2DTmQJxhZj0ZYxyqynOfbeYPCzYwID2B6bcNokPbaLfDMub4DZmBOMPMkowxeNcge/DN1fxt5W7GDOjE4z/sbzPIjN9IjosiNjKMHQePuh3KabMkY0Je4eEK7np9GSt2HOIXo3rz45E9bA0y41dEhC7tY9lx0HoyxgSUNbtKmPJaLsXl1Uy7dRCjz09xOyRjGpTePjYgH8NsA/8mZH2wZg83TFsIwPy7h1uCMX4tvV0suw4dxbuMY+CwnowJOarKs5/m88Q/N3oH+G8fRIc2NsBv/FvndjGUV9VQXF5N+wBajdmSjAkpRyo93D9/Ne9+s4fvD+jEYzbAbwJE54QYAHYVH7UkY4w/2l50hCmvLWNT4WEeurIPUy7pbgP8JmCktXOSzKFy+qXFuxyN7yzJmJDw2YZC7n1jBSLCzIlD+E5mstshGXNajvVkCooDaxqzJRkT1FSV5//lvcGyd8c2TL8tmy7O3dPGBJKE2AhiI8PYdciSjDF+oe74yzVaZifVAAAXXElEQVT9U/n92P7ERto/eROYRIS0djEB15PxaQqziIwWkQ0iki8iDzbwfpSIzHXeXywi3eq895BTvkFERjXVpohMdcpURJLqlI8UkRIRWen8HH/8szH1bS86wvXPfc37a/bw0JV9eOamCy3BmIDXOSGGXQGWZJr8rRORMOBZ4AqgAFgqIjmqurZOtUlAsar2FJFxwOPAjSKSBYwD+gKdgI9EpJezT2NtfgW8A3zWQDhfqOo1Z/A5TQix8RcTrDq3i2H5jkNuh3FafOnJDAHyVXWLqlYBc4Ax9eqMAWY62/OBy8Q7bWcMMEdVK1V1K5DvtNdom6q6QlW3neXnMiGotlZ5+uNNTHh1KZ0SYvjH1IstwZig0jkhlpKj1ZRVetwOxWe+JJnOwM46rwucsgbrqKoHKAEST7GvL202ZLiIrBKR90Wkb0MVRGSKiOSKSO7+/ft9aNIEg+IjVUx4dSlPfriRMRd04q0fX2QD/CbodG534l6ZQOHLReqGbiSov65BY3UaK28ouTW1VsJyoKuqlonIVcDfgMxvNaI6HZgOkJ2dHVjrL5gzsnLnIe6ZtZz9hyv57ffP55ahXez+FxOUTkxjLqd3ShuXo/GNLz2ZAiC9zus0YHdjdUQkHIgHDp5iX1/aPImqlqpqmbP9HhBRd2KACT2qyusLt3GD84Cx+XcP59ZhXS3BmKCVfvyGzMDpyfiSZJYCmSKSISKReAfyc+rVyQHGO9tjgU/Uu4pbDjDOmX2WgbfnscTHNk8iIinOOA8iMsSJvciXD2mCz5FKDz+du5Jf/j2Pi3sm8e69F9M/LcHtsIxpUUlxUUSGtQquy2Wq6hGRqcACIAx4WVXzROQRIFdVc4AZwOsiko+3BzPO2TdPROYBawEPcI+q1oB3qnL9Np3ye4H7gRRgtYi8p6qT8Savu0XEAxwFxmmgLUdqmkV+4WHu/styNu8v4/99rxc/HtmTVq2s92KCX6tWQqeEaAoCqCcjwfw9nZ2drbm5uW6HYZrRP1bt5oE3VxMTEcbTN13IiJ52xdSEllteWsSRyhr+ds+IFjuGiCxT1ezmaMvuTjMBoaK6hv95Zy2zFu9gUNd2/PnmC0mNj3E7LGPOuc4JMXyyPnBmzlqSMX4vv7CMqbOXs37vYaZc0p1fjOpNRJg9b8+Eps4JsRwoq6TSU0NUuP8/psKSjPFbqsr8ZQU8/Pc8YiLDeGXCYC7t3cHtsIxxVWq89wF7haWVpLf3/3vBLMkYv1RW6eGXf1vD2yt2Max7e/5444WkxNvTK41JTfD+Huw+dNSSjDFnIm93CVNnr2B70RF+enkm//HdTMJs9pgxwImezN7SCpcj8Y0lGeM3VJXXFm7n0XfX0a51BLPvHMaw7oluh2WMX0lxJrzsKbEkY4zPDpVX8cCbq1mQt49LeyfzxA0XkBgX5XZYxviduKhw2kSHsydA7pWxJGNc9/XmA9w3dxUHyir576vPY+KIDLu50phTSI2Ptp6MMU2p8tTyf//cwPQvtpCR2Jq3fnyRLQ1jjA9S42NsTMaYU8kvPMxP5qwkb3cpNw/twn9ffZ49udIYH6XGR5O3u9TtMHxiv9XmnFJV/rJ4B4++u5bYyHCm3zaI7/VNcTssYwJKSnw0B8oqqfLUEhnu3zcmW5Ix58yBskoemL+aj9cXckmvZJ4Y258Obe3eF2NOVydnhtm+0gq/v1fGkow5Jz7dUMgv/rqK0goPv7o2i/HDu9ngvjFn6NiNyXtKLMmYEFde5eHx99czc+F2+qS0YdbkYQHzRD9j/FWnhGNJxv+nMVuSMS1m2faD/HzeKrYVlTNxRAb3j+5NdIT/L+hnjL8LpBsyLcmYZlfpqeGpDzcx/fPNpMbH8Madwxjew+7cN6a5HLshc68lGRNq1uwq4efzVrFh32FuGpLOf12dRVyU/TMzprl5b8i0y2UmRFTX1PLcp5t55pNNtG8dySt3DObSPrYsvzEtJSU+JiAul/k0wVpERovIBhHJF5EHG3g/SkTmOu8vFpFudd57yCnfICKjmmpTRKY6ZSoiSXXKRUSedt5bLSIDz/RDm+a1ad9hrn/ua576aCNX90/lnz+7xBKMMS2sU4AsLdNkT0ZEwoBngSuAAmCpiOSo6to61SYBxaraU0TGAY8DN4pIFjAO6At0Aj4SkV7OPo21+RXwDvBZvVCuBDKdn6HA885/jUtqapUZX27hiX9uJC4qnOduGchV/VLdDsuYkBAoN2T6crlsCJCvqlsARGQOMAaom2TGAL92tucDfxYRccrnqGolsFVE8p32aKxNVV3hlNWPYwzwmqoqsEhEEkQkVVX3nM4HNs0jv/AwD7z5Dcu2F3NFVkd+94N+JLexVZONOVc6xceg6v83ZPqSZDoDO+u8LuDbPYjjdVTVIyIlQKJTvqjevp2d7aba9CWOzsBJSUZEpgBTALp06dJEk+Z0VdfUMv3zLfzpo03ERoXx5I8u4AcXdm7ojwJjTAtKqfPwskBPMg19e6iPdRorb6hvV7/NM4kDVZ0OTAfIzs5uqk1zGvJ2l3D//NXk7S7lqn4p/Oa68633YoxLjj0hc7efP1fGlyRTAKTXeZ0G7G6kToGIhAPxwMEm9m2qzTOJw7SASk8Nz3ycz7R/bSYhNpJptw5k9Pk29mKMm471ZPb5+ZL/vowWLQUyRSRDRCLxDuTn1KuTA4x3tscCnzhjJznAOGf2WQbeQfslPrZZXw5wuzPLbBhQYuMxLW/Z9mKufvpL/vxpPtcN6MRH911iCcYYP9AmOoK4qHC/n2HWZE/GGWOZCiwAwoCXVTVPRB4BclU1B5gBvO4M7B/EmzRw6s3DO0nAA9yjqjXgnapcv02n/F7gfiAFWC0i76nqZOA94CogHygHJjTXSTDfVl7l4YkFG3nl662kto3mlQmDubS3TUs2xp+kxEf7/V3/4u1wBKfs7GzNzc11O4yA8+WmA/zn29+w42A5tw7rwgOj+9AmOsLtsIwx9dw2YzFllR7e/vGIZm1XRJapanZztGV3/JvjDpRV8ui763h7xS66JcYyZ8owhnW3NceM8VcpbaP5Mv+A22GckiUZg6ry19wCfvf+Oo5Uerj3uz358aU9bcVkY/xcSnw0hYcr8dTUEh7mnzdkWpIJcfmFZfzn29+wZOtBBndrx+9+0I/Mjva8F2MCQUp8NDW1yoGyquOzzfyNJZkQVVFdw3Ofbeb5z/KJiQjjsev78aPsdHtapTEBJDX+xMPLLMkYv/H15gP899tr2HLgCN8f0In/ujrLbqo0JgCltPU+vMyfZ5hZkgkhRWWV/O699by5vICuibG8PmkI38lMdjssY8wZOtGTsSRjXFRTq8xesoMnFmzgSKWHey7twX98N9MG9o0JcAmxEUSFt/Lru/4tyQS5FTuK+eXf17BmVynDuyfyyJi+NrBvTJAQEVL8/LkylmSCVFFZJb//YANzc3fSsW0Uz9x0Idf0T7XVko0JMilt/fuuf0syQab+pbG7LunOf1yWSVyU/a82JhilxkezbEex22E0yr55gohdGjMm9KTEx7CvZC+1teqXtyBYkgkCRWWV/GHBBuYs9V4ae/qmC7nWLo0ZExJS46OpqqnlYHkVSXH+dyuCJZkAVuWp5bWF2/jTx5s4WlXDlEu6c69dGjMmpBx/QmZJhSUZ0zxUlU/WF/Lou+vYcuAI/9YrmV9ecx49O9ilMWNCTUrbE0nm/M7xLkfzbZZkAsymfYf5n3fX8fnG/XRPbs0rdwzm0j72nBdjQtXxGzL99F4ZSzIB4lB5FX/8aBOvL9pObGQYv7wmi9uHdyXCT1deNcacG4lxUYS3EvaWHHU7lAZZkvFznppaZi3ewVMfbaT0aDU3D+3CfVf0pn3rSLdDM8b4gbBWQse2/ntDpiUZP6WqfLqhkP99bz2bCsu4qEciD1+bRZ+Utm6HZozxM/78GGafrrWIyGgR2SAi+SLyYAPvR4nIXOf9xSLSrc57DznlG0RkVFNtikiG08Ymp81Ip/wOEdkvIiudn8ln88H92fIdxdw4fRETX82luqaWF24bxKzJQy3BGGMalBIfzd5AHZMRkTDgWeAKoABYKiI5qrq2TrVJQLGq9hSRccDjwI0ikgWMA/oCnYCPRKSXs09jbT4OPKWqc0RkmtP2884+c1V16ll+Zr+VX1jGHxasZ0HePpLiovif75/PuMHpNu5ijDmllLbRfLq+EFX1u/vjfLlcNgTIV9UtACIyBxgD1E0yY4BfO9vzgT+L95OOAeaoaiWwVUTynfZoqE0RWQd8F7jZqTPTafdYkglK+0or+ONHG5mXW0B0eCvuu6IXky7OoLXd72KM8UFqfDTlVTWUVniIj4lwO5yT+PIt1hnYWed1ATC0sTqq6hGREiDRKV9Ub9/OznZDbSYCh1TV00B9gB+KyCXARuBnqlq3jYBTcrSaF/61mZe/2kpNrXL78K5MvbQniX54Q5Uxxn/VvSEzEJNMQ30v9bFOY+UNXf85VX2AfwBvqGqliPw73l7Od78VrMgUYApAly5dGmjOfRXVNfxl0Xb+/Gk+h8qr+f6ATtx3RW+6JMa6HZoxJgDVfQxz7xT/uinblyRTAKTXeZ0G7G6kToGIhAPxwMEm9m2o/ACQICLhTm/meH1VLapT/0W8YzffoqrTgekA2dnZ9ZOhq2pqlb+t2MWTH25k16GjXNIrmftH9fbLu3SNMYEjJd5/H8PsS5JZCmSKSAawC+9A/s316uQA44GFwFjgE1VVEckBZovIk3gH/jOBJXh7LN9q09nnU6eNOU6bfwcQkVRV3eMc7zpg3Rl+5nNOVflsw34e/2A96/cepl/neH4/tj8jeia5HZoxJgh0aBOFCH45w6zJJOOMsUwFFgBhwMuqmicijwC5qpoDzABedwb2D+JNGjj15uGdJOAB7lHVGoCG2nQO+QAwR0R+C6xw2ga4V0Suc9o5CNxx1p/+HFixo5jH3l/P4q0H6ZoYy59vvpCrzk/1yyW5jTGBKSKsFUlxUX7ZkxFVv7qi1Kyys7M1NzfXlWNv3l/GEws28P6avSTFRfKTyzK5cXAXIsNtOrIxpvld9+cvaRcbycyJQ5qu3AQRWaaq2c0Qlt3x39wKSyv408ebmLN0J9HhrfjZ5b2Y/B2bjmyMaVkpbaPZXlTudhjfYt98zeRIpYcXPt/Ci59vwVNby23DujL1uz398vkOxpjgkxofzaItRU1XPMcsyZwlT00tc3N38tSHmzhQVsnV/VO5f1Rvuia2djs0Y0wISYmPobTCw5FKj19dOfGfSALQws1FPPz3NWwqLGNwt3a8ePsgLuzSzu2wjDEh6Ni9MntLK+iRHOdyNCdYkjkDB49U8ei763hzeQHp7WOYdusgRvXt6HdrBhljQkdH5wmZ+0osyQS0r/MP8NO5Kykur+KeS3sw9dJMYiLD3A7LGBPiTtz171/TmC3J+EhVefGLLfzv++vpntSaVycMIauTLb1vjPEPKXUul/kTSzI+UFUee389L3y+hav7p/KHsf2JjbRTZ4zxH9ERYbSLjWCPnz2G2b4pffDSF1t54fMt3DasK7+5rq/drW+M8Usp8TF+d9e/3X7ehOU7ivnf99dxVb8USzDGGL+WGh/td2MylmROoaZWeWD+alLaRvP4D/tbgjHG+LWObaPZ52djMpZkTuGd1bvZVFjGL6/Jok20fz0IyBhj6kuNj+ZAWRWVnhq3QznOkswpzPhyK706xjGqb4rboRhjTJOOzTArLK10OZITLMk0Ysv+MlYXlPCj7HS7TGaMCQj+eK+MJZlGfLyuEICr+6e6HIkxxvim7mOY/YUlmUYs215Ml/axpDqPNTXGGH/nj49htiTTiFUFhxjYJcHtMIwxxmdxUeHERYX71V3/lmQaUFFdw56SCrr70SJzxhjji5T4aHYV2+Uyv1bg/A9Kb2+XyowxgaVnchz5hWVuh3GcT0lGREaLyAYRyReRBxt4P0pE5jrvLxaRbnXee8gp3yAio5pqU0QynDY2OW1GNnWM5nbwSBUAyXHRLXUIY4xpEb1T2rCt6AhHq/zjXpkmk4yIhAHPAlcCWcBNIpJVr9okoFhVewJPAY87+2YB44C+wGjgOREJa6LNx4GnVDUTKHbabvQYLaG8ygNgS/gbYwLOealtqFXYVHjY7VAA33oyQ4B8Vd2iqlXAHGBMvTpjgJnO9nzgMvE+wWsMMEdVK1V1K5DvtNdgm84+33XawGnz+00co9lVVHv/Aoi1JGOMCTD907wTlr7YdMDlSLx8WYW5M7CzzusCYGhjdVTVIyIlQKJTvqjevp2d7YbaTAQOqaqngfqNHeOkMykiU4ApzssyESmqX8dXWS3WV3JNEmd4LoKQnQsvOw8nBNW5mPo4TD2zXZOArs0Vhy9JpqHegvpYp7HyhnpQp6rvaxyo6nRg+vHARHJVNbuBfUOOnYsT7Fx42Xk4wc6Fl3MeujVXe75cLisA0uu8TgN2N1ZHRMKBeODgKfZtrPwAkOC0Uf9YjR3DGGOMn/IlySwFMp1ZX5F4B/Jz6tXJAcY722OBT1RVnfJxzsywDCATWNJYm84+nzpt4LT59yaOYYwxxk81ebnMGf+YCiwAwoCXVTVPRB4BclU1B5gBvC4i+Xh7F+OcffNEZB6wFvAA96hqDUBDbTqHfACYIyK/BVY4bdPYMXwwvekqIcPOxQl2LrzsPJxg58KrWc+DWGfAGGNMS7E7/o0xxrQYSzLGGGNaTFAnmaaWwwl0IvKyiBSKyJo6Ze1F5ENnWZ4PRaSdUy4i8rRzLlaLyMA6+4x36m8SkfENHcvfiUi6iHwqIutEJE9EfuKUh9T5EJFoEVkiIquc8/Abp/y0l2tqbEmoQOOsMrJCRN5xXofkuRCRbSLyjYisFJFcp6zlfz9UNSh/8E4o2Ax0ByKBVUCW23E182e8BBgIrKlT9nvgQWf7QeBxZ/sq4H289xsNAxY75e2BLc5/2znb7dz+bGdwLlKBgc52G2Aj3iWLQup8OJ8nztmOABY7n28eMM4pnwbc7Wz/GJjmbI8D5jrbWc7vTBSQ4fwuhbn9+c7wnNwHzAbecV6H5LkAtgFJ9cpa/PcjmHsyviyHE9BU9XO+fa9Q3eV36i/L85p6LcJ7P1IqMAr4UFUPqmox8CHedeYCiqruUdXlzvZhYB3eVSJC6nw4n+fYErwRzo9y+ss1NbYkVEARkTTgauAl5/WZLF0VFOeiES3++xHMSaah5XA6N1I3mHRU1T3g/eIFOjjljZ2PoDtPzmWOC/H+FR9y58O5PLQSKMT7JbAZH5drAuouCRXQ58HxR+B+oNZ57fPSVQTfuVDgnyKyTLzLb8E5+P3wZVmZQOXTMjQh5HSX/glIIhIHvAn8VFVLpfE1VIP2fKj3XrQBIpIAvA2c11A1579Bex5E5BqgUFWXicjIY8UNVA36c+EYoaq7RaQD8KGIrD9F3WY7F8Hck/FlOZxgtM/p1uL8t9ApP90lfgKOiETgTTCzVPUtpzhkz4eqHgI+w3tN/XSXawqG8zACuE5EtuG9XP5dvD2bUDwXqOpu57+FeP/4GMI5+P0I5iTjy3I4waju8jv1l+W53Zk1MgwocbrHC4DviUg7Z2bJ95yygOJcO58BrFPVJ+u8FVLnQ0SSnR4MIhIDXI53fOp0l2tqbEmogKGqD6lqmnoXexyH97PdQgieCxFpLSJtjm3j/Xe9hnPx++H2jIeW/ME7Q2Ij3mvS/+V2PC3w+d4A9gDVeP/CmIT3GvLHwCbnv+2duoL3QXGbgW+A7DrtTMQ7mJkPTHD7c53hubgYb7d9NbDS+bkq1M4H0B/vckyrnS+Rh53y7ni/GPOBvwJRTnm08zrfeb97nbb+yzk/G4Ar3f5sZ3leRnJidlnInQvnM69yfvKOfR+ei98PW1bGGGNMiwnmy2XGGGNcZknGGGNMi7EkY4wxpsVYkjHGGNNiLMkYY4xpMZZkjDHGtBhLMsYYY1rM/we5gZknDF8RXwAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAD8CAYAAABjAo9vAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XmcXGWd7/HPU3v1nk53kk46S4eEsCUEDJssIlECYZnr1TvAjCjqlZlxGX2NXgfG64Be9cJ1xhkdnFFUxLkquOHGIhdZVFSyQQfIvpLupLf0vtf23D/OqV6STtJJqvpUVX/fr9d5nXOeOnXqVw/Ut0+eOueUsdYiIiKFw+d1ASIiklkKdhGRAqNgFxEpMAp2EZECo2AXESkwCnYRkQKjYBcRKTAKdhGRAqNgFxEpMIFs7LSqqsouWrQoG7sWESlImzZtOmytrc7EvrIS7IsWLWLjxo3Z2LWISEEyxryRqX1pKEZEpMAo2EVECoyCXUSkwGRljH0i8XicxsZGhoaGpuolT1kkEqG2tpZgMOh1KSIiJ23Kgr2xsZHS0lIWLVqEMWaqXvakWWtpb2+nsbGRuro6r8sRETlpUzYUMzQ0xMyZM3M61AGMMcycOTMv/mUhIjKRKR1jz/VQT8uXOkVEJqIvT0VEMuD5A8/z0OsPeV0GMM2C/de//jXLli1jyZIl3HfffV6XIyIF5NkDz/KDbT/wugxgGgV7Mpnkwx/+ME899RRbt27lkUceYevWrV6XJSIFonO4kxmRGV6XAUyjYF+/fj1Llixh8eLFhEIhbr31Vn7xi194XZaIFIiuoS5mhHMj2KfsdMexPvurLWw91JPRfZ4zt4x7bjr3mI8fPHiQ+fPnj6zX1taybt26jNYgItNXx1AHtaW1XpcBTKMjdmvtUW06+0VEMiWXhmI8OWI/3pF1ttTW1tLQ0DCy3tjYyNy5c6e8DhEpPIOJQfrj/VRFq7wuBZhGR+wXXXQRu3btYt++fcRiMR599FFuvvlmr8sSkQJwePAwADMjMz2uxOHJEbsXAoEADzzwAGvWrCGZTPL+97+fc8+d+n85iEjhSQd7dVFGfifjtE2bYAdYu3Yta9eu9boMESkwbQNtAFRHcyPYp81QjIhItrQNOsGuMXYRkQLRPtiO3/hz5qwYBbuIyGlqG2xjZmQmPpMbkZobVYiI5LG2wTaqinJjGAYU7CIip+3wwOGc+eIUFOwiIqft8ODhnPniFKbJ6Y7t7e2sXr0agObmZvx+P9XVzl/X9evXEwqFvCxPRPJYIpWgY6hDwT7VZs6cSX19PQD33nsvJSUlfPKTn/S4KhEpBO2D7Vgss4pmeV3KCA3FiIichqb+JgDmFM/xuJJRkz5iN8b4gY3AQWvtjaf1qk/dBc2vndYujjJnOVyvX0USkanV3N8MQE1xjceVjDqZI/aPAduyVYiISD5KB3veHbEbY2qBG4AvAH932q+qI2sRKRBN/U2UBEsoDZV6XcqIyR6x/yvwKSB1rA2MMXcaYzYaYza2tbVlpDgRkVzX1N+UU0frMIlgN8bcCLRaazcdbztr7YPW2lXW2lXpUwlFRApdc39zTo2vw+SGYi4HbjbGrAUiQJkx5nvW2ndnt7TsuPfee70uQUQKSHN/M+dVned1GeOc8IjdWnu3tbbWWrsIuBV4Ll9DXUQkkwYTg3QOd+bcEbvOYxcROUW5eEYMnOSVp9baF4AXslKJiEieSV+cpCN2EZEC0dLfAuTeEbuCXUTkFDX0NuA3fmYXz/a6lHEU7CIip6ixr5E5xXMI+oJelzKOgl1E5BQ19jYyv3S+12UcZVoG+wsvvMAdd9zhdRkikucaexupLa31uoyjTMtgFxE5XX2xPjqHO3PyiN2TH9q4f/39bO/YntF9nlV5Fn9/8d9ndJ8iIsfS0NsAoGD32iWXXMLw8DB9fX10dHSwcuVKAO6//37WrFnjcXUikk8a+xoBqC1xh2J2Pg3te+CSvwaft4MhngS7V0fW69atA5wx9ocffpiHH37YkzpEJP+lj9hHxtjrvw+HXoHLPuRhVQ6NsYuInILG3kYqwhWj92Fv2AC1F3tblEvBLiJyChp6G0bH17sbofcQzM+NYJ9WY+xpV199NVdffbXXZYhIHmvobWBF9QpnpXGDM69d5V1BY+iIXUTkJMWSMZr6m1hQusBpaNgAgQjMXu5tYS4Fu4jISTrQc4CUTbG4fLHT0Lge5l4AgZC3hbmmNNittVP5cqcsX+oUEW/s69kHQF15HSSGoWlzzgzDwBQGeyQSob29PedD01pLe3s7kUjE61JEJEft63aCfWHZQmh6FZKxnDkjBqbwy9Pa2loaGxtpa2ubqpc8ZZFIhNra3Lv/g4jkhn3d+5hTPIeiYJEzDANQe5G3RY0xZcEeDAapq6ubqpcTEcmafd37qCtz86xhPZTPh7Lc+RUlfXkqInISrLVOsJe7wd64MaeO1kHBLiJyUloHWhlIDDjB3nMIehpz5sKkNAW7iMhJ2N+zH3DPiGnIvfF1ULCLiJyU9BkxdeV1zhWn/jDMWeFxVeMp2EVETsKerj2UBEuojlY7wT53Zc5cmJSmYBcROQm7unaxpGIJJhmHQ/U5NwwDCnYRkUmz1rKzcydnzjjTudo0OaxgFxHJZy0DLfTGelk6Yykc+JPTuOAyb4uagIJdRGSSdnbuBHCO2A+8BJWLoXS2x1UdTcEuIjJJ6WBfUnEGNLwE8y/1uKKJKdhFRCZpV+cuaoprKOtthYF2WKBgFxHJazs7d+b8+Doo2EVEJiWejLO/e//o+Hq0EqqWel3WhBTsIiKTsLd7LwmbYGnFUifYF1wGxnhd1oQU7CIik7C9YzsAyyJV0LEHFlzicUXHpmAXEZmELe1biAaiLOo85DTk6Pg6KNhFRCZla/tWzq48G3/DOghEoOZ8r0s6JgW7iMgJJFIJdnTs4Nyqc2Hf7537rwfCXpd1TCcMdmNMxBiz3hiz2RizxRjz2akoTEQkV+zt3stQcohzShZAy2tQd5XXJR3XZH7zdBi4xlrbZ4wJAi8aY56y1r6U5dpERHLClsNbADh3oM9pWJTnwW6ttYD7bgi6k81mUSIiuWRL+xaKg8UsbNoKwWKYd6HXJR3XpMbYjTF+Y0w90Ao8Y61dl92yRERyx7b2bZxdeTa+/S/CwsvAH/S6pOOaVLBba5PW2pVALXCxMea8I7cxxtxpjNlojNnY1taW6TpFRDwRT8XZ3rGdc8sWweEdOT++Did5Voy1tgt4AbhugscetNaustauqq6uzlB5IiLe2tm5k1gqxnlxdwS6EILdGFNtjKlwl6PA24Dt2S5MRCQX1LfWA7Cy8yBEynPuh6snMpmzYmqA7xpj/Dh/CH5krX08u2WJiOSG+tZ65hTPYc4b62Hh5eDze13SCU3mrJhXgQumoBYRkZxT31bPyvIl8Pp6uOwjXpczKbryVETkGJr7m2nub2Zlwo3KJau9LWiSFOwiIsdQ3+aOr7cfcH7ftHKxxxVNjoJdROQY6lvrifojnPnGRljyNq/LmTQFu4jIMdS31nNeSS3B+ICCXUQk3/XH+9nesZ2VCQP+ECy6wuuSJk3BLiIygZdbXiZpk1x0uAEWvhlCxV6XNGkKdhGRCWxo3kDQF2Blyy5Y8navyzkpCnYRkQmsa17HishsotbCUgW7iEhe6x7uZnvHdi4eGIDKM6DqTK9LOikKdhGRI2xq2UTKprioeTectRaM8bqkk6JgFxE5wobmDYRNgPMH+2HZDV6Xc9IU7CIiR1jfvJ6VpohQUZXzw9V5RsEuIjJG20AbOzt3cmlXCyy7Li/u5ngkBbuIyBgvHnwRgCt7u/JyGAYU7CIi4/z+4O+ZZcKcmQrA4qu9LueUKNhFRFyJVIKXDv2Jywf6MWdeC6Eir0s6JQp2ERHX5rbN9Mb7uLKnE879r16Xc8oU7CIirhcPvkgAw6UJPyy91utyTpmCXUTE9WLj7zk/Fqd02fV5OwwDCnYREQCa+prY3rmDq/p683oYBhTsIiIAPHvgWQBWxwN589umx6JgFxEBnn3jGZbEkyxcej0Ewl6Xc1oU7CIy7XUMdfBy6yus7uuD5e/yupzTpmAXkWnvhYYXSGF5mynJ24uSxlKwi8i095s9TzAvnmDZubfk5b1hjqRgF5FprTfWy0stG7lmYACz8i+9LicjFOwiMq39Zv8zxElxXXEdVC3xupyMULCLyLT2xI4fMj8eZ/mK93hdSsYo2EVk2modaGV9x1ZuGIhhzsvvi5LGUrCLyLT11K6fY4Eb5l0F0Qqvy8kYBbuITFtPbH+Uc4eHWXTpR70uJaMU7CIyLe3t3MO2oTZu8M2AeW/yupyMUrCLyLT02MsPELCW65e/z+tSMk7BLiLTTiwZ45eNL/DWoQRVFxTO2TBpCnYRmXae2/kzOknwzjmX5/V9149FwS4i085PNz9ITSLBpVfe5XUpWaFgF5FppaF9By8Nt/KOSC3+mUu9LicrThjsxpj5xpjnjTHbjDFbjDEfm4rCRESy4Sd//CI+a3nHxZ/wupSsCUximwTwCWvty8aYUmCTMeYZa+3WLNcmIpJRg7E+fnL4Za4hypyl13ldTtac8IjdWttkrX3ZXe4FtgHzsl2YiEimPf7H/02PD959zu1el5JVJzXGboxZBFwArJvgsTuNMRuNMRvb2toyU52ISIbYVIrv7Xucs5Nw4aoPeV1OVk062I0xJcBPgY9ba3uOfNxa+6C1dpW1dlV1dXUmaxQROW1/2vBv7PWluH3RDRj/ZEah89ek3p0xJogT6t+31j6W3ZJERDLMWv5z63epAtZc8Rmvq8m6yZwVY4BvA9ustV/OfkkiIpm1rf47/MEX5y/mXEEoVOx1OVk3maGYy4HbgWuMMfXutDbLdYmIZIa1fLP+3ylNwa1v+bzX1UyJEw7FWGtfBMwU1CIiknG7N/9fnvEN81fVl1BaNNPrcqaErjwVkcKVSvKtTf9C1MK73/JFr6uZMgp2ESlYb2z4D57yx7llzpupKJ7ldTlTRsEuIoUpPsQDm79OGMN7r5weY+tpCnYRKUhbfvcFfh023L7wOqqKp9e1NQp2ESk8/e18Zc+PqcDP+y6/x+tqppyCXUQKzku//hh/Cgf54Fl/SUmoxOtyppyCXUQKSrJxA19u38AcX5RbVv2t1+V4QsEuIoUjleKnT/8t28IhPnHJXYT9Ya8r8oSCXUQKRtfGb/JV081FJQtZs/QdXpfjGQW7iBSGvjYe2PQv9Pn83PXWf8a5zdX0pGAXkYKw9YkP8+NogFsXXc+Zlcu8LsdTCnYRyXvxLb/gnu7NVAaK+NCb/6fX5XiusO82LyKFb7CLh397F9uLQ/zr5f+LslCZ1xV5TkfsIpLX9j75cf6jyM+1sy9mdd0ar8vJCQp2Eclbidd/yj8e/iNF/jB3v+V+r8vJGQp2EclP3Y1884W72BwJc/dl91AVrfK6opyhYBeR/JNK8srP7uDrJWFunPcWblhys9cV5RQFu4jknd7ff4m7EgepCVfw6avu87qcnKOzYkQkr9i9v+WzW75JS3ERD69+YFre5OtEdMQuIvmj+yD/+eSdPF1cxEdW/DUrZ630uqKcpGAXkfyQiLHuJ7fx5ZIgb5t9CR9Y+SGvK8pZCnYRyQtNT3yM/2EOszBazedXf2Va3wvmRBTsIpLz+v/4VT7a8hyxQJivXPcQxcFir0vKafryVERyWnzbE3zi1X9jdzTCA2/9CnXldV6XlPN0xC4iOcse2swXnvs4f4hG+MzFd3PF/Ku8LikvKNhFJDd1HeAbP7+Nn5ZE+OCZt/HOs//C64ryhoJdRHJPbwvfffQmvlbs56a5V/LRS+/2uqK8omAXkdwy2MkPH72Rf4qmuHbWKj63+qs6A+YkKdhFJHfE+vnZIzfx+dAQV1eex31rHiTg0zkeJ0s9JiK5YbiXR35wPV/0d/PmsiX809qHCfqCXleVlxTsIuI5O9DJtx5dy1f9fby1/Cy+dNP3CPvDXpeVtxTsIuIp29/Ovzx6Hd8JDHHjzJV8bu1DOlI/TQp2EfHMcOcbfOax/8JTgQS3zL6Mf1jzdXxGX/2dLgW7iHiio2EdH3v6A9QHDR9fdBPvv+oLOvslQxTsIjLl9mz9CR/+0z0cDhj+ecXfcu0FH/S6pIKiYBeRKfXUb+/lnr0/psjn4ztX/TPLF1/rdUkF54TBbox5CLgRaLXWnpf9kkSkEMXjQ3zpF7fwSP9eLjARvnTTD5g9c5nXZRWkyXxL8TBwXZbrEJEC1ti2lTt+cCWP9O/l9sgCvv0Xv1OoZ9EJj9ittb8zxizKfikiUmistfz85a9x32vfwGdT/NOCG1mz+n6vyyp4GmMXkazoGGznc099gGd797AqnuILV93H3GU3eV3WtJCxYDfG3AncCbBgwYJM7VZE8oy1ll/v/Cn3vfQFem2cT/iquP3WR/CX1nhd2rSRsWC31j4IPAiwatUqm6n9ikj+aOxt5PPPf5I/dG7hnOEYD55xC8veei/4dNHRVNJQjIictngyzvdef4h/r/93TCrB3w/5ue2G7+JfcKnXpU1Lkznd8RHgaqDKGNMI3GOt/Xa2CxOR3Get5fmG5/nyS1/gjcFWru4f4NPz1zJnzX0Q0g9Oe2UyZ8XcNhWFiEh+2dGxgy+t+yLrWl+mLhbna8NBrlz7Hcxi/S6p1zQUIyIn5UDPAb6++T94fO/jlKUsd3d28d/Ouo3g6nsgXOJ1eYKCXUQmqbG3kW+8+g1+teeXBFOW93b38N+Lz6D8tu9DzflelydjKNhF5Lj2d+/n4S0P84vdP8dnU9zW3cMHhg1V13wOLrhdZ7zkIAW7iEyovrWe77z+HZ5veJ4ghnf29fPBrh5mX/h+eMunoKjS6xLlGBTsIjIikUrwQsMLfHfLd6lvq6fMF+aD/XFuO9xM1Vk3w233QOVir8uUE1Cwiwgt/S08tusxfrLrJ7QOtDIvWMpdvXHe0d5A0YI3w/v+E+Zf5HWZMkkKdpFpKplK8lLTS/xox4/4beNvSdkUlxfN5392x7myYwuBhVfADd+Euiu9LlVOkoJdZJrZ0bGDx/c+zpN7n6R1sJXKcAV3lCzlnXs2ML//RVh0Jdz8LVh0hdelyilSsItMAy39LTy17yl+tfdX7OzcScAEuKLqfD5FJW/d/jyh1Gtw9o1w2UdAtwHIewp2kQLV0NvAs288y28O/IbNbZsBWDHzPP5h/lrWHHiVyvU/g2ARrHofXPo3+lK0gCjYRQqEtZbdXbt57sBz/ObAb9jesR2AsyvP5qPL3s21nS0sev2X0P8kVCyA1ffAm+7QaYsFSMEuksf6Yn2sa1rH7w/+nj8c+gPN/c0ArKxeySdXfpTVMUvttqdg0xfB+GHZ9fCm98EZ1+jCogKmYBfJI8lUkp2dO/lT05948eCLvNLyCgmboDhYzKU1l/JXyz/IVckgs7b/Gh6/F+L9UD4frv4HuPB2KJvr9VvImqF4ku7BOF0DcboGYnQNxukfTjAQSzIYSzIQSzIQT4wsD8aTpFIWa8FiSVmwFvw+KA4FiIb8FIcDlIQDzCmLUFMRoaY8woLKYkKB3P6jqGAXyWHpIN/QvIENLRvY1LKJ3lgvAGfOOJP3nPserqh5MyvjSYLbn4BffQb6miFcDsvfBStugQWX5dXR+VA86YTzYGw0pAfidLmh3T0Yo7N/9PHuwTidAzGG4qkT7jsU8BEN+ikK+YkG/fh9BmPAZwwAxhhSKctAPMHAcJL+WOKo/Yb8PpbOLmH5vHKuXFrNlWdWURYJZqUvTpWCXSSHDCWG2Nq+lVfbXmVT66ZxQb6gdAHXLryWi+ZcxEXVFzDr8G7Y+kt44b3Q2wS+ICy9Fs6/BZaugWDE0/cSS6RGwrezP+YGc4zOgfi4wO4ciI0eaQ8eP6CDfkNFUYgZRUEqoiHmVxaxPBpkRnGI8miQCrd9RlGQsmiQknDACXE3yAP+k/8DN5xI0tozTFP3EAe7Btje3MvWQz08+VoTj25oIOAzvHlJFZfUVfKOC+YxtyJ6Ot2WEcbazP+K3apVq+zGjRszvl+RQmKtpbG3kc2HN/Nq26tsbtvMzo6dJGwCgPml850Qn3MRq2avYk6gBPb9DnY86UwD7RCIwpLVcM6fwZlrIFKe8TqTKUuPe1Q8Es798TFBnT6yjo9ZjtEfSx5zn0cGdEWRG8pFTkDPKHLbokHKi0bXo0E/xj269loimaK+oYvfbGvlidcO0dAxSEk4wCv/+HaCp/AHxBizyVq7KhO1KdhFpkDKpjjQc4DtHdtHpq3tW+kc7gQgGoiyvGo5K6pXsKJqBcurl1MVmQmHd8KuZ2D3M/DGHyEZg1ApLLsOzr4JlrzthL9UlEpZ+mIJegadYYuewQQ9Q3F6BuP0DCXc+bHb+4YTHCsmfIaRIB4bwOmj5oriEBVjg9rdpiiUOwGdCdZaNjd24zOworbilPaRyWDXUIxIhg0mBtnbvZcdHTtGQnxHxw4GEgMABEyAMyrO4Kraq1hRvYLzq8/njIozCPgCMNAB+1+EV7+I3f0MpusAAMOVy+g+5w5aZl3FofLz6Y376O9K0PeHJvqGE/QPJ+gbStA3nDgqpHuPE8xppeEAZdEgpZEA5dEgtTOilNWUURYNUBoJOiHtHlHPKBoN69JIAJ+vcAL6VBljWDn/1AI9GxTsIqeoP97P3q697Onew+7OPezq3M3e7r20DDRhcZI07ItSE13M8vLVVAbrqPDXUcRchuI++g7HeeVAF63dT7On72XOGqpnUXI/PiwDNswfUufxfOrt/Da5goOHquFQ+pVfG1dHwGcoiThnb5SEA5RFgsytiHJWtJSyiDPWXBYJuPMgZVFnm3J3vSQSwK9wLigKdilY1lpiyRRD8RTDiSTD8RRD8STDiYnn6e2G4ikG40kGYwn6hofpGG6mM95ET7KZgVQzg7aFmK+JlL9z9LVSflKxalLDs0nFziU1PIvkUA298UoO4xuJ4tk0caHvd6zy7+Jm/3aWsR8/KYYJsSdyDk9UvI/G8jfRUbGcomiUunCA88IBN7j9lISDFIf9lLrz4nCAcMBXUMMacvoU7JJR6TCNJVLEk9adpxh257Ex83HbJZPEE5bhZIq4+1h6nt5uOJFywtkNaSeEjx3Qw4nUCYcgAPAN4Qt2YYId+ELtzhRsxx9uxwQ6wbg78YHPRIgwiyrfWVQEaqkMzqc6sohZ0RpKwiGiofSpdAGK/Ulm9u1gRkc9pW2vEG3ZhL/3oLMvfxjmvQnq/hzqriQ8bxXnBCOck7X/MjKdKNingLXOxQ/JlCVlLcmUJWktqdTYZca1pWx626Ofl0haEskUiZQlkXKCMZmyxJMpEunllLOcSI3ZNjl2e2eeSKXc5x69XXo5nnS3Se8rORreseT4wI4nM/9lfCjgI+z3EQ76CAf8hIM+ImPmxcUBIgE/EffxSNBHJOgnHPARChgSppthOhi0h+lPHqY30UZPvJXOWCsdwy0MJPrGvV5psJSFZQuZX3YJC0oXsKBsAQtKFzC/dD6VkcqJj46TcWjbDk2bx0+JIefxslpYcDHUXgzzL4Y5KyAQynhfiUCOBfunf/bayFGWxb0izA1Fi7M89rHUyPrYxyZuT9nxV5gx7moz6z4PGFlOvz5Hh7EbxOn2kcdTowE+dtssnHh0yoyBoM9HwG/w+wxBv4+AzziT32l31n0E3W0CbqgW+XwE3ecEAz5Cfic4Q34fQb+PUGB0HjpiPeg3hAOT3M7vJ+ju17mA5OggtdbSG+/l8MBhWgdbaRtooW2wjbaBNtoG29g/0EZrbystAy3EU/Fxzy0NllJTUsMZM2q5ovgi5pbMpaa4hrklc1lYtpDy8AlOGYwPQuu2MQFeDy1bITnsPB4shpoVsOoDzo9T1F4M5fMy9Z9Q5IRyKtj/uKed4XgSY5yrwdJXhBkYbXOXfQYM6e3S27jbj9kuvTzSnt7WBz7jcx8f/5hvgn36fQafz+BPL7s1TNTu9zFBm7P9hO0jbWNeyxyj3WdGgtkJXieYg24IBv1uQI8Na59xtvf5cvoMhpRN0RvrpX2onc7eTjqHOukY6hiZtw+1jwR320AbQ8mho/ZRFChiVtEsqouqWV69nLcXv525xXOZWzKXOcVzqCmuoTRUOrmCEjFo3w2tW50gb9vuLHfsA/fLUSLlUHM+XHIn1Kx0livPyKsrPaXw5FSwP//Jq70uQTIkkUrQE+uhZ7jHmY9Z7hx2Qjs9tQ+10znUSddwF0k78UUtpcFSKqOVzCqaxXlV5zEr6oR3dbR63Lw4ePxzuic01A3te6Bjrxvkboi374aUc7EQxg8zz4A5y2H5n8Oss2HuSqhY6Pz1F8khORXskhustcRSMfpiffTH++mP99MX72MgPkBfvI++WN9oWLuB3R3rHhfi/fH+475GaaiUykglM8IzWFC6gPOrz3fWIzPGz8MzmBGZQch/muPR8cHR4G7f4wb5Hme9v23MhgZmLHKC+6wbYNY5UH0WVC2FQPj0ahCZIgr2PJeyKYYSQwwlhxhMDDKUcOZjl4eSQwzGnfmRIT1RcPfH+kcuaz+esD9MWajMmcJl1BTXsKxy2bi2slAZ5eHycW3loXKC/gzfNCkxDN2N0PUGdL4BXQfGT33N47cvmQ0zl8CZ1znzmUucI/IZdZ7fY0XkdCnYMyCZSpKwCeLJOLFUjFjSmYaTw0evj1mOp+Lj2mKpo7eJJWMMJseE9JHzCcaZTyQaiFISLKE4WExxsJiSYAm1JbXj20IlFAWKKAmN364oWERJsISyUBmRwBQFYCoJfS3Q0wS9h0bn3Y2jwd3bNP45vgCU1zo/KLH0bc6QSeViJ8ArF0OkbGpqF/FATgX7k3ufJGETJFNJLJakTWKtM0/Z1PEnUiPPm+jxsfuKp+IkUonRySbGr6cSzjZuezKVHLftkc9PX2V4ugK+ACFfiLA/TNAfJOwPE/KFiAaiRAIRZkZmEglEiAaiI1N6PeKPHN2W3tYfJRoc3cbv82ek3tOWSsFgB/S1Qn8r9DZDzyEnpHsOjS73tYA94o5/viCU1TiBfcZqJ8DHTqU14M+p/71FpkxO/Z/A1yAJAAAHhElEQVR/zx/vOaUj0DSf8eHD58yPMfmNn4AvMH4yAYK+4Mh6JBAh4AuM23bkcRM4+vnpx02AkN8J5pA/NLrsC41bHxvaY7f3mQI4kyIxDP2HnaDuPzwa2iPLbc7U1woDh48ObHDONCmd6wT3rHOceWkNlM1zl+dC0UydeSJyDDkV7I/d/BgYRgLYYPD73Llx7gbnN/5jhrZkUDIOg13OEfVgp3NzqsHO46x3OvNjfWkaLIbiKiiZ5RxRz3uTs1xcPTqVzYXSOSe8W6GIHF9OBfv8svlel1AYEjEY7nGmoSPmw73ucvcEbWO2i/Ude/++AERnuFOlc1XlnBWjbcVVbljPGg1zhbXIlMmpYJ82UknnUvP4kDNPT/FBiPU7U3zACdfYgHMUHOt3lmP949fHPdbnPC8ZO3ENgQiEy5wvEdPz0jmjyyPB7U5FlaNBHi7VudsiOaxwgt1aZ7w2lQSbPGKeci40Scad0EslnHky7kwptz3ptqfio9seb5tEzA3lYUgMOvO4Ox8b2OPaB0cvejkZvoBz1BssduahIgiVQFGVM7QRKoFgkftYiRvYpUeHd7jcadd9SkQKVm4F+zeuco48xwWyG9DjQjt1dHhn6MyUSfMFwR9yznkORJ2LVwIRdz3ifAEYmO20B8c8np7S2wXCo88PRt1gTgd40eiyglhEJim3gr1qmXMkbPzg87tz35j1I5ZHtnHnxnfE9kfM/SHwB50pHcz+gDOfcD09hZwj5vTzfQENRYhIzppUsBtjrgO+AviBb1lr78tKNe/8ZlZ2KyIynZzwHEFjjB/4GnA9cA5wmzFGvwcgIpKjJnPy98XAbmvtXmttDHgU+LPsliUiIqdqMsE+D2gYs97otomISA6aTLBP9C3hUaegGGPuNMZsNMZsbGtrm+ApIiIyFSYT7I3A2EtCa4FDR25krX3QWrvKWruquro6U/WJiMhJmkywbwCWGmPqjDEh4Fbgl9ktS0RETtUJT3e01iaMMR8BnsY53fEha+2WrFcmIiKnZFLnsVtrnwSezHItIiKSAcbazF+Kb4xpA/qBwxnfef6pQv2Qpr4Ypb5wqB9GLbPWlmZiR1m5pYC1ttoYs9Fauyob+88n6odR6otR6guH+mGUMWZjpvalX6cQESkwCnYRkQKTzWB/MIv7zifqh1Hqi1HqC4f6YVTG+iIrX56KiIh3NBQjIlJgMh7sxpjrjDE7jDG7jTF3ZXr/ucAY85AxptUY8/qYtkpjzDPGmF3ufIbbbowxX3X741VjzIVjnvNed/tdxpj3evFeTocxZr4x5nljzDZjzBZjzMfc9unYFxFjzHpjzGa3Lz7rttcZY9a57+uH7tXbGGPC7vpu9/FFY/Z1t9u+wxizxpt3dHqMMX5jzCvGmMfd9enaD/uNMa8ZY+rTZ71MyefDWpuxCefK1D3AYiAEbAbOyeRr5MIEXAVcCLw+pu3/AHe5y3cB97vLa4GncG6mdimwzm2vBPa68xnu8gyv39tJ9kMNcKG7XArsxLln/3TsCwOUuMtBYJ37Hn8E3Oq2fx34G3f5Q8DX3eVbgR+6y+e4n5swUOd+nvxev79T6I+/A34APO6uT9d+2A9UHdGW9c9Hpt/EZcDTY9bvBu72unOz9B9s0RHBvgOocZdrgB3u8jeA247cDrgN+MaY9nHb5eME/AJ4+3TvC6AIeBm4BOfim4DbPvL5wLlFx2XucsDdzhz5mRm7Xb5MODcKfBa4BnjcfV/Trh/cuicK9qx/PjI9FDOd790+21rbBODOZ7ntx+qTguor95/QF+AcqU7LvnCHH+qBVuAZnKPMLmttwt1k7Psaec/u493ATAqjL/4V+BSQctdnMj37AZxbnP8/Y8wmY8ydblvWPx+ZvvJ0Uvdun2aO1ScF01fGmBLgp8DHrbU95tg/9F3QfWGtTQIrjTEVwM+AsyfazJ0XZF8YY24EWq21m4wxV6ebJ9i0oPthjMuttYeMMbOAZ4wx24+zbcb6ItNH7JO6d3uBajHG1AC481a3/Vh9UhB9ZYwJ4oT69621j7nN07Iv0qy1XcALOOOkFcaY9AHU2Pc18p7dx8uBDvK/Ly4HbjbG7Mf5Gc1rcI7gp1s/AGCtPeTOW3H+2F/MFHw+Mh3s0/ne7b8E0t9WvxdnvDnd/h73G+9LgW73n19PA9caY2a434pf67blDeMcmn8b2Gat/fKYh6ZjX1S7R+oYY6LA24BtwPPAu9zNjuyLdB+9C3jOOgOovwRudc8WqQOWAuun5l2cPmvt3dbaWmvtIpzP/3PW2r9kmvUDgDGm2BhTml7G+f/6dabi85GFLwvW4pwdsQf4tNdfXmTpC5FHgCYgjvPX9AM444LPArvceaW7rQG+5vbHa8CqMft5P7Dbnd7n9fs6hX64AuefhK8C9e60dpr2xQrgFbcvXgf+0W1fjBNIu4EfA2G3PeKu73YfXzxmX592+2gHcL3X7+00+uRqRs+KmXb94L7nze60JZ2HU/H50JWnIiIFRleeiogUGAW7iEiBUbCLiBQYBbuISIFRsIuIFBgFu4hIgVGwi4gUGAW7iEiB+f+vkvM2LCdH6gAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -536,10 +541,13 @@ "source": [ "plt.clf()\n", "# plt.plot(x_part, calcs, '.')\n", - "plt.plot(test_q, calcs_test, label = 'pdf')\n", + "# plt.plot(test_q, calcs_test, label = 'pdf')\n", + "plt.plot(test_q, f0_y, label = '0')\n", + "plt.plot(test_q, fT_y, label = 'T')\n", + "plt.plot(test_q, fplus_y, label = '+')\n", "# plt.plot(test_q, res_y, label = 'res')\n", "plt.legend()\n", - "plt.ylim(0.0, 4e-4)\n", + "# plt.ylim(0.0, 6e-4)\n", "# plt.yscale('log')\n", "# plt.xlim(3080, 3110)\n", "plt.savefig('test.png')\n", @@ -606,7 +614,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -635,7 +643,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -652,7 +660,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -682,7 +690,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -691,7 +699,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -713,7 +721,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -750,7 +758,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -772,7 +780,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -799,7 +807,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -841,7 +849,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -858,18 +866,9 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Time to generate full toy: 0 s\n", - "(5404696,)\n" - ] - } - ], + "outputs": [], "source": [ "print(\"Time to generate full toy: {} s\".format(int(time.time()-start)))\n", "\n", @@ -891,22 +890,9 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAD8CAYAAACPWyg8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XeYU2X2wPHvSTIZBEGKgAjooKKAii5iWVEXRRHLgl10dRFR1t/aXctQFBFRdC2ra0VRcUWKiICOjUVZVBABKYL0PoIOMlSBSbnn90fuQMAZmH5Tzud55snNmzfJufeZ5OQt972iqhhjjDGl4fM6AGOMMcnHkocxxphSs+RhjDGm1Cx5GGOMKTVLHsYYY0rNkocxxphS22/yEJE3RCRPRObFlf1TRBaKyFwR+UBEasc91ktElorIIhE5P668k1u2VESy48qbicg0EVkiIiNFJFiRO2iMMabilaTl8RbQaa+yCcBxqtoaWAz0AhCRVkBX4Fj3OS+JiF9E/MCLwAVAK+Aaty7AE8Czqtoc2Aj0KNceGWOMqXT7TR6qOhnI36vsc1WNuHe/BZq4212AEapaoKorgKXAKe7fUlVdrqohYATQRUQEOAcY7T5/KHBJOffJGGNMJQtUwGvcCIx0txsTSyaFct0ygDV7lZ8K1AM2xSWi+Pq/IyI9gZ4ANWrUOKlFixblDt6YtLJ2Vuz20D94G0dR8n6ESAE0aAWBTK+jSVkzZ878VVXrl/d1ypU8RKQPEAGGFRYVUU0puoWj+6hfJFUdDAwGaNu2rc6YMaNU8RqT9h4+yL1NwM/OcyfAxpVw2xg4uLnX0aQsEVlVEa9T5uQhIt2Ai4EOunuBrFygaVy1JsBad7uo8l+B2iIScFsf8fWNMWmlqN+SJlGVaaquiHQCHgA6q+r2uIfGA11FJFNEmgHNge+A6UBzd2ZVkNig+ng36XwJXOE+vxswrmy7YoxJCbZYa1IoyVTd4cBU4BgRyRWRHsALQE1ggojMFpFXAFR1PjAK+BH4FLhVVaNuq+I24DNgATDKrQuxJHSPiCwlNgYypEL30BhjTIXbb7eVql5TRHGxX/CqOhAYWET5x8DHRZQvJzYbyxhj2MewZ4UIh8Pk5uayc+fOSn0fr1WrVo0mTZqQkZFRKa9fEbOtjDEmaeTm5lKzZk2ysrKInS2QelSVDRs2kJubS7NmzSrlPWx5EmNMYqnkMY+dO3dSr169lE0cACJCvXr1KrV1ZcnDGJMYqvDLPJUTR6HK3kdLHsaYBGOzrZKBJQ9jjElAkyZN4uKLLwagoKCAc889lxNPPJGRI0fu55lVwwbMjTGJxc7z+J1Zs2YRDoeZPXu216HsYi0PY0yCSP1xiEIrV66kRYsWdOvWjdatW3PFFVewfft2Pv30U1q0aMEZZ5zBmDFjAMjLy+O6665j9uzZnHjiiSxbtszj6GOs5WGMSTBV2PL4JBt+/qFiX/OQ4+GCQfuttmjRIoYMGUK7du248cYbeeaZZ3j11Vf54osvOOqoo7j66qsBaNCgAa+//jpPPfUUH330UcXGWg7W8jDGGA80bdqUdu3aAXDdddcxY8YMmjVrRvPmzRERrrvuOo8j3DdreRhjEktVjnmUoIVQWfaeSrt58+akmkJsLQ9jTGJIoi/OirB69WqmTp0KwPDhwzn33HNZsWLFrjGN4cOHexneflnyMMYkmPSYbdWyZUuGDh1K69atyc/P5+6772bw4MFcdNFFnHHGGRx++OFeh7hP1m1ljDEe8Pl8vPLKK3uUderUiYULF/6ubvv27Wnfvn0VRVYy1vIwxiQWO88jKVjyMMaYKpaVlcW8efO8DqNcLHkYYxKMtTySgSUPY0yCSK/ZVsnOkocxJrHYmEdSsORhjDGm1GyqrjEmwVRtyyMrO6dCX2/loItK/ZyHH36YAw88kHvvvbfIx8eOHcvRRx9Nq1atyhtehbGWhzEmMaTZGealMXbsWH788Uevw9iDJQ9jTGJJkzGPgQMHcswxx3DuueeyaNEiAF577TVOPvlkTjjhBC6//HK2b9/OlClTGD9+PPfdd9+uJdmLqlfVLHkYY0wVmzlzJiNGjGDWrFmMGTOG6dOnA3DZZZcxffp05syZQ8uWLRkyZAinn346nTt35p///CezZ8/myCOPLLJeVbMxD2NMgkn9lsdXX33FpZdeSvXq1QHo3LkzAPPmzaNv375s2rSJbdu2cf755xf5/JLWq0yWPIwxCSK9xjyKWn79hhtuYOzYsZxwwgm89dZbTJo0qcjnlrReZbJuK2NMYkn9hgdnnXUWH3zwATt27GDr1q18+OGHAGzdupVGjRoRDocZNmzYrvo1a9Zk69atu+4XV68qWcvDGJPWyjK1trzatGnD1VdfzYknnsjhhx/OmWeeCcCAAQM49dRTOfzwwzn++ON3JYyuXbty88038/zzzzN69Ohi61Ul0f3MbBCRN4CLgTxVPc4tqwuMBLKAlcBVqrpRYu2w54ALge3ADar6vfucbkBf92UfVdWhbvlJwFvAAcDHwJ26v6CAtm3b6owZM0qzr8aYhw9ybzd7G0dRXjgFfl0EN02EJm0r7W0WLFhAy5YtK+31E0lR+yoiM1W13Ae4JN1WbwGd9irLBiaqanNgonsf4AKgufvXE3jZDbYu0A84FTgF6CciddznvOzWLXze3u9ljDEmwew3eajqZCB/r+IuwFB3eyhwSVz52xrzLVBbRBoB5wMTVDVfVTcCE4BO7mO1VHWq29p4O+61jDHpKE3O80h2ZR0wb6iq6wDc2wZueWNgTVy9XLdsX+W5RZQbY9JW5SePEvSMJ73K3seKnm1V1Fw7LUN50S8u0lNEZojIjPXr15cxRGNMYqqaL/Rq1aqxYcOGlE4gqsqGDRuoVq1apb1HWWdb/SIijVR1ndv1lOeW5wJN4+o1Ada65e33Kp/kljcpon6RVHUwMBhiA+ZljN0Yk4gKv8wr+Uu9SZMm5Obmkuo/QKtVq0aTJk32X7GMypo8xgPdgEHu7bi48ttEZASxwfHNboL5DHgsbpC8I9BLVfNFZKuInAZMA/4K/LuMMRljklrV/B7MyMigWbNmVfJeqWy/yUNEhhNrNRwsIrnEZk0NAkaJSA9gNXClW/1jYtN0lxKbqtsdwE0SA4Dpbr1HVLVwEP7/2D1V9xP3zxiTbna1OKxTIRnsN3mo6jXFPNShiLoK3FrM67wBvFFE+QzguP3FYYxJdZY0koktT2KMSSwpPJCdSix5GGMSgyWNpGLJwxiTIGzMI5lY8jDGJIYKankUXpO8oq9NbvZkycMYkyDKf57H3gnDEkjlseRhjEkM1luVVCx5GGMSRMnHPPbXorAWR+Wz5GGMSQwl6K4qa1LIys4p9rnx5ZZ0Ss6ShzEmsZRizKMsX/w2oF4xLHkYYxKDRktVvaSJw5JK5bDkYYxJDNGwu7Fny6O0X+YHsp2jZQ2n++bRyfcd5/u+42zfLI6VlZyQPXKP1yxJV5YpWllX1TXGmIrlhIt9qPhWhnJ2r9fp5p/LH30/0kpWcphv30utr3HqM0OPZkL0JCY6bSggWN7I05IlD2NMQti+YyfVhRKNeTSTdVzi/5ouvilk+X4BYLVTn7l6JCPCZ7NKD+FXPYjN1EBQMgnTUDZymPzCib6lnOH7gUv937BVD2B49BxOyd4I1NnjPbKyc1g56KJK2NPUYMnDGOO5rOwcFmdGALjm9WlMdbYB7PHl7SfK+b7p3Bj4lLa+xURV+MY5jtfDFzLZac1qbbjvNynMSVHw4XCqbwFX+7/kRv8ndPN/zsvRP/NypLO1RErIkocxxlOF3VBBiQ2Y+3H2eCyTEH/xT+TGwCc0kV9Z6TRkYPhaxkXbkbdXa6GkHHxMdY5lqnMsT8uV3BcYxV2BMXT2TeH28B3M16w9YrAWyO9Z8jDGJJTq7AQgQIQr/f/jjsAHNJJ8pjkteCR8Pf91TsKpwLk+a7Qhd4RvZ2S0PU9lvMqYYD8ejNzAqOjZFfYeqciShzEmAewe56hOAaf5fmRgYAhH+tbxvXMUd4f/zrdOq0qN4BvneC4qeIx/ZbzIkxmv0Yh80Asr9T2TmSUPY0yVKa4LqJn8vGv7X8GXAFjlNODm0D1McE4CpEriy6cWN4bv43F9nbsz3mfwgzuBa6vkvZONJQ9j0pEqSNV8IRcqbsXbA9hJ/8BbRFXwS6wF8kKkC/+OXOrJ4HWEAPdF/sZvVKNnIIdNWoOs7NixsrGP3ewkQWNMpSnqZLv4spayig+DfTnDN49ekZs4o+BfnFHwL56KXO3xrCehf+SvjImewf0Zo7jMNxmwkwfjWcvDGFPlsrI/4q/+z+kTeJdN1OC6cC+mOMd5HdYeFB/3h3tyCPk8ljGERaGmzNdmXoeVMCx5GJOOKrnbal+/0GuzlSczBtPRP5Mvoidyb/gW8qlVabGUR4QAt4Xv4MPMPrwafJYLCx73OqSEYd1WxphKV5hMTpUFfJzZi/a+2TwSvp4bw/clbOIolE8t/h66k0PIp1/G29Z15bLkYUxaqrrL9mVl5+Anyt2B0bwbfJSdGuSyUH/eiF5AVc2iKq85ehQvRi/hcv9XdPRN9zqchGDJwxhTqRqznhHBAdwZGMOY6JlcHHqMeXqE12GV2guRS5jnZDEw4w3YudnrcDxnycOYdBG/4GApLrhUEvFX6ovv1rnQ9y2fZPaihazhjtCt3Be5he1Uq9D3riphAmSHb6IeW2DSE16H4zlLHsakiwpOGPuSSYjHAq/xUvB5lmsjLgw9xninXZW9f2WZp0cwItqe8NRXIG+h1+F4ypKHMelCnfg7lfIWWdk5NJVfGBPsx7WBL3k58meuCPVjzf5WvE0iT0WuZjuZTPp3T69D8VS5koeI3C0i80VknogMF5FqItJMRKaJyBIRGSkiQbdupnt/qft4Vtzr9HLLF4nI+eXbJWNM0SouYcR3UcV3U3XwzSQn2IfG8ivdQ/fxROQaIil2RkA+tXgx0oX2/jlc0etpr8PxTJmTh4g0Bu4A2qrqcYAf6Ao8ATyrqs2BjUAP9yk9gI2qehTwrFsPEWnlPu9YoBPwkoj4yxqXMaYYlTDOUchPlPsCIxgSfJpV2oCLQwP50vlDhb5fInk72pH1ehD3ZrxHVvZHXofjifJ2WwWAA0QkAFQH1gHnAKPdx4cCl7jbXdz7uI93EBFxy0eoaoGqrgCWAqeUMy5jzN7iu60qMJHUYzNvZwzi1sB43o2czRWhh8nVBhX2+oloJ5m8ELmE03wLaOebB6Tf0iVlTh6q+hPwFLCaWNLYDMwENqlqxK2WCzR2txsDa9znRtz69eLLi3jOHkSkp4jMEJEZ69fv+zrFxpi9Vfw4RxtZzEeZfTjJt5h7w3+jd+TmtLkS3/DoOfysdfg///i0SxxQvm6rOsRaDc2AQ4EawAVFVC38jy3qbCDdR/nvC1UHq2pbVW1bv3790gdtTDqrgAHz+DGOa/0TGRkcQIFmcFmoP6Ojf6qAIJNHiAzejHTiDP98WslKr8OpcuXptjoXWKGq61U1DIwBTgdqu91YAE2Ate52LtAUwH38ICA/vryI5xhjKooT2X+dIuz9qzqDCI8GhvBYxhC+do6jc+hRfoy7bGs6GR49h21ajZsCH3sdSpUrT/JYDZwmItXdsYsOwI/Al8AVbp1uwDh3e7x7H/fxL1RV3fKu7mysZkBz4LtyxGWMKUo0LnmUcsyjsMVxMJsZFhzIdYGJvBTpTI/wfWyhRgUHmjy2UIOR0bP5s28qjdjgdThVqjxjHtOIDXx/D/zgvtZg4AHgHhFZSmxMY4j7lCFAPbf8HiDbfZ35wChiiedT4FZVjZY1LmNMMZxw3HbJWiHxrY5jZQXjMvtyvKzgjtBtPBnpWqHXEk9Wb0Y74ceha+ALr0OpUuWagK2q/YB+exUvp4jZUqq6E7iymNcZCAwsTyzGmP2IxiePcPH1itDZN4UnM15lA7W4ItTPrmsRJ1frM9lpzVX+/8Vad/7UOq+lOPazwZh0EZ8wonu2PIq74p8Ph+zAuzwffIE5eiSdCx61xFGE4dFzaCT5sHSC16FUmfRIkcYYcOJ6g4tpecQnkVps4/mMF2nvn8N/IufySOSvhO0ro0gTnT+Qp7WZ886TnDegqEmnqcf+E4xJF/HdVtF9d1sdLj/zRsY/aSp59Ar3YHi0QyUHl9wiBHgveha3+D+ELWuh1qFeh1TprNvKmHSxnwHzwlbHKbKAscGHqCNb+UuojyWOEhod/RN+UQY88ajXoVQJa3kYky5Cv+3eLma21eW+yTye8RprtAHdw/ezOoVWw61sK7QRc51mdPFP8TqUKmEtD2PSRcG23dtx3VZZ2TkIDvcGRvJ08BWmOy24NNTfEkcZjIueTmvfCs7u9brXoVQ6Sx7GpIvQ1t3bTnjXiX+ZhHgh43luC4zj3cjZdAs/wBYO9C7OJPZR9I84KnT2pX7rw5KHMeki/rrb7lTd+mxiZHAAF/im82j4L/SO3JRy19+oSr9Ql2+dlnT2T0n5pdoteRiTBrKyc2DzT7vu3/Dy5xwjq/kg8yGOllxuCd/F69GLKHqdUlMaHzl/5EjfOo6WXK9DqVSWPIxJF/nLcDSWHK71T2R0sD8BolwZeojPnZM9Di51/DfaBoDzfDNTeql2Sx7GpAE/UfLmfcknzsls0QPo6J/JCj2ELgUD7IzxCpZHHWY5R9HRP8PrUCqVJQ9jUljhL9+LfVNpIJsYH23H38L38Ej4eq4M9eMX6nocYWqaED2JE3zLOSSFV9q15GFMitrVZbJhGQ9nvM1s5wgmOCcx1TmWN6IXpM0V/7zwmdMWgHP933scSeWx5GFMCmvMeni7Cw7CXeFbbQn1KrJMD2W5cwgdfanbdWX/ScakiL0HZ5tLLiMzB7B50wauD/VipTbyKLJ0JEx02nCqbwGEtnsdTKWw5GFMisnKzuGa3k/yfvBhgkS4NtQ3bS8T66XJTmsyJcINDz/rdSiVws4GMibFXOL7miczXmWlHkL30P38RH2vQ0pL3zkt2KkZnOn7wetQKoW1PIxJAbEuK+WffW7mX8GXmOEcwxWhhy1xeKiAIN85LTjLNzclz/ew5GFMCggS5onAa9yXMYox0TPoFs5mCzW8DivtTXZa09z3E41ScMqudVsZk4SysnNYOegisrJzqMdm3gn+i1N8i3gucinPRq7AlhlJDJOd1sAwzvTP9TqUCmfJw5gklZWdQ0tZxWvBpzmYzdwWup2PnD96HZaJs1ib8LPW4awUHPew5GFMkjrfN51nMl5iCzW4ItSPeXqE1yGZ3xGmOMdypm8uqIKkTovQkocxSWL3oKtym38s92a8x2znSG4O3cN66ngamyned04LLvN/Db8ugfpHex1OhbHkYUwSqUYBT2YMprN/KmOiZ9ArfJMtM5LgpjktYxurvk6p5GGzrYxJYPFTPBuSz6jgI1zs+5ZB4a7cE/4/SxxJYIUeQp7WZuy497wOpUJZ8jAmAe19XsAlvZ7jw8y+HCHruDl8D69EO2MzqpKFMM1pwam+hbFxjxRhycOYBBKfNAq37+zdi5HBAezUDC4L9Weic5JX4Zkymua0pJHkw8YVXodSYcqVPESktoiMFpGFIrJARP4oInVFZIKILHFv67h1RUSeF5GlIjJXRNrEvU43t/4SEelW3p0yJpkVJg0/UXoHhvFc8CVm6VF0CQ1gsTb1ODpTFrvHPaZ4G0gFKm/L4zngU1VtAZwALACygYmq2hyY6N4HuABo7v71BF4GEJG6QD/gVOAUoF9hwjEmncS3OuqwhaEZg+gZyOGtSEeuD/ViI7U8jM6UxxJtzAatackDQERqAWcBQwBUNaSqm4AuwFC32lDgEne7C/C2xnwL1BaRRsD5wARVzVfVjcAEoFNZ4zIm2R0rK/kwsy8n+xZzb/hvPBy5gbBNjExywvdOc8id7nUgFaY8/5FHAOuBN0XkBGAmcCfQUFXXAajqOhFp4NZvDKyJe36uW1Zc+e+ISE9irRYOO+ywcoRuTOKIb3F09n3DExmvsZEDuTL0EHP1SA8jMxVplnMU5/06CnZshAOSv3OlPN1WAaAN8LKq/gH4jd1dVEUpamqI7qP894Wqg1W1raq2rV/fVgs1yS9+fKNv4D88H3yRuXoEfy4YaIkjxczS5rGNn2Z6G0gFKU/yyAVyVXWae380sWTyi9sdhXubF1c/frSvCbB2H+XGpKz41kZdtvCfjMe5KfAJb0bO5y+h3mzgIA+jM5VhrnMEjgrkpsalacucPFT1Z2CNiBzjFnUAfgTGA4UzproB49zt8cBf3VlXpwGb3e6tz4COIlLHHSjv6JYZk9KysnM4VlYwPrMvJ/mW8I/QLfSPdCNi4xsp6TcOYJE2SZlxj/L+l94ODBORILAc6E4sIY0SkR7AauBKt+7HwIXAUmC7WxdVzReRAUDhEX1EVfPLGZcxCe8S39cMyniNDdTiclvYMC3Mco6i0ZKp1HYc8CX3aXblSh6qOhtoW8RDHYqoq8CtxbzOG8Ab5YnFmERV2EW1ctBFsYJIiH6BoXQPfMa3TktuDd1h3VRpYpY251r5EvKXwcHNvQ6nXJI79RmTRLKyc2DzT3z/yB/pHviMIZELuC7UyxJHGpnlHBXbSIGuK0sexlSi+IHxdr4f2PDMqRwtufw9dAcDItfb+EaaWaaHslUPSIkZV5Y8jKlkgsOt/rH8J2MQG7QWnUOP8rFzmtdhGQ8oPn7Uw2Fd8l+W1n72GFOJarGNZzNepoN/FmOjp9M7fBPbqeZ1WMZD85xmnPrzJHCi4PN7HU6ZWfIwppJc3Ovf5ASfo6Hk0zfcnXei52LLqJt5ThZEdsSuLNighdfhlJl1WxlTAQrHNrKyc8jK/ghmvsX7wf74xOGqUD/eiZ6HJQ4DME+bxTbWzfE2kHKy5GFMBcnKzqEaBfwz8Cp8eCfTnBZcXDCQ2XqU16GZBLJcG7FDg5Y8jElX8a0NgCPlJ8YGH+Jy/1c8F7mMG8IP2DLq5nei+FmghyV98rAxD2PKYO/EcblvMgMy3mQ7mdwQvp/JzglehmcS3DynGUet/JpaSXymeXJGbUyCqM5Ons54maeDrzDHOZILCx63xGH2a55mUUt2JPVlaa3lYUwZtZDVvJDxPEfIOp4NX86/o5fi2O8xUwLznbhB83rJufS+/acbU0pZ2R9xjX8iY4MPUku285dwb56LXm6Jw5TYYm1CWP28OOIDr0MpM2t5GFMKx2W/x/MZQ+jsn8rk6PHcHf67rU1lSi1MgOXaiGNkzf4rJyj7qWTMfuxan2rtbD4M9uFC3zSeDF9Nt/ADljhMmS3SprTwJW/ysJaHMcUoTBqCw4A+f+f+wEgypRZdQ32Zocl7ZrBJDAudpnT2T4WdW6Ba8k3ptuRhTBEKE0d9NvJ0xiuc5f+Bz6MncX+4J5uo6XF0JhUsVvfq2+sXQtNTvA2mDKzbyhhX/PLpAB18M/k0M5uTfYvoFe5Bz/A9ljhMhVlYmDx+me9tIGVkLQ9j4hQuMTIgMIzrA/9lvnM4d4RvY5k29jo0k2J+0oPZptUYPfZjbmjb3etwSs2ShzHsbnW0lFU8n/ECzX0/MThyEU9FriJEhsfRmVSk+FisTThGcr0OpUwseZi0l5Wdg+Bwo/9T7g+MYBMHcl2oF187x3sdmklxi5ymnO+fDqogybXqso15mLSWlZ1DfTYyNOMJHsx4h8nOCXQqGGSJw1SJRdqUurINtv3idSilZsnDpJW9B8Uv9H3L55kPcLJvEX3CN3Jz+B5bCddUmUVJPGhuycOkvL0TBkDr7JGMffACXgo+zyptwMWhgQyzK/2ZKrbQcZNH3gJvAykDG/MwaaMwify192N8njmYemzh6fAVvBTtQpTkvZa0SV4bqcUGrUm9Xxd7HUqpWfIwaSErO4cD2EnvwLtcH/gvi53G3BT+B/P0CK9DM2luqTa25GFMomoji3km42UOkzwGRy7i6ciVFBD0OixjWOY04qhVM6jndSClZGMeJuXEj3EcnT2W+wMjeC/YHz8O14T68ljkL5Y4TMJYpodST7bCbxu8DqVUyt3yEBE/MAP4SVUvFpFmwAigLvA9cL2qhkQkE3gbOAnYAFytqivd1+gF9ACiwB2q+ll54zLpLSs7h2NlBeOCr9LSt5rhkbN5NHIdv3GA16EZs4dlemhsY8MSqJE87Y+KaHncCcRPFXgCeFZVmwMbiSUF3NuNqnoU8KxbDxFpBXQFjgU6AS+5CcmYEotvbQQJc29gJOOCD1JXttAj9A96RW62xGES0tLCpW+SbNyjXMlDRJoAFwGvu/cFOAcY7VYZClzibndx7+M+3sGt3wUYoaoFqroCWAok3xKTxnNZ2TmQO4OcYG9uC4zjg+gZnFfwJBOdk7wOzZhirdWD2akZsH6R16GUSnm7rf4F3A+7lhqtB2xS1Yh7PxcoXFGuMbAGQFUjIrLZrd8Y+DbuNeOfswcR6Qn0BDjssMPKGbpJJZmEuCfwHtHXPqaG1KFb6AH+55zgdVjG7JeDjxXaiJa/LvE6lFIpc/IQkYuBPFWdKSLtC4uLqKr7eWxfz9mzUHUwMBigbdu2RdYx6eeKXk/zSXAwR/h+ZlikA49HrmEb1b0Oy5gSW6qH0jLJuq3K0/JoB3QWkQuBakAtYi2R2iIScFsfTYC1bv1coCmQKyIB4CAgP668UPxzjClWy+z3uT8wklHBz/lJD+baUG+mOMd5HZYxpbZMD4VN30F4J2RU8zqcEinzmIeq9lLVJqqaRWzA+wtV/QvwJXCFW60bMM7dHu/ex338C1VVt7yriGS6M7WaA9+VNS6T2nYNjC+fxGfBB+ge+Iyh0Y6cH3rCEodJWsucQ0EdyF/mdSglVhknCT4AjBCRR4FZwBC3fAjwHxFZSqzF0RVAVeeLyCjgRyAC3Kqq0UqIy6SAOmyBD26BOcOJ0pArCx5iul1P3CS5PWZcNTzW22BKqEKSh6pOAia528spYraUqu4Erizm+QOBgRURi0lNWdkfsbLrViZm3kt49g5eiV7CC5FL7GQ/kxKWayMcFXzrk2fcw84wNwlrVxfVhmW8k/EYjL2FFdqIi0KP8XTkKkt4cTbCAAAQiElEQVQcJmUUEGQt9SB/udehlJitbWUSVgYRmPwUOycOorUvQJ/wjbwbPQe13zwmBa1yGtIkzcc8jCm3y3o9y4fBIfDFGiY6p9A/3I086ngdljGVZqUeQrv82V6HUWL2E854bo+LNe3YxH/6Xs7oYH9qynZ6hP7BreG7LHGYlLdSG8L2DbBjk9ehlIglD+OZPZKGKvf0foD1g47nWv9E3oqeT0dbWsSkkVXaMLaRJOMe1m1lPJWVncMxshrevJBnglOY5RzFDeEHmK/NvA7NmCq1QhvFNvKXQ+M23gZTApY8jCeysnOowQ7uCrxPd/+n5K+qzhORmxkV/ZMNiJu0tFobxDaSpOVhn1JTpbKyc0CVP/umMDHzXnr4P2FUtD3nFDzNyOjZljhM2iogyE+aPNN17ZNqqkTh+MaR8hPfPNSOfwdfIE9rc2moP70jN7Fp18LMxqSvVU5D2JAc03Wt28pUiers5KW+1/NJMIcdZNI33J13ox1w7PeLMbus1EM4PX+u12GUiH1yTYXbYxaV48CcEXyZeQ9/D4xnXLQd5xQ8zTvR8yxxGLOX2HTdX2HnZq9D2S9reZjKkzsDPnkAfprBOj2SW0J3M0ubex2VMQlrlR4S28hfDof+wdtg9sN++pkKU9jiaMBG3n/wYni9A7/kLuWe0C1cGupvicOY/VhRmDySYNzDWh6mwmQSgq+e5svMJwgQ5cVIZ16KdOE3DvA6NGOSwu7puiu8DaQELHmY8lPlb336MyH4Dkxcz1fOyQyMXMuawjNmjTElspNM1mpdDk2CBRIteZjyWTeXb166hVeD81noNLVLwRpTTqucQzg0Cc71sORhyuS07Le5N+M9LvN9RStfDfqGuzM8eg5R/F6HZkxSW6P1OWL1HBK93W7Jw5TOzi38+9HbmZSZg6AMjl7ES5EubKGG15EZkxJWawMayiYI74CMxB0vtORhSiYapu9D93FX4H1uD2xhbPR0nopcTa7W9zoyY1LKmsLP1KbVUP8Yb4PZB0seZt9UuanPAHoF3uXRjHVMc1rQPXQ/P+gRXkdmTEpaUzjjauMqSx4m+WRl59BaltEnYxivBxeyzGnETaF/8F+nDSBeh2dMytqdPFZ6Gsf+WPIwv/OnXkN4PuM9Ovun8qvWom+4OyOiZxOxfxdjKt16DmKHBjlg0yqvQ9kn+zYwu21Zx7Anb+W/wUmECfBCpAuvRP7MNqp7HZkxaURYo/U52loeJuFtz+eVx+6gm/8zrvJHeTd6Di9ELmU9tb2OzJi0tEYbcPRGa3mYBNUyO3YVv1sCH9HTv4OxTjuejVxuZ4Yb47HV2gA2TQVVkMQcY7TkkWaysnPIIMKSy/KYnDmA+rKZCdE2PBW5ikV6mNfhGWMgNgW+YAvs2AjV63odTpEseaQTJ0oX39f8I/AefLye5dqCW0J3MVMTdzqgMelodfyMqwRNHmVekl1EmorIlyKyQETmi8idbnldEZkgIkvc2zpuuYjI8yKyVETmikibuNfq5tZfIiLdyr9bJl6z7A9h3hgWP3w8zwVfYivVuSF0P1eHHrTEYUwCSobpuuVpeUSAf6jq9yJSE5gpIhOAG4CJqjpIRLKBbOAB4AKguft3KvAycKqI1AX6AW0BdV9nvKpuLEdshljSON83g0+C78PoNQiNuS10OznOqahdysWYhLX7LPPEHTQvc/JQ1XXAOnd7q4gsABoDXYD2brWhwCRiyaML8LaqKvCtiNQWkUZu3Qmqmg/gJqBOwPCyxpbusrI/oqNvBjnBMbTyrWKZ04g7QrfxkXOaXfrVmCTwGwewQWtSL0VbHruISBbwB2Aa0NBNLKjqOhFx2180BtbEPS3XLSuu3JSWKj36DODD4Psc71vJCqchd4X+znjndEsaxiSZNVqfegk8XbfcyUNEDgTeB+5S1S1S/LSyoh7QfZQX9V49gZ4Ahx1mM4N2UYUlE5jzzgMMCS5nldOAf4RuYazTzpZINyZJrdEGnJiqLQ8RySCWOIap6hi3+BcRaeS2OhoBeW55LtA07ulNgLVuefu9yicV9X6qOhgYDNC2bdsiE0xaUaV7n4HcEfiAP/iWUpf63BfuyQfRM2wpEWOS3BptAJtnghMFX+L9CCzPbCsBhgALVPWZuIfGA4UzproB4+LK/+rOujoN2Ox2b30GdBSROu7MrI5umSmO48CP45jX70TeDP6T+rKJ7PBNnBN6mvei7S1xGJMC1mh9cMKwZa3XoRSpPN8y7YDrgR9EZLZb1hsYBIwSkR7AauBK97GPgQuBpcB2oDuAquaLyABgulvvkcLBc7OXaIQ7H3yQWwPjONr3E9U5hHvDf2NstJ0lDGNSzB7netRuus+6XijPbKuvKX5t7g5F1Ffg1mJe6w3gjbLGkvIiIZgznFXjHuW5YB4LnabcHrqNHJs9ZUzK2nWux6ZVwJmexlIU+7mawI7J/oBFl+bBN8/Blp/YxBE8GrqO/zpt7DwNY1LcWq1HVAV//gqvQymSJY9EtHMzzHiTrzOfgU82M81pwQuRbL5yjscuxGRMeogQYK0eTNMEPVHQkkci2bIOpr3Mlq8HU0t2sMA5nlsjl/CdtvQ6MmOMB1ZrA5om6LkeljwSQd5CRj1/P1cFp4BG+Z9zCq9GLmaeXSfcmLS2WhvQbuN8r8MokiUPr6jC6m+Z8HpvzvN/z5/9Qd4Knc2Q6AV2PQ1jDOBO1/0tD0K/QbCG1+HswZJHFWuW/SErusH3wx+mjW8pJ/kO5Nnw5bwdPY+N1PI6PGNMAtm9uu4qaNjK22D2YsmjqoS2w9wR/Df4JIxcx8HU58HwDbwX/RM7yfQ6OmNMAtrjXA9LHunlj9lvM7XDMjZ9/Rq15Te2k8Vtodv5xDnF1p0yxuzT6j3O9Ugsljwqgyqs+Q6mvcxXmeNgCkxx2vJmpBPT9Rhsuq0xpiQ2UpOtegA1E3CBREseFSkSgh/HMnv045zoWw6ZBzEkegH/CXWMXZPYGGNKRcjV+rS05JGifvsVZrzJL1+8QEPZRE0a0TfcnTE7z2Q71byOzhiTxFZrA0seKeeX+Yz4d28u9X9DpoRZ6LTmgWhP/ue0tuVDjDEVYrU2gI3zY93hxV8vqcpZ8igtJwqLP+ObYY/Szj+fLv4g70XP4s1oJ5apXQDRGFOxVmsDiOyAbXlQM3HOAbPkUVI7t8DsYaz6+BkO9+XRzFeXx8PXMCJ6Nps50OvojDEpak38dF1LHklkwzL4bjBbvx1KTdlBHkfzRKgrnzkn21RbY0yl2+Ncj8NO9TSWeJY8irNuDkx+CufHD4ngY4LzR96MdOIHW2/KGFOFftKDYxsJNmhuyWNva2fBl4/Bks/ZogfwdrQzQyMdWU8dryMzxqShAoKs07o0SrATBS15FNr6C0zsD7OHka8HMiRyFf+JnscWEmsxMmNM+lmtDWhkLY8EtOBDNo64hers5M3on3kh0oVtVPc6KmOMAWKD5qduXOZ1GHtI7+ShCv97EiY9xhptxl3hW1muh3odlTHG7GG10wC2fAWRAggkxkKq6X0m2/+egEmPMTp6FpeH+lviMMYkpNiMK4VNa7wOZZf0TR6LPoFJjzM6ehb3hv9GOM0bYcaYxLWmcG28BBr3SM/kEfoNcu5lgXMYvcM9sFVujTGJbPe5Hiu8DSROeiaPWcNgSy4PhW8gRIbX0RhjzD6tpzbbNRPyl3sdyi7pmTxmDGG2cyTTtYXXkRhjTAkIS7Qx5C3wOpBd0i955K+A9QsZG23ndSTGGFNiS7SJJQ9PrZgMwGSntceBGGNMyS1ymsC2n2F7vtehAOmYPNYvZLtmskIP8ToSY4wpsSXaJLaxfqG3gbgSJnmISCcRWSQiS0Uku9LeaMMyVuohdrEmY0xSWeQ0jW38Mt/bQFwJ8Q0qIn7gReACoBVwjYi0qpQ327mJjWrX3zDGJJd11OVnrQOrvvE6FCBBkgdwCrBUVZeraggYAXSplHcq2MZvdl1xY0zSEb6KHg9LJybEuEeinFbdGIg/7z4X+N1VT0SkJ9DTvbtNRDYAv5btLb8s29MS08GU+TikHDsWu9mxiEmZ43BV4UbvemV9iYOBwysilkRJHkWd4q2/K1AdDAze9SSRGaratjIDSwZ2HHazY7GbHYsYOw67ucciqyJeK1G6rXKBpnH3mwBrPYrFGGPMfiRK8pgONBeRZiISBLoC4z2OyRhjTDESottKVSMichvwGeAH3lDVksxHG7z/KmnBjsNudix2s2MRY8dhtwo7FqL6u6EFY4wxZp8SpdvKGGNMErHkYYwxptSSMnlU2VImHhKRN0QkT0TmxZXVFZEJIrLEva3jlouIPO8ej7ki0ibuOd3c+ktEpJsX+1IeItJURL4UkQUiMl9E7nTL0/FYVBOR70Rkjnss+rvlzURkmrtfI91JJ4hIpnt/qft4Vtxr9XLLF4nI+d7sUfmIiF9EZonIR+79dD0OK0XkBxGZLSIz3LLK/3yoalL9ERtQXwYcAQSBOUArr+OqhP08C2gDzIsrexLIdrezgSfc7QuBT4idL3MaMM0trwssd2/ruNt1vN63Uh6HRkAbd7smsJjYEjbpeCwEONDdzgCmufs4Cujqlr8C/J+7/XfgFXe7KzDS3W7lfm4ygWbu58nv9f6V4XjcA7wLfOTeT9fjsBI4eK+ySv98JGPLo+qWMvGQqk4G9l6DoAsw1N0eClwSV/62xnwL1BaRRsD5wARVzVfVjcAEoFPlR19xVHWdqn7vbm8FFhBbkSAdj4Wq6jb3bob7p8A5wGi3fO9jUXiMRgMdRETc8hGqWqCqK4ClxD5XSUNEmgAXAa+794U0PA77UOmfj2RMHkUtZdLYo1iqWkNVXQexL1XAvbBxscckpY6V293wB2K/uNPyWLhdNbOBPGIf8GXAJlWNuFXi92vXPruPbwbqkRrH4l/A/YDj3q9Heh4HiP2A+FxEZkpsCSeogs9HQpznUUolWsokzRR3TFLmWInIgcD7wF2quiX2w7HoqkWUpcyxUNUocKKI1AY+AFoWVc29TcljISIXA3mqOlNE2hcWF1E1pY9DnHaqulZEGgATRGRfF/yosGORjC2PdF7K5Be3iYl7m+eWF3dMUuJYiUgGscQxTFXHuMVpeSwKqeomYBKxfuvaIlL4QzB+v3bts/v4QcS6QpP9WLQDOovISmLd1ucQa4mk23EAQFXXurd5xH5QnEIVfD6SMXmk81Im44HCWRDdgHFx5X91Z1KcBmx2m6qfAR1FpI4726KjW5Y03L7pIcACVX0m7qF0PBb13RYHInIAcC6xMaAvgSvcansfi8JjdAXwhcZGR8cDXd1ZSM2A5sB3VbMX5aeqvVS1icYW+OtKbL/+QpodBwARqSEiNQu3if1fz6MqPh9ezxQo4+yCC4nNulkG9PE6nkrax+HAOiBM7FdBD2L9tBOBJe5tXbeuELuY1jLgB6Bt3OvcSGwgcCnQ3ev9KsNxOINY83kuMNv9uzBNj0VrYJZ7LOYBD7nlRxD70lsKvAdkuuXV3PtL3cePiHutPu4xWgRc4PW+leOYtGf3bKu0Ow7uPs9x/+YXfh9WxefDlicxxhhTasnYbWWMMcZjljyMMcaUmiUPY4wxpWbJwxhjTKlZ8jDGGFNqljyMMcaUmiUPY4wxpfb/PF3sT8+FSGsAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "bins = int((x_max-x_min)/7)\n", "\n", @@ -928,7 +914,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -958,177 +944,9 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
FCN = 18537900.293873098TOTAL NCALL = 194NCALLS = 194
EDM = 0.03059806673262826GOAL EDM = 5e-06\n", - " UP = 0.5
\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
ValidValid ParamAccurate CovarPosDefMade PosDef
FalseTrueTrueTrueFalse
Hesse FailHasCovAbove EDMReach calllim
FalseTrueTrueFalse
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
+NameValueHesse ErrorMinos Error-Minos Error+Limit-Limit+Fixed?
0jpsi_s464.5240.229484No
1psi2s_s76.50240.0505517No
2psi2s_p0.305380.0245293No
3jpsi_p-9.423230.0114089No
\n", - "
\n",
-       "\n",
-       "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "ename": "RuntimeError", - "evalue": "Function mimimum is not valid. Make sure migrad converge first", - "output_type": "error", - "traceback": [ - "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[1;31mRuntimeError\u001b[0m Traceback (most recent call last)", - "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[0;32m 5\u001b[0m \u001b[0mresult\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mminimizer\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mminimize\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mnll\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 6\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 7\u001b[1;33m \u001b[0mparam_errors\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mresult\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0merror\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 8\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 9\u001b[0m \u001b[1;32mfor\u001b[0m \u001b[0mvar\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0merrors\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mparam_errors\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mitems\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;32mc:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\minimizers\\fitresult.py\u001b[0m in \u001b[0;36merror\u001b[1;34m(self, params, method, error_name, sigma)\u001b[0m\n\u001b[0;32m 227\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 228\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0muncached_params\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 229\u001b[1;33m \u001b[0merror_dict\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_error\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mparams\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0muncached_params\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mmethod\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mmethod\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0msigma\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0msigma\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 230\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_cache_errors\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0merror_name\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0merror_name\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0merrors\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0merror_dict\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 231\u001b[0m \u001b[0mall_errors\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mOrderedDict\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mp\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mparams\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mp\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0merror_name\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;32mfor\u001b[0m \u001b[0mp\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mparams\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;32mc:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\minimizers\\fitresult.py\u001b[0m in \u001b[0;36m_error\u001b[1;34m(self, params, method, sigma)\u001b[0m\n\u001b[0;32m 238\u001b[0m \u001b[1;32mexcept\u001b[0m \u001b[0mKeyError\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 239\u001b[0m \u001b[1;32mraise\u001b[0m \u001b[0mKeyError\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m\"The following method is not a valid, implemented method: {}\"\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mformat\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mmethod\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 240\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mmethod\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mresult\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mparams\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mparams\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0msigma\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0msigma\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 241\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 242\u001b[0m \u001b[1;31m# def set_error_method(self, method):\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;32mc:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\minimizers\\fitresult.py\u001b[0m in \u001b[0;36m_minos_minuit\u001b[1;34m(result, params, sigma)\u001b[0m\n\u001b[0;32m 46\u001b[0m \"`MinuitMinimizer`.\")\n\u001b[0;32m 47\u001b[0m result = [minimizer._minuit_minimizer.minos(var=p.name, sigma=sigma)\n\u001b[1;32m---> 48\u001b[1;33m for p in params][-1] # returns every var\n\u001b[0m\u001b[0;32m 49\u001b[0m \u001b[0mresult\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mOrderedDict\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mp\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mresult\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mp\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mname\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;32mfor\u001b[0m \u001b[0mp\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mparams\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 50\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mresult\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;32mc:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\minimizers\\fitresult.py\u001b[0m in \u001b[0;36m\u001b[1;34m(.0)\u001b[0m\n\u001b[0;32m 46\u001b[0m \"`MinuitMinimizer`.\")\n\u001b[0;32m 47\u001b[0m result = [minimizer._minuit_minimizer.minos(var=p.name, sigma=sigma)\n\u001b[1;32m---> 48\u001b[1;33m for p in params][-1] # returns every var\n\u001b[0m\u001b[0;32m 49\u001b[0m \u001b[0mresult\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mOrderedDict\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mp\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mresult\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mp\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mname\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;32mfor\u001b[0m \u001b[0mp\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mparams\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 50\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mresult\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;32miminuit\\_libiminuit.pyx\u001b[0m in \u001b[0;36miminuit._libiminuit.Minuit.minos\u001b[1;34m()\u001b[0m\n", - "\u001b[1;31mRuntimeError\u001b[0m: Function mimimum is not valid. Make sure migrad converge first" - ] - } - ], + "outputs": [], "source": [ "nll = zfit.loss.UnbinnedNLL(model=total_f, data=data3, fit_range = (x_min, x_max))\n", "\n", diff --git a/test.png b/test.png index 17333a7..e63de94 100644 --- a/test.png +++ b/test.png Binary files differ