diff --git a/.ipynb_checkpoints/raremodel-nb-checkpoint.ipynb b/.ipynb_checkpoints/raremodel-nb-checkpoint.ipynb index 6bee98e..49d09d1 100644 --- a/.ipynb_checkpoints/raremodel-nb-checkpoint.ipynb +++ b/.ipynb_checkpoints/raremodel-nb-checkpoint.ipynb @@ -52,8 +52,10 @@ "import tensorflow as tf\n", "import zfit\n", "from zfit import ztf\n", - "# from IPython.display import clear_output\n", - "import os" + "from IPython.display import clear_output\n", + "import os\n", + "import tensorflow_probability as tfp\n", + "tfd = tfp.distributions" ] }, { @@ -81,8 +83,10 @@ "metadata": {}, "outputs": [], "source": [ - "def formfactor( q2, subscript): #returns real value\n", + "def formfactor(q, subscript): #returns real value\n", " #check if subscript is viable\n", + " \n", + " q2 = tf.pow(q,2)\n", "\n", " if subscript != \"0\" and subscript != \"+\" and subscript != \"T\":\n", " raise ValueError('Wrong subscript entered, choose either 0, + or T')\n", @@ -151,7 +155,7 @@ "\n", " p0 = 0.5 * ztf.sqrt(_mass**2 - 4*mmu**2)\n", "\n", - " gamma_j = tf.divide(p, q2) * _mass * width / p0\n", + " gamma_j = tf.divide(p, p0) * _mass * width / q2\n", "\n", " #Calculate the resonance\n", "\n", @@ -205,7 +209,7 @@ "\n", " beta = ztf.sqrt(tf.abs(1. - 4. * mmu**2. / q2))\n", "\n", - " kabs = ztf.sqrt(mB**2. +tf.pow(q2, 2)/mB**2. + mK**4./mB**2. - 2. * (mB**2. * mK**2. + mK**2. * q2 + mB**2. * q2) / mB**2.)\n", + " kabs = tf.abs(ztf.sqrt(mB**2. + tf.pow(q2, 2)/mB**2. + mK**4./mB**2. - 2. * (mB**2. * mK**2. + mK**2. * q2 + mB**2. * q2) / mB**2.))\n", "\n", " #prefactor in front of whole bracket\n", "\n", @@ -213,15 +217,15 @@ "\n", " #left term in bracket\n", "\n", - " bracket_left = 2./3. * kabs**2. * beta**2. *tf.abs(tf.complex(C10eff, ztf.constant(0.0))*formfactor(q2, \"+\"))**2.\n", + " bracket_left = 2./3. * kabs**2. * beta**2. * tf.abs(tf.complex(C10eff, ztf.constant(0.0))*formfactor(q, \"+\"))**2.\n", "\n", " #middle term in bracket\n", "\n", - " _top = 4. * mmu**2. * (mB**2. - mK**2.) * (mB**2. - mK**2.)\n", + " _top = 4. * mmu**2. * (mB**2. - mK**2.)**2\n", "\n", " _under = q2 * mB**2.\n", "\n", - " bracket_middle = _top/_under *tf.pow(tf.abs(tf.complex(C10eff, ztf.constant(0.0)) * formfactor(q2, \"0\")), 2)\n", + " bracket_middle = _top/_under *tf.pow(tf.abs(tf.complex(C10eff, ztf.constant(0.0)) * formfactor(q, \"0\")), 2)\n", "\n", " #Note sqrt(q2) comes from derivation as we use q2 and plot q\n", "\n", @@ -512,17 +516,28 @@ "probs = total_f.pdf(test_q)\n", "\n", "calcs_test = zfit.run(probs)\n", - "res_y = zfit.run(jpsi_res(test_q))" + "res_y = zfit.run(jpsi_res(test_q))\n", + "f0_y = zfit.run(formfactor(test_q,\"0\"))\n", + "fplus_y = zfit.run(formfactor(test_q,\"+\"))\n", + "fT_y = zfit.run(formfactor(test_q,\"T\"))" ] }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 24, "metadata": {}, "outputs": [ { + "name": "stderr", + "output_type": "stream", + "text": [ + "c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\numpy\\core\\numeric.py:538: ComplexWarning: Casting complex values to real discards the imaginary part\n", + " return array(a, dtype, copy=False, order=order)\n" + ] + }, + { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZkAAAD8CAYAAACl69mTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xl8VfWd//HXJzcbS9gDCGGJEoWguEXq1pZWW9GqdGEqdmyx1Trj6Pj7tdPp1Fm6ONNO/U0fdaatSxmxP/TXCtZx2rSltbVqx7YoRkEqCBpki6AEEsISstzk8/vjfsFrvDf3BnNyk/B+Ph73cc/5nu/5nu+Xc8k7Z7kn5u6IiIhEIS/XHRARkcFLISMiIpFRyIiISGQUMiIiEhmFjIiIREYhIyIikckqZMxsvpltMrNaM/tSiuVFZrYiLH/GzKYnLbs1lG8ys0t60OZ3zexgNtsQEZH+KWPImFkMuBO4FKgErjazyi7VrgMa3X0GcAdwe1i3ElgEzAbmA3eZWSxTm2ZWBYzKZhsiItJ/ZXMkMxeodfdX3b0NWA4s6FJnAbAsTD8MXGRmFsqXu3uru28BakN7adsMAfRvwBez3IaIiPRT+VnUmQzsSJqvA96Vro67x82sCRgbyp/usu7kMJ2uzZuBanff1SVD0m1jT3IlM7sBuAFg2LBhZ8+cOTOLIYpkZ3N94gzuSaXDc9yT3tPY3EZd42FOnlBCUb4u0wo899xze9y9tDfayiZkUh0tdH0WTbo66cpTfZLdzCYBfwbMO8Z+4O5LgCUAVVVVXlNTk2I1kZ5rbosz56u/5rPvOZG/mz94fnl58bUmLv/u7/nG1WdyxemTct0d6QfMbFtvtZXNry11wJSk+TJgZ7o6ZpYPjAQaulk3XfmZwAyg1sy2AkPNrDbDNkT6xDNbGoh3OuedODbXXelVJ08ooSBmrN+5P9ddkUEom5B5Fqgws3IzKyRxIb+6S51qYHGYXgg87oknb1YDi8KdYeVABbA6XZvu/gt3n+ju0919OtAcLvR3tw2RPvHkxt0UF+Qxt3xMrrvSqwrz86gYX8L6nU257ooMQhlPl4XrHzcDjwIx4D53X29mtwE17l4NLAUeCEcdDSRCg1DvIWADEAducvcOgFRtZuhKym2I9AV354lN9Vxw0jiKC2K57k6vO3XyCH6z4Q3cHd1PI70pm2syuPtKYGWXsi8nTbeQuJaSat2vA1/Pps0UdYYnTafdhkjUtuw5xPaGZj777vJcdyUSZ04dzUM1dWzd20z5uGG57k6/1t7eTl1dHS0tLbnuyjtWXFxMWVkZBQUFkW0jq5AROd49sakegHmnjM9xT6Jx1tTRADy/rVEhk0FdXR0lJSVMnz59QB/1uTt79+6lrq6O8vLofnnS/YoiWXh84xucVDqMKWOG5rorkagYP5ySonye296Y6670ey0tLYwdO3ZABwyAmTF27NjIj8gUMiIZ7D3YyqrNe7n01BNy3ZXI5OUZZ04bzfPbFDLZGOgBc0RfjEMhI5LBr9a/TqfDZacN3pABOGvqKDa9cYADLe257ooMIgoZkQxW/mkX5eOGMeuEklx3JVJnTxuNO6zZvi/XXZFe8OSTT3L55ZcD0NraysUXX8wZZ5zBihUr+rQfuvAv0o0jp8punHfSoDlFks5ZU0dTEDP+uHkv7zm5V54oIv3EmjVraG9vZ+3atX2+bR3JiHTjZy/spNPh8jmD/3Erw4ryOXPqaP5QuydzZcmprVu3MnPmTBYvXsycOXNYuHAhzc3N/OpXv2LmzJlceOGFPPLIIwDs3r2ba665hrVr13LGGWewefPmPu2rjmRE0nB3VtTUcdrkkcw6YUSuu9MnLpwxjjsee5nGQ22MHlaY6+70e1/72Xo29PLjeConjeArV8zOWG/Tpk0sXbqUCy64gM985jN8+9vf5vvf/z6PP/44M2bM4KqrrgJg/Pjx3HvvvXzrW9/i5z//ea/2NRs6khFJY/3O/by0az8fryrLdVf6zAUzxuEOq17dm+uuSAZTpkzhggsuAOCaa66hpqaG8vJyKioqMDOuueaaHPcwQUcyImk8VLODovw8rjxjcubKg8TpZSMZXpTP72v3DPq76XpDNkccUel6jbCpqalfXjfUkYxICoda4/z3mteYf+pERg6J7pEb/U1+LI/zTxrLkxt3o+fP9m/bt29n1apVADz44INcfPHFbNmy5eg1lwcffDCX3TtKISOSwo9rdnCgJc6150/PdVf63AcqJ7CzqUWP/u/nZs2axbJly5gzZw4NDQ187nOfY8mSJXzoQx/iwgsvZNq0abnuIqDTZSJv09Hp3PeHrZw1dRRnhmd6HU8umjWBPINfr3+dUyePzHV3JI28vDzuueeet5TNnz+fjRs3vq3uvHnzmDdvXh/17K10JCPSxWMvvcH2hmauu/DEXHclJ8YMK+Sc6WP49YY3ct0VGQQUMiJJ3J07n6ilbPQQLpk9IdfdyZkPzp7IxtcPsG3voVx3RVKYPn06L774Yq67kRWFjEiS3760m3V1Tdzy/gryY8fvf4/5p04EEl9GlbcbLDdF9MU4jt//RSJddHY63/7Ny0wbO5SPnHX83LacyuRRQzj3xDE88vxrg+YHam8pLi5m7969A/7f5cjfkykuLo50O7rwLxKsfHEXG3bt59sfP52C4/go5oiPnlnGF/9rHWt37Dsub4BIp6ysjLq6Ourr63PdlXfsyF/GjFJWIWNm84H/AGLAve7+zS7Li4D7gbOBvcBV7r41LLsVuA7oAG5x90e7a9PMlgJVgAEvA9e6+0Ezuxb4N+C1sNnvufu9xzZskbc63NbBN37xErNOGMGC4+jLl9259LSJ/NNPX+SR519TyCQpKCiI9C9JDjYZf10zsxhwJ3ApUAlcbWaVXapdBzS6+wzgDuD2sG4lsAiYDcwH7jKzWIY2P+fup7v7HGA7cHPSdla4+xnhpYCRXnP37zazs6mFr105m1he//vWdC6UFBcw/9SJ/GTtaxxqjee6OzJAZXNOYC5Q6+6vunsbsBxY0KXOAmBZmH4YuMgSzzdYACx391Z33wLUhvbStunu+wHC+kOAgX3iU/q9rXsOcc/vNnPl6ZOYWz4m193pVz513nQOtMR5ZM1rmSuLpJBNyEwGdiTN14WylHXcPQ40AWO7WbfbNs3sB8DrwEzgu0n1PmZm68zsYTObkkXfRbrV2en87cMvUJSfx99fNivX3el3zpo6ijllI1n2x60D/kK35EY2IZPq3EHXT1u6Oj0tT0y4fxqYBLwEXBWKfwZMD6fRHuPNI6e3dsTsBjOrMbOawXBhTqL1gz9u5dmtjXz1itlMHBntXTYDkZlx7fnTqd19kKde0d+ZkZ7LJmTqgOSjhjKg683zR+uYWT4wEmjoZt2Mbbp7B7AC+FiY3+vurWHxf5K4yeBt3H2Ju1e5e1Vpqf66n6S38fX9/J9fbeTiWeP56HF+y3J3PjTnBCaMKOJ7T9TqaEZ6LJuQeRaoMLNyMyskcSG/ukudamBxmF4IPO6JT2M1sMjMisysHKgAVqdr0xJmwNFrMlcAG8N88nPHryRxlCNyTPa3tHPj/3uekUMK+NePzumXj0jvL4ryY/zVvBms3tKgvzMjPZbxFmZ3j5vZzcCjJG43vs/d15vZbUCNu1cDS4EHzKyWxBHMorDuejN7CNgAxIGbwhEKadrMA5aZ2QgSp9ReAG4MXbnFzK4M7TQA1/bKv4Acdzo7nS/+eB3bG5pZfsO5lJYU5bpL/d5V50zhridr+fffvMJ5J45VKEvWbDAf/lZVVXlNTU2uuyH9zDd/uZF7freZf/zQLK5/9/H5EMxjcf+qrXz5p+u591NVXFx5/D7X7XhgZs+5e1VvtKWvNctx5f5VW7nnd5v583dN5boL9YW6nrh67lRmjB/OP/9iA63xjlx3RwYIhYwcN/57TR1fqV7PxbMmcNuCU3XKp4cKYnl85YpKtu1t5t6ntuS6OzJAKGTkuPDwc3V8/qEXOO/EsXz36jP1rf5j9O6KUj5YOYHv/PYVNtcfzHV3ZABQyMigd/+qrfztwy9w4YxxLF18DkMKY7nu0oD2Lx8+leKCGF/48QvEOzpz3R3p5xQyMmh1dDq3/WwDX/7pei6aOZ7//FSVAqYXjB9RzD9/+FTWbN/H3U9uznV3pJ/To/5lUNrX3MbnH3qBxzfu5tMXTOcfP1SpU2S96Io5J/Dbl97gjsde5vQpo3jPyfris6SmIxkZdJ7b1sBl//EUT71Szz8vmM1XrtCTlXubmfGvHz2NkyeU8NcPrmH73uZcd0n6KYWMDBqt8Q6+/ZuX+fj3nyY/lsd/3Xg+nzxveq67NWgNLczn+588G3fn2h+sZs/B1swryXFHISODwrNbE0cv3/ntK1wx5wR+fsuFzCkbletuDXrTxg5j6bXnsLPpMNf+YDUHWtpz3SXpZxQyMqC9tu8wn1uxlj+7ZxUt7Z384NPn8O+LzmREcUGuu3bcOGf6GO7+87PZuOsA1yxdTeOhtlx3SfoRhYwMSPua2/jXX77E+771JL/40y7+8r0n8evPvYf3nTI+1107Lr1v5njuvuZsXtq1n49/fxWvN7XkukvST+jZZTKg7Go6zNKntvCj1ds53N7BR86czN988BQmjxqS664JsGrzXj57fw1DC2Pcfc1ZnD1Nf2l0IOrNZ5cpZKTfc3ee376PHz2zneoXXqPT4crTJ/GX7z2JUyaW5Lp70sXG1/fzFw88x859h/mnyyv55LnT9AifAUYhkyWFzMC2r7mNn67dyYOrt7Px9QMMK4zxsbPL+Oy7T2TKmKG57p50o6m5nf+9Yg1PbKrnPSeXcvvHTuOEkTraHCgUMllSyAw8TYfb+c2GN/j5up38/pU9xDud0yaP5BPvmsoVp09ieJG+PzxQdHY6P3xmG99YuZH8mPE3HziZPz93GgUxXQru7xQyWVLIDAxb9hziyU27eXJTPas276Wto5PJo4Zw+ZwTuOL0SZw6eWSuuyjvwNY9h/jHn7zI72v3MGP8cP7+spm875TxOoXWjylksqSQ6Z/qD7RSs7WBp1/dy5Mv17MtfFu8fNww3j9zPJfPOYEzpozSD6FBxN157KXdfP0XG9i6t5nTJo/k5vfP4AOzJpCnpzH0OwqZLClkcq+j09my5xDPb2+kZmsDz25tZMueQwAUF+Rx/knjmHdKKe89uZRpY4fluLcStbZ4J/+9po67ntzMtr3NnFg6jE/MncrCs8sYNbQw192TQCGTJYVM32qLd1K7+yAv7mxi/WtNvLhzPxt27udwe+KvKI4aWkDVtDGcM30055SP4dRJIynM1/n541G8o5Ofr9vFslVbWbN9H4X5eVx66kQunzOJd1eMo7hAT8vOpT4PGTObD/wHEAPudfdvdlleBNwPnA3sBa5y961h2a3AdUAHcIu7P9pdm2a2FKgCDHgZuNbdD3a3jXQUMtHY39LO5t0H2Vx/iNrdB9lcf5DNuw+yraGZjs7E52lYYYzZk0Yye/IIZk8ayellIzmpdLhOjcjbvLRrf7g9fSdNh9spKcrn4soJXDRrPBecNI7Rw3SE09f6NGTMLEbih/0HgDrgWeBqd9+QVOevgDnu/pdmtgj4iLtfZWaVwIPAXGAS8BhwclgtZZtmNsLd94d2vw3sdvdvpttGd31XyBybtngnO/cdZkdjMzsaDlPX2MyOxsPsaGimrvHwWx6EWBAzpo8dxkmlw5kxfjgnTyzh1EkjmD52mAJFeqS9o5M/1O5h5Z928ej6N2g63I4ZzJk8kndXlHJO+RjOmDKKkUP0yKCo9WbIZHM/6Fyg1t1fDRtfDiwANiTVWQB8NUw/DHzPEldtFwDL3b0V2GJmtaE90rWZFDAGDAG8u234YD7f18s6O53G5jbe2N/KGwda2L2/hd1h+o39reze33J0WfK/an6eMWnUEMpGD+GimeOZNm4oM0qHc9L44UwdM1S3pEqvKIjlMe+U8cw7ZTzf+Egn615r4qmX9/DUK/Xc/bvNfO+JWgBmjB/OmVNGMWfKKGZOLOGUiSV6Vl0/lk3ITAZ2JM3XAe9KV8fd42bWBIwN5U93WXdymE7bppn9ALiMRJD9TYZt7EnuiJndANwAMHXq1CyGN3C1xTvZ19xGQ3MbDQcT742H2mg41E5jcxt7Dx2Zb6OxuY09B1tp73h7Jo8eWsCEEcWUlhRRMaGEySFQpowZypQxQ5lQUkS+gkT6UH4sj7OmjuasqaP5XxdXcLA1zrod+3h+eyPPb9/HYy+9wY+fqztaf9LIYk6ZWMLJE0qYOnYo08YMY+qYoUwaVazPbo5lEzKpznl0/UmVrk668lR7/Wib7v7pcJruu8BVwA+y7AfuvgRYAonTZSnW6RfiHZ00t3fQ3NrBgZZ29re0s78lzv7D7RxoibO/Jbx3M9/c1pG2/RHF+YwZVsjoYYWcMLKYykkjKC0pYnxJERNGFDNhRBHjSxLBoous0t8NL8rn/BnjOH/GOCBxS/Rr+w7z8hsH2Pj6ATaF1x9qE9+zOiI/z5g8eghTRg89+rlPvL85XVpSpKPxCGUTMnXAlKT5MmBnmjp1ZpYPjAQaMqzbbZvu3mFmK4C/JREy6bYRiXhHJy3xTlraO2gN78nTre2dNLd1cKgtzuHw3tzaQXNbB81tcQ61dXC4Lc6h1o4QJvG3LGuLd2bsQ0HMGFFcQElxPiOGJN7HlwynpDifkuICRg4pYMywwkSYDA3vwwoYPbRQ/2lkUDMzykYPpWz0UN4/c8LR8o5O5439LWzb28z2hkNs29vMtoZmXms8zKub97D7QCvxzrf/7llSlM+o8H8n8SpgVPg/NWpoAcOL8t98FeczrCifkqLE+9DCmL7T1Y1sQuZZoMLMyoHXgEXAJ7rUqQYWA6uAhcDj7u5mVg38KFzAnwRUAKtJHJW8rc1wHeYkd68N01cAG7vbRncdf2N/C99Y+dLRUGiJd3QJjU5a4520dgmQlnjn0bukeiLPEn8tcGhh7OiHb2hhjFFDCpg8qpghBfkMK4odrZN45b8lREYUFzAizBfl5+nDK9IDsXD9cNKoIZx30ti3Le/sdBqa23i9qYXd4Vpk/YFWGpvb2NfcTsOhNvY1t7FlzyEaD7VxoDWecZt5BsMKE4EzpDBGUX4eRQUxivPzKC6IUVyQeC86Op9YVhTKCmJ55MeMglgeBTEjPy/xnijPoyDPEu9HyxJ1CsN0LM/IMyPPEuM3O1JGKH9zPhc/TzKGTLj+cTPwKInbje9z9/VmdhtQ4+7VwFLggXBhv4FEaBDqPUTi2kocuMndOwDStJkHLDOzESSC6AXgxtCVlNvozu4DrSz749ajO7oo/607vKQ4n3H5MYoK8ijOT/VhePs6iQ9PYp1hSWExrChfoSDSz+XlGeOGFzFueBGJkyHda+/oZF9zO4da4xw88mqJc6gtzoGW+NvKW5LPerQnrpm2JP2Cm/jFNvGeCxaCJ2aGhVA6ElB5eUfKe/dnmL6MKSLSx9w9cRYl3km8o5N4p9MWT7zHOzpp73DaOzqJdyam42G+PdRt7+g8WtbhTqcnjtI63enodNwJ5R7KCeWeoj6Jev7m/Dc/NqdPb2EWEZFeZGZHT531R9/MXCVrujosIiKRUciIiEhkFDIiIhIZhYyIiERGISMiIpFRyIiISGQUMiIiEhmFjIiIREYhIyIikVHIiIhIZBQyIiISGYWMiIhERiEjIiKRUciIiEhkFDIiIhIZhYyIiERGISMiIpHJKmTMbL6ZbTKzWjP7UorlRWa2Iix/xsymJy27NZRvMrNLMrVpZj8M5S+a2X1mVhDK55lZk5mtDa8vv5OBi4hI9DKGjJnFgDuBS4FK4Gozq+xS7Tqg0d1nAHcAt4d1K4FFwGxgPnCXmcUytPlDYCZwGjAEuD5pO0+5+xnhdduxDFhERPpONkcyc4Fad3/V3duA5cCCLnUWAMvC9MPARWZmoXy5u7e6+xagNrSXtk13X+kBsBooe2dDFBGRXMkmZCYDO5Lm60JZyjruHgeagLHdrJuxzXCa7JPAr5KKzzOzF8zsl2Y2O1VnzewGM6sxs5r6+voshiciIlHJJmQsRZlnWaen5cnuAv7H3Z8K888D09z9dOC7wE9Sddbdl7h7lbtXlZaWpqoiIiJ9JJuQqQOmJM2XATvT1TGzfGAk0NDNut22aWZfAUqBzx8pc/f97n4wTK8ECsxsXBb9FxGRHMkmZJ4FKsys3MwKSVzIr+5SpxpYHKYXAo+HayrVwKJw91k5UEHiOkvaNs3seuAS4Gp37zyyATObGK7zYGZzQ9/3HsugRUSkb+RnquDucTO7GXgUiAH3uft6M7sNqHH3amAp8ICZ1ZI4glkU1l1vZg8BG4A4cJO7dwCkajNs8h5gG7AqZMoj4U6yhcCNZhYHDgOLQpCJiEg/ZYP553RVVZXX1NTkuhsiIgOKmT3n7lW90Za+8S8iIpFRyIiISGQUMiIiEhmFjIiIREYhIyIikVHIiIhIZBQyIiISGYWMiIhERiEjIiKRUciIiEhkFDIiIhIZhYyIiERGISMiIpFRyIiISGQUMiIiEhmFjIiIREYhIyIikVHIiIhIZLIKGTObb2abzKzWzL6UYnmRma0Iy58xs+lJy24N5ZvM7JJMbZrZD0P5i2Z2n5kVhHIzs++E+uvM7Kx3MnAREYlexpAxsxhwJ3ApUAlcbWaVXapdBzS6+wzgDuD2sG4lsAiYDcwH7jKzWIY2fwjMBE4DhgDXh/JLgYrwugG4+1gGLCIifSebI5m5QK27v+rubcByYEGXOguAZWH6YeAiM7NQvtzdW919C1Ab2kvbpruv9ABYDZQlbeP+sOhpYJSZnXCM4xYRkT6QTchMBnYkzdeFspR13D0ONAFju1k3Y5vhNNkngV/1oB+Y2Q1mVmNmNfX19VkMT0REopJNyFiKMs+yTk/Lk90F/I+7P9WDfuDuS9y9yt2rSktLU6wiIiJ9JT+LOnXAlKT5MmBnmjp1ZpYPjAQaMqybtk0z+wpQCvxFD/shIiL9SDZHMs8CFWZWbmaFJC7kV3epUw0sDtMLgcfDNZVqYFG4+6ycxEX71d21aWbXA5cAV7t7Z5dtfCrcZXYu0OTuu45hzCIi0kcyHsm4e9zMbgYeBWLAfe6+3sxuA2rcvRpYCjxgZrUkjmAWhXXXm9lDwAYgDtzk7h0AqdoMm7wH2AasStw7wCPufhuwEriMxM0DzcCne+MfQEREomOJA47BqaqqymtqanLdDRGRAcXMnnP3qt5oS9/4FxGRyChkREQkMgoZERGJjEJGREQio5AREZHIKGRERCQyChkREYmMQkZERCKjkBERkcgoZEREJDIKGRERiYxCRkREIqOQERGRyChkREQkMgoZERGJjEJGREQio5AREZHIKGRERCQyWYWMmc03s01mVmtmX0qxvMjMVoTlz5jZ9KRlt4byTWZ2SaY2zezmUOZmNi6pfJ6ZNZnZ2vD68rEOWkRE+kZ+pgpmFgPuBD4A1AHPmlm1u29IqnYd0OjuM8xsEXA7cJWZVQKLgNnAJOAxMzs5rJOuzT8APweeTNGdp9z98mMYp4iI5EA2RzJzgVp3f9Xd24DlwIIudRYAy8L0w8BFZmahfLm7t7r7FqA2tJe2TXdf4+5b3+G4RESkH8gmZCYDO5Lm60JZyjruHgeagLHdrJtNm6mcZ2YvmNkvzWx2qgpmdoOZ1ZhZTX19fRZNiohIVLIJGUtR5lnW6Wl5d54Hprn76cB3gZ+kquTuS9y9yt2rSktLMzQpIiJRyiZk6oApSfNlwM50dcwsHxgJNHSzbjZtvoW773f3g2F6JVCQfGOAiIj0P9mEzLNAhZmVm1khiQv51V3qVAOLw/RC4HF391C+KNx9Vg5UAKuzbPMtzGxiuM6Dmc0Nfd+bzSBFRCQ3Mt5d5u5xM7sZeBSIAfe5+3ozuw2ocfdqYCnwgJnVkjiCWRTWXW9mDwEbgDhwk7t3QOJW5a5thvJbgC8CE4F1ZrbS3a8nEV43mlkcOAwsCkEmIiL9lA3mn9NVVVVeU1OT626IiAwoZvacu1f1Rlv6xr+IiERGISMiIpFRyIiISGQUMiIiEhmFjIiIREYhIyIikVHIiIhIZBQyIiISGYWMiIhERiEjIiKRUciIiEhkFDIiIhIZhYyIiERGISMiIpFRyIiISGQUMiIiEhmFjIiIREYhIyIikckqZMxsvpltMrNaM/tSiuVFZrYiLH/GzKYnLbs1lG8ys0sytWlmN4cyN7NxSeVmZt8Jy9aZ2VnHOmgREekbGUPGzGLAncClQCVwtZlVdql2HdDo7jOAO4Dbw7qVwCJgNjAfuMvMYhna/ANwMbCtyzYuBSrC6wbg7p4NVURE+lo2RzJzgVp3f9Xd24DlwIIudRYAy8L0w8BFZmahfLm7t7r7FqA2tJe2TXdf4+5bU/RjAXC/JzwNjDKzE3oyWBER6VvZhMxkYEfSfF0oS1nH3eNAEzC2m3WzafNY+oGZ3WBmNWZWU19fn6FJERGJUjYhYynKPMs6PS1/p/3A3Ze4e5W7V5WWlmZoUkREopRNyNQBU5Lmy4Cd6eqYWT4wEmjoZt1s2jyWfoiISD+STcg8C1SYWbmZFZK4kF/dpU41sDhMLwQed3cP5YvC3WflJC7ar86yza6qgU+Fu8zOBZrcfVcW/RcRkRzJz1TB3eNmdjPwKBAD7nP39WZ2G1Dj7tXAUuABM6slcQSzKKy73sweAjYAceAmd++AxK3KXdsM5bcAXwQmAuvMbKW7Xw+sBC4jcfNAM/Dp3vpHEBGRaFjigGNwqqqq8pqamlx3Q0RkQDGz59y9qjfa0jf+RUQkMgoZERGJjEJGREQio5AREZHIKGRERCQyChkREYmMQkZERCKjkBERkcgoZEREJDIKGRERiYxCRkREIqOQERGRyChkREQkMgoZERGJjEJGREQio5AREZHIKGRERCQyChkREYlMViFjZvPNbJOZ1ZrZl1IsLzKzFWH5M2Y2PWnZraF8k5ldkqlNMysPbbwS2iwM5deaWb2ZrQ2v69/JwEVEJHoZQ8bMYsCdwKVAJXC1mVV2qXYd0OjuM4A7gNvDupX6duj7AAAIIElEQVTAImA2MB+4y8xiGdq8HbjD3SuAxtD2ESvc/YzwuveYRiwiIn0mmyOZuUCtu7/q7m3AcmBBlzoLgGVh+mHgIjOzUL7c3VvdfQtQG9pL2WZY5/2hDUKbHz724YmISC5lEzKTgR1J83WhLGUdd48DTcDYbtZNVz4W2BfaSLWtj5nZOjN72MymZNF3ERHJoWxCxlKUeZZ1eqsc4GfAdHefAzzGm0dOb+2I2Q1mVmNmNfX19amqiIhIH8kmZOqA5KOGMmBnujpmlg+MBBq6WTdd+R5gVGjjLdty973u3hrK/xM4O1Vn3X2Ju1e5e1VpaWkWwxMRkahkEzLPAhXhrq9CEhfyq7vUqQYWh+mFwOPu7qF8Ubj7rByoAFanazOs80Rog9DmTwHM7ISk7V0JvNSzoYqISF/Lz1TB3eNmdjPwKBAD7nP39WZ2G1Dj7tXAUuABM6slcQSzKKy73sweAjYAceAmd+8ASNVm2OTfAcvN7F+ANaFtgFvM7MrQTgNw7TsevYiIRMoSBw+DU1VVldfU1OS6GyIiA4qZPefuVb3Rlr7xLyIikVHIiIhIZBQyIiISGYWMiIhERiEjIiKRUciIiEhkFDIiIhIZhYyIiERGISMiIpFRyIiISGQUMiIiEhmFjIiIREYhIyIikVHIiIhIZBQyIiISGYWMiIhERiEjIiKRUciIiEhkFDIiIhKZrELGzOab2SYzqzWzL6VYXmRmK8LyZ8xsetKyW0P5JjO7JFObZlYe2ngltFmYaRsiItI/ZQwZM4sBdwKXApXA1WZW2aXadUCju88A7gBuD+tWAouA2cB84C4zi2Vo83bgDnevABpD22m3ISIi/Vc2RzJzgVp3f9Xd24DlwIIudRYAy8L0w8BFZmahfLm7t7r7FqA2tJeyzbDO+0MbhDY/nGEbIiLST+VnUWcysCNpvg54V7o67h43syZgbCh/usu6k8N0qjbHAvvcPZ6ifrpt7EnuiJndANwQZlvN7MUsxjhQjaPL+AcZjW/gGsxjg8E/vlN6q6FsQibV0YJnWSddeaojqO7qZ9sP3H0JsATAzGrcvSrFeoOCxjewDebxDeaxwfExvt5qK5vTZXXAlKT5MmBnujpmlg+MBBq6WTdd+R5gVGij67bSbUNERPqpbELmWaAi3PVVSOJCfnWXOtXA4jC9EHjc3T2ULwp3hpUDFcDqdG2GdZ4IbRDa/GmGbYiISD+V8XRZuP5xM/AoEAPuc/f1ZnYbUOPu1cBS4AEzqyVxdLEorLvezB4CNgBx4CZ37wBI1WbY5N8By83sX4A1oW3SbSODJVnUGcg0voFtMI9vMI8NNL6smQ4GREQkKvrGv4iIREYhIyIikRlQIWNmxWa22sxeMLP1Zva1UJ7uUTRTzewJM1tjZuvM7LKktlI+7iaXemt8ZjbdzA6b2drwuieX4zriGMY3zcx+G8b2pJmVJbW1ONR/xcwWp9tmX+rl8XUk7b+uN9rkRDfjuzn8X3IzG5dU38zsO2HZOjM7K2lZv9p/vTy2wbDvZprZKjNrNbMvdGmr28eMvY27D5gXie/KDA/TBcAzwLnAQ8CiUH4PcGOYXpI0XQlsTZp+ASgCyoHNQGwQjW868GKux9ML4/sxsDhMvx94IEyPAV4N76PD9OjBMr4wfzDX4+nB+M4Mn7mtwLik+pcBvwzrnQs801/3X2+NbRDtu/HAOcDXgS8klcdI/Lw8ESgk8XO0srttD6gjGU84GGYLwstJ/ygaB0aE6ZG8+Z2bdI+7yaleHF+/dAzjqwR+G6af4M3HGV0C/MbdG9y9EfgNiWfj5VQvjq9fSjc+d1/j7ltTrLIAuD+s9zSJ78CdQD/cf704tn6pp+Nz993u/izQ3mVRNo8Ze4sBFTKQeGCnma0FdpP4cG4m/aNovgpcY2Z1wErgr0N5qkflTKYf6KXxAZSH02i/M7N3903vM+vh+F4APhamPwKUmNmRxxUNhv2XbnwAxWZWY2ZPm9mRUMq5ruNz92e6qZ5uP/XL/ddLY4PBse/S6fG+G3Ah4+4d7n4GiacBzAVmpaoW3q8G/q+7l5E4vH3AzPLI8hE1udBL49sFTHX3M4HPAz8ysxEp2ulzPRzfF4D3mtka4L3AayS+bzVY9l+68UFi/1UBnwD+3cxOirbn2ek6PjM7tZvqPX3cVE710thgcOy7dHq87wZcyBzh7vuAJ0mcV0z3KJrrSJwPx91XAcUkHmyXzaNycuqdjC+cBtwbyp8j8dv0yX3X+8yyGZ+773T3j4aw/IdQ1sQg2X/djA93P1Ln1dDOmX3Z/0ySxtfdaa6ePlaqX3iHYxss+y6dHu+7ARUyZlZqZqPC9BDgYuAl0j+KZjtwUag/i8QP4XrSP+4mp3prfKGdWCg/kcT4Xu2rcaTT0/GZ2bhwZAZwK3BfmH4U+KCZjTaz0cAHQ1lO9db4wriKjtQBLiDx1IycSjO+jd2sUg18KtyJdS7Q5O676If7r7fGNoj2XTrZPGbsrbq7K6C/vYA5JB41sw54EfhyKD+RREjUkrhjpyiUVwJ/IHHuey3wwaS2/oHEb/ibgEtzPbbeHB+J8/zrQ/nzwBW5Htsxjm8h8ArwMnDvkfKw7DOhfi3w6VyPrTfHB5wP/Cnsvz8B1+V6bBnGdwuJ33DjJH6rvTeUG4k/Trg5jKOqv+6/3hrbINp3E0P5fmBfmB4Rll0WPrObgX/ItG09VkZERCIzoE6XiYjIwKKQERGRyChkREQkMgoZERGJjEJGREQio5AREZHIKGRERCQy/x8EJ308JJET5QAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAD8CAYAAACVZ8iyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAEoNJREFUeJzt3X+s3XV9x/HnS6h0qWX86IUgrd5quoySOWxuWBnLxnAqVLc6MxbIMhunqZuQaDZj6pbMzWkylw2McXOpE0GjIFOJHWFTLC5uJlIKViyUwp129q4N7UBQxsqP9r0/zvfaM7i3vb33e+65597nI7k53/M5n+/3+/5+2nNf9/vjfE+qCknSwvaifhcgSeo/w0CSZBhIkgwDSRKGgSQJw0CShGEgScIwkCRhGEiSgJP7XQDAsmXLanh4uN9lSNJAueeee/67qobaWNacCIPh4WG2b9/e7zIkaaAk+c+2luVhIkmSYSBJMgwkScyRcwaS1AvPPvssY2NjHDp0qN+lzMjixYtZvnw5ixYt6tk6DANJ89bY2BhLly5leHiYJP0uZ1qqikcffZSxsTFWrlzZs/V4mEjSvHXo0CHOPPPMgQ0CgCSceeaZPd+7MQwkzWuDHATjZmMbDANpQB05UtyyfS/PHT7S71I0DxgG0oD6wj1jvPcL9/GJf/t+v0vRPGAYSAPq8f99BoDH/ufpPleiqagqjhyZu3txhoEk9ciePXs477zzeOc738maNWv4zGc+w0UXXcSaNWu44oorePLJJwHYtGkTq1ev5lWvehXvec97+lKrl5ZKWhD+/J/u54F9P2p1matfeirv//Xzj9ln9+7dfOpTn+IDH/gAb37zm/na177GkiVL+PCHP8y1117LNddcw6233sqDDz5IEh5//PFWa5wqw0CSeujlL385a9eu5bbbbuOBBx7g4osvBuCZZ57hoosu4tRTT2Xx4sW8/e1v5w1veANvfOMb+1KnYSBpQTjeX/C9smTJEqBzzuC1r30tN9100wv6bNu2ja1bt3LzzTfzsY99jDvvvHO2y/ScgSTNhrVr1/LNb36T0dFRAJ566ikeeughnnzySZ544gnWrVvHRz7yEXbs2NGX+twzkKRZMDQ0xA033MBVV13F0093rgD74Ac/yNKlS1m/fj2HDh2iqrjuuuv6Up9hIEk9Mjw8zM6dO3/y/NJLL+Xuu+9+Qb9t27bNZlkT8jCRJMkwkCQZBpLmuarqdwkzNhvbYBhImrcWL17Mo48+OtCBMP59BosXL+7pejyBLA24Af4913PLly9nbGyMgwcP9ruUGRn/prNeMgykARUG/z79vbZo0aKefjvYfOJhIkmSYSBJmkIYJFmR5OtJdiW5P8m7mvY/S/JfSXY0P+u65nlfktEku5O8vpcbIEmauamcM3gO+KOqujfJUuCeJHc0r11XVX/d3TnJauBK4HzgpcDXkvxMVR1us3BJUnuOu2dQVfur6t5m+sfALuDcY8yyHri5qp6uqu8Do8CFbRQrSeqNEzpnkGQYeDVwV9N0TZL7klyf5PSm7Vxgb9dsY0wQHkk2JtmeZPugX/YlSYNuymGQ5CXAF4F3V9WPgI8DrwQuAPYDfzPedYLZX3AldFVtrqqRqhoZGho64cIlSe2ZUhgkWUQnCD5bVV8CqKpHqupwVR0BPsHRQ0FjwIqu2ZcD+9orWZLUtqlcTRTgk8Cuqrq2q/2crm6/CYzfp3ULcGWSU5KsBFYB/b8/qyRpUlO5muhi4HeB7yYZ/wqePwauSnIBnUNAe4B3AFTV/UluAR6gcyXS1V5JJElz23HDoKr+nYnPA9x+jHk+BHxoBnVJkmaRn0CWBpz3qVMbDANpQMX71KlFhoEkyTCQJBkGkiQMA0kShoEkCcNAkoRhIEnCMJAkYRhIkjAMJEkYBpIkDANp4JV3qlMLDANJkmEgSTIMJEkYBpIkDANJEoaBJAnDQJKEYSBJwjCQJGEYSJIwDCRJGAaSJKYQBklWJPl6kl1J7k/yrqb9jCR3JHm4eTy9aU+SjyYZTXJfkjW93ghpISu8U51mbip7Bs8Bf1RV5wFrgauTrAY2AVurahWwtXkOcDmwqvnZCHy89aolkaTfJWgeOW4YVNX+qrq3mf4xsAs4F1gP3Nh0uxF4UzO9Hvh0dXwLOC3JOa1XLklqzQmdM0gyDLwauAs4u6r2QycwgLOabucCe7tmG2vaJElz1JTDIMlLgC8C766qHx2r6wRtLziomWRjku1Jth88eHCqZUiSemBKYZBkEZ0g+GxVfalpfmT88E/zeKBpHwNWdM2+HNj3/GVW1eaqGqmqkaGhoenWL0lqwVSuJgrwSWBXVV3b9dIWYEMzvQH4clf7W5qritYCT4wfTpIkzU0nT6HPxcDvAt9NsqNp+2PgL4FbkrwN+AFwRfPa7cA6YBR4CnhrqxVLklp33DCoqn9n4vMAAK+ZoH8BV8+wLknSLPITyJIkw0CSZBhIkjAMJEkYBpIkDANp4JU3LVULDANpQHnPUrXJMJAkGQaSJMNAkoRhIEnCMJAkYRhIkjAMJEkYBpIkDANJEoaBJAnDQJKEYSBJwjCQBla8U51aZBhIkgwDSZJhIEnCMJAkYRhIkjAMJEkYBpIkphAGSa5PciDJzq62P0vyX0l2ND/rul57X5LRJLuTvL5XhUuS2jOVPYMbgMsmaL+uqi5ofm4HSLIauBI4v5nn75Kc1FaxkqTeOG4YVNU3gMemuLz1wM1V9XRVfR8YBS6cQX2SpFkwk3MG1yS5rzmMdHrTdi6wt6vPWNP2Akk2JtmeZPvBgwdnUIYkaaamGwYfB14JXADsB/6maZ/obik10QKqanNVjVTVyNDQ0DTLkFQ14VtMOiHTCoOqeqSqDlfVEeATHD0UNAas6Oq6HNg3sxIlTcT71KlN0wqDJOd0Pf1NYPxKoy3AlUlOSbISWAVsm1mJkqReO/l4HZLcBFwCLEsyBrwfuCTJBXQOAe0B3gFQVfcnuQV4AHgOuLqqDvemdElSW44bBlV11QTNnzxG/w8BH5pJUZKk2eUnkCVJhoEkyTCQJGEYSJIwDCRJGAaSJAwDSRKGgSQJw0AaeN6mTm0wDKQBlXirOrXHMJAkGQaSJMNAkoRhIEnCMJAkYRhIkjAMJEkYBpIkDANJEoaBJAnDQJKEYSANvPJOdWqBYSANKO9TpzYZBpIkw0CSZBhIkphCGCS5PsmBJDu72s5IckeSh5vH05v2JPloktEk9yVZ08viJUntmMqewQ3AZc9r2wRsrapVwNbmOcDlwKrmZyPw8XbKlCT10nHDoKq+ATz2vOb1wI3N9I3Am7raP10d3wJOS3JOW8VKknpjuucMzq6q/QDN41lN+7nA3q5+Y02bJGkOa/sE8kRXPk/4kZgkG5NsT7L94MGDLZchSToR0w2DR8YP/zSPB5r2MWBFV7/lwL6JFlBVm6tqpKpGhoaGplmGJKkN0w2DLcCGZnoD8OWu9rc0VxWtBZ4YP5wkSZq7Tj5ehyQ3AZcAy5KMAe8H/hK4JcnbgB8AVzTdbwfWAaPAU8Bbe1CzJKllxw2DqrpqkpdeM0HfAq6eaVGSpNnlJ5ClAVcTX6MhnRDDQBpwmfAiPunEGAaSJMNAkmQYSJIwDCRJGAaSJAwDSRKGgSQJw0CShGEgScIwkCRhGEiSMAykgeeN6tQGw0AaUN6eTm0yDKQB5f6A2mQYSAPOW1irDYaBJMkwkCQZBpIkDANJEoaBJAnDQJKEYSBJwjCQJGEYSJIwDKSB543q1IaTZzJzkj3Aj4HDwHNVNZLkDODzwDCwB/jtqvrhzMqU9HzehEJtamPP4Fer6oKqGmmebwK2VtUqYGvzXJI0h/XiMNF64MZm+kbgTT1YhySpRTMNgwK+muSeJBubtrOraj9A83jWRDMm2Zhke5LtBw8enGEZ0sLjmQK1aUbnDICLq2pfkrOAO5I8ONUZq2ozsBlgZGTE/9fSNHkLa7VhRnsGVbWveTwA3ApcCDyS5ByA5vHATIuUJPXWtMMgyZIkS8engdcBO4EtwIam2wbgyzMtUpLUWzM5THQ2cGuS8eV8rqr+JcndwC1J3gb8ALhi5mVKknpp2mFQVd8Dfn6C9keB18ykKEnS7PITyJIkw0CSZBhIkjAMpIHnjerUBsNAGlB+1ExtMgwkSYaBJMkwkCRhGEiSMAykgeU1RGqTYSANOG9hrTYYBpIkw0CSZBhIkjAMJEkYBpIkDANp4HmjOrXBMJAGlBeUqk2GgSTJMJAkGQaSJAwDSRKGgSQJw0CShGEgDSw/XaA2GQbSgKomDV4UP3GgmetZGCS5LMnuJKNJNvVqPdJCdaRJA8NAbehJGCQ5Cfhb4HJgNXBVktW9WJe0UB1p9gzMArXh5B4t90JgtKq+B5DkZmA98ECbKzn07GGefPq5CV+rSQ6oTnofl2McgJ3spcnWcaz1HHueydZz4suadB0t1nys1U9a8zHnmfSVE55n1v7NTvT/2XGWdyL9v7P3caDzPnjif5+FOrreqqNjMNm/heaGxYtOYskpvfpVPHW9quBcYG/X8zHgF9peydZdB7j6c/e2vVhpoNy0bS83bdt7/I6ak37/V17Jpst/tt9l9CwMJtpx/X9/niTZCGwEeNnLXjatlZz/0lP5i/XnH6OKifefJ9urPtbu9mTfM3vsedpbzwk2N+s5se3vzHOC7cdY2nQOX7Ra8yz9m0021/TWM/Xtf/bwET637Qf84iuX8eKTX/STfuOLSNfyPJQ0d53/0p/udwlA78JgDFjR9Xw5sK+7Q1VtBjYDjIyMTGs/dnjZEoaXLZlujdLAu/znzul3CZonenU10d3AqiQrk7wYuBLY0qN1SZJmqCd7BlX1XJJrgK8AJwHXV9X9vViXJGnmenYKu6puB27v1fIlSe3xE8iSJMNAkmQYSJIwDCRJGAaSJCBz4b4lSQ4C/wP8d79rmSOW4ViMcyw6HIejHIuOZcCSqhpqY2FzIgwAkmyvqpF+1zEXOBZHORYdjsNRjkVH2+PgYSJJkmEgSZpbYbC53wXMIY7FUY5Fh+NwlGPR0eo4zJlzBpKk/plLewaSpD6ZE2GQ5LIku5OMJtnU73raluT6JAeS7OxqOyPJHUkebh5Pb9qT5KPNWNyXZE3XPBua/g8n2dCPbZmpJCuSfD3JriT3J3lX076gxiPJ4iTbknynGYc/b9pXJrmr2abPN7eAJ8kpzfPR5vXhrmW9r2nfneT1/dmimUtyUpJvJ7mteb4gxyLJniTfTbIjyfamrffvj6rq6w+dW1z/B/AK4MXAd4DV/a6r5W38ZWANsLOr7a+ATc30JuDDzfQ64J/pfFHVWuCupv0M4HvN4+nN9On93rZpjMU5wJpmeinwELB6oY1Hsz0vaaYXAXc123cLcGXT/vfAHzTT7wT+vpm+Evh8M726ec+cAqxs3ksn9Xv7pjkmfwh8Driteb4gxwLYAyx7XlvP3x9zYc/gQmC0qr5XVc8ANwPr+1xTq6rqG8Bjz2teD9zYTN8IvKmr/dPV8S3gtCTnAK8H7qiqx6rqh8AdwGW9r75dVbW/qu5tpn8M7KLzndkLajya7Xmyebqo+SngUuALTfvzx2F8fL4AvCad77RcD9xcVU9X1feBUTrvqYGSZDnwBuAfmudhgY7FJHr+/pgLYXAu0P1t3mNN23x3dlXth84vSOCspn2y8Zh349Ts3r+azl/FC248msMiO4ADdN6s/wE8XlXPNV26t+kn29u8/gRwJvNgHBofAd4LHGmen8nCHYsCvprknnS+Kx5m4f3Rsy+3OQETfVX3Qr7EabLxmFfjlOQlwBeBd1fVjzL5N7bP2/GoqsPABUlOA24FzpuoW/M4b8chyRuBA1V1T5JLxpsn6Drvx6JxcVXtS3IWcEeSB4/Rt7WxmAt7BmPAiq7ny4F9faplNj3S7M7RPB5o2icbj3kzTkkW0QmCz1bVl5rmBTseVfU48K90jvmelmT8j7TubfrJ9jav/zSdQ4/zYRwuBn4jyR46h4kvpbOnsBDHgqra1zweoPNHwoXMwvtjLoTB3cCq5sqBF9M5IbSlzzXNhi3A+Bn+DcCXu9rf0lwlsBZ4otkt/ArwuiSnN1cSvK5pGyjNsd1PAruq6tqulxbUeCQZavYISPJTwK/ROX/ydeC3mm7PH4fx8fkt4M7qnCncAlzZXGGzElgFbJudrWhHVb2vqpZX1TCd9/+dVfU7LMCxSLIkydLxaTr/r3cyG++Pfp857zoj/hCdY6Z/0u96erB9NwH7gWfpJPbb6Bzj3Ao83Dye0fQN8LfNWHwXGOlazu/ROSk2Cry139s1zbH4JTq7q/cBO5qfdQttPIBXAd9uxmEn8KdN+yvo/AIbBf4ROKVpX9w8H21ef0XXsv6kGZ/dwOX93rYZjsslHL2aaMGNRbPN32l+7h//fTgb7w8/gSxJmhOHiSRJfWYYSJIMA0mSYSBJwjCQJGEYSJIwDCRJGAaSJOD/AH+PdktLjDUhAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -536,10 +551,13 @@ "source": [ "plt.clf()\n", "# plt.plot(x_part, calcs, '.')\n", - "plt.plot(test_q, calcs_test, label = 'pdf')\n", - "# plt.plot(test_q, res_y, label = 'res')\n", + "# plt.plot(test_q, calcs_test, label = 'pdf')\n", + "# plt.plot(test_q, f0_y, label = '0')\n", + "# plt.plot(test_q, fT_y, label = 'T')\n", + "# plt.plot(test_q, fplus_y, label = '+')\n", + "plt.plot(test_q, res_y, label = 'res')\n", "plt.legend()\n", - "plt.ylim(0.0, 4e-4)\n", + "# plt.ylim(0.0, 6e-4)\n", "# plt.yscale('log')\n", "# plt.xlim(3080, 3110)\n", "plt.savefig('test.png')\n", @@ -570,18 +588,7 @@ "cell_type": "code", "execution_count": 12, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "211.4\n", - "4781.599999999999\n", - "807.8926831881124\n", - "Time taken: 2 s\n" - ] - } - ], + "outputs": [], "source": [ "# print(x_min)\n", "# print(x_max)\n", @@ -663,7 +670,7 @@ }, { "cell_type": "code", - "execution_count": 33, + "execution_count": 15, "metadata": {}, "outputs": [], "source": [ @@ -693,7 +700,7 @@ }, { "cell_type": "code", - "execution_count": 34, + "execution_count": 16, "metadata": {}, "outputs": [], "source": [ @@ -702,31 +709,9 @@ }, { "cell_type": "code", - "execution_count": 35, + "execution_count": 17, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "nan nan %\n", - "Time: 1000.0239598751068\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\ipykernel_launcher.py:3: IntegrationWarning: The maximum number of subdivisions (5) has been achieved.\n", - " If increasing the limit yields no improvement it is advised to analyze \n", - " the integrand in order to determine the difficulties. If the position of a \n", - " local difficulty can be determined (singularity, discontinuity) one will \n", - " probably gain from splitting up the interval and calling the integrator \n", - " on the subranges. Perhaps a special-purpose integrator should be used.\n", - " This is separate from the ipykernel package so we can avoid doing imports until\n" - ] - } - ], + "outputs": [], "source": [ "# start = time.time()\n", "\n", @@ -836,10 +821,87 @@ "metadata": {}, "outputs": [], "source": [ + "class UniformSampleAndWeights(zfit.util.execution.SessionHolderMixin):\n", + " def __call__(self, limits, dtype, n_to_produce):\n", + " # n_to_produce = tf.cast(n_to_produce, dtype=tf.int32)\n", + " low, high = limits.limit1d\n", + " low = tf.cast(low, dtype=dtype)\n", + " high = tf.cast(high, dtype=dtype)\n", + "# uniform = tfd.Uniform(low=low, high=high)\n", + "# uniformjpsi = tfd.Uniform(low=tf.constant(3080, dtype=dtype), high=tf.constant(3112, dtype=dtype))\n", + "# uniformpsi2s = tfd.Uniform(low=tf.constant(3670, dtype=dtype), high=tf.constant(3702, dtype=dtype))\n", + " mixture = tfd.MixtureSameFamily(mixture_distribution=tfd.Categorical(probs=[tf.constant(0.007, dtype=dtype),\n", + " tf.constant(0.917, dtype=dtype),\n", + " tf.constant(0.076, dtype=dtype)]),\n", + " components_distribution=tfd.Uniform(low=[tf.constant(x_min, dtype=dtype), \n", + " tf.constant(3080, dtype=dtype),\n", + " tf.constant(3670, dtype=dtype)], \n", + " high=[tf.constant(x_max, dtype=dtype),\n", + " tf.constant(3112, dtype=dtype), \n", + " tf.constant(3702, dtype=dtype)]))\n", + " mixture = tfd.Uniform(tf.constant(x_min, dtype=dtype), tf.constant(x_max, dtype=dtype))\n", + " sample = mixture.sample((n_to_produce, 1))\n", + " sample = tf.random.uniform((n_to_produce, 1), dtype=dtype)\n", + " weights = mixture.prob(sample)\n", + " weights = tf.broadcast_to(tf.constant(1., dtype=dtype), shape=(n_to_produce,))\n", + " # sample = tf.expand_dims(sample, axis=-1)\n", + " print(sample, weights)\n", + " weights_max = None\n", + " thresholds = tf.random_uniform(shape=(n_to_produce,), dtype=dtype)\n", + " return sample, thresholds, weights, weights_max, n_to_produce" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [], + "source": [ + "# total_f._sample_and_weights = UniformSampleAndWeights" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "WARNING:tensorflow:From c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\core\\sample.py:98: to_int64 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.\n", + "Instructions for updating:\n", + "Use tf.cast instead.\n" + ] + }, + { + "ename": "InvalidArgumentError", + "evalue": "assertion failed: [Not all weights are >= probs so the sampling will be biased. If a custom `sample_and_weights` was used, make sure that either the shape of the custom sampler (resp. it\\'s weights) overlap better or decrease the `max_weight`] [Condition x >= y did not hold element-wise:x (ZPDF_1/create_sampler/mul_3:0) = ] [-nan(ind)] [y (ZPDF_1/create_sampler/ZPDF/unnormalized_pdf/add_36:0) = ] [-nan(ind) -nan(ind) -nan(ind)...]\n\t [[node ZPDF_1/create_sampler/assert_greater_equal/Assert/AssertGuard/Assert (defined at c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\core\\sample.py:146) ]]\n\t [[{{node ConstantFoldingCtrl/ZPDF_1/create_sampler/while/assert_greater_equal/Assert/AssertGuard/Switch_0}}]]\n\nCaused by op 'ZPDF_1/create_sampler/assert_greater_equal/Assert/AssertGuard/Assert', defined at:\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\runpy.py\", line 193, in _run_module_as_main\n \"__main__\", mod_spec)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\runpy.py\", line 85, in _run_code\n exec(code, run_globals)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\ipykernel_launcher.py\", line 16, in \n app.launch_new_instance()\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\traitlets\\config\\application.py\", line 658, in launch_instance\n app.start()\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\ipykernel\\kernelapp.py\", line 505, in start\n self.io_loop.start()\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tornado\\platform\\asyncio.py\", line 148, in start\n self.asyncio_loop.run_forever()\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\asyncio\\base_events.py\", line 539, in run_forever\n self._run_once()\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\asyncio\\base_events.py\", line 1775, in _run_once\n handle._run()\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\asyncio\\events.py\", line 88, in _run\n self._context.run(self._callback, *self._args)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tornado\\ioloop.py\", line 690, in \n lambda f: self._run_callback(functools.partial(callback, future))\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tornado\\ioloop.py\", line 743, in _run_callback\n ret = callback()\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tornado\\gen.py\", line 781, in inner\n self.run()\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tornado\\gen.py\", line 742, in run\n yielded = self.gen.send(value)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\ipykernel\\kernelbase.py\", line 357, in process_one\n yield gen.maybe_future(dispatch(*args))\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tornado\\gen.py\", line 209, in wrapper\n yielded = next(result)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\ipykernel\\kernelbase.py\", line 267, in dispatch_shell\n yield gen.maybe_future(handler(stream, idents, msg))\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tornado\\gen.py\", line 209, in wrapper\n yielded = next(result)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\ipykernel\\kernelbase.py\", line 534, in execute_request\n user_expressions, allow_stdin,\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tornado\\gen.py\", line 209, in wrapper\n yielded = next(result)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\ipykernel\\ipkernel.py\", line 294, in do_execute\n res = shell.run_cell(code, store_history=store_history, silent=silent)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\ipykernel\\zmqshell.py\", line 536, in run_cell\n return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\IPython\\core\\interactiveshell.py\", line 2848, in run_cell\n raw_cell, store_history, silent, shell_futures)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\IPython\\core\\interactiveshell.py\", line 2874, in _run_cell\n return runner(coro)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\IPython\\core\\async_helpers.py\", line 67, in _pseudo_sync_runner\n coro.send(None)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\IPython\\core\\interactiveshell.py\", line 3049, in run_cell_async\n interactivity=interactivity, compiler=compiler, result=result)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\IPython\\core\\interactiveshell.py\", line 3214, in run_ast_nodes\n if (yield from self.run_code(code, result)):\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\IPython\\core\\interactiveshell.py\", line 3296, in run_code\n exec(code_obj, self.user_global_ns, self.user_ns)\n File \"\", line 11, in \n sampler = total_f.create_sampler(n=event_stack)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\core\\basemodel.py\", line 814, in create_sampler\n limits=limits, n=n, name=name)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\core\\basemodel.py\", line 835, in _create_sampler_tensor\n sample = self._single_hook_sample(n=n, limits=limits, name=name)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\core\\basemodel.py\", line 877, in _single_hook_sample\n return self._hook_sample(n=n, limits=limits, name=name)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\core\\basepdf.py\", line 489, in _hook_sample\n samples = super()._hook_sample(limits=limits, n=n, name=name)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\core\\basemodel.py\", line 880, in _hook_sample\n return self._norm_sample(n=n, limits=limits, name=name)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\core\\basemodel.py\", line 884, in _norm_sample\n return self._limits_sample(n=n, limits=limits, name=name)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\core\\basemodel.py\", line 887, in _limits_sample\n return self._call_sample(n=n, limits=limits, name=name)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\core\\basemodel.py\", line 901, in _call_sample\n return self._fallback_sample(n=n, limits=limits)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\core\\basemodel.py\", line 934, in _fallback_sample\n sample_and_weights_factory=self._sample_and_weights)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\core\\sample.py\", line 171, in accept_reject_sample\n n_total_drawn=0, eff=efficiency_estimation),\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\core\\sample.py\", line 146, in sample_body\n message=\"Not all weights are >= probs so the sampling \"\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\ops\\check_ops.py\", line 1023, in assert_greater_equal\n return control_flow_ops.Assert(condition, data, summarize=summarize)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\util\\tf_should_use.py\", line 193, in wrapped\n return _add_should_use_warning(fn(*args, **kwargs))\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\ops\\control_flow_ops.py\", line 168, in Assert\n guarded_assert = cond(condition, no_op, true_assert, name=\"AssertGuard\")\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\util\\deprecation.py\", line 507, in new_func\n return func(*args, **kwargs)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\ops\\control_flow_ops.py\", line 2108, in cond\n orig_res_f, res_f = context_f.BuildCondBranch(false_fn)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\ops\\control_flow_ops.py\", line 1941, in BuildCondBranch\n original_result = fn()\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\ops\\control_flow_ops.py\", line 166, in true_assert\n condition, data, summarize, name=\"Assert\")\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\ops\\gen_logging_ops.py\", line 72, in _assert\n name=name)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\framework\\op_def_library.py\", line 788, in _apply_op_helper\n op_def=op_def)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\util\\deprecation.py\", line 507, in new_func\n return func(*args, **kwargs)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\framework\\ops.py\", line 3300, in create_op\n op_def=op_def)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\framework\\ops.py\", line 1801, in __init__\n self._traceback = tf_stack.extract_stack()\n\nInvalidArgumentError (see above for traceback): assertion failed: [Not all weights are >= probs so the sampling will be biased. If a custom `sample_and_weights` was used, make sure that either the shape of the custom sampler (resp. it\\'s weights) overlap better or decrease the `max_weight`] [Condition x >= y did not hold element-wise:x (ZPDF_1/create_sampler/mul_3:0) = ] [-nan(ind)] [y (ZPDF_1/create_sampler/ZPDF/unnormalized_pdf/add_36:0) = ] [-nan(ind) -nan(ind) -nan(ind)...]\n\t [[node ZPDF_1/create_sampler/assert_greater_equal/Assert/AssertGuard/Assert (defined at c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\core\\sample.py:146) ]]\n\t [[{{node ConstantFoldingCtrl/ZPDF_1/create_sampler/while/assert_greater_equal/Assert/AssertGuard/Switch_0}}]]\n", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mInvalidArgumentError\u001b[0m Traceback (most recent call last)", + "\u001b[1;32mc:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\client\\session.py\u001b[0m in \u001b[0;36m_do_call\u001b[1;34m(self, fn, *args)\u001b[0m\n\u001b[0;32m 1333\u001b[0m \u001b[1;32mtry\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1334\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mfn\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m*\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 1335\u001b[0m \u001b[1;32mexcept\u001b[0m \u001b[0merrors\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mOpError\u001b[0m \u001b[1;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32mc:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\client\\session.py\u001b[0m in \u001b[0;36m_run_fn\u001b[1;34m(feed_dict, fetch_list, target_list, options, run_metadata)\u001b[0m\n\u001b[0;32m 1318\u001b[0m return self._call_tf_sessionrun(\n\u001b[1;32m-> 1319\u001b[1;33m options, feed_dict, fetch_list, target_list, run_metadata)\n\u001b[0m\u001b[0;32m 1320\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32mc:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\client\\session.py\u001b[0m in \u001b[0;36m_call_tf_sessionrun\u001b[1;34m(self, options, feed_dict, fetch_list, target_list, run_metadata)\u001b[0m\n\u001b[0;32m 1406\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_session\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0moptions\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfeed_dict\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfetch_list\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mtarget_list\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1407\u001b[1;33m run_metadata)\n\u001b[0m\u001b[0;32m 1408\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;31mInvalidArgumentError\u001b[0m: assertion failed: [Not all weights are >= probs so the sampling will be biased. If a custom `sample_and_weights` was used, make sure that either the shape of the custom sampler (resp. it\\'s weights) overlap better or decrease the `max_weight`] [Condition x >= y did not hold element-wise:x (ZPDF_1/create_sampler/mul_3:0) = ] [-nan(ind)] [y (ZPDF_1/create_sampler/ZPDF/unnormalized_pdf/add_36:0) = ] [-nan(ind) -nan(ind) -nan(ind)...]\n\t [[{{node ZPDF_1/create_sampler/assert_greater_equal/Assert/AssertGuard/Assert}}]]\n\t [[{{node ConstantFoldingCtrl/ZPDF_1/create_sampler/while/assert_greater_equal/Assert/AssertGuard/Switch_0}}]]", + "\nDuring handling of the above exception, another exception occurred:\n", + "\u001b[1;31mInvalidArgumentError\u001b[0m Traceback (most recent call last)", + "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[0;32m 21\u001b[0m \u001b[1;32mfor\u001b[0m \u001b[0mcall\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mcalls\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 22\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 23\u001b[1;33m \u001b[0msampler\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mresample\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mn\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mevent_stack\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 24\u001b[0m \u001b[0ms\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0msampler\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0munstack_x\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 25\u001b[0m \u001b[0msam\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mzfit\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mrun\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0ms\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32mc:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\core\\data.py\u001b[0m in \u001b[0;36mresample\u001b[1;34m(self, param_values, n)\u001b[0m\n\u001b[0;32m 624\u001b[0m \u001b[1;32mraise\u001b[0m \u001b[0mRuntimeError\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m\"Cannot set a new `n` if not a Tensor-like object was given\"\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 625\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mn_samples\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mload\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mvalue\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mn\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0msession\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0msess\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 626\u001b[1;33m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0msess\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mrun\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0msample_holder\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0minitializer\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 627\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_initial_resampled\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;32mTrue\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 628\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32mc:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\client\\session.py\u001b[0m in \u001b[0;36mrun\u001b[1;34m(self, fetches, feed_dict, options, run_metadata)\u001b[0m\n\u001b[0;32m 927\u001b[0m \u001b[1;32mtry\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 928\u001b[0m result = self._run(None, fetches, feed_dict, options_ptr,\n\u001b[1;32m--> 929\u001b[1;33m run_metadata_ptr)\n\u001b[0m\u001b[0;32m 930\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mrun_metadata\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 931\u001b[0m \u001b[0mproto_data\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mtf_session\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mTF_GetBuffer\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mrun_metadata_ptr\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32mc:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\client\\session.py\u001b[0m in \u001b[0;36m_run\u001b[1;34m(self, handle, fetches, feed_dict, options, run_metadata)\u001b[0m\n\u001b[0;32m 1150\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mfinal_fetches\u001b[0m \u001b[1;32mor\u001b[0m \u001b[0mfinal_targets\u001b[0m \u001b[1;32mor\u001b[0m \u001b[1;33m(\u001b[0m\u001b[0mhandle\u001b[0m \u001b[1;32mand\u001b[0m \u001b[0mfeed_dict_tensor\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1151\u001b[0m results = self._do_run(handle, final_targets, final_fetches,\n\u001b[1;32m-> 1152\u001b[1;33m feed_dict_tensor, options, run_metadata)\n\u001b[0m\u001b[0;32m 1153\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1154\u001b[0m \u001b[0mresults\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;33m[\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32mc:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\client\\session.py\u001b[0m in \u001b[0;36m_do_run\u001b[1;34m(self, handle, target_list, fetch_list, feed_dict, options, run_metadata)\u001b[0m\n\u001b[0;32m 1326\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mhandle\u001b[0m \u001b[1;32mis\u001b[0m \u001b[1;32mNone\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1327\u001b[0m return self._do_call(_run_fn, feeds, fetches, targets, options,\n\u001b[1;32m-> 1328\u001b[1;33m run_metadata)\n\u001b[0m\u001b[0;32m 1329\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1330\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_do_call\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0m_prun_fn\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mhandle\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfeeds\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfetches\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32mc:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\client\\session.py\u001b[0m in \u001b[0;36m_do_call\u001b[1;34m(self, fn, *args)\u001b[0m\n\u001b[0;32m 1346\u001b[0m \u001b[1;32mpass\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1347\u001b[0m \u001b[0mmessage\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0merror_interpolation\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0minterpolate\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mmessage\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_graph\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1348\u001b[1;33m \u001b[1;32mraise\u001b[0m \u001b[0mtype\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0me\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mnode_def\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mop\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mmessage\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 1349\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1350\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0m_extend_graph\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;31mInvalidArgumentError\u001b[0m: assertion failed: [Not all weights are >= probs so the sampling will be biased. If a custom `sample_and_weights` was used, make sure that either the shape of the custom sampler (resp. it\\'s weights) overlap better or decrease the `max_weight`] [Condition x >= y did not hold element-wise:x (ZPDF_1/create_sampler/mul_3:0) = ] [-nan(ind)] [y (ZPDF_1/create_sampler/ZPDF/unnormalized_pdf/add_36:0) = ] [-nan(ind) -nan(ind) -nan(ind)...]\n\t [[node ZPDF_1/create_sampler/assert_greater_equal/Assert/AssertGuard/Assert (defined at c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\core\\sample.py:146) ]]\n\t [[{{node ConstantFoldingCtrl/ZPDF_1/create_sampler/while/assert_greater_equal/Assert/AssertGuard/Switch_0}}]]\n\nCaused by op 'ZPDF_1/create_sampler/assert_greater_equal/Assert/AssertGuard/Assert', defined at:\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\runpy.py\", line 193, in _run_module_as_main\n \"__main__\", mod_spec)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\runpy.py\", line 85, in _run_code\n exec(code, run_globals)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\ipykernel_launcher.py\", line 16, in \n app.launch_new_instance()\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\traitlets\\config\\application.py\", line 658, in launch_instance\n app.start()\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\ipykernel\\kernelapp.py\", line 505, in start\n self.io_loop.start()\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tornado\\platform\\asyncio.py\", line 148, in start\n self.asyncio_loop.run_forever()\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\asyncio\\base_events.py\", line 539, in run_forever\n self._run_once()\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\asyncio\\base_events.py\", line 1775, in _run_once\n handle._run()\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\asyncio\\events.py\", line 88, in _run\n self._context.run(self._callback, *self._args)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tornado\\ioloop.py\", line 690, in \n lambda f: self._run_callback(functools.partial(callback, future))\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tornado\\ioloop.py\", line 743, in _run_callback\n ret = callback()\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tornado\\gen.py\", line 781, in inner\n self.run()\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tornado\\gen.py\", line 742, in run\n yielded = self.gen.send(value)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\ipykernel\\kernelbase.py\", line 357, in process_one\n yield gen.maybe_future(dispatch(*args))\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tornado\\gen.py\", line 209, in wrapper\n yielded = next(result)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\ipykernel\\kernelbase.py\", line 267, in dispatch_shell\n yield gen.maybe_future(handler(stream, idents, msg))\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tornado\\gen.py\", line 209, in wrapper\n yielded = next(result)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\ipykernel\\kernelbase.py\", line 534, in execute_request\n user_expressions, allow_stdin,\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tornado\\gen.py\", line 209, in wrapper\n yielded = next(result)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\ipykernel\\ipkernel.py\", line 294, in do_execute\n res = shell.run_cell(code, store_history=store_history, silent=silent)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\ipykernel\\zmqshell.py\", line 536, in run_cell\n return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\IPython\\core\\interactiveshell.py\", line 2848, in run_cell\n raw_cell, store_history, silent, shell_futures)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\IPython\\core\\interactiveshell.py\", line 2874, in _run_cell\n return runner(coro)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\IPython\\core\\async_helpers.py\", line 67, in _pseudo_sync_runner\n coro.send(None)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\IPython\\core\\interactiveshell.py\", line 3049, in run_cell_async\n interactivity=interactivity, compiler=compiler, result=result)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\IPython\\core\\interactiveshell.py\", line 3214, in run_ast_nodes\n if (yield from self.run_code(code, result)):\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\IPython\\core\\interactiveshell.py\", line 3296, in run_code\n exec(code_obj, self.user_global_ns, self.user_ns)\n File \"\", line 11, in \n sampler = total_f.create_sampler(n=event_stack)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\core\\basemodel.py\", line 814, in create_sampler\n limits=limits, n=n, name=name)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\core\\basemodel.py\", line 835, in _create_sampler_tensor\n sample = self._single_hook_sample(n=n, limits=limits, name=name)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\core\\basemodel.py\", line 877, in _single_hook_sample\n return self._hook_sample(n=n, limits=limits, name=name)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\core\\basepdf.py\", line 489, in _hook_sample\n samples = super()._hook_sample(limits=limits, n=n, name=name)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\core\\basemodel.py\", line 880, in _hook_sample\n return self._norm_sample(n=n, limits=limits, name=name)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\core\\basemodel.py\", line 884, in _norm_sample\n return self._limits_sample(n=n, limits=limits, name=name)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\core\\basemodel.py\", line 887, in _limits_sample\n return self._call_sample(n=n, limits=limits, name=name)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\core\\basemodel.py\", line 901, in _call_sample\n return self._fallback_sample(n=n, limits=limits)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\core\\basemodel.py\", line 934, in _fallback_sample\n sample_and_weights_factory=self._sample_and_weights)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\core\\sample.py\", line 171, in accept_reject_sample\n n_total_drawn=0, eff=efficiency_estimation),\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\core\\sample.py\", line 146, in sample_body\n message=\"Not all weights are >= probs so the sampling \"\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\ops\\check_ops.py\", line 1023, in assert_greater_equal\n return control_flow_ops.Assert(condition, data, summarize=summarize)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\util\\tf_should_use.py\", line 193, in wrapped\n return _add_should_use_warning(fn(*args, **kwargs))\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\ops\\control_flow_ops.py\", line 168, in Assert\n guarded_assert = cond(condition, no_op, true_assert, name=\"AssertGuard\")\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\util\\deprecation.py\", line 507, in new_func\n return func(*args, **kwargs)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\ops\\control_flow_ops.py\", line 2108, in cond\n orig_res_f, res_f = context_f.BuildCondBranch(false_fn)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\ops\\control_flow_ops.py\", line 1941, in BuildCondBranch\n original_result = fn()\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\ops\\control_flow_ops.py\", line 166, in true_assert\n condition, data, summarize, name=\"Assert\")\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\ops\\gen_logging_ops.py\", line 72, in _assert\n name=name)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\framework\\op_def_library.py\", line 788, in _apply_op_helper\n op_def=op_def)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\util\\deprecation.py\", line 507, in new_func\n return func(*args, **kwargs)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\framework\\ops.py\", line 3300, in create_op\n op_def=op_def)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\framework\\ops.py\", line 1801, in __init__\n self._traceback = tf_stack.extract_stack()\n\nInvalidArgumentError (see above for traceback): assertion failed: [Not all weights are >= probs so the sampling will be biased. If a custom `sample_and_weights` was used, make sure that either the shape of the custom sampler (resp. it\\'s weights) overlap better or decrease the `max_weight`] [Condition x >= y did not hold element-wise:x (ZPDF_1/create_sampler/mul_3:0) = ] [-nan(ind)] [y (ZPDF_1/create_sampler/ZPDF/unnormalized_pdf/add_36:0) = ] [-nan(ind) -nan(ind) -nan(ind)...]\n\t [[node ZPDF_1/create_sampler/assert_greater_equal/Assert/AssertGuard/Assert (defined at c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\core\\sample.py:146) ]]\n\t [[{{node ConstantFoldingCtrl/ZPDF_1/create_sampler/while/assert_greater_equal/Assert/AssertGuard/Switch_0}}]]\n" + ] + } + ], + "source": [ "nr_of_toys = 1\n", "nevents = int(pdg[\"number_of_decays\"])\n", - "event_stack = 100000\n", - "\n", + "event_stack = 1000\n", + "zfit.settings.set_verbosity(10)\n", "calls = int(nevents/event_stack + 1)\n", "\n", "total_samp = []\n", @@ -861,7 +923,7 @@ " sampler.resample(n=event_stack)\n", " s = sampler.unstack_x()\n", " sam = zfit.run(s)\n", - "# clear_output(wait=True)\n", + " clear_output(wait=True)\n", "\n", " c = call + 1 \n", " print(\"{0}/{1}\".format(c, calls))\n", @@ -874,7 +936,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -891,18 +953,9 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Time to generate full toy: 0 s\n", - "(5404696,)\n" - ] - } - ], + "outputs": [], "source": [ "print(\"Time to generate full toy: {} s\".format(int(time.time()-start)))\n", "\n", @@ -924,22 +977,9 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAD8CAYAAABZ/vJZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XmUVPWd9/H3t6o3tmYVRRqhxVbAJS7tEsWEqCNuEWNMJNGEqNHn5DEzSWaSGR0zj5lJnDEnmZgxJjoojsQxoONKEhNCiE40KgqCyiI7YrMINtACDb1UfZ8/6jYW2Out6r5V1Z/XOX3q3t/93dvf37nd/em71C1zd0RERLoqFnUBIiKSnxQgIiISigJERERCUYCIiEgoChAREQlFASIiIqF0GCBm9qCZbTOzpWltPzKzt83sTTN7yswGpS271czWmNlKM5uc1n5R0LbGzG5Ja680swVmttrMHjWzkmwOUEREukdnjkAeAi46pG0ecIK7nwSsAm4FMLMJwFTg+GCdX5hZ3MziwM+Bi4EJwBeCvgA/BO5y9ypgJ3BDRiMSEZEe0WGAuPufgR2HtP3B3ZuD2VeAimB6CjDb3RvcfT2wBjgj+Frj7uvcvRGYDUwxMwPOAx4P1p8JXJHhmEREpAcUZWEb1wOPBtMjSQVKi5qgDeDdQ9rPBIYCu9LCKL3/R5jZTcBNAP369Ttt3LhxGRcvheutTXVZ29YA6hljW1nrR1JPWda2my0n2Hre94FsZUjG2zpx5MAsVCS5aNiwYcydO3euux96VimUjALEzG4DmoFHWppa6ea0fqTj7fRvlbtPB6YDVFdX+8KFC7tUr/QuY275bda2dW18Hj8o/i/O2P9vbGNw1rabLb8p/TovJE7k75v/T8bbWnjnpVmoSHKVmQ3L1rZCB4iZTQMuA873Dx+oVQOMSutWAWwOpltrfx8YZGZFwVFIen+RnHGk1dLocbaTm/+dv+eDONx2Rl2G9DKhbuM1s4uAfwAud/f6tEVzgKlmVmpmlUAV8CrwGlAV3HFVQupC+5wgeJ4DrgrWnwY8E24oIt1npL3PVh+C5+id71t9KEfYjo47imRRZ27jnQW8DBxnZjVmdgNwDzAAmGdmS8zsPgB3XwY8BiwHfg/c7O6J4Oji68BcYAXwWNAXUkH0t2a2htQ1kRlZHaFIFhxl29jow6Muo01bfAgjFCDSwzo8heXuX2iluc0/8u5+B3BHK+3PAs+20r6O1F1aIjlrtG3ld8kzoy6jTe/5YMqtnn7sYy99oi4npzU1NVFTU8P+/fujLqVblZWVUVFRQXFxcbd9j2zchSVS0MrZwxDbwwY/POpS2rTFU3dfHWE7WOtt3sgoQE1NDQMGDGDMmDGk3klQeNyd2tpaampqqKys7Lbvk5sndEVyyGjbBsA7ORwgW30ogC6kd8L+/fsZOnRowYYHgJkxdOjQbj/KUoCIdGCMbQVyO0C2BO//GIGug3RGIYdHi54YowJEpANHBUcguXwR/T1PvTdFd2JJT1KAiHRgjG1lqw9mXw6+A71FAyXU+gBGWG3UpUiWPP/881x22WUANDQ0cMEFF3DyySfz6KOPdrBmz9FFdJEOjI69l9Onr1ps9SE6AilQixcvpqmpiSVLlkRdykF0BCLSgUrbyjvJ3A8QvRckf2zYsIFx48Yxbdo0TjrpJK666irq6+v5/e9/z7hx45g4cSJPPvkkANu2bePaa69lyZIlnHzyyaxduzbi6j+kIxCRdpSzh8OsjjV+ZNSldGizD+P02Mqoy8gvv7sFtr6V3W0ecSJcfGeH3VauXMmMGTM455xzuP766/nJT37Cf/7nf/KnP/2JY445hquvvhqA4cOH88ADD/DjH/+Y3/zmN9mtNUM6AhFpR5VtAmC1V3TQM3rv+mEMtHrK2Rt1KdIJo0aN4pxzzgHg2muvZeHChVRWVlJVVYWZce2110ZcYcd0BCLSjmNjNUB+BEjLXWKjbDvLvF/E1eSJThwpdJdDb7Otq6vLu9uLdQQi0o4q20S9l7IpeKNeLnv3QIBsi7gS6YyNGzfy8ssvAzBr1iwuuOAC1q9ff+Aax6xZs6Isr1MUICLtqLIaVvvInH0Kb7qWADnK3ou4EumM8ePHM3PmTE466SR27NjBt771LaZPn86ll17KxIkTGT16dNQldkinsETaURXbxF+SJ0RdRqfspi87vf+BNz5KbovFYtx3330HtV100UW8/fbbH+k7adIkJk2a1EOVdV7u/1slEpFy9nKE7WRVMvevf7TY6MMVINJjFCAibaiylgvo+fN023d9OBW2PeoypANjxoxh6dKlUZeRMQWISBuOj20AYFlyTKR1dMXGIEBiJKMuRXoBBYhIG06wDWz3ct5jcNSldNpGH06JJRiBnokl3U8BItKGE2IbWJasBPLn3vx1yREAjI1tjrgS6Q0UICKtKKWRKqthqY+JupQuWRs8cuUYU4BI99NtvCKtONZqKLYES5Pd93Gg3aGWcnZ6f8YqQDptzC2/zer2Ntx5aZfX+d73vkf//v359re/3eryp59+mmOPPZYJEyZkWl5W6QhEpBUnxNYD5N0RCBhr/EiOiW2KuhDJoqeffprly5dHXcZHKEBEWnGiraPO+1Ljh0VdSpetTR6pI5A8cMcdd3DcccdxwQUXsHJl6inK999/P6effjof+9jH+OxnP0t9fT0vvfQSc+bM4Tvf+c6Bx7m31i8KChCRVpwWW83rySry6QJ6izU+kmH2AYPYHXUp0oZFixYxe/ZsFi9ezJNPPslrr70GwJVXXslrr73GG2+8wfjx45kxYwZnn302l19+OT/60Y9YsmQJY8eObbVfFHQNROQQ5ezhuFgNv276eNSlhNLy2SVjbTOL/LiIq5HWvPDCC3zmM5+hb9++AFx++eUALF26lO9+97vs2rWLPXv2MHny5FbX72y/7qYjEJFDnBpbDcAiPzbiSsJZE7xzvkrXQXJaa49u/8pXvsI999zDW2+9xe23387+/ftbXbez/bqbAkTkEKfFVtPsMZYkx0ZdSiibfBi7vQ/j7Z2oS5E2fOITn+Cpp55i37597N69m1//+tcA7N69mxEjRtDU1MQjjzxyoP+AAQPYvfvDU5Jt9etpOoUlcohqW8VyH80+yqIuJRQnxgo/igkxBUhnhLntNlOnnnoqV199NSeffDKjR4/m3HPPBeD73/8+Z555JqNHj+bEE088EBpTp07lxhtv5O677+bxxx9vs19PM3dvv4PZg8BlwDZ3PyFoGwI8CowBNgCfd/edljom+w/gEqAe+Iq7vx6sMw34brDZH7j7zKD9NOAhoA/wLPAN76gooLq62hcuXNiVsUovE+b+/hKaeKP0RmYnPsU/N0/rhqp6xu1FM/lc/H85seGBLn+WSRR/UHvSihUrGD9+fNRl9IjWxmpmi9y9Ohvb78xP1kPARYe03QLMd/cqYH4wD3AxUBV83QTcGxQ8BLgdOBM4A7jdzFoeMHRv0LdlvUO/l0iPOTW2mj7WmDefAdKW5T6a/rafMfpwKelGHQaIu/8Z2HFI8xRgZjA9E7girf2XnvIKMMjMRgCTgXnuvsPddwLzgIuCZeXu/nJw1PHLtG2J9LhzYktp9hgLkvn9H+ry4AnCx9uGSOuQwhb2Ivrh7r4FIHgdHrSPBN5N61cTtLXXXtNKu0gkzo29xRI/ht30jbqUjKzyCho9fuCR9HKwTpwlz3s9McZs34XV2ruuPER76xs3u8nMFprZwu3b9aE5kl3l7OFEW5f3p68AmihitVfoCKQVZWVl1NbWFnSIuDu1tbWUlXXvjSBh78J6z8xGuPuW4DRUy2do1gCj0vpVAJuD9kmHtD8ftFe00r9V7j4dmA6pi+ghaxdp1cdjy4mb80Ii/wMEYEnyGD4dfxkj2eUL6YWsoqKCmpoaCv2f0LKyMioquvfjmMMGyBxgGnBn8PpMWvvXzWw2qQvmdUHIzAX+Ne3C+YXAre6+w8x2m9lZwALgy8DPQtYkkpG/ir9OnfdliR8TdSlZsShZxTVF86myTazyUR2v0EsUFxdTWZlfT1nOVR0GiJnNInX0MMzMakjdTXUn8JiZ3QBsBD4XdH+W1C28a0jdxnsdQBAU3wdeC/r9i7u3XJj/Gh/exvu74EukR8VJcF7sdeYnT6W5QN4e1fJO+tNiq1iVUIBI9nX4m+LuX2hj0fmt9HXg5ja28yDwYCvtC4HCOGcgeavaVjHE9vCHRFZuj88J7/jhvO/lnBZbzazER35dRTKmE6MiwIXxhTR4MX9OnhR1KVlkvJ6s4lRbFXUhUqAUINLrGUkmx1/jxeQJ1Ofp40vasih5LEfHtjKUuqhLkQKkAJFer9pWUWHv8+tEfj6+vT0tb4g8O7Ys4kqkEClApNf7TPwF9nopc5OFc/2jxZt+NHXel4mxpVGXIgVIASK9WimNXBZfwNzk6Xn79N32JInxUvJ4Jsbfop336IqEogCRXu282GLKrZ6nEhOjLqXbvJg8kZFWS6VtjboUKTAKEOnVro3/kRofVhCPL2nLC8kTATg39mbElUihUYBIr3WM1XBOfBm/aj6fZAH/Kmz0w1mfPJzzY4ujLkUKTOH+1oh04EvxeTR4EbMTn4q6lG43N3k6H48to5y9UZciBUQBIr1SOXu5Mv4iv0mexQ7Koy6n281NnE6JJfiUjkIkixQg0itNi89lgO3jgebC/vjWFkt8LFt9MJPj+hhoyR4FiPQ6/djH9UW/Z17iVFb46KjL6RFOjD8kqpkUe4O+7I+6HCkQChDpdb4Un8dg28M9zb3r05OfSZxNX2vg4tirUZciBUIBIr3KIHbztaI5PJ/4GG8UyOd+dNYiP5b1ycO5Kv7nqEuRAqEAkV7lb4qeoj/7+NfmL0ZdSgSMxxOf5OPx5VTYto67i3RAASK9RqVt4UvxeTyamNRrP6HvqcREkm58Pv581KVIAVCASC/h3FE0g32UcFfz5zruXqA2M4z5yVO4Jj6fUhqjLkfynAJEeoWr489zdnw5/9b8RbYzKOpyIvVg4mKG2m6uiP8l6lIkzylApOAdQS23FT3CK8nxveJd5x15OTmB5cnRXB//HXpCr2RCASIFLU6Cu0vuIU6CW5q+iutHHjDub76E42I1TI7pjYUSnn6bpKB9s+gJzoit5B+bbmCDj4i6nJwxJ3k2a5Mj+Nui/yFGMupyJE8pQKRgTY69xs3xZ5jdPIlnkoX7eR9hJIhzV/NVHBer4dOxl6IuR/KUAkQKU80iflr8c5b4WG5v/krU1eSk3ybPZHlyNN8pfowyGqIuR/KQAkQKT+1amDWV7T6QGxv/jgZKoq4oJzkxvtf0ZSrsfb5e9HTU5UgeUoBIYaldCw9dCp7kuqa/p5aBUVeU01718TyRmMhN8d8w1jZFXY7kGQWIFI7tq+ChyyDRCNPmsNZHRl1RXvi3pmvYSx9+UnwvRTRHXY7kEQWIFIYNf4EZF0CyCb48Bw4/PuqK8sb7DOTWpq/ysdg6vln0RNTlSB5RgEj+W/IrePgK6DccvvpHOOKEqCvKO79PnsFjzZ/k/8bnwOo/Rl2O5ImMAsTMvmVmy8xsqZnNMrMyM6s0swVmttrMHjWzkqBvaTC/Jlg+Jm07twbtK81scmZDkl6jsR6euRme/hqMOhNu+AMMHhN1VXnr9uZpvO1HwePXpU4HinQgdICY2Ujgb4Bqdz8BiANTgR8Cd7l7FbATuCFY5QZgp7sfA9wV9MPMJgTrHQ9cBPzCzOJh65JeYtPrcP95sPgR+MR34EtPQ98hUVeV1/ZRxlcb/w6KSuFXn4fdW6MuSXJcpqewioA+ZlYE9AW2AOcBjwfLZwItH/s2JZgnWH6+mVnQPtvdG9x9PbAGOCPDuqRQNdbD3NvggfNh/y649gk477sQL4q6soKwmWEwdRbs2Qa/nAJ734+6JMlhoQPE3TcBPwY2kgqOOmARsMvdW27lqAFaboUZCbwbrNsc9B+a3t7KOgcxs5vMbKGZLdy+fXvY0iUfJZPwxqPw8zPg5Xvg1Glw8wI45vyoKys8o06Hax6Dne/AzMvhgy1RVyQ5KpNTWINJHT1UAkcC/YCLW+na8rhPa2NZW+0fbXSf7u7V7l592GGHdb1oyT/usGY+3D8JnropdZrqK8/Cp38KZXqPR7cZMxG+MAt2vQMPXADbVkRdkeSgTE5hXQCsd/ft7t4EPAmcDQwKTmkBVACbg+kaYBRAsHwgsCO9vZV1pLdKJmDZ0zB9Evz3lVC/A668H258HsacE3V1vcPYT8F1z6ZujZ5xISx/JuqKJMdkEiAbgbPMrG9wLeN8YDnwHHBV0Gca0PJTNyeYJ1j+J3f3oH1qcJdWJVAFvJpBXZLP9myDF++Cn50G/zMNGvfA5T+Dv14EJ30eYrrzvEeN+Bh8dT4MPQYe+zI8+x1o2hd1VZIjQl95dPcFZvY48DrQDCwGpgO/BWab2Q+CthnBKjOAh81sDakjj6nBdpaZ2WOkwqcZuNndE2HrkjzU3ABr/5R6P8fKZyHZDKMnwgXfg/GfhphuyovUoFFw/Vz44+3wyi9gzR/hsp/C0Z+MujKJmKUOAvJPdXW1L1yoD8PJW037Yd1zsOwpWPk7aPgA+gyBk7+YukB+2LEZf4sxt/w2C4X2PhvuvLTtheueh19/E3auhxM/B5+6DYZU9lhtkjkzW+Tu1VnZlgIk9xXGH0JnrG1mUuwNPhF7kzNjKyizJnZ5P/6QqOa3ybN4KXk8TeEPiqWHlNLIzUVPc2P8WeIkmJU4j/uaL2cLQ6MuLXLthm+OyGaA6LdVukWcBOPsXU6LraQ6torq2EqOtB0ArE2OYFbiPJ5PnqzQyEMNlPCT5s/z381/xTeKnuSa+Hyuic/nt8mzmNF8MW/62KhLlB6i31zJWJwER9sWxts7TIi9wwm2npNja+lv+wHY4kNYlDyWnyWP58+Jk9iEbsEuBNsYzG3NN3Bv4nKmxedydfw5ppS+xPLkaJ5ITGRO4hy2MyjqMqUbKUCk04po5ijbRqVtodK2coxtYnxsI+PsXUqtCYAGL2KVV/BE4lwWJY9jUbKKTQyj9bf7SCGo8cO4o/la/qP5Sj4Tf5HPxl/gn4of4daiWbyaHMf85CnMT56qz6QvQAoQSeMMZC8j7X1G2vscabWMsm1U2lYqbQtH2TaKLHmgd60PYEXyKGYmL2RF8iiW+2jW+pE068eqV9pDXx5OXMjDiQsZa5u4Iv4X/iq2iH8qfoR/4hHWJkfwSnICC5LjeDU5jq26ZpL39JveS5TSyDDqOMzqGGZ1HGa7OIw6jrAdHGm1HBkERstppxb7vZj1PoIVfhTPJs9kXXIE630E63wEdfSPaDSS69b6SP69+fP8O5+nwrZxfmwxk2JL+HT8Ja4pmg/AxuRhvOlHsyxZyTIfzbLkGH2CZJ5RgOShOAkGspdBtodB7El73cvAYHqo7U4FBbs4zOoot/pWt1XrA9jkw1jnR/Ji8kQ2+TA2+TA2+1A2+TBqKUennyQTNT6cmYnJzExMJkaS8fYOZ8bepjq2kpNsHZcVLzjQ9z0fxLrkkaz3I1jrH/6zstmH0UhxhKPonMK4Y7Lz8vY23tIRVT5i2k+jLqOLnL400J999Ld9B7+yj362nwHso99By/bTn32U214GkQqIcmv7ncBJN+rox07vz3YGsd0H8r4PZLsPYjtp0z6QWgbqDiiJXDl7OD72DhNsA+PsXSpjWznaNjPE9hzUb7sPZLMPZYsPZXPw9Z4PppZyar2cHV7ODgaQQG88bc87P7xMt/FmS4wkJTRRQhOlNFNqTcF8MyU00YdG+lgDZTTShwb6WOq17KD2RsqsIdU36FPGofON9GM/Mes4sJs8zh76sMf7pF4pY7sPYhUV1CX7s8v7s4t+7PL+1NGfXd6PnQxgl/djN31xfdCk5JEP6M/LyeN5mYM/hngQuzk6uGFjpL3PCKvlSKtlrG1mYuytj5xubbHD+7PDy6mlnLrgd+ID78sH9GW39z0wv5u+7A5+x/Z5KfsooZ4yGihGR92dk7cBcjg7uaXoV5Sm/bEvseYDf/xLaTwwX8qH7SXWdNA66ReFuyrhRj1l7KeEfV7CPlI/hA2UsMsHsIVU2/5kCfspYQ9lQSj0ZY+XsYc+7A1+gHfTh71Bm36ARWAXA3jdB/C6t/ZUAqeceobbToaym6FWx5DgtO2QYH6YfcAo284Aq6ecevqzr1P/wAHUB4Gyj1L2ewn1lB6YbqSYBopooogmT702Bl8tbY0U00g8NR98NXoxzcRIECNJjGbiJIP5BDES3s6ytK+kpy83HCOJ4cRwIEksmE9f9uFrNuVtgAy3nVwXn0sDLTsrtYMaWqYpptGLqaM02OGpnd6YTFtOEQ1ecvA8xTR6EQ2k2lt+aFrCYZ+XpgKDUpqIoz/0IlEwPqAfH3g/1kAbHwBx6BpJ+pE6TVxuexlAPQNsHwPYR2lwZqHvIWcQ+lrDQWcTBtpeSmimOPgqiTWlXmmmmETG/5T2hGz+xcrbAHnLj+a4hny7BiIiUXFiqaN/+rLFh7Y0Zl2M5IGAORAu1hz8y5kMjh2SFJE4MB3HiVviI8tj+IG2OAni1tL/w6+WY43YgWOO1PTB80kMiFkSeChrY83bABERyUVJYjQEp7IP6ExQ9dj9TA9lbUu62ioiIqEoQEREJBQFiIiIhKIAERGRUBQgIiISigJERERCUYCIiEgoChAREQlFASIiIqEoQEREJBQFiIiIhKIAERGRUBQgIiISigJERERCyShAzGyQmT1uZm+b2Qoz+7iZDTGzeWa2OngdHPQ1M7vbzNaY2ZtmdmradqYF/Veb2bRMByUiIt0v0yOQ/wB+7+7jgI8BK4BbgPnuXgXMD+YBLgaqgq+bgHsBzGwIcDtwJnAGcHtL6IiISO4KHSBmVg58ApgB4O6N7r4LmALMDLrNBK4IpqcAv/SUV4BBZjYCmAzMc/cd7r4TmAdcFLYuERHpGZkcgRwNbAf+y8wWm9kDZtYPONzdtwAEr8OD/iOBd9PWrwna2mr/CDO7ycwWmtnCRH1dBqWLiEimMgmQIuBU4F53PwXYy4enq1rT2me5ezvtH210n+7u1e5eHe87sKv1iohIFmUSIDVAjbsvCOYfJxUo7wWnpghet6X1H5W2fgWwuZ12ERHJYaEDxN23Au+a2XFB0/nAcmAO0HIn1TTgmWB6DvDl4G6ss4C64BTXXOBCMxscXDy/MGgTEZEcVpTh+n8NPGJmJcA64DpSofSYmd0AbAQ+F/R9FrgEWAPUB31x9x1m9n3gtaDfv7j7jgzrEhGRbpZRgLj7EqC6lUXnt9LXgZvb2M6DwIOZ1CIiIj1L70QXEZFQFCAiIhKKAkREREJRgIiISCgKEBERCUUBIiIioShAREQkFAWIiIiEogAREZFQFCAiIhKKAkREREJRgIiISCgKEBERCUUBIiIioShAREQkFAWIiIiEogAREZFQFCAiIhKKAkREREJRgIiISCgKEBERCUUBIiIioShAREQkFAWIiIiEogAREZFQFCAiIhKKAkRERELJOEDMLG5mi83sN8F8pZktMLPVZvaomZUE7aXB/Jpg+Zi0bdwatK80s8mZ1iQiIt0vG0cg3wBWpM3/ELjL3auAncANQfsNwE53Pwa4K+iHmU0ApgLHAxcBvzCzeBbqEhGRbpRRgJhZBXAp8EAwb8B5wONBl5nAFcH0lGCeYPn5Qf8pwGx3b3D39cAa4IxM6hIRke6X6RHIT4G/B5LB/FBgl7s3B/M1wMhgeiTwLkCwvC7of6C9lXUOYmY3mdlCM1uYqK/LsHQREclE6AAxs8uAbe6+KL25la7ewbL21jm40X26u1e7e3W878Au1SsiItlVlMG65wCXm9klQBlQTuqIZJCZFQVHGRXA5qB/DTAKqDGzImAgsCOtvUX6OiIikqNCH4G4+63uXuHuY0hdBP+Tu18DPAdcFXSbBjwTTM8J5gmW/8ndPWifGtylVQlUAa+GrUtERHpGJkcgbfkHYLaZ/QBYDMwI2mcAD5vZGlJHHlMB3H2ZmT0GLAeagZvdPdENdYmISBZlJUDc/Xng+WB6Ha3cReXu+4HPtbH+HcAd2ahFRER6ht6JLiIioShAREQkFAWIiIiEogAREZFQFCAiIhKKAkREREJRgIiISCgKEBERCUUBIiIioShAREQkFAWIiIiEogAREZFQFCAiIhKKAkREREJRgIiISCgKEBERCUUBIiIioShAREQkFAWIiIiEogAREZFQFCAiIhKKAkREREJRgIiISCgKEBERCUUBIiIioShAREQkFAWIiIiEEjpAzGyUmT1nZivMbJmZfSNoH2Jm88xsdfA6OGg3M7vbzNaY2ZtmdmratqYF/Veb2bTMhyUiIt0tkyOQZuDv3H08cBZws5lNAG4B5rt7FTA/mAe4GKgKvm4C7oVU4AC3A2cCZwC3t4SOiIjkrtAB4u5b3P31YHo3sAIYCUwBZgbdZgJXBNNTgF96yivAIDMbAUwG5rn7DnffCcwDLgpbl4iI9IysXAMxszHAKcAC4HB33wKpkAGGB91GAu+mrVYTtLXVLiIiOSzjADGz/sATwDfd/YP2urbS5u20t/a9bjKzhWa2MFFf1/ViRUQkazIKEDMrJhUej7j7k0Hze8GpKYLXbUF7DTAqbfUKYHM77R/h7tPdvdrdq+N9B2ZSuoiIZCiTu7AMmAGscPefpC2aA7TcSTUNeCat/cvB3VhnAXXBKa65wIVmNji4eH5h0CYiIjmsKIN1zwG+BLxlZkuCtn8E7gQeM7MbgI3A54JlzwKXAGuAeuA6AHffYWbfB14L+v2Lu+/IoC4REekBoQPE3V+k9esXAOe30t+Bm9vY1oPAg2FrERGRnqd3oouISCgKEBERCUUBIiIioShAREQkFAWIiIiEogAREZFQFCAiIhKKAkREREJRgIiISCgKEBERCUUBIiIioShAREQkFAWIiIiEogAREZFQFCAiIhKKAkREREJRgIiISCgKEBERCUUBIiIioShAREQkFAWIiIiEogAREZFQFCAiIhKKAkREREJRgIiISCgKEBERCUUBIiIioShAREQklJwJEDPeQ/IjAAAFW0lEQVS7yMxWmtkaM7sl6npERKR9OREgZhYHfg5cDEwAvmBmE6KtSkRE2pMTAQKcAaxx93Xu3gjMBqZEXJOIiLSjKOoCAiOBd9Pma4AzD+1kZjcBNwWzDe/88LKlPVBbFIYB70ddRDfS+PKbxpe/ysji2HIlQKyVNv9Ig/t0YDqAmS109+ruLiwKhTw20PjyncaXv4KxXZSt7eXKKawaYFTafAWwOaJaRESkE3IlQF4Dqsys0sxKgKnAnIhrEhGRduTEKSx3bzazrwNzgTjwoLsv62C16d1fWWQKeWyg8eU7jS9/ZXVs5v6RSw0iIiIdypVTWCIikmcUICIiEkrOBIiZlZnZq2b2hpktM7N/DtorzWyBma02s0eDi+yY2VFm9pyZLTazN83skrRt3Ro8EmWlmU2OakzpsjU+MxtjZvvMbEnwdV+U4wpq6urYRpvZ/GBcz5tZRdq2pgX9V5vZtKjGlC7L40uk7bucuFGknfF9Pfg9cjMbltbfzOzuYNmbZnZq2rJ82n9hxlcI+2+cmb1sZg1m9u1DttW1R0q5e058kXovSP9guhhYAJwFPAZMDdrvA74WTE9Pm54AbEibfgMoBSqBtUC8gMY3Blga9XgyHNv/ANOC6fOAh4PpIcC64HVwMD24UMYXzO+JejxdGN8pwc/bBmBYWv9LgN8F650FLMjT/del8RXQ/hsOnA7cAXw7rT1O6u/l0UAJqb+jE9r73jlzBOIpe4LZ4uDLSf0CPh60zwSuaFkFKA+mB/Lh+0amALPdvcHd1wNrSD0qJVJZHF/OCTG2CcD8YPo5PnxszWRgnrvvcPedwDwga296CiuL48tJbY3P3Re7+4ZWVpkC/DJY7xVgkJmNIM/2X4jx5aSujs/dt7n7a0DTIYu6/EipnAkQSD1U0cyWANtI/fCtBXa5e3PQpYbUY08Avgdca2Y1wLPAXwftrT0WZSQ5IEvjA6gMTm39r5md2zPVt6+LY3sD+Gww/RlggJkNpXD2XVvjAygzs4Vm9oqZtQRO5A4dn7svaKd7W/spb/ZfyPFBYey/tnR5/+VUgLh7wt1PJvVO9DOA8a11C16/ADzk7hWkDjkfNrMYnXwsShSyNL4twFHufgrwt8CvzKy8le30qC6O7dvAJ81sMfBJYBPQTOHsu7bGB6l9Vw18EfipmY3t3so759DxmdkJ7XRvaz/lzf4LOT4ojP3Xli7vv5wKkBbuvgt4ntR5vEFm1vKGx/RHnNxA6hw07v4yqYeEDSMPHouSyfiCU3O1QfsiUv8JH9tz1bevM2Nz983ufmUQgrcFbXUUyL5rZ3y4e0ufdcF2TunJ+juSNr72Tj21tZ/yaf+FGV+h7L+2dHn/5UyAmNlhZjYomO4DXACsIHUO+aqg2zTgmWB6I3B+0H88qT+w20k9AmWqmZWaWSVQBbzaU+NoS7bGF2wnHrQfTWp863pqHK3p6tjMbFhwNAVwK/BgMD0XuNDMBpvZYODCoC1S2RpfMK7Slj7AOcDynhpHW9oY39vtrDIH+HJwt9JZQJ27byG/9l+Xx1dA+68tXX+kVHtX2HvyCzgJWAy8CSwF/l/QfjSpAFhD6u6W0qB9AvAXUueblwAXpm3rNlL/ma8ELo56bNkcH6lz68uC9teBT+fh2K4CVgOrgAda2oNl1wf91wDXRT22bI4POBt4K9h3bwE3RD22Dsb3N6T+K20m9Z/oA0G7kfoAuLXBOKrzdP91aXwFtP+OCNo/AHYF0+XBskuCn9u1wG0dfW89ykRERELJmVNYIiKSXxQgIiISigJERERCUYCIiEgoChAREQlFASIiIqEoQEREJJT/D3KEMKnbI7XxAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "bins = int((x_max-x_min)/7)\n", "\n", @@ -961,7 +1001,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -991,177 +1031,9 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
FCN = 23448660.25141733TOTAL NCALL = 73NCALLS = 73
EDM = nanGOAL EDM = 5e-06\n", - " UP = 0.5
\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
ValidValid ParamAccurate CovarPosDefMade PosDef
TrueTrueFalseFalseTrue
Hesse FailHasCovAbove EDMReach calllim
FalseTrueFalseFalse
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
+NameValueHesse ErrorMinos Error-Minos Error+Limit-Limit+Fixed?
0jpsi_p-1.5nanNo
1psi2s_p-1.5nanNo
2psi2s_s23.07nanNo
3jpsi_s184.39nanNo
\n", - "
\n",
-       "\n",
-       "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "ename": "RuntimeError", - "evalue": "exception was raised in user function\nUser function arguments:\n jpsi_p = -nan(ind)\n psi2s_p = +nan\n psi2s_s = +nan\n jpsi_s = +nan\nOriginal python exception in user function:\nKeyboardInterrupt: \n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\minimizers\\minimizer_minuit.py\", line 48, in func\n loss_evaluated = self.sess.run(loss_val)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\client\\session.py\", line 929, in run\n run_metadata_ptr)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\client\\session.py\", line 1152, in _run\n feed_dict_tensor, options, run_metadata)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\client\\session.py\", line 1328, in _do_run\n run_metadata)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\client\\session.py\", line 1334, in _do_call\n return fn(*args)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\client\\session.py\", line 1319, in _run_fn\n options, feed_dict, fetch_list, target_list, run_metadata)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\client\\session.py\", line 1407, in _call_tf_sessionrun\n run_metadata)\n", - "output_type": "error", - "traceback": [ - "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[1;31mRuntimeError\u001b[0m Traceback (most recent call last)", - "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[0;32m 5\u001b[0m \u001b[0mresult\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mminimizer\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mminimize\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mnll\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 6\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 7\u001b[1;33m \u001b[0mparam_errors\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mresult\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0merror\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 8\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 9\u001b[0m \u001b[1;32mfor\u001b[0m \u001b[0mvar\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0merrors\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mparam_errors\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mitems\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;32mc:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\minimizers\\fitresult.py\u001b[0m in \u001b[0;36merror\u001b[1;34m(self, params, method, error_name, sigma)\u001b[0m\n\u001b[0;32m 227\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 228\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0muncached_params\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 229\u001b[1;33m \u001b[0merror_dict\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_error\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mparams\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0muncached_params\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mmethod\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mmethod\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0msigma\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0msigma\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 230\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_cache_errors\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0merror_name\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0merror_name\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0merrors\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0merror_dict\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 231\u001b[0m \u001b[0mall_errors\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mOrderedDict\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mp\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mparams\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mp\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0merror_name\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;32mfor\u001b[0m \u001b[0mp\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mparams\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;32mc:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\minimizers\\fitresult.py\u001b[0m in \u001b[0;36m_error\u001b[1;34m(self, params, method, sigma)\u001b[0m\n\u001b[0;32m 238\u001b[0m \u001b[1;32mexcept\u001b[0m \u001b[0mKeyError\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 239\u001b[0m \u001b[1;32mraise\u001b[0m \u001b[0mKeyError\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m\"The following method is not a valid, implemented method: {}\"\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mformat\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mmethod\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 240\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mmethod\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mresult\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mparams\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mparams\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0msigma\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0msigma\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 241\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 242\u001b[0m \u001b[1;31m# def set_error_method(self, method):\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;32mc:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\minimizers\\fitresult.py\u001b[0m in \u001b[0;36m_minos_minuit\u001b[1;34m(result, params, sigma)\u001b[0m\n\u001b[0;32m 46\u001b[0m \"`MinuitMinimizer`.\")\n\u001b[0;32m 47\u001b[0m result = [minimizer._minuit_minimizer.minos(var=p.name, sigma=sigma)\n\u001b[1;32m---> 48\u001b[1;33m for p in params][-1] # returns every var\n\u001b[0m\u001b[0;32m 49\u001b[0m \u001b[0mresult\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mOrderedDict\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mp\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mresult\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mp\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mname\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;32mfor\u001b[0m \u001b[0mp\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mparams\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 50\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mresult\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;32mc:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\minimizers\\fitresult.py\u001b[0m in \u001b[0;36m\u001b[1;34m(.0)\u001b[0m\n\u001b[0;32m 46\u001b[0m \"`MinuitMinimizer`.\")\n\u001b[0;32m 47\u001b[0m result = [minimizer._minuit_minimizer.minos(var=p.name, sigma=sigma)\n\u001b[1;32m---> 48\u001b[1;33m for p in params][-1] # returns every var\n\u001b[0m\u001b[0;32m 49\u001b[0m \u001b[0mresult\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mOrderedDict\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mp\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mresult\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mp\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mname\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;32mfor\u001b[0m \u001b[0mp\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mparams\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 50\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mresult\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;32miminuit\\_libiminuit.pyx\u001b[0m in \u001b[0;36miminuit._libiminuit.Minuit.minos\u001b[1;34m()\u001b[0m\n", - "\u001b[1;31mRuntimeError\u001b[0m: exception was raised in user function\nUser function arguments:\n jpsi_p = -nan(ind)\n psi2s_p = +nan\n psi2s_s = +nan\n jpsi_s = +nan\nOriginal python exception in user function:\nKeyboardInterrupt: \n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\minimizers\\minimizer_minuit.py\", line 48, in func\n loss_evaluated = self.sess.run(loss_val)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\client\\session.py\", line 929, in run\n run_metadata_ptr)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\client\\session.py\", line 1152, in _run\n feed_dict_tensor, options, run_metadata)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\client\\session.py\", line 1328, in _do_run\n run_metadata)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\client\\session.py\", line 1334, in _do_call\n return fn(*args)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\client\\session.py\", line 1319, in _run_fn\n options, feed_dict, fetch_list, target_list, run_metadata)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\client\\session.py\", line 1407, in _call_tf_sessionrun\n run_metadata)\n" - ] - } - ], + "outputs": [], "source": [ "nll = zfit.loss.UnbinnedNLL(model=total_f, data=data3, fit_range = (x_min, x_max))\n", "\n", @@ -1246,7 +1118,14 @@ "execution_count": null, "metadata": {}, "outputs": [], - "source": [] + "source": [ + "_tot = 4.37e-7+6.02e-5+4.97e-6\n", + "_probs = []\n", + "_probs.append(6.02e-5/_tot)\n", + "_probs.append(4.97e-6/_tot)\n", + "_probs.append(4.37e-7/_tot)\n", + "print(_probs)" + ] }, { "cell_type": "code", diff --git a/constants.nb b/constants.nb index 8eb75f2..06f2ff8 100644 --- a/constants.nb +++ b/constants.nb @@ -10,10 +10,10 @@ NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 158, 7] -NotebookDataLength[ 463652, 8160] -NotebookOptionsPosition[ 460191, 8101] -NotebookOutlinePosition[ 460534, 8116] -CellTagsIndexPosition[ 460491, 8113] +NotebookDataLength[ 103973, 2073] +NotebookOptionsPosition[ 101350, 2026] +NotebookOutlinePosition[ 101692, 2041] +CellTagsIndexPosition[ 101649, 2038] WindowFrame->Normal*) (* Beginning of Notebook Content *) @@ -98,7 +98,7 @@ RowBox[{ RowBox[{ RowBox[{"numberofdecays", "=", " ", "5404696"}], ";"}], - "\[IndentingNewLine]"}], "\n", + "\n"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"b0", "=", " ", RowBox[{"{", @@ -126,7 +126,7 @@ RowBox[{ RowBox[{ RowBox[{"NRauc", "=", " ", "0.00133"}], ";"}], - "\[IndentingNewLine]"}], "\n", + "\n"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"jpsim", "=", " ", "3096.0"}], ";"}], "\[IndentingNewLine]", RowBox[{ @@ -162,19 +162,27 @@ RowBox[{"(", RowBox[{"-", "6"}], ")"}]}]}]}], ";"}], "\n", RowBox[{ - RowBox[{"psi2sauc", "=", " ", - RowBox[{"2.802257483178487", "*", - RowBox[{"10", "^", - RowBox[{"(", - RowBox[{"-", "10"}], ")"}]}]}]}], ";"}]}], "Input", + RowBox[{ + RowBox[{"psi2sauc", "=", " ", + RowBox[{"2.802257483178487", "*", + RowBox[{"10", "^", + RowBox[{"(", + RowBox[{"-", "10"}], ")"}]}]}]}], ";"}], + "\[IndentingNewLine]"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"xmin", " ", "=", " ", + RowBox[{"2", "*", "muonM"}]}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"xmax", " ", "=", " ", + RowBox[{"mB", "-", "mK", "-", "0.1"}]}], ";"}]}], "Input", CellChangeTimes->{{3.768042511440446*^9, 3.7680425886548386`*^9}, { 3.768042655722806*^9, 3.7680427829496317`*^9}, {3.768043469101739*^9, 3.7680434767802153`*^9}, {3.768043520665967*^9, 3.7680435461338577`*^9}, { 3.7680438318670406`*^9, 3.7680438326758633`*^9}, {3.76823577028961*^9, 3.768235831700453*^9}, {3.768236772772351*^9, 3.7682368423044157`*^9}, { 3.76823944287317*^9, 3.768239442937003*^9}, {3.768244201338833*^9, - 3.768244216523238*^9}}, - CellLabel->"In[75]:=",ExpressionUUID->"037a651f-7204-4dd6-865b-a90153e54791"], + 3.768244216523238*^9}, {3.7685482113105383`*^9, 3.768548213647256*^9}}, + CellLabel->"In[1]:=",ExpressionUUID->"037a651f-7204-4dd6-865b-a90153e54791"], Cell[BoxData[{ RowBox[{ @@ -305,7 +313,7 @@ 1lsDondq9u4B0UFmVftAtPJ7hTdvgLS/7ee3IHre43fhb4G0VH99LIh2+Xyl AETf2BdUBKIrt2iWg2gha8VqEF1zvWM7iPYQeAymAUy5mnM= "], - CellLabel->"In[49]:=",ExpressionUUID->"8d2adb61-5946-4313-bd6e-7ea714537656"], + CellLabel->"In[51]:=",ExpressionUUID->"8d2adb61-5946-4313-bd6e-7ea714537656"], Cell[CellGroupData[{ @@ -326,8 +334,7 @@ 3.768544739336843*^9, 3.768544758258254*^9}, {3.7685447936366663`*^9, 3.7685447959544687`*^9}, {3.768546782832716*^9, 3.768546786192734*^9}, 3.768546820592787*^9, {3.768546870700826*^9, 3.7685468872954226`*^9}}, - CellLabel-> - "In[142]:=",ExpressionUUID->"1bb2a22e-ee7e-457c-9fa5-3ad0259e7bb1"], + CellLabel->"In[60]:=",ExpressionUUID->"1bb2a22e-ee7e-457c-9fa5-3ad0259e7bb1"], Cell[BoxData[ GraphicsBox[{{{}, {}, @@ -412,7 +419,7 @@ 2WhLtpFxUzHJq+ayB/172Yi15KOyTSlZrzU6rKfBRpcDjop9LaNg3w2esTtq bLStl/37Iqag+U1IZ7sOG/0PQpAgrA== "]]}, - Annotation[#, "Charting`Private`Tag$108405#1"]& ], + Annotation[#, "Charting`Private`Tag$1132#1"]& ], TagBox[ {RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6], Opacity[ 1.], LineBox[CompressedData[" @@ -480,7 +487,7 @@ 5QQ88rSI+JorCv38nWrXKex9aas3m9aJQrjPlX0LVAJYLsyXHQOi8J/BkY0H OAGxEiqjwixR+B9SU4nC "]]}, - Annotation[#, "Charting`Private`Tag$108405#2"]& ], + Annotation[#, "Charting`Private`Tag$1132#2"]& ], TagBox[ {RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[1.6], Opacity[ 1.], LineBox[CompressedData[" @@ -537,7 +544,7 @@ SghoJvnuoqTQ4I7X+W3f2QRMtSpGpBXRQLN3YCkIJ+BBjvKTsec0+A8FF23k "]]}, - Annotation[#, "Charting`Private`Tag$108405#3"]& ]}, {}}, + Annotation[#, "Charting`Private`Tag$1132#3"]& ]}, {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, @@ -579,9 +586,9 @@ Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{ 3.7685447600793853`*^9, 3.7685447966506457`*^9, 3.768545791496478*^9, - 3.7685467931681166`*^9, {3.768546874732049*^9, 3.768546887784131*^9}}, - CellLabel-> - "Out[142]=",ExpressionUUID->"cb6b9de2-9043-4280-88ed-0c7952450d3a"] + 3.7685467931681166`*^9, {3.768546874732049*^9, 3.768546887784131*^9}, { + 3.768548183759201*^9, 3.7685482229464273`*^9}, 3.7685604146813912`*^9}, + CellLabel->"Out[60]=",ExpressionUUID->"2b432197-b4be-4234-b069-ea0ceae093db"] }, Open ]], Cell[BoxData[{ @@ -628,7 +635,7 @@ 3.7682392615389533`*^9}, {3.7682392963219557`*^9, 3.7682393604495034`*^9}, { 3.768239612446779*^9, 3.7682396590901623`*^9}, {3.768239738097948*^9, 3.768239740696974*^9}, {3.7682398263849115`*^9, 3.7682398281471663`*^9}}, - CellLabel->"In[59]:=",ExpressionUUID->"6c45ba6a-a2e4-4dfa-bf7a-543610b4d110"], + CellLabel->"In[61]:=",ExpressionUUID->"6c45ba6a-a2e4-4dfa-bf7a-543610b4d110"], Cell[BoxData[ RowBox[{" ", @@ -645,9 +652,9 @@ RowBox[{"--", RowBox[{"--", "--"}]}]}]}]}]}]}]}]}]}]}], ">"}]}]], "Input", CellChangeTimes->{{3.7683964786836996`*^9, 3.768396481869186*^9}, { - 3.768544862473649*^9, 3.7685448725247617`*^9}, - 3.7685459358385644`*^9},ExpressionUUID->"04e4efe9-ea24-435a-a90c-\ -3bf1b8c0b336"], + 3.768544862473649*^9, 3.7685448725247617`*^9}, 3.7685459358385644`*^9}, + EmphasizeSyntaxErrors->True, + CellLabel->"In[64]:=",ExpressionUUID->"04e4efe9-ea24-435a-a90c-3bf1b8c0b336"], Cell[CellGroupData[{ @@ -672,7 +679,7 @@ 3.76823958358294*^9}, {3.7682396821684923`*^9, 3.7682397127018566`*^9}, { 3.768239743711955*^9, 3.7682397922361774`*^9}, {3.768239843480197*^9, 3.7682398800733356`*^9}}, - CellLabel->"In[62]:=",ExpressionUUID->"44f1aff7-c138-4f4d-86fa-5ca7df87f6ff"], + CellLabel->"In[64]:=",ExpressionUUID->"44f1aff7-c138-4f4d-86fa-5ca7df87f6ff"], Cell[BoxData[ GraphicsBox[{{{{}, {}, @@ -923,7 +930,7 @@ P100RXHwQuTsfeo2RuPON+Rp/8aBsfGrmVlieq5w23RTHPwHy6QAcg== "]]}, Annotation[#, - "Charting`Private`Tag$3410#1"]& ]}, {{}, {}}, {{}, {}}}, {}}, + "Charting`Private`Tag$2477#1"]& ]}, {{}, {}}, {{}, {}}}, {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, @@ -969,8 +976,9 @@ 3.7682398481955633`*^9, 3.768239880968974*^9}, 3.7683910661559143`*^9, 3.7683964843555346`*^9, 3.768542800650896*^9, 3.7685431297734756`*^9, 3.768543227688693*^9, 3.768544258591204*^9, 3.7685443333752265`*^9, - 3.7685446624454374`*^9, 3.768545405955303*^9, 3.7685457964522715`*^9}, - CellLabel->"Out[62]=",ExpressionUUID->"d27e723d-41c6-4407-b1a7-e41abec2eae8"] + 3.7685446624454374`*^9, 3.768545405955303*^9, 3.7685457964522715`*^9, + 3.768548229600603*^9, 3.7685604172295766`*^9}, + CellLabel->"Out[64]=",ExpressionUUID->"b94229de-f6a6-4f4b-96f7-f3a03ecef3ed"] }, Open ]], Cell[CellGroupData[{ @@ -1037,7 +1045,7 @@ 3.768242205581859*^9, 3.7682423308100376`*^9}, {3.7682423792465105`*^9, 3.7682423827242327`*^9}, {3.7685453661476965`*^9, 3.768545367009412*^9}, { 3.768545620132639*^9, 3.768545648605514*^9}, 3.7685457311338654`*^9}, - CellLabel->"In[63]:=",ExpressionUUID->"a731069b-1b83-412b-b454-26db50b1cc27"], + CellLabel->"In[65]:=",ExpressionUUID->"a731069b-1b83-412b-b454-26db50b1cc27"], Cell[BoxData[ RowBox[{"2.9827682008970683`*^-22", " ", @@ -1056,8 +1064,9 @@ RowBox[{"6.793270969339969`*^12", "+", RowBox[{"2.8114748180000003`*^7", " ", SuperscriptBox["x", "2"]}]}], ")"}]}]}], "]"}]]}]], "Output", - CellChangeTimes->{3.768545731553769*^9, 3.7685457986593285`*^9}, - CellLabel->"Out[65]=",ExpressionUUID->"861145d9-a838-4010-aacf-b313bfdb4b00"] + CellChangeTimes->{3.768545731553769*^9, 3.7685457986593285`*^9, + 3.7685482313638887`*^9, 3.7685604172834597`*^9}, + CellLabel->"Out[67]=",ExpressionUUID->"58736143-4ff2-4ace-b27c-23f706b8596d"] }, Open ]], Cell[BoxData[ @@ -1075,8 +1084,7 @@ RowBox[{"fplus", "[", "x", "]"}]}], "]"}], "^", "2"}]}]}]], "Input", CellChangeTimes->{{3.768242392305615*^9, 3.768242419546789*^9}, { 3.7682424703938184`*^9, 3.7682425443890257`*^9}}, - CellLabel-> - "In[123]:=",ExpressionUUID->"6fc8f691-fb14-4e78-ab99-1dc2d62ef10b"], + CellLabel->"In[68]:=",ExpressionUUID->"6fc8f691-fb14-4e78-ab99-1dc2d62ef10b"], Cell[BoxData[ RowBox[{ @@ -1100,8 +1108,7 @@ CellChangeTimes->{{3.768239766453149*^9, 3.7682397666555705`*^9}, { 3.7682425600979843`*^9, 3.768242569498862*^9}, {3.768242617189344*^9, 3.7682426786500216`*^9}, {3.768242747896909*^9, 3.768242771416026*^9}}, - CellLabel-> - "In[124]:=",ExpressionUUID->"cc0a0d90-49af-490d-8c27-e1b8c06612e1"], + CellLabel->"In[69]:=",ExpressionUUID->"cc0a0d90-49af-490d-8c27-e1b8c06612e1"], Cell[BoxData[ RowBox[{ @@ -1139,10 +1146,9 @@ RowBox[{"fT", "[", "x", "]"}]}]}], "]"}], "^", "2"}]}]}]], "Input", CellChangeTimes->{{3.7682427790974894`*^9, 3.7682429622488227`*^9}, 3.7685448390602207`*^9, {3.768545914397888*^9, 3.7685459390869055`*^9}}, - CellLabel-> - "In[131]:=",ExpressionUUID->"3223564e-c632-41a1-86b2-1263eda30155"], + CellLabel->"In[70]:=",ExpressionUUID->"3223564e-c632-41a1-86b2-1263eda30155"], -Cell[BoxData[{ +Cell[BoxData[ RowBox[{ RowBox[{"dgamma", "[", "x_", "]"}], ":=", RowBox[{ @@ -1152,28 +1158,21 @@ RowBox[{"bracketleft", "[", "x", "]"}], "+", RowBox[{"bracketmiddle", "[", "x", "]"}], "+", RowBox[{"bracketright", "[", "x", "]"}]}], ")"}], "*", "2", "*", - "x"}]}], "\[IndentingNewLine]", - RowBox[{ - RowBox[{"xmin", " ", "=", " ", - RowBox[{"2", "*", "muonM"}]}], ";"}], "\[IndentingNewLine]", - RowBox[{ - RowBox[{"xmax", " ", "=", " ", - RowBox[{"mB", "-", "mK", "-", "0.1"}]}], ";"}]}], "Input", + "x"}]}]], "Input", CellChangeTimes->{{3.768242980810162*^9, 3.768243023073167*^9}, { 3.7682442257595415`*^9, 3.7682442795088024`*^9}, {3.7685453887732053`*^9, 3.7685453922469177`*^9}, {3.768545423906273*^9, 3.7685454277350364`*^9}, 3.7685456437873955`*^9, {3.7685457196475735`*^9, 3.7685457198251004`*^9}, { - 3.7685481204155617`*^9, 3.7685481246821136`*^9}}, - CellLabel-> - "In[143]:=",ExpressionUUID->"5a733281-bb2b-4eac-bf46-072d6163fbcd"], + 3.7685481204155617`*^9, 3.7685481246821136`*^9}, {3.768548206201191*^9, + 3.7685482074268866`*^9}}, + CellLabel->"In[71]:=",ExpressionUUID->"5a733281-bb2b-4eac-bf46-072d6163fbcd"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"dgamma", "[", "500.0", "]"}]], "Input", CellChangeTimes->{{3.7685429465912046`*^9, 3.7685430409190083`*^9}}, - CellLabel-> - "In[146]:=",ExpressionUUID->"de858e80-3c44-4ea0-a374-ba372a5e43fa"], + CellLabel->"In[72]:=",ExpressionUUID->"de858e80-3c44-4ea0-a374-ba372a5e43fa"], Cell[BoxData["6.030442790985047`*^-8"], "Output", CellChangeTimes->{ @@ -1182,16 +1181,16 @@ 3.7685448196601267`*^9, 3.7685448444837556`*^9}, {3.7685454182085066`*^9, 3.7685454313813143`*^9}, 3.768545503597211*^9, {3.7685455481880245`*^9, 3.7685455732869415`*^9}, 3.768545805051238*^9, 3.768545884562702*^9, - 3.7685459520143557`*^9, 3.768548129296776*^9}, - CellLabel-> - "Out[146]=",ExpressionUUID->"a234b46c-2591-4717-b3ce-58eb977ba7d5"] + 3.7685459520143557`*^9, 3.768548129296776*^9, 3.7685482376221995`*^9, + 3.7685604173732295`*^9}, + CellLabel->"Out[72]=",ExpressionUUID->"1893da70-0168-4162-8384-e0660be1306e"] }, Open ]], Cell[BoxData[""], "Input", CellChangeTimes->{{3.768545468760371*^9, 3.7685454914207835`*^9}, 3.76854552149939*^9, {3.768545556395049*^9, 3.7685455644196005`*^9}, - 3.768545819343046*^9},ExpressionUUID->"d5c88e0e-f64c-4c7b-a72d-\ -9d86409b15d6"], + 3.768545819343046*^9}, + CellLabel->"In[73]:=",ExpressionUUID->"d5c88e0e-f64c-4c7b-a72d-9d86409b15d6"], Cell[CellGroupData[{ @@ -1200,7 +1199,9 @@ RowBox[{ RowBox[{"dgamma", "[", "x", "]"}], ",", RowBox[{"{", - RowBox[{"x", ",", "xmin", ",", "xmax"}], "}"}]}], "]"}]], "Input", + RowBox[{"x", ",", "3000", ",", "4000"}], "}"}], ",", + RowBox[{"MaxRecursion", "\[Rule]", "50000"}], ",", " ", + RowBox[{"Mesh", " ", "\[Rule]", " ", "All"}]}], "]"}]], "Input", CellChangeTimes->{{3.7682430301472535`*^9, 3.768243057826251*^9}, { 3.7682431094532557`*^9, 3.768243134577377*^9}, {3.7682435853432064`*^9, 3.7682436366859035`*^9}, {3.768243725722874*^9, 3.768243730282658*^9}, { @@ -1208,146 +1209,737 @@ 3.7682439722529855`*^9}, {3.7682440086985445`*^9, 3.768244048323577*^9}, { 3.7683964521316905`*^9, 3.7683964531200514`*^9}, {3.7685429262236595`*^9, 3.7685429348515916`*^9}, 3.7685432550794444`*^9, {3.76854559178942*^9, - 3.768545595049706*^9}}, - CellLabel-> - "In[147]:=",ExpressionUUID->"2c1e3732-16d5-42ed-930d-8f72fb168b51"], + 3.768545595049706*^9}, {3.768548251947874*^9, 3.7685482562224264`*^9}, { + 3.768548387532401*^9, 3.7685484618219843`*^9}, {3.768556212071046*^9, + 3.768556214449185*^9}}, + CellLabel->"In[74]:=",ExpressionUUID->"2c1e3732-16d5-42ed-930d-8f72fb168b51"], Cell[BoxData[ - GraphicsBox[{{{{}, {}, - TagBox[ + TemplateBox[{ + "Plot","invmaxrec", + "\"MaxRecursion must be a non-negative integer; the recursion value is \ +limited to \\!\\(\\*RowBox[{\\\"15\\\"}]\\). Using MaxRecursion -> \ +\\!\\(\\*RowBox[{\\\"15\\\"}]\\).\"",2,74,2,30453713367983442519,"Local"}, + "MessageTemplate"]], "Message", "MSG", + CellChangeTimes->{{3.7685484240998387`*^9, 3.768548462525111*^9}, + 3.7685604174659452`*^9}, + CellLabel-> + "During evaluation of \ +In[74]:=",ExpressionUUID->"2298e405-8520-4a21-b61c-4f7574b19f67"], + +Cell[BoxData[ + GraphicsBox[{GraphicsComplexBox[CompressedData[" +1:eJwU23k81NsbB3CRNUShbFkSshQJXXE6tqJEyU72hGyJrMlWyZKtss1gxjY0 +yC5krWRJRKUsEYVCKUnW+/jr97qv3zXznXOe8/m8D3NF7D0NL9HS0NA0MtDQ +bP1v50sqLY1XAa5q1d9+sCcdFd8d/6SeUoB50wMmmtkzkDb7Ia6+lgLc8nS7 +jY9ZBuq2bDl5bwb+mSOWTpySgT48j/kWwUHBIZ+nS0VUCYjw2/3LCxUKdnpv +YbjvOhHpf3s4qmxPwa2V6hqMsgRUlfv+0FIsBfvH+odZeRJQTpDBz9lqCj7w +uDpfrYKAbvKzP+YcpeDJ0heqIwsExHlz8kUEUyE+8VrQa68iESU92ja8X64Q +G66w37K+RkRpi8b2ayaFOP79RBrzYyIy2dZ6QjSsELsh7YTABSLa9t6H/zql +EJcrx5jJH8pE9l4n9Pf0F2Ke1V03Mj0zka64+q+fa4WY69XLaK/STCSUd/f+ +8v4iPBL3xSLxWyYqmpqJO6tfhM9Y7XRWlcpCYr8TbvX6FmG3D4EJcpeykFGr +wUB2dhFWihuihuVmIZYS7fuFnUVY1iUodsfnLFRqH244tlCEg5nkXlxhy0bM +Q+8uOwo8wnHvDA8MSmcjQwHvIB6tR3g19afhp1PZSDRQi2bblUf44Fz9hSX7 +bFSQcWj42INHOIxd686nm9mI/7ZNdWbDIzxg/8jHMj0baR2lTJ2feoRrbrM3 ++VRno8UNiWg1Tioeo1xoM+3LRslJ81Kmx6h47sbKw5KZbDQ10y3aaE/FNwYV +7NjoSEiK5dfeC9FUPB3M127HS0K/T+qHCpdR8QW/+B3Jh0nI+1QrOj5ExR+U +cgzVHpDQGMeN1QjaYnzjslL9cU8Soss02MknW4wtm641+94kIe5FZ5FRo2Is +6Pw4xiaRhIqdnuR+DCrGhi+XLn8lk9AqQeSmWH4xfpFomXmoioSOEXpNCa+K +cVTEuSad5/A8Nil37JaL8ZMLX51vviUhMnogaSNagrXVtGq2T5IQ89SH9mjd +EtwpPdJy5CcJiV9QaqTzKcG6AeSEzlUSOhL1obwoowT7zb+pXN1ORs8+VOyN +bi3Bto1u3hasZLTjR97b6tkSTG+WYW23i4zUX40mcHKV4utrX2oZeMhISfnC ++uaJUvymTFCreA8ZqR48tZAdUYCT3VIiFOfTEVOVX3Hp2wJ8Xzal/PuNDPQm +IX8v83oB5sO8YeIjGahueO1y3gEKzu0Q9RdZzUR/PGjtb+pT8GjGvwgGEQIK +P1XDkOJHwcfyTvr+0COge5LZ3U+IVFypJSnRsR+e/1TUJ9kXVMwRMvth5A8J +HaQKET/NU7EM2+NIMQ/YD1Mn+td7irGSxShN8HUSos7dOfb+TgluvnjDNYWG +jFYfv7jEV1qCGW/KDo0xkZHzpIxf9vsSvPGUoZ60k4zErTUUHGlKsfrDed1r +XPD5aHnbmaRKcbrf44BD8Hnp/v0L6A0owA95cvaJjqaj/PE3ts1dBdhWEL/s +cs1ABksVpWd+F+DdxatGVs0Z6PR5rUIufgo+eu4K+XoTAenI1+7P0YLzLlj/ +5I42AU3vLfCecqPgC9/vfdCHfLDi7fBmuE/FK/IfKzL2kdCuU98PF9RTMfuB +JtJPREI9/366s32hYr+eXj5DX/j8lVdDD7IV4/WZQ3dDvUnIRdgmaO5GCY4t +i3mrtkFCDwXOxdrnleBb4Q2hqwxkxGPz8xT3qxL8+oBhIzs7GaWK+0TGLZXg +kkan8YDdZNQ4tSrNJlSK78iVG5fCfrtGCaxkfirAu+S0DGWTMpCJdFrYCwYK +Fit7c6KBloDIVL1sSzMK7km9zakoSkDNyn7i7gVUXNWlfFr4IAkZnjoQX9lL +xa1SVhqRp3JQpLV+d9kyFbenPsv2dCehuhWLaB/RYszBEMMxHEhCttpqJ97U +luBS6yOGj1jIqM7FJV/6cwkeGmd9vYuTjCofcHxWYSnFTmvDu89yk9ETASX7 +7YqlmCH8h20E7M9X2wto2qcA37ypGSf6Lh0t+YXWvXxRgCcOFPPG2GUg9kKV +Vbf5AuwjLxrwtiIDJe2Y1u3mpmCLP/1eRzwIyHtX8vaqExTMlPfg8fN7BJSx +LYsSf5mCq191SDsfJaC2xJHnMvFUnFYrfXObAAnRtgsMOlRTMd8DkUszR0ko +O9vcRGyMineJKB0wgvMeaf/36TvGYmxxLD6hyYuEXj7pJCz7w3ntm7JjXCch +xzf3s25nl2Cas1/GN+jJyF3A8PHrdvhnnme1x9jI6A0Lmyx5AfbHZk/QApzH +UAt363jeUnx56pSULezPk32dFwo+FuB3r3nejd3JQFyjQq+mtlGwr9lOD5f5 +DOQtat4+J0XBZQrStLoFOag7TiLM/QIFe5X36mYIEZDE45iAZDIVcx9iMXUW +JyET+prKl7+pOMfHLs4Y9oencKxdRLAY47xD9WR/Ejq0Gma4VFGClQpOB3Yw +kxGnRBf71+ES3HK4J8aag4zmAgqjDehLMVsXp/QknJ/A+IL7tw+XYvZAHXVr +2J8ETVlHqeUCrPdBXJimJwPRpmQzXRSm4LfOyfkKF4lo37kRjURdCnYT/pfg +IUVAou1P7nxrpuI+71SZfZYktGYYdWtphoqX9xgoesB69tDPagTvKsbNceqj +7j4kZKMxNOS/WoJ9RmTCVmCe132i/0WLlWJ5iSXRRVivVP9dSnk7KNhQWEe+ +kp+AJos5b4coUnBTteXB7GAS8u+62qR7kYL3H/J8ui5OQBZN9v0nqVTMvFOe +hUuGhOzbf3/9+5aKc/Wq3/u8J6Hymi8T6etUfJU42y4C+RNY5vef+M5SPDJ2 +/XcxzOdy4bPD4SqleE0mu4kIn3+QK1TYx7sA32AM3XngTTrap2k6pfesAA+Y +lU+vWGUgd9qN7PXvBbjt10fNr8UZqHr6Pz7J3RQ8UL5T4KEhATFG0PxRU6Pg +N/4CWaOjBLT4J71twpGCKbevXyPLEdDSq8s/mmKp+NUpgUvlfCS0cltRprWC +inU9i1t+yEM/LMZ1lo5Qsff9mUjaKHj+/+qsZOmLMXtsdvEi9JXf7VDZkOsl +OCiC65nLGgmdkVUu3JtZgi+FaAiEwHzuXQ2flHlegscMIgid0BfzweZhMj9K +8E6TdPsimM+x3fl+vTylOGX729qjsN5jM9mh0oMF2KOvz2M4PANdU57w9t8s +wCULeZN+XzLQw82iFF1JCmb/GPFlNTkb2W7cv7p0joIdj1el58B8Wsxy54hn +UzFmtF/kOUBCKnc8Y16/pGJegUrT2j25qNnsu6TRAhUP7sATqTCvWqE5Tv58 +xXjvaFlVrB8JcZmIWUWVlWBVpQZaE5jXBvo1Dc2PJTjszKTCNphXltk/ox9o +S3HGUEgtFeZ1SGesuF2mFEtenn18CvbrJ+Enc/2fAry+V0uevj0Difv8GqwV +pOCD7QoXbTYJqKL5tALfKQom3tWLr4V84LvzZkinkYo3/1jQduiQ0KX8hn9h +U1S8xvla7yrk89pwyfibncW4f/F+gPc1EgqulJCj+1eC//wQka6HebU+1Lar +W6QUJ88Rmfth/f72vR1SZIb9FeDMC2UnIDbVT6VvLChYdkLh+yUxAopbnV37 +UEjF7+8Fa8RLkZDFHdbjJv1UvL6hzBN3lIz4d/CZia9SsekzZvUnsD4p+5/F +PWaFzzs3eisE5tPMYV2nTRnOh8i/mUT4vB6HHgZ47YX+lSMIoUQCGiEd4JLR +oOB7sWPhf20JiIVxeyT9Eyo+tf+d7e9jJKR89sDn1M9UbBN4+IFbAAkJkY5q +6wtAf5SpsdyF56+KtJIw3U7B6FZJrMByBlIWrEuYNAb/XnPMihUmoLmycKy2 +RMWdlQrRZ+D5+N55BGkfKcUyBwslvOF5Rp/oH9u2n4LPEc/8NvxFRNGfPA2Z +9Cj4t+qOTSP4/FKMJIXYNir+Q3ZJd4ogoaTNC5xXZqmYX+huPyvMM6H+/Jiu +RClO66Zm7oLXOyZkkMDFTsFm++/G1EO+NPc2VYkeo+AJ9h4+r5FMNGGx/XWz +DQVveBUenjxIQOIRg4UVJVQcaGXJVCdLQq6MQ0lpg1T8X+4MayyVhHQdyzx3 +0hTjKv629Rw4/yk/Y3jU1WD+DepH8+H9+jwecqpcLcAU8bBh8d50VE5pXWdv +K8DDH3iCqi0ykEDpp9/PvxXgaCFyDs2jDKTz3p72HScFf04s/tp3koAMjyu7 +06pCv3oc5awXJCKRn3v74hwouPOK7pueQwTEMSsTeTeGihu7WHRY4LwvfVU3 +uVoOz2fMHlsuR0KNgpRI32Eqjj+8wP0lDp43j586SFeMeT49b3sA69PjNvQH ++0K/dP6y4oPz3mjBVDJOKMEmMHFqcN49XDNChtpKsCcPW0cSnPe1qpuPFubA +F4RvgrfhvCd4aWy/yl2Kz/LcYNkH++1jwJoy964AS6bvr7MLzUCik8+e440C +HPJNeVl1PANJzvff/CtOwa/N+6qevM9CRdVdM3UGFJxiKb9bFObBh2VI+Wcm +Fc9Ek2s9xUhIaSqoKqSdiiv417u/34PXD6ef4P1JxW6qcjEDMC9D37dX7+ct +xh1R4nl0cN6jIv7Ynn9cgg+LD+byw3nf5cs1sjBYghmOuNf3ge/2HhBgztpW +ih8t3scJcN5j84JVnKXhvA0suxyH/crWfWMVsViA5dVYNAvaMlCtPX+LkwAF +/J6oQRomoA3/sEej2hTsnFMmKQBe45kapV9uoOKoBHqCnCbMb++7ilNfqfhp +t5p8C5zvJB0O+RD2Yvy7J/P4Mpz/6LmzFi//lmA397Rn6XDe2WNsstyES3FS +U0d4C6xffkjNoQ1GChZRcan2ZSIgs0VuyRRzWB8H+Q60n4DyecsTcyhUvM/H +6uFb8JXJ1N5L9G+oOENM/GJSMhn1Hj26a/YfFWsplSkkwPrkW32r8d1Rir9o +67I5wXlnak5766BUirPkS1aj4fPSCDbZ7dtDwd0X7BnTQwhI0sIq9iem4LnQ +Rb4hHwJiuMxRUllDxdcHTn5oUSKh2esnCNbjVPxuWdWQD/qyd723b56vFItn +kWd94Pkd5VGgEB0FH3548KLk7wwU/vYnU6ERBUvU1Pr/gzwnDxFWaP9Q8YuB +MonT8HydR3YwfZUrxdV7v911hufxovgJl4rA+0sILJplEtFASn5n92kKfh5M +w7sEfSx+ufji8VYqFrDO5512JaFTBz265L5T8V+hP/JUmGe9vfNu3w6U4rqS +6ko6eL3pLrmJYVYKJvN4dfwBnxo2TRN7lSiYZY9b4GGJbHRo9/FTt6wpmFHr +mL2zJAFhEhHdKKbil8z0S+PQ906Xpxp03sN+Fto7X20koY24roNvN+C+V/tr +0QbOu9gKx5FALgpWy1c6QLIhoIbOjuAABPfzBqLWymOYF/GDtLurwC9TNz0u +KJCQUec1jm+jVMxpSq1VhbzazhlemnGQgumTijXoC8FbJ63/yRtScDafCnsQ +rNeOw30e935RcReB7r8tL0vNaopIHCrFChyS+hfg892/1fGTRYiCA/USrV0O +EpEzE1e9sQ4Fm9+0TfkB+bBP4kVZWhP8/LLsecdzJPQ4mHyiYZqKi9wlLc2u +kpDOgcUodxYKVn9Tt/SVi4CuE1Q8ZI5S8JU5Sf5is1xkLUHDWTAA51El2XgN +7o9O45tE2zXIkyoP2m/wPBQGuwbR/0rxTMAV6VR4nuET7omtvBSs/eoGc04+ +ASXNzGdc1qRg/Zls5nvnCYi94K+5SR3s/10WnszjJBS+f4dk/wQVN7wVJ8jB ++Z11jNgrbErB19+9PHEW7oP6BfJPHF7DvH+sWX87mYuORTnf9vtLxY9vFTub +wfvrdR04d0GMgtPDNAM77TIRlvjvo+ZZCh566FfkCPt9qOA+88gzKvbgDp5h +hrweffufad4c/PzUiegY2L9Dnx++8vmPglWL6Ey/b8tEHgU9zt8+ULETM2v1 +2SzIxwwRFqJXAU6SlP4i8TodBVsuM3m1FuC9NQZiD8wzkM+tc4JSkN97ee9t +JBZmoAR9vyUZyO+hlhIOC3UC8ksxLHQ8TsHGeH8F7UkiOjb3/v1newr2cJDw +mJElIMGgeP35aCq21lPgquYloUUene8vy6iYsGJ3VwjyO/VIld3gEBWXGnmR +LBPBM5bdFw5BfjsxOwk4w7yvfGKyIMP9/u6kW8Qv2B//BS+5k5Df2gEtvgKQ +37zkgq4jkN+jgYIl1yG/I98kYSPIb/7RpFfXIL+nMxNOt8D9/vW13dd3wflF +tBpkfcjvPbZWYuI3M1BgneKP3K37OyHOTvZTBrp6afqaPuS3tEyoXYt1Furd +NXVAEPL7K3eGy23I77A0NVpjyO9bLU0XBSC/j+4JP/0O7usZ4XJ/jyiQkX7K +rubgH3B/p6kf+LeVT6SqiwF7i3Hd2dGcJriva/BZT1TB/Vxop//ZDbifP6UK +S+lCfl9kVeh+AvmdpX44cxvkN5LkfhsG+T3Z3xlaC/fzmJ3/GBRh/paFNG9P +wf3b9T+N8M2WDLTt4+Gqp3D/rjl1LNfzFQHtf0uYwpDfGhPlPVGYgLj2fEk3 +gPymFbe1msOw/pMTCUVwv16T038VCvcJ643mwX64Xzu797M1QH5zstj9kIL8 +XkaJ9tGQ305Pir80wH2Z14AmrBbWb8NI0swe8vvnjlKreHoCunFO3vEf3I97 +7zSvVcE8VlC4rJggv6nFSd6BkN9Ge4RWrPpgvkuaHj8fIaMiXfUf+pDfz1jj +X4XA+sgGrOsNwn3X6klhtjnkt+79fmNfHgq2zSdTDlwnoLPVfi8NIa/T5jVS +f4YS0PYUHk1WyOuPV3ZxdSuS0IsYvYAWuI/SODF25NwgIUkZob0nIK83DzNm +u8LzNjCW5kTQQr/wuCW2/sxABx9p9T+UpuAd31JZD1nloQJ5Vu0dkN8sx4JU +2yCPngjFcjFAPt/S4wvuCyKif79bGA5DPttxcWbdh/wUS6n4ldRCxTsNvLcp +2pOQKAqiJH+j4ptP7eOY4L6We1K1QgXy+dWDDpo1eH9MJrGqQz6L25pEasPr +ZyitJ0pAPns5s8xEVWWjC54mEVNwH2tTDH7xWAI+rxwN82e4j+Xc2jYSAPns +mDJ3PvsdFVt5tb4d7CChQfIgwzHIZ7nQVD4M59v96gHxPrg/vdNVO/DDjIA+ +i3+pHYL701ztkqncCwJaMzmc4lpJxUfXHosQjkAefAqd09vKZ/GQgNBbJHQ2 +6mHOL7ifSPjbFnTtICFVU5clvw4qPkiq9T8zn4e+ao6eWYD7x4NCqZ9hsF8j +ayOTdvsomEdEdt1sNxHdczz8twbuBxU70rzy5QlIwLT75ALcD8JmiWw6euCB +xFIBIchjlwWx8FHI4+xVx/I+8L44b0lFAScBWZky5G+A53+cypf/A/OOl1iD +2sDzd6jV1b3wfgdqwm7xQt4eKj3SfC+DgGq1WQY7wOsfs5Ql2+Hzsr5fny8G +rwt2qPMoq5CQ1bG99EqQt13H49rU4T6/qyXTKNyEggd/uz2agvOr915Zv76H +iknRPP0l+floF9HX4SP4nElgg3AO3u+BhopWEXi8mDlF7uuBTHQpwognHzzu ++k3utQ74ROZ9euZRyFuHz956K/dJqPbbyaNMkLcxuReKX8J++Jk/aukCb1/P +fvw9xT4Tub0fWFeHvKWTfdBzLY+EZD7xy2eDd23rXDwaVwloufp4Cy/cX6d2 +u/7Wg/vrJFNGwS64v+a/iLXuiiahT9ebYrIl4HluLW+6K2WjWxaPi83g/tgg +oSTzHubpWI2vsATcF5fcrinvEM5B6e7L9DXgR4+9V40q4fN4fmd4tRPuc5dX +eYcU5whoUMDJM/gk+KXZc07uGAHtrRn0yn5KxbEiV+k6tEkI13e8mwTfCYwk +dHOC78xqdvUWg7+mJbzEHS+S0ZKQhOLdFfj/7zHU5sDr1+QVubeDr0ouj+4k +3iEg2g187p46BRdU2KRpuRIQkzIL78VaKn4YLdP4Shn2w/5I0yr46v4DnuaK +QNivgLfdJ+G+dGdyZVYV9kdC3kHGTBT64+Syy93nRFR6POae6xkKjs1KwHEH +wG/KBS8nwEfcZ5PIdb4k5MZlN/8KfCTJuTvYDPqCWWegMEAZ1usSUrUKzkLO +yuMSC+CbBxa6ep2VcH/xKMF7TlBwgiTLJCWTgAKrnBTufKLickMZOrkwEqpP +c6/XkqLgKXe6+2E3yEiO71mi9G+4vz1xDbWFz3uGvWqtAjxyUeeh1Rd1ItKk +Lof8Bo9cqnbziJYhIOG/TQIazVT8z3SIS9uYhN5dfmBvPgPzLK40PgL5IHtA +PPAt+KM7bYelaCYZ2f79F2TwlorPcN4Y+DwF5zmu34Zei4Jf3OQLlzkD9x+/ +hWcb4IlLOL78kBp4hH3jtNckFbMOKbUoQZ+0MzkPPwVPaNLGERrAE+f8pMVY +e2G+7T8FiHzNQdbXLAu5lqnYM0Sp0x6en86I02oNPKFxP+T2ekEm4usSzBwH +Tyh+p/+XCz8v53fP59ZzKmZhifNn6AK/tcgEasxT8SH/mj9GMN9fXMM/CKpQ +8MN0t6WiSiLy8nvZn/SRir/ML9ItpIFXjly+rQ+eCDdYuErpSUdjR5PvCYMn +2NkopdvBE9k/mY4MzxTgwkHB4iFKBjoaHeY1yEHBo1ZXNKoRAUVr27ZzgyfW +RJXY/lkRUdsVZcs48ETIxZo5P/BEbmtzRTZ4Ql+s/2fMlicOdVX5gCeMuym3 +Bw+TEP3T4713wRPK2/u5UDL4oSpX4gNtMb6WLtR6HuYjIU2I9QJ4Iv7V4bhR +8MRb1byryxkl+FxD9F5W8MT8U1nv0dYS7Fxkdd8ZPPHSViCGHjzhnfQtzRU8 +kTM0LLH5tgAblru2R4VkoPwD83Sm4IdtL6ljkqMZiIf0a+7fAQrmY7xNIEpl +oc/Ni5o9+hS8fuj2u1aYb6Zxj8uM4Afu06caf+0nIYXD9Nzh4Ier1HMWeZzQ +VyJphw6BH05yuAayw3rHrsXJi4EfEjhtXxBhvzMvJYk5gx+CckpTfoAfkl7m +9y6+L8H34j+2F4MfPr+unS6nKcWxR64nB0KeisWspqeBF7oXPljKghfyuVUO +u4AXmvd/uKYP/aAUUUT/C+ZtWZluYFGDgHYfdr60Wk/FFhY6/76eICE7T9dN +S/BCVmSc2BR4Qcs8jRoCXrBc/K2YCV4wSv323/BSCX74/NOBcPCCVPOYGxf4 +wNo5zW//dgJK2EDhReCDC7N/wnzAByo/tVvqCqj49YtUfBZ8cOEw+RkT+CAq +svRnKVsO2jPQfpEGfOAXeHz+OsyrF+OdlLvgg8gAHesL4IP51yOvhcEHtL7u +pQLeBGTreOsrHfggn0U4PxPyh640ja22moqDZe1vmYEPFHj6p7zBB4buOQPX +Q0ho2vtyrSJ4gCsizef+jwzU81X/rAZ4AP0ZuBNyJRfVfeJ1aLhAwbWVQ5eL +IV+tLR/eKxOm4PDq3JadbkTESn4tNqZLwbqp7u0BB8FbpUpPEXhATGBHUbA1 +CcW/3LZHGzxQfb5ORgXOuxubhcjvHZBfHTX8AYJw//JmZO1XpGCVFxdFjDng +viHoSEqF/t/F1VVkAv0/4CfvcR/6v4eDXHIS+t+h1EtAD/pf1/JAsmkvCWnL +2vjOrMP9rVuhSQ7mY1fx4exg6P9SIsNGjTEBLQ78ehcL/R80rvOZ7Q0BrXqU +2/FA/xuxb3ukBf1PcGG02oB+acqhVXpym4R+tWULZkL/X2I5k8bQnY2Oe842 +74f+Nzm7De/+mIsu9DjWkaH/t40fGY2F/Qg/Nm3NBv0fw6i/Yx8zEWXvUuN2 +gf6/1VritV+BgPg9DTiJ0P+93ft+XT9NQsv8SjG9U1QsEZ+qIQ7z0u0k2B4B +/Z+tkqzKyUFAlp53vYqg/08TXnzo2E9GJaHJMz7Q/zc2Gpqebd2ff8VsPttL +wfxps3oGDwmo8/eepUDof3WfdtVGK7g//gh9Yg79L3UhWzrxP/j3WzOvTX2m +4swehZ5+6H8xT6q3AvT/R+Ga9lo4fyohWo3G0O93qseQ7I5M5C9vf9QU+v2M +Ew+lA/pd+oegy1gbFdeEOO3PjAF/+L4iP5mF1+e2GJyB9RZ4UHXcD/p9JDHj +pjIhE135YfpybpCKf+37XTNKIaETcQcNzkO/s3VIczKxEtHfnsaY5+Vwnzz/ +uW0D7jvnk0V4ng1TceJ465WzsSQUWd5Brwf9Tla6ZCS0MxulMjV2MUO/9z4o +vb/1+wTl18vf3rRDvlZccczpISPG5RAfZ+h3qxDPN22wPlwSnKfqBSh4jJuo +0TBJQN87r8XJQr93FMlf2KNCQHteWx7Xg373K2wWvKpFQsXa57QfQr+PitHc +uwz9bvr6Qbo59Dvrff/nAdfJyKGoOEcF+l3ocE1FGry+1XjllDf0+yJTUjdT +BAFxU/U9TkC/v+wavufgSUCMBnETTNDvJiN1fVrQ7zdna2WLod97OE9M2QeB +PyQmvv0FXzu2rWfwwvp3u7nn00G/J2mdtdQvI6LWmVQqP/S7uba43nFx6H8D +qeR46Hfev2Y2dHB+PmZOWd2Efg90PagXBvldEjG6/4Dy1v57H2obyUKXDRx/ +EaDf225R3195QkJFAg3WLxEFnw1V2QguIKCpE3OkY9Dv+U0eXw6Hk5DtWz/F +nwcpOKJl8vYQCxll5p6mGflFxfMu92wvw+f9qdt03Qb6XYw1ZemCIhGZWDAQ +c6Hf5w2bzSugf4R2ak7NNVExua1K7YkhCWn+4u9jgX5fPERXwwu+fWMrtxgK +/b6wvbI63D4H2ey8cXJ1gIoTHqkHuiyQUOjx8RvVmhS8TyiKT0ufgHbG+8QX +Qb/XHi1stFUlIe60yCci0O8FAvunH0Pef6z2XfGAfic+DWyOgH42iC+Zr3lN +xRvHF4q1jXMRJZ7/XQH0eeAlhxifiEy4T0k3JEGfp4pM+tNA3h6O5zwhD33O +8MNVw7SOhK6eqZj+DV51V+P09YR5js6PvdDxHwU/Hkn7cOQDEXnGn8lE0OcB +bl/toghw/5jRiqmAPu42GnHdlCOi7oOj/8hwP76d/5agkJqFnjp+YHSD+3Hj +v9zZc7C/ipsbN6VgXhVaWAfkrMhonDX2fBf02bxTdNRXWF8OifiOeLifXud+ +YqAOfc+9adebA/dT8SvyxvQaJGS8mXG4DPpgSmmdMb2KjFSYXItIkO/s/3Gq +lAcSUKSnivl3yGvxxUFPvqh8dD9iQ9wC5uvqfzw5w3BeuCbD0i3g/rbrW+qO +uFgi+qpdOX0D7m+X3+frN0K+HrgpJzkFeX2QVu3jBScSWlr5tScY7mO+v/nD +qp2z0aWbrncWIW/JX6QIX9tI6LX/+3QpmKfXr75qydUTEEUv9uApmJ+n0iJZ +fUYk5P/EdOQEzM/uDyyc/vD5gqpFPjDAvCQ5GKliOQISPKEbrA3zwtagcQHr +kxDfoNb0ewUKVghcpS9JykMXT0QMGcJ86CZWTz9jJKO8lLUne2E+zJ0du9gg +z882VUbshP0u2//ahCYnD/1kkOvcgPyysJ9OKtPIRIZvTy4vQn6d22nxtw/2 +W7Zpz0AU3E/qmsL2lWfBPAqSTgnD/jL0F69eP5yJ3JvOKzyE+8jlsnYNbTIJ +qRyv4vwD+TPvKlbpbZ+NvKnk+ALIH8W/Z1LrYD3/y/plHAT3C32PF0fFonOQ +7MTVFHrog++7mxjz4fOaZ8XT00J+O7wpCEo/RUYHhcQ2lCE/jbRf/hMPhvlh +7TzcA+fV7cU5mnSJLMRj7aCeBr5e1PzUIUKfg9ri1fYHgq+7FtITLeD1RD6p +Gj4EP9PfmaxnNyOhqBl+Ginoy/6l4DW+TfDIp+tlOeBllttNpdqfIE9tKOa2 +4N1eWsPT6vfAu3sZP58Df+mO+0o2vc5ETIIcoXLgL3a5uRfn4fzI2+wo+gDn +QSjZQZw8Cvedw/423uDZv0rbn3cmE1HM+l0tCfCrf4J7nTP4NYlk27fcUoCb +fYbCG8wykJL4JdUq8Ov8i/C2UPArA+W2bAn4tdzNjN9VjYCSBS6bzMPr8Wk5 +Naq7EBGT9BTBHvz6dOZb8AnIj8tO5l8DwK/+lq3D17f8WseacRr8ivYWplWB +X1Vpb96xB78ye1L+/gf3S/eJhMQS8OujRJHKk5B/lktSl6TBr68EKuIHVrf+ +/n4iqQ/8emcmZIoO/Pqhy0u7Evy685ZrpB341USnyPU9eFVz346jKuBVVcvT +7HLg1f5If/eCkQw03fi36DWsV9S51ysXdmWh2ZTVN/mwXuKxK00TcJ67IhnT +x4hU3NBQszCy9f2U+pMrpuDVbVfL8vbRkdEvp+EvDHC+t+/TMuSFPNk8GJjx +b08x/jOWOhYL+aUXI6OtDl7dfKKtMg1evfFuJqcTvEq3cbO1ALxa12ya5w0+ +vX/kVeWz5gzkr3BiFoFP5c4R8z+0EtAJi7L7neDTfg9bzf+0CGhXfeHpPvAp +x8TOCRfwaWplcfVR8KmFYhCTANwHq2/f4jECn9a8EbaIB280/1H1m2Og4B1r +vDqedASU9labMwI86n7z1B0jOC/ryaO/k8GjTrslGpW2vs9RP1E4CvOk+P3o +yJGDOah57nPsEjcFS0e69O73IiCX47G+w3B/LI3PcxeNgfvu8aFfceDNlQth +bsLgTVdLnqwz4M0zdxikJ8GbIZS2Vnbw5galKX5jHu4/241Y9kJ+9dOt8iZs +z0VyARln7oAvGYPDDt12JCLugHcVteBLxQ8rUr/Al6LH/clckFcVahtfW61I +6AWbdo8g+PK2udvnC9CPtJrV0t3gyzrd4LoHArA+CawdFDgvk3kPtjFB33su +uspdBV+6dJWzSUH+pfB3ZruDLw1fZJ2R3fp7//HybaKQdxd5aiT6+kko2Jss +0wq+nL89rXQQ9nOy8+hFQ/Bldv3Ba2JGBLTx6N+lS+DLDv41R5NBAlpZ+X1y +toKKXbD5FC/48k3J6d3vwZf8BfR1lndI6Nl43sdr4MtQK7c9QqXZSGVVNv8f +5EndYJToB69cZGQyxz8hSMF2UuPVh7cTUdGMZq46eNLRgOfrN/Ak32rCkjd4 +0uFy7usMXRI6ZBegUQiejB42tjoD+2tPCOizAk9KmWcp6+wkIIvVTuNQyCOb +l7N209JkROBIbEgHPxZya3K3JIOvO/fdugB+tDcW0n9jTUAsQa2Zh8GPIzsi +9dTBjzRMn6WawY+Ka81GQgHwficrtrGCH6/MB1uQ4TywEnSDpCF/+XLenLiz +QURhTC5thyF/Y+KrV9m2/l4bZKNfDflXdn2w2xY+v1Udh0US+NFpc5ZvFdZz +vrxuWQ/8GNgt9bK7PhO5BqUVt4EfW6ojqdQiEtJxlBs9CH4kOrRsL+cioiUL +mqsZ4EfJ0zRXBsGPUYOOrwjgR/vLYr48cSRk0tvTKgL5Xb2jcWHHShYifXpm +8Rn6OG7PEisbPK+SpUovBfrYqI4cOkUlI6TWKq0OfvziO8zQDXn7VYtneyL4 +cfjL5vmcMbg/kAIFGMCPI7mlb7iPExCPJVFYFPzIIeTH1aMJ8xCdvOYBfhSt +aBhLBj+aWL6/eRj8eCbluJ1/JBkd2nySqwNeLGPLHuwOJaB9Ecbre8CLlclH +3u2G+xrDUM/L0RoqNnMTyaQFL1bLr03eAi9e/agW9xS86L8xE9ALfc6nVCLK +DM+fGe3t8AH6XG933ktqARF1NWcdX4Q+b2k6xJGy9feyoSv+l8CLVomuZIct +X0xKcZmBF2e6xYMeQl6GkibGVqDfG3bdJa8zZyOnobz33lt/70IqnuP1JFTx +u3UuG/o9R1Qw7gAVnveWnDkneFFG0Tu3Erx45Hfwr+fQ962iRMQ+SEKtl58p +KIIPW/Qq0k8fJiIbeTaZG9D3uo0O6/pbf4/KiOxug77/G/lZP+o8CQUq20RN +TFPxzozo4mPgw9wQxTIT8GFiraTm5XfQVxmN0n3Q/3+SnJbuLZHQ3V3TrPHQ +/46uComfDQiInb/aJxR8+KORh2PjOOTpaLvXygT4UEGP9Sfk60Rc8N1T4EOr +VxcUnLf+nsT/sz8OvHDgjtIrzdRcFFgsnHwDfHh9n3ObjncmUjp35MwV8GFz +KY2v/Nbfj/gviDFCH1rdP1T/vZyEKAlLWd3gw0uLPHo3YF6tniVyZIEf/isW +vL05S0Qe/HERXOBDdbYfO74QScij+QxfLPjw5mAo78njRJR5aqLaH3wowq8h +9jwwC704PvZQC+YxL4nmjSvs59EYfIkG5vHAb0lyzkky2mv4mikX+oP/r9D2 +n1vfj9h4YOYMPjw+dYZsewI8F5NTFQA+fPa7YoefOgkZxYxw3QEf6hcTQgde +kpHWJ6//AsGHD8oFNttuEJBJ3AmeFsjX++/rqh7O5KFMC/rqIzBPuftbb74G +z3zddsdUDubpck1tKXskEf0UqPczgXmqOrNUILH1+/0d3mxPIW8T3wo0KjmS +0Mu9ywPnYX54jwdmxcdlI8cdVLdOyMvanfsPvX5BQoMGowfpYH5mSr5+ftBM +QIGuiV8FYF6Y7Oaus2z1eZcEJxnu0516GybTefkoMk7S+RPk27GHWok/wYcC +XdF2/DAvO59/pz9xloRm/+jmFYMP/TU/C3Cez0dWXc+aJWE+5HdEJsuww/3Y +g053AfIr61Alw4QJAemdWXL+0kPFsUntFGW+fNQqpnhnAPIp0K6Ak+FoJrKi +nr3zCvLp1YViKdat31+fMX9iDT707Qt6K54O83g8f/sS5NF7fR2VUzqZyO1M +8l438GHcSpXJ2xwSYjWv6+mEfDnp01bw6kw2Co4o3BcKPtzTkif9cuv3z9JH +j5+HPG8MTHpy9XwOcpSs0h+FfLmHwpmKYT/NpPu+vYd8ENsmlCpkSEaSjy5N +sG3dr8ciXQfhfq4k9Xo2B3yoaCu2fvdcFpoOct7wAB9S6tMdHRrJSPhKiLIb +eFBYtL+KZEJCFowiTzfh/JQOuY8kniYj2yu1DwPAg8N6X2kDJkjo3PcZpAT9 +HTqp/Le2JgfJKbFmiYNvBotKha5C3nIu8uxkBt+wNehaBW79vvO7XnwpzL8F +4VCu2wAJ7Tp7Q0AH/FZ4RDX1VQ4RfZiZq/wD/76xqejTnK35zWk7TAX/xOw4 +8ilDhIyMcmw/HYF5fJCrop+7SEZrL3UT3GD+7K8XRwWO5CIPI1qDdejjN/fu +mq+PZSPh/Azbl9CHSxN7Qoa+ZSPViaKhszAfTEpuEZ6meUjGYTiCBfZnWJcj +QCyBhO7J16jKw3oru46QprbWW7OGfh3OT/vaffdWeD8zTaOqCFhfYbIbT5AL +rG/bdPETyMNXA6d2dEI/Dl/64GQA63skwDnL+FEWulfj7c8H63vXZN/woDoZ +0WhKKz+C9Rz+6Ty+skJG5+jcmT9DfkRqdZ4y4AOf0PWaW8L6PNfW6bBohf26 +9jTdCN6/2G8o7aAPGenUnZCmhZ8PrNXd+eJ7LtJXuJb5H/w8/8KS/ZxqHnJ5 +m0HzGp4/422gawk8v8ruMi9IcmxBb0ogdOUgLWwd2QbPI9qlJRtomIOqu3g0 +jWC9Yn1uVz2F+6phv5NPNOznr2wR+h0uOehIf8czOlh/C8+o7sYZEpJyyMjZ +vfX75jT5Tzrg9VnT9l+T4HXXnW88U8Hr29STW0jg9SEmM+sL4PWfSsysaeD1 +QkULz+eqBLQ36hvxI+z3jcoT24ieRPSIpUntLHhdzK7NbD94Xac276YTeL3n +ooih25bXQ4vjFMHrwgrzJ3PhfL/PFZ7QB6+LO6WV1YHXSzc4YtvA2wNu3Au7 +wNuM1/2TBcDbTsO3vjqBt/vOBt6tg3kUDnWZS2XIQl50N/mSYb429Da+LMJ8 +Ud9dUHgF3k6wlI/t3/J22NSsBnzeT4F9k6ZrJFSLvc5Nbvla9p9nJOR/5NAt +KRvwc4gdY3AC+NmutaXzIPi5xGHb4oEWAnr2/OhwNfgZSTw49mnLz2Gn1RrA +z7V0UZ0y4GcFU4NdIuDngIkr35XAz17EoC4EfhZhPv3zDsxPDMeVtQ/g5zGm +c1nc4Od96h1mnuDnUfWcei3oj9EvUnGh4Gcl1Uvh0lt+DoskdMB+cb88Xreq +nIMKgy9dGQc/6+glKEh5EtB8/s6nL8HPtpZsO37Ggp+3BX/xBz8rS6i1bwc/ +02/UrCiDn/Mve7/hv0lCum0Lp1a3wc+fp3ytAD/fTX43TQvnK7Dhe2PXQA7i +Zdon5Q1+PmOiLPvOlojSJ81Xc8HPzCvrQ4e3vl+7jffBJuRH0xvmjTlLuD8+ +/nqQBfxMn8y0bAt+fnVx8nEt+Pm4j2m9GPh5dV98QTLMX4kX50qxDey3zbzf +RfBzlODnod3gZ393HhUL8PNJoWf5wlt+3nZhkRX6QGt+JpH4Fl7PvOa4GniZ +sXGBbHWBgML33Cg+D15uvEpvkTQEXm6+/9978LLVU56W7eBlj/OzHm3gZXZ2 +h/sl4MViL8kn1pAP4dNfzU1J4OWWntRJOC+Su01LgjRykdoXz5VX4OVrD1yG +2rYR0SHj9u+y0Cf952wWzm19P7NFfuYieLl97uwlefByJx1/5gPw8styn/+s +YT9lagpMdMHLqoL2eJIdvNxyRecKePmLOgc6KEdGt7J2Z9wCL//l3aYckkRA +Zkrk7hPQN/l/tOs+24CX1R0S+cDLD9wCefnAy4SiiNtU8PIfL5an2uDl8jIl +3WVj8Pz0dacUmOc/Ut3mPNBHZuw+ajbLRMTgM8siAH3UXmcrLr/lZXUadRL0 +QW/Hz3zLWyT016q8KgS8LGRuPk0HfnuvrvZeGfpJ3LJuxbwbvKyukl0CXnao +8xVJfwTr/briAA94+SWPh6kUL3hZmORwG7ycKXjH7Tl4eX8Qw8G74OXDzsE7 +b4CXT9icJ7FCn81U3Z6nTGchJZGh1mTIsxtiKeRAIhm97k/9HAQe7rOjCcwa +JaAAtg2HX+CR8sG9mylbHhZBu9nAw1VhV4pCwMM3ZRXNLMHDHElzzkVbHhbx +9+aDPG76nLBnLIaM9txTjVAAD7t7WBmU3ySgnPlBre3g4Ri/4Wifa+Bhkmd9 +B3i4LKWG/bMSCZ0fIGJv8PDvv3+KvoOH7/D+UX8GXom86WH9j0xE52T2R4yB +Vwr0SqRebPmXxHrlHOQ9T2VvqIgbCVFvd3tqgX/PfHDTJsH6ucg5NX0Bv3gw +WSSe2wv+JZ3svAj+RceOM4k/JaFjNicV48AvV2ojtaJLCOiJxJvK9VEqZrt8 +RmMZ/Msfvtn7GDxj0qTsvKeZhB4tndwlDP4NVR3kMJYhoklCwjUX8O+hedfC +zC3/2h1oKgHPjK8+ebp4joS4P9JMvgb/tl1Xc9cB/8ax1carQ1/Q6L17lsad +i6ztbPY1gG9mS+lMVP+REHvIFaMg8O+E2ZH86nPg33GTy1fAv2vxBo2vwL9T +oS7dX8G/5pvHxDn8SMj532avAvh3uVk232LLv+MJL/yhfxJs6GnR01zkoJpz +1Rn861pZGbXokonq66uSTMG/IxsN7ae3/Dv+m+cX9K1gn7OnaykJaSqkrtaC +f2nypa0jwb/aF7h+3AX/VhgXa5z7C/4dl72+CT6SiXcdTMkkoV/Sr+38wb88 +75nxA0xEUe8uPXAA/5aYqV1NcctCZwocRuXAv7VZs07+W344P276HfI8qyxd +hqpKRpkuvNlGMF9ppROpv7e8e16L4gje/Tcimyu/5d3zIYze4At/1h8Mu/vJ +6OXpxVAn8G5djNKYCcwTFmhdfAR5WGU8xTOdnYd6E5iV+GFe7sVECU7fJCKf +KNSkAfMinatfcnHLt327aChb319p/y/xiAOc14LAClWYj9/bWQdFIW8c+/Rs +qiDPIh7tbDZ4SUIX6+2u/oD80re8Z2nVRkCO/3Y/Z4R5MNXsaBcUBN8mvqSL +A7/ceZl8z1c7HzH/e1TaBXm0uCb+6vTW90ESpY0YYB7izkjotOqR0LvI7ohU +8K3xV/Nt1+rAt4mXKnbD/lsHrehGcpKRwsfbCSOQN9PLbkf6TcG3nCmWveBb +qtGT9hsX8xG1ouZSE+SJeuymyBeZTDS2p6/nCeTJ6/3DslJbvuVceaQL+yl5 +awTdSgE/dUpOjEF+CB/LK1EzBt9yHt1hCvtnoWlZT84loaUp1eIqyIO3HYsN +SzgbHVsYkFWFvL14oMd5BvrLbOHqSCucZ6NbD15TTMFXVxneLcN54zLfWagJ +8yf85HzXPfCV0pW/FbucstAblu/D5uCZhZ7IUnXIE2F5ISlT6J8o8nXnBWMS +0nqYk/EN5l/ChHhU+xr4Vd78riP41WQPz3j+F/BrWbS8yJZfwxt7NHpyEN/z +ezc4wQu3TuW8IZRlooc26SZ/YH5vsW44x2/5tWwuLB181u0dvo30moTWhjZX +joBnJjnDWYWpRGRtfHVtHHxhxOHHUbE1fy6Ooikwf5Y919s8ecGvLtveCMJ8 +bfwpEh6jyUFfTLs9TGGeHLYLL2/LyUWmE5Gy09CHnN7N9QeWsxGz4r4TFdBP +Mybbs+WGwK+FZ3qOwf6/T/DL+8kNfj144/ofyPOV7WGd7yFvjzGbLU9Bvnas +arLwj4NXmf8UeMB6Ijdr+mFPWM+7d7Nzt9ZzTKfQDvLh+aKltgqs5+nTsTV7 +n2Uhv5N/TOhhPZW4Gz51HyCjmb5i7oewflNqyqMGsjnoXAfbWjecd1W1QJZP +SuDVDi+9k7Aegiecdmo3glf/s447Ae+/rvlN5+NlMsoYqwmkkYF5ETZAhaP5 +SF63lXkO5vHdwbmd0eBV/X+7E8Xg9SiKi4+ZPfKQyofzDgkwDyOCFiHUwhwk ++3rMvgSeh/k3b/OcVA7KskgTOQHro3h9KmnPMPgnjfGyL+zfcfK+Gokg8Gqa +a808PM/uYZW/nJMkpKIYV8EO6/XkYJ3Ef7C+Sg/SRp7C8zGM+q9oPiUjfWOD +cTK8f1btR7Zi31zkvtGg/A72Y6G9hiNaKR/RXW5/0QrPq+S/HxfP5yG9W8bX +V+B87OiyN1UdzkPHLiXrOMHzXpqfHe5yy0Gqgiwz9vB+ontWP5/MykMr3GL9 +zODlwR1VC8fAy3srAumGwMtmK/sv3wYvO+lLbU8FL1sN5peqgpcdQ04H3QMv +n9VS9L4GXv6oRm3phfly+7zv3aA3EQWvSN3TAC93rnSd4QYvL06sM0iDj713 +mudngI/Fri9waIOP2yUKnq2Cj4fNnxGegI9lHp46v3kjA7lF7Hy3C3ysX08q +PQk+PvmgfrkU5t1pd9T4AE0WOjKp7HQM5pXgxZfACf3wbVrA3Ri8Kxp3xuk6 +ePcdM52KEHj3/XOx5rNw/74dtLRJBe/28G6XUNAG706mV5eBd+3MwlLZwbuh +ksJ4D3j3HU14gBZ496cg7Yle8O31Xs+v07QEZDg5wN0E+1ewr/6/ghM5aN+z +/I/vwK8GSrp7SjwI6LFV31gj+PVqlNTHD3HgV8duaw/wa8SVEba/R2H/X0dJ +HgK/ltppfFUGv5b0RkUvgF8nms/l3gO/bnzcY7YM8+M/Eh/+7GkOumdgk3YZ +/HpyahnR2RCRVTq/UAb4VXPXC26DLb86urD/gfwoUln0uQV+LQmrMaUBvxqm +P068DH49ciXodwn49WBj/eVZfgLycurluQvzOBOeorMG9+9q7scZF8CvgTYq +nUzgV5eHDbfPgV/LNK+Z8m351THHnRbyviJsvP/OOxLSIC0XHQG/0i3eU/pn +SEBar1DfKcj/dQ1NN6UR8Ov+L+Xd4NftIomqK/Ik1CD6lPAE/Mo2kOoyCH4V +rXWRNIJ8wB6lNoR08KuY0K6PMI96YfuaqTK5qFymzKUN/MqxvaI8gYaIfrLc +3SkGfYFXc+Mit/wqFm5/AfyKrjb/XtMhob1vv3fFgF+9751vuAx+TXqG0k6A +Xyv7Tl4u3/KrWEOLLfjVrzyg3OQIGa18NWIJAr++/snSP5IIrzfr8FMR+oQk ++TzRbeu/78mtYOEAvyYdpS1hAL9+CzKqJINfn26w8JuDX1292Tp2QL9oj5+j +Gv8hopcHSw7tgn75cX5gTWPLq7nn6h5Cvk1M0kjaRJKQ3t2Qk7LQL5/2hSb1 +D4BPc6N5c8Gnm1rpt3dRSSjhlq8uK/j0iCEP0ZMffBqxMBwEPmXRSVquB596 +6b03uQk+jRR8NfkY8rIyP4mDFvqott6ef/8Y+DRSWvUu5APT0+abex+SkRb/ +x/NXwaflrx89yoL9UG1rujMNfti4+qz/w5ZPI+/F0oJPdS/p+puCT7s36G+f +B5/WNTI8r9ryaeTL7zshf12mogpL48ko9u2NX5Lg08SmookD4Amn3HTnFfAF +t9Fjbomt/z5ie/PRJvDpnuWP033g08w8Dw9n8KkePj1HGwx9Y6tU9gS88fgF +T29+NhHt+jyZ/w68QXfjCOPolk+3X5zUhny/x/elLuIKCY36FRwaAm9IHHmw +t0QIPLo9RfMCeHSN8fJwJ3h0hYvJPAI8qnI/8H1zKbz/P/Ln3+DRpktK9nwR +sJ4dGOeDP7R3WQZ6V0L/oqgwbvBo7JeazREpIso3NEyx0dn6/tH43xdbHn3m +eywX/KH2yECMCh61f9TH+QI8mlDuaH0O+obW+N+GEvTJYPI7ZzL0h/Wz0pQy +8Mj86NxS2goJ9SrI+l8FjzJWK8+JbH2/X6tgzBY8Gh2s+LYKPHrUUGVlGDwa +q5lpLAwe0NcaP+EB+b3u6nWxvDcXDUZMjl0Ef4rtfqD/8VImCrnqV30W+pur +cjPfdMufWloJU+CVXahfprqYhOrSja1vgjddbGxM76+BN7VCfiyCV0QL1x1+ +gTcrxxNueYA3e5zDRXU0iWhNsGC7OXjz8b6eHNKlLHS0Ur5vDPKy+tqfs2PK +4AuhobbTMB++U8bf1ba+D155X8QCfMlwrc5q55YvK3tCL0P/O1067XJxkIyi +aapzrWD/F6WOfhINJaBKBzpHEvRP042XSpwheUhr8HQeB+x3h47MwMcbRKSE +aCaOwX6zhx1hDtjy5VGHACL4MuGw2r9yexIS/1EvegT2W/itR4/KI/DlUeJg +EeTNSL2L0u4O2L+r+x98gXypIp/JffaMgAax8dF1yI+M11yDdlzgy8W9N8Kh +v7y/ttd17s1H3SXu/S2QF5f8iVf9t3y5GPRqFfKi0CZ5KBJ8abVYJcMM+/db +r/bOf7vJaClep7Ifzv/5YdoKPTPwpM/UwHPoS6fxaAb9sHwkvLo8UAnn/a5p +pZ/dwUxEfpX0qxTOO0N3jut/W570OX3gBOwPMz/XNrWHMC+7XA3fwXmnD57k +GbUET/pERurB/uzb2faKJQ/y43CIwCM4v8c2TnZQjoMnjQ4UyEP+mSc/s2qX +Bk8atZrUwvnj76HhDLUA/wyYGMzD+fDVTqq6cZ2E7tMkq0Ru+WfWvX/f1Sx0 +0lBGzwD6Ime0pEwpDjx53zNHD/rgoqB5Szp4snZkkmUM5jcm9p+MWxTs9/1C +WgvwpJROOEfbV/Ak11ARD/SZ1sWZEfqP0DesvbMM0K/j+wzyXlAzkRm3VeB3 +mMejd24Kp295kgutxm/56SlP29lXkE/71V0loe+j628ZWT8moqPdlRmxMF/q +0kO1W/99pVH3+TO7YX5IOX6/jzLmIIsstlE9mJeNGaaJydu5qFvqBWEE+ii5 +VozIv52EQoJtSihb+/upcjimH/zISjh1CPY3dX3gkNnfXCQT++rHN8jX9aUp +cm0s+NGNcnUE8s+hu+d53Xvwo5u2iCOsXwRnLt9+8LPk7AfedFi/snC1U2XQ +hyqqxMrDsH4M+0PMe3uz0Gyc0osVyAu12wNv5PeSkTXvj8gYWK8nO+QPRZ8C +P8pY+7bCeVX5rrw+oA1+lGl5fhw+f2eI3hndBvAjoYRBEd6fPDgZs2BHRhyS +/2b+wOczDj8RX1+ej/IT6AI+g8dC18zyp53Aj1aOLHzwegOeoZZ0UeBHVfLw +Ldj/A9wF27PSchCZR/RNDuxn6O0rLn17chAX+WPCUVgfG497NvZz4Ic10zFX +2K+6N02NyZHgx7U6uUl4nn9SsrmG4/D5Ukdktm+dh4fJDWF3wY/LMyYV8Hyf +U39kLVWCH2uzLFLh/Xmv7XMohfX/rL2R3wXP++Dtm8DwnflI1fl9ChV+npWk +MUf/MR/5lzAp1cLzv7h7zZVZKB/pTef9+AHnI4F77nXaCnjy5USLJTx/8pfO +6XFr8GSohb0Z/HzB8+9pEYF5iPet74Fk8OJC/UlzefDiPtHvR+6CF13yau+e +Bi/W743r74L5abXfcTHQh4i6Rj9IYPDgZNnRYIEHJCTEYvmXDfx308kwRQn8 +R/Of1eMimE9/NqrAv/VMVM49JqoA88ZN/9HF9y8JETyd750D/xFO8Vx0Af8l +FOcs8IL/fqnnsX9uIqDLJu85KeC/u49bLC+C/5K4Na9RwX9ntVofbCISkkhk +Mt0F/mu+33zqDPgvJ/esbRf4L2zkQ8Ib8N8b7htvnsD6L3CyeMdr5qDBy6eS ++sB/3Jk2il7gv0Tl8l9PwH+/2UQiDe4RUPgDH34X8N9Re3fln+C/f8pXTxwE +/42PG9KcBP/ZmQ48mgX/iY8WMwaD/2pDanf+hv13MPyd5Fueg3R+b56zB//Z +Bj1k4rcmIjXfNbmH4D8NG+kua/Af+QFn1w8472oHaQrPg/++LLzgKgLvFTeO +6vSC96RYrvZEwPz0cXNd1ITP8/nBGal1OP95jSNr6+C5Na00e1nwXPQSb1Y7 +eE6cIjShobb1fbZeGpZRArKPyauoBL81Vvp4zIHfhi1ZxvThfDpV3xrSSclG +dcbtPQOw/4Gp4T/3iOYit97zIo3gt03XV6/+bsJ6fXEREYI8ZvncHJYJfks3 +lhLShzy2st///TP4TetMdJ0KeM0n/VxEGnjto7FjiCV4zfmGSZuXAhlVRv9p +8QWv0d8wnogDr6290KKVh7y23Vz6WgZei35r2c4CXgtwL6BbPwb9P6naRQSv +Kc88GLAHr4nxlIQyQH6vPRa73v+biIreLl9PhPww6Dd0/AxeYJAV2pCAvFaM +onUX/JCJvr098i4TfLZ02OGAAfjsqq2JJSP4jHGBIeG+ABHtqWpyDwSPqQ6+ +X+gEj3mcVni5Bv36KYp94ttQFqqu6l+OgPN21EwyNSiJjDYaA5ndwGOpBXmn +hcFjgpnZaRPQt6wX98+vgMceVinprkPfmhwK3tQEj72r8qKwQH4pNLKkZCaS +0cmAfUX7wV/zgwUTn0II6NTNoMA/0L+zNzqnQ8FftxWdF56Av/ZJnxntAH9p +s5vecgB/7RZwy2AHf1Vvf+9cCX0cPZ6rdzOLiH43PK/tgz6OnXJl/gb+ylek +J2HIRw42vXxF8Fcqv87Xt9DHuefZsev+bPRV8QSNPvgrf53puyDcl4d+TLuG +gL/Wp7WOXHxMQMV2Mf/mwV8Zdmm3pWE9T7uP/82GPH1/2G+jsoSEPo5L/scB +/rrGG2G3H/x1R1ah0AL8lbN5XW0I/JX5R/BPJviL9o+oaBT4q2E5rVoe8pdx +o2vo9qlcNPrH1IgKfX1DXjzu9CoJlbGzR7uBt8K4csZMwVv3fA2IluCtDRGX +n4XgraE6Uc5B8Na1+VVfSfBWj+/dNWfIO42hcy3FH3NRksStVDPwlhphnbfP +IROV+M7qfYb+vlahz/4J9tsHLXEHgq/ah5x91DaJaN5XnPoD+rtugnNRKIuE +HjZcTXEBX11hML2Wq0VE1S2nGi7A/nP40r4/ZJ+FKr98iBva+v5TWeT4LUUy +0lipf6sN+12/9+1pB/DV/S+qo0aw3wcNai5sYBIa+HJdzR76UTxDqpVtiIzc +hh5Wm8L+djooRN4FX3kw5vITIJ/JL5vqt7nnoY2g71Y7YD/PGOcXvQ0mor28 +44sKsJ83nBq6b4Ovci/tUEoFXzm/a+64Br4aS7L6KAP7SeuXv2nxOBtNXtJ+ +kLf1/cXz15p9/2/rzKOpfN81bkoSEiUkShqoJJRv0kNkCJk1CGkgCUUlCYWU +ilSUoWz2YGdKUZEypYgMSUIiFalMSUiSzvX81lnne9ZZ58+Wtfd+9/3c9+dz +vbZ9h3zFay5w8z3mveXGAvGAcvCwa6T3J+Z73t3K2RLiOI9Fj9cGgecm12Z3 +G/Nzya1zFp8KMc+ix0tdo5GvbixSOj+Kef7p8NnFDfmqbZHzV36c1+xPClFS +s1ik2UO5oo5+PnDgc9055Kua1OjLpfBHREnJ5+cxXNLKSIi8jfk0izhZxVrC +IFmpQx/W4jyaCy79TAT/C+8LC7/EfFou6qnW2skgfanLNxjjPDb3rVLTRZ5S +eiXfmIo8FTBt45Rpa1PIg/DaPcvBo3vSHa/aFoHP4R6SdzFPzNX2gYM7WCRt +yt/pX9HvvrM/1s9FnrLgaAwFIw886Bswz/dLJjyjNfym4O+CqcNR1uEsklI+ +x8UYfBWy5as5iDzlGxJe1or+tB6zFlsdwyLvy61L7MDT+NUjwTafcT9gGLZv +JvyQ9j1gt9B78PvOIQ4vfMX/XemYSwaD3DHszj8PX6fM2s5ZWsMkKs8+LFgI +/21M2NMUmptE7v1x3HYW/SP4MU8hGvm08c+vqWLoj2N3vBO8hJEHDLKvGqMf +xjbLGcw9ziFn6tzsWsB3R5Wm6pXCyEPzedzYOL+eZ3O3lL9IIYXrNwoo4/z6 +bs05GfmFQ7KKjmZ9Av8GTPJfqCA/PUiyUm0Br/Ty9ixZ/IpFWpL6251RL0PJ +ecdqjqBe80KbYlEv/uOlAg7IT8Md6z1VtOj3O+2N9ZuTCXdVc9CIMs0H9urB +M1lEuiha5wzqY36oX3vAjk3qnQTVizB/kvy304M2c8gdp/2ha/D+/2hvl7R8 +BD7VbnmyEq9/5fQVQ5GdLPK8OoE5iPfnmOBsoJ/EJS6aHLV25I+MeIXwpMBU +Uhcl8mwWnm8LpzLO5WoqeehlmnAK5/2nd13ei8ts4viw7ByDfl4821HLU4xN +6gxPmKxEfThn1z1SG2WShhU8Sa44H1/15hW7z7FJ7oo9/e9wPcMaKpfHOnB/ +VRX+dRLPp97SECISxCF5ylcks3F9Q9IGBz/fYZG6r8ZzYvD6K2pf97lFc8iN +rwznClzv1xKf2v0TqaQw4aTdTdRbXN3RJrmES9Rt0vtzcf25FtqMJi3cn8hY +ZPWg/1mR3DhdYS558OtC8Ba83psplwZlt7FJYQ6fgi0er3vNx7zcPZVMHH50 +8Qzy0rXC37JrkJeWnwlyrEK/CHgnTTM/mkTkJS3urkdecjgR1bkc89J+frlI +GvrN5+77isgJBvFV1QxRq6C/71YWT8f79/p7ePMc5KHq8k7LLOShlifPElOR +h3abx4b7Ig/ZqMa9TEceyj7TIzOGPDSx78dgJfLPwYtP9z1D/rmi+lItH/W7 +PV5hEGHIJvcL5gzUIf8M+B60tEb+4UtlnchH/nn7juf8eeQfc89Pzxcj7yhE +7p+5GXnnan3EgUGcT3L4xalvs9hkkWF91k7km/4dsutvOiWR3dmuyv2YN/+6 +rvdayDPkvmfqTeSZiHYVnTLkmamOG1RCcJ6qj4cFv/kzCSs7OWIc86f066ft +2mYmeXNtf7EK8ozNTqG32cgz12aLe+qBb6ONHNUjyDN5JTK6ucgzTh0BP38i +zxTcal1njnnZuLI1mnk1hQR4z13RgPNgnNkU80GOQzYpKgY9Qp7Zqfr3TCby +jL6tQ4Yc+PfWeGt4JvKMg3dwkBn41/b52dBr5BmGmJrZP8gzs1YGSEYhzyR6 +P2jbhjzz7qQiZxJ55nJb+bzDyDN3M37/dkWe8dRcfUEVfNxTPCOrEXmG1z24 +jR88bCnyn5RAXvEYMH99EfNao2fhwoFfO4O/bV8EHnKihNIM3zJIxsAZzRvI +K7+Cp17ygr8+1hp1CSCvFNZnMpbMw+O/avw6hrzSP5OXtwV5xewGv9I4fLVw +2wzPl2+SiV/dkq0htL8VeiRyL7HIW3Ez1/3IK60qYY/et8Gv0y8rfoC/gti7 +z05H/22pO39zHP46Iy1tpo28cq3uqaAQeMHrO9keh7yzsHpgygLklTNaM74X +Iq886DvA/wM+8yWjI7eQV2K23HyaA38FScn/7mUkETeL7X/Xgy9/54i9EEP+ +OOolrf8KvtJ/IFVgtiiFcC1inM2QPy5HNFw3Rv4wd3rz4wTyxyGtg5xM5A+e +a39P9yF/HBTqm6eJ+iwpybFlgEcjfI4H3mYySb7Gr1hR5A+/gFvmFcpJxFnM +1/YG8saluWc1/JA3Ekw9JFaCV7L8A1kzrTg4v6zcdPjLZ/NXUzbyhmLgpIQH +8sagpOeAL/KGxUX2723IGyUTfbwc5I2LF9sd3MCDooLLGoUdHHLwuP2wPfJF +Z17tsdrdDOJ9US+zAz7rKZmx/gjOx/pShc8x5IsyefuaGB7kj4sBwv3w2anS +2ro1yBeCKrvn70O+iO9fbG9rmERiJaWlrXFeUXvEfI+5JJMjkyv6WjDP355N +D96hySK5+7KcDXA+v76uFvJDvrCbvKRjg/MJaG9+PYJ8ETv5/PpO+OPUssGn +7m0s0mZyVteefl/exoqnCPnCfPuRYwng16/AA4GX9qaSttpHD4RwPowgqSO2 +yBd7g3fGXkWeCGE93maHPFHctXyNCs5n/Vt77cHcFMIJTvjBQp44epu59iby +hG/B8Mp3mLdTvcekXyNPHFpTYTyC+apaXX+/X5RJAsns+ADwbTtP7ZKCsVQi +/5N4P8Q8rXxu9yURecKR+H/5gXmKSHBQ34o8cYPkGvPiPHq2r88MR54waZGx +rMG82Na2H05Dnogs7vxWBJ4uD9hQsxK+eDC4/0sW5ifeNEH76WIG8Sw20tNC +/WXSff1MwcfEqW9d6zA/Eq/9RT+7IG8Un0reiPq3b+84th15gm/Rt5Vs5Im9 +28N6H2qlEH/GgjJl8GD90QeDg4psEs8o9rmDfn91tPdLuiOLuMvbenSjfx9X +TVvYi/ur5aP8FoHwY88BhkbE8WTyzjhppzF4d//LlUG3EBZxeXegeCP4ttPi +jrsD8oTVK3v5FvRf0leNeTfjkTfepc6zAc+MFudHJiJPXHJuLhcDbw2EcmdJ +dLLJYr4NPH/RX5JWoXGq6QxyyFlbKgL+MhW8qxZXzSRCMrlB8+n3FXwW+167 +m0SOSOXknUa/LFw/HpYgwSKxUhZu09EP7gqHIkVF2OR7bPD3jTj/yzIb7Y19 +OWTPfK07r8FX1vXazXo4r9m+9Y9TcH6eim/+dtWmkMAt8bsX4/ymXbTPN/yA ++72mKuFO8GnX/S67rgtM4p/HiXwNnlQuVr30sZ5F4vM26DiiXlMbDJJZR1Gv +NU2aV1CvMzNCGKrIEy9XiVUuQb3+Of615VRrMgkLu/lmCPMrsDPlsYoYi4yI +ucSHoT5LD8c75u5gk0t+DpceYt4eekrkOVlzyCG/ovcaeP/XHQLfNTxkEr/u +jAUr6OdlnEG7JCcWuTnP408/3p/uy9yNnCtcsv7MkchW+NhsV8yqxLOp5CLX +ZZEEnu/FfaPpS2+kkoAzjJ9BOO8eEZdzI1FsslYk5tN1nN+7qtDsJ9PYJDPO +jLMc9fkc930ra5xJrhjZ/d6N8xFUPsd8cYFNfI3yzdpwPbcioj6bI08EfHxj +PIHn41XwutvjxyF++t0+mbg+a4G9sZ+yWeQi342jl/D6JjOecepjOOT4uoMP +n+B644RsOT+HUklg7qtcDs1vYVobsnO5ZAbn+KY7uH6j0zkibhu5JFKdJfwF +/T+X062+SoJL/CXet9ni9ZTvcW6WIX8FPt8SZIXHG/srnxd1SSVdhSPzK9Ef +DWFesveRH0xWCB3XQX44cnC+7GrMR83dWQ+5yA/Nvncmm34zSIO2s9pK9I/p +7mIrA+QHx6WOv2cjPzz9Nul3GflhSPt3x328/yvThdrDjdiE8/Hv9VrkAVMz +rY4NyAMP38rq5SEPmJtpyKQhD5z+dUjmG/39xr7VI+IZyLPeDxyc4f8JV+0D +XvB/2cPoll7MRwuPkcAy+H/0tHLLSdRb4JXnl4oAzOejKq1fmA/LGl3xrfB9 +ZYm1pzJ8/23q1wAWfG9hHqGmC/44CJ9zTofv05rKvpqif6v9bp6pi00hrQGG +bfWoz9/jvHZmshzyj5nwsofw+xTFAO9w+P1hQNpyU/DnxNTY4y/g8/GAjxe2 +wt9Vx34+NwRvT03JrvaBvyP6PUVs4G+lA7csV4BHc0L0ZnfD34OX3M7zUX/f +2tqbO5REno/7nY7CfBziSToaDj813GyeqgT+eBlvTHRoYxDh33c6E+HvJwMr +awLhh0SBkjR++DvfwdvMB/6O5R8o9oO/7cRLz7+Dv7XLe1+OwQeCtmPbyluS +SVOrteAp9JNjy+mIumjk57Uaku7w9zlhw4lS+Hu0deC+IOZvzz2P0Vm4X5EY +brqrAD+HnZ17IhN+PrSw69l3+EBicUD4U/g59GS07x3wf0qLpTcLfq5wCMvW +wbyGti449NuDSfZe4xl8Cf5nKwdbrV+cQgR3FImaws962inBjvCzQKz1gwD4 +2enLk4EG+FnqSwJvEuY5Xk2852AG3cf1QV8EPrZLr6qPg4+LZW/wXYePlbob +9Lzg44jDNqUrMO/uco83O9lxyKRs06408P9k5fWKF/Bxa65fszt8PO/StoBT +8PFA4lRhV8xPSe/pTOOPHOLMWs+yAx/HfgZ2mcG/dYkeDu/A/+pTN/h1UV+9 +gmwFP/i3YT45oMvLIGLXOQW94P/A1DY9ffi32KW1yxX+zUyMH86Af0N1eCos +F9PvF1rr3tiZTBqFt11vxjz0njD5W4E8Nyw8YuoMnp7YH/hHqh18PfmX3w71 +zKmvrWyCX7VDHRfFY553MJ94OmH+no+y3aaivlbXTQ5JwK9Pz58ziIVfee99 +St8Iv2aJzu5aivqeWvJCUedeChG48ITFhF+Nc6z5S+FXlUHP4Tb098d7ljl8 +FTeI887skR/o764vSXvbRHD/baprfBzzHpjfsSb4B+5HTFlxQ+jn6VVlDEv4 +dMK0bfQv+rlCxmVXEXzKM+OKZDX6N6dkXk0+fNr3XDS5kPo0xHxKH5NLuDI2 +1zLp34tf5VtkD5/WPD/0bTXq6ca6tkURvIhQeyJZi3526OgwKdnFICLVGRYG +qKdjyDamG3w6uLm5nQmfxsSIWc2CT1syzHyWYv5eWfdYBi1gk7GML/Nvoz+N +JAL7BcHrSpUgmU/ot0e7FrU3wKeyCn2/A+CH13PdX30PSCY1h8JFjcAPoZdV +iYdPskhpz1UvA/CiQr650BI+JRPra5rQP1KqE7F7ruP99b6osQIvujLt04vh +00EP3qOi4NUqB37xhC7wZ5ly9h/0y+30f0aupjFIvcfe8jPgN+umQZEFfDq6 +IXGZAni5KVQ5bv69JNKo+NY1DOdv4y++QQE+HVb0ny2M80/LkD70Dj59X+SW +bIDzNr81NfKDN4fYbFJwbgS/Wvd3Ln8uhvm4/uBgMs4rR+bZxZGaFNK2u2zm +IpzXw2Sj0fR2Dqn5+KPgA3ihqcur8Rg+bSmrW9eI+Z6/PMar7AWLjJUd6HVA +vfZ9C5UQ80O99Hm6LqFeqaMi49LwaanD6NHFqFcvs/H8grZk4psVffY75m+Z +4s+kUBEW6dIyMQpFfV7frOSR2ckmg6GndQswP9trVt+1suWQ+tDP0ep4/7v9 +9/+JhU+bhhrrl+H1+Y60V3Qj71wzssnsw/t7WWbU4hjFJctvO2q/gY+KfpWr +L4hKJQO55xvF8XxPLc5KXElOJa1XKrmBOO93S++XT49kk6WrT8Qk4vxGwo99 +8ZnKJomlGjbLUB+XS7aV7RNMMmQTnLEL5+NvfGtgKvzbYPNhvBXXs6mG3+Pn +O8z/AP/PcTyfv9ir7o7DHNJkIb4gA9d3cL+mRPctFhkQq1CKxut7B+hMm3aN +Q9z3bnUvw/VmKjoJGQ4g3xb/2cVGvUuZkj8Ms7hksmbXz2xc/5dpMXMfmHJJ +H6kp6Eb/8y3pr10lxSUt8sKRNni9GWkxRjK2bNLWdGq5JR7/aDDO/tGOVBI1 +wrTmUUN/uF/05XzgEr2WVWHP6OcZzidzvsKvBpVCM6lPHbdoaQTCp3wbfpxV +Rf8sCTaKFIdPX+lY2VCftk9bJnIaPlXccEmL+nSkZcGogDGbSP3cwqL7mI9Z +vuvMgz9/i7oeGkD92p2/5melscmF0Kwcuj/YQlTvrBX8OVSqpEb9+WLtyzgl ++NMrYd5K6k8DnveOd08wifpj5+gxzMPattghV/gzY9/TKwQ8sT5cOPEEvlTo +zdOjvkxTklZ2hS+FQ1o1qC/HCl968cpwyO2dkyEF8OUF8m2vL3ypEnKsk+5b +3XBfyHM//Lgv1eED3Veadedbbyj8N84j0kb3k0avmSXoB/9tKqx2XghePA8t +MPkE/2nzGq2j/nsYNn7gNPg8qvBbmPovaJPasmvwX86bjqXUd7OaPI7rwneC +H7qdTtJ8xxwWd4LvNlgs8dgH36kueCifA98t/hAmSn3XuXM82Ra+qyHzVajf +Rvf5v3gBv/2KCaui+xXPSXdmB8Fvoy7SgtRvr6yannyH395mDBtRv4nNmWeb +B7+t2WXjugl+S09jDbnBby63o2Sp37L6dOO74beoiahtNzBfVvXLTzxMZ5J5 +Pq8TpsNvDdr+107Bb3/PGs2hPtOYEZV9eguHqC44UED3CcqqZk/vhs/kmTd2 +7UW/isTMPH6xk0Ne5636Rff52R0lKtPhr8mUvzl0f5/TQbavEuqTX8vyOwp/ +pcaEbr0Kf8kGShlTX1kN/nrRBF+NWw3LUV+589eVq8JXAjP7h+j+Ob9a775A ++Epp5nmWE3jFai0x9oavBhPXudmiPttN0m93wle516wC4zAvZoECxobOqUR/ +enwR3XfW3bR++PuJJDJ8Sf56DHwlvaSjUQe+UlKcto76arPvUo+P8JXm5W3j +dB9ZWZ7PgRr46sz09C3UVy//fAmVga+aDrPMqa/EXc/+sIWvRKwbGf6Yp4VH +Qho6B1PJcmsfC+on84L1Rm/gJ7mXrFG6jyv36Ot4cw6XyKsa9dP9W8HGadx5 +8NFE/RRj6qOrt+osxOAjHsN8jxr0l9CMrVHLUD+dl7pcffho1DJYyws+ct9d +rUl9pJmSKP94TQoRynlfSfdj7W4ul3g6H3zKCfLPRv9MU90Xtho+GlOT8Omi +93eyvsUV8NEVjfc21EeJjLQB7olksjH8+F5DzOMG6wSvgGAWyRNXX0j9o6Am +kV12g0XUvu9Vov7RejqnqP4z/XuGazV0/9JhUf45Tp/YJFJ33hTqn3rVA/mb +4B8en19y1D8luZJXVeAf7y0XQ+XBE650SIkr/COgfKiI7gNaNK6m/3EmzlNZ +1GsazjPAvlDOWJRNtjY4jNJ9NR+7g3JWenFIlZPkfbpP5pT43tPRM5jkxO2s +CrrPZdnj6wLB8I/I/q37lejn6wXO4+1vOWTiS8RM6p/qqN602/CPUNWemFeY +t29HPperwz9Lq3gMqH8OF/F3GcA/YyZX11H/qFueWCYG/2gd7Kmh+zciGneR +Ifjna2nYO7pPI+fU18Hs6Syyw1wnKQT1eZ5vfrzWhU3mn5OJe4D+35x1b9AU +eY/nXOBnuo/CIlp5rh/8I/hr/1LqH7eLcx5egH9EdxjxUf8UfBrlf3SeS9hP +rC63gN+VuskfuqNTiXyBwnLqH8e1CVkmzFQinOA0SfcT7FozN38O7s+SNx3s +ofsF0qO3cDYJssnM10vS6f4AhmSD8sQfJlHcLslH/eNZdT2AA//wbfezof75 +lf2rtAb+ER6Jt6D+MV02S8AR98uC9qn+6bg+STuPTDf4R372jsCLeH2GoYTC +4jgO6fA3K6HfN3QdWb2lvzeViJRfKaDf91voTupnp3PJ0Q/2FtQ/dX/Mijo3 +c4mc4a6Z1D85wjUSmtJcIrQouZN+f05X+5GhoQ2biLTPPm2BxzPCf6fEbk8l +h4Wds/9WZ/2PfwY+WWpS/wSU3eUR8EsiwQ2hhfT/m+guTnllAf/IPi3SoP4Z +N25S+zmC+4mnDp30/ydYr/nm6kb4Zo10x1zql9DPcjXjN9mkInKxE/WLlOgp +KX34JY0d10r3xZfLyT5QDmQS043K66hPfk9U7/WCT7Yd/WhAfZL82m3zS/jE +YUStj+4371CecVoNPlEUSO2g+8sD3KsrHaU5RF9AP5r6Y8R1QvcE/MG63RhJ +/dFLygc84A+J001nqT9maT+x9IY/TlcYClN/9C6wvKXSziCcFTKFdD/0HB6P +pDT4oq9zeyPdr3x5zvzYieZkIr83Zxr1hXLuWXcl+ILstSig+4L5tOUmfOEH +TcafI9QH53/0WB2AD6Tuew/R/bg7b634OAT+VwoKCVC++4optuwE37edsDSk +fN96XGv8CPiufaW0jO6LTbbc8iR+K4cYcVa7Ur7zbRJU+w6+r1HaJ0r5PuWD +v5J6F4eIP87kUL7fvTVW34O8LKX03InyXf3R7BVzwPehZjlFyvej6m/tSsH3 +ynOaY3R/qlrQ1dI+8H3NDu9Kun80toJn5phzMpGLzWdQvs9SnzewFXzXibWz +oHyP3LxvLAF8H0h5voTynPvTM3KtUyoJni2xn/JcbvXt/A/gucvysG66b3JB +I5e1+n4KMZ+1kEv5/WDYNqUB/NaUeTb1P/zW5+1XAr8lguXG6D7IiddNlTPA +b6VGhinl9/DPA3vjvqWSjY3rxum+Rv+Q+es+g9+adl4syu/PToIhQalc4vBP +aTzl9ybWtR5e8HuWXf0Q3Ze4dtcPcwHwW8dylRTl91wR44Jd4DfH0/A93W84 +6/63yDjwer5m5hHK65T47vh94LWepokS5fWiZONX5uC1+L02Ocprt4Yld0rB +67r1DpN039+RvCXRvIHJ5FT0jxmU14meTqN/glhkSDarju7bW+og6uubxCIm +R1bW0317LsP2lW/A63+GXfwpr5fwDemUgNeVm+Lu0P14b0e2JS0Er6WHn1TS +fXjfQ3eES4PXGS5CqpTXF+YpbY8Ar+WytPdTXk8wd1U/Aa91spqlKa9jC5+H +nACvr7Q1Mimvz++LEdzqySEC7lEulNejVStNh8DrvILFvpTXj4ulzfTBa6W+ +BbMprzsWzDw61sohszxti+g+qlvCcZ+44PV8c1Vdyuvi3W4ivXUsomdePUD3 +N/XrlTQ4g9e+x/f6Uz6rmbZkO7QnE6XqP+con9VfntUwBJ+vbckzoXz+mOH4 +9+YuNvlHpEuf8nl2ib1uJfgsLWIcQ/ncaJN4yw18lg/UbKT7fA7K6eg7g88m +rqW36P4dr6CByx7nuORd7XMdyue8OhFD08upZI1OTzPdV+MaxNypxEolinJL +Myifv5V7dyWdZ5NW269XKZ/ndH1Jvz+FTcw7mHaUz+ZWk6cvTIJXbe236D6X +80d+vxkCn2Xb9Cbpvpb0M+998sFnRf8943R/xKZpaw4n+nCIfMtBJcrnyfAI +sSXg85r4RUspn3MLJTvvgc+yYeUelM9J+2s7H/ekEiUTJ1fKZ+N9icXBN7nk +Tu+LX/T71jc2Ga8OsOQSzcplRfT71GuyYu6uluGS+Wn7oymfXypJ+by1ZhMl +l/crKZ9ruzw6Qrb99/1Bzb98/g+vV/57v/D//vx/8fz/3l/838cLV4mr8C7/ +998fmI2PM+v+ffzj+YfELmv8+/OtDC/R7Kp/f/5ffaW59Q== + "], {{{}, {}, + TagBox[ + {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], + Opacity[1.], LineBox[CompressedData[" +1:eJwl1HtsTncAx+FTr8sal5o1NJmKakNiiFJdNkWHjshCdRoyl+rYUqxrTNKy +KWJdu6ITVcTcpYpYNotWYk2mtigz2yqoS1ZxWaTZjGXYXJc9J/543ibn+8nv +pHnPexLeLsh6PyoIgiof4d+GSBB0JqtNENS4kMBx10uZwWiGYg5kwTEfXXjT +hb3aPjS6XsZMxpDCSU13cnS1msGcc30DC5hMW97x8Z0uhinafbpETtg+ZRZj +eU93WhPPPN1RTRpXbbsoZBjzdD9oejBbV6dJ5rxtY3gORZoL9pco0jTZJ3HP +VkcWUe2CYKHujCaRAl2jZiyt9v3Easo0t+zpVGha7XnEsEwTrVmqabEnU6y5 +YJvKU/u3SIKHmnf5XtOVbN1+TRIn7eWsFnZiue66JpWPdS2amUTI0ZVoIizS +ndX0Y5HutH0CdzTb7Uls1kQxVVOjifCJ5qCm0t6dcvtt+2jW2v+wLyCWDN2/ +mpX8p8vnJ10v5msbNCO4puvYPgi26nqzQfckfO7YpXuqWc7u8FnTrdU8T4mu +VZNGue43zVw68oEulhrdQPZoOzNXW6vt1ubZc17kzFzd4/D7ogNLdJd0A1mi +O6vLCr8zXQKHNel8o0tima5JN4gHzivQdGGnpi/bNO2YrjugeY5VzjuizdO1 +pUoXR4Xub904qnR/hf8LpZr+HNO8wQldMmt0V3RpvKgr1MTxhSaFLzU9KNAd +1cSzU1epeZlfNG9xXpPOFt0dzURSw9+t5r59BU/s8zmliSNXc9hZQ/hQ15Ov +da9wSBdPoa5Rl0Rz+BvTRPO5phfrNY80mWzTPHTWR5RrBnFck8mPulTW6W7o +XmNT+I7QBFRoYsJnTXNT8yplmmvO2mwfSbM9l18146nWPNDkalba+1Jvz6DB +3p8STbMmhQ66hZoX2KMZQLWmE3N0hzRd2WHPoMWexw37JA5Enr0oK53zmX0o +p+zZNNmHs9H+uzPGh+87+0Ruhu8bbtmnUauJJt9xs+2PbKW0Z7H9om0Ai51x +xr02adI4Z8/hsuZ1dmv+0WRqiu29qbOP4og9kWLNz5qvbNn8Gd6Du7Yc6sN7 +2attE7huy6fVNoWD9nrX/wf+wcdn + "]], LineBox[CompressedData[" +1:eJwV1nmcjfUewPEjhmlC9oxtUGO50mQpTOFa7lgmaowspRLSLUJFZSnj5VpC +6DKSKYQaDbJkmSxXSBERNxmUXRoqRiMhpvfvj8+cc76fz/N7nnPmeZ5zavQZ +3GVQoUgkUr9wJLKpaCQy0ePhWyKRlZ53x4WoSGQELheJRJ7GRr4p/yGXjFPc +IORyj2IlH4VSFn2ZL4/FfAIW86Xxbz7bGhUwn0/CUf45nOYfwVJNIcy2zjS+ +MXbz3bGfb47Z/C/WSMbH/MM4y7+EX/meWKOJwWjvsQ9/g3sTMXidP8o1xBvW +yLGv2ZrmOMD3xhFNOyzUXNH00Izm70Q23xqb+NoYo/m/pgFu2t8QTSks0NTB +fE00ntIt1xTHXL4tfuCfxUm+M7I0BfxU+3uLb4idfFfs5RORrsnVtMNm+3te +UxSzNJUwTXNZkxw+R02+tV7BRM3d2KbpjJ26xpimO6FriTjda5pK+ERzP1Zo +KuFl3TZNDSzSzdQ0wz5NLxzUtMFc3SVNCuhIL3/y+TdwjX8WX2hKo5smy1rx +GK6rjBW6plilq4Jhuu26O7HTegM00ZitqYK3NVc0nTBH80d4D5ik7acr0ExB +CaRpT+ma4D/ao7onMUYXj/Wattisq4uxugO6RiiiK6NZxP8DC/iYcH1oVvIl +MV3T236v8uNQBEM132nqYKjmG00y4qy1mm+BbE1NjNJ8o6mHi9YpoZnHx2MO +fwt6aDLD8WC8dVbqZvB3YBJ/gW+D6fwv/EBs5jpiO5+ASfwPfCLK81lcA2Rx +ZfE8v56riDl8kn0UmA/CHi4OA7gtXAs8YNs1XByGc19zdXDSdjW4WeY3zFOx +IFwntknDQr5M+Kz4XK45JvFnuGfQjtvK3Y3xXA53f7iGuI/MSuIZ8zVmZZEe +/vfWHGF+2PwejDD/zjwVG8zjMdp8n3kCrurnmhVFL/OlZrdisn4997tZe6Sb +5YX7Gxpq3zI7ZtYcVcwqmg0x+9zravjArJXZe2YXvX4YTawX63Ufz9fx8zz/ +PZxfnr/q+Veex+NgOCaP18yvexzl8bTH1igWrms+2myQx/0eU7CXq4/LZlmh +w5vma71Oss0Mry94PTgcK14I936zyng/fD66u8yGeP2V1/9CblgLaTjGNQr3 +VP4Q1xMF5p+jGLZzZdCdX8LVwtfmk/E02qFpOG7cihjchuLhPEdJ3I5SKB3O +C5RFOZRHBdyBiuEzRCVURhVURTXEoXo458K2jqWHY1nqOGpjl9mU8H2A9mgW +1tD01WTzjZFj9i4Goyvi+Rf5HeEawDmzJRiD41xjpPGHucfCFyq2eKiJL7ly +6MkvM6+D3eZ/mnVGhvmVcN8L93rz0+E7FuPMj5k9hSj05YY5jw5wdTGM32P+ +EPK4DK5w+N7jFnNRmMCtCp+9+UXztnjb/Nfwf0eFcA67tpbw5TCA38DHIoPr +YNsIP5jby1XHQG4r1xIPcmu56hjB7eLq4lR479w75jfNu2KheUG4x2IRP50v +i/Gac3wLTNb8xPfHJq49tvH1MYE/FK4dlOAzuXuQyd2O/vxarhxmhf8z1w37 +uAfxDn+e64jh9v8XNxHRGMkf4RMwkj9g+66o6b67jm+FjZpaSNPs19wbrstw +rmo+4GtjHl8MT2iW8TFowx/h+uME1wkf8ze5KfYxhW+AHXwq9vDNMFPzsyYJ +G+znOU0U0jWxmKrJ13TALM0la2Xw/0QO3xdHNR3xkeaaZqhmAl8PW/lO2ME3 +wlTNcU0LVA33IU0slmnuw3JNLF7UbQm/EbCAb4/j/AD8xHfBJ5rC4R5vnRl8 +U3zLP47v+dZ4n8+zxiPhPsGnIDd8T+IC/zjWaYoj0ft/kv+DG4Mb4VzFLq4y ++lnjM/tK1yRiv+YJ5GjaYr4mX3OfZiRfFav4RKzmq+E1zQ5NLSzkO+AEPxBn ++VQs1xQJ56HjeYGPQQYfh5n8dS4F88K1zqXiPPcK8sJ5gc/4647jPa4VDnH9 +cIxLRib/l+1fD79d+AR8yadgN98E/9Wc0XzK9UQeNwpXuL74X/ju5zO5TjjD +DcF5rjs+5aPD7yTvoz9fCFP5UhjLn+UewMRw3+S64Bw3DBfD9yOy+ZOOcQ7X +Ege5PviR64AP+au2X809hkvhNzf+5Pphc/j+s/1YrjY2cknYwtXDOP6g7Vdw +3fAbNxz5XO/wHs3+BvmbmAw= + "]], LineBox[CompressedData[" +1:eJwl1X9wz3UcB/CPYZ1Wim52IdcQNqylG9Zifp6wNbnIr+TIz6tZI+6alFGn +iI2utfIjp4lifnWJtl3HylF+ZM5dTFSW8mNXHOnox+N9/fHwfr9fz+f38/n6 +/lrixJnDcxtEUXTNPxWxUZRnfc2axJeNo2goXzeKolSWNIyi0zFRtEM2it9l +BVyXTaRSniHfIMvinGwmF2Qj2SGP5V73eFGewCfyh9kib0GuvMo1ymVPckk2 +lyuy8eyRt5avkw3ijGwGdbIn2CKPYY17FMu7c1g+muPyTN6T17tGNh/Lh/Gr +fBb18jF8phPHCK/NM/IbsoXEkC8/JutAvmsccK93dDKokY/ne52BrNO5pjNI +Z568DTvlvdglT6RA51udZC66X67OHazWace7OlF4DfXKdBqwWt6Pk/LJnJVn +sVHnb/lC91siT2W/fDiH5D1ZqXNeZyCbXXqqTkOKdeJZrHNZpy/LdH5zreks +0ulElc5gqvVSeEPvlF46zfRm67Rgk04qm3SaM11vt04CpXpFOmkc0hlFjU5v +SvUu62RR6PlN0vlH/iZxzNf5USeNBTqnXGssr+q1Z7dOf6r0OlGod1yvW3jt +9JrprJcnsU7ehAk62+R3slxnr/veplei04oines6WZTG/P99mUtXnWp5Dgd1 +0ijS+UmnD/frbJX1YLusFbPl1bK2lMnbudcr8puyaeyXxzMmfA/kSRzSKdW5 +jxU6f8lzWKVzQ/4Sy3SayhfI62TpvC4/K5tALJ3l6+Vx4Tsr3yG/i2LZsx7f +WD5HdkKWzBzZEVk2V+SrZI3Cd0S2SRbLYtlO2VLzP8wHssK83jz8uCSwWRbP +c7IKWUtWmQ/xuDzzo+aJPG++z7wP52T/hu8gH5pH4fNgXmZ70SyTpWbnzabS +lLtda6r5LvN4SsJro19rlso8sxNmI7hpPt6s3CyOt8JvoNkQsxLnq+F3ijbk +m+0N7yfrnTP0Jtvvse/OAfuOnDT/wHrLbD6/2A/gffOfnSeR5twkfA6tK62D +rXny6+ziBbOWrGWk80HrY1wKL4HuIvst9hesM2jOQudCWa39OGLYZ9aeseZb +nZM57Lw8PHeG0tb/K1deLetLndkGCniU1vIp8i9kPTgVPgPhOfIUD9CBjnQi +iWQ604WujPP4beGzxxHnIqaQRS9SeFpnu7wLR52Lw+8S2fQOe3mFrCe1zqvJ +ZxQPhvcx/F0K30e+c17BNB4nM+zllbJ0TjuvYRajSWWneQrH7FcynRy+MusX +3kf7j5hHH6rMHuEH+7XMZgzfhPeTy/blLOKh8BzNaqxvMyM8L+er1k8ZRn/n +89aNvMxI51vWSvqS4XwmfLa4PXwurX/yeXh/qWcr94S/39ZquvEfm8T5BA== + + "]]}, + Annotation[#, "Charting`Private`Tag$2527#1"]& ]}, { {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], - Opacity[1.], LineBox[CompressedData[" -1:eJwVyX04EwgcwPEp7tR1XE53FSVXaCQ6b/NyP79MMp0KuVKajJnZzDYzb9Op -GDFseRvR4y26Uih3ee/oRT2Foigl5KXyki7zckmu++P7fP746tJC3OnLCATC -vi/9b5++TNrGDsKcmjCXut62XwSWo0+qcoJQdbeKSybDDlY52Wpl3QnCQQ4p -x0JBhmJP6bGo6SC8V86VKzs7gw195Dx1EwuHntfnbXyxBzoFNuMOriw0cj6E -Goq9wIxLMzWIYqGPG30i8Nl+IGQMh31TxsKQv7yWSn9wB3mxdf1UFwsXxdsG -S0geYHotlfCYwEaOvLbB3PEAtLYM7aoxZmNkVsXQgJ0nzA6mPIxNYKM2YNnf -S79B6j+v1tCr2Sjao7Sjpe0g6CmRjlAG2ThwWLalRXoIDmx6NbLaNhjX27ay -DD56wYSJldEsIxjrZw05B4sOwyl7Cbc3IxgFEoL7NvIRuEq1XCh6F4zZb6q1 -t/K8gcJJxgQtDi5zVQy5L3nDQMxAPMuZg7QjJJJp4lFQz0/6zryIg81iNauo -ZCqUlvd7ru3goE/+OnLyVz4ADeZnPy1w0ES9Rz83xgfYz1/q3fYMwagGlSVP -02MwIsnZcEmZiyaPmG9NCL5QqemIG7S42HGzUrXM1BdEee9oaTu4eEsy1t3n -4wua5eQLoVQurshaEN2v8wWH+5M/29Vw0ai+nWDmTwM1D7nnlXYuCmvzh+0k -NOjtdYjYNMJFfWtiZcg1GvDGshuVNXio/8zbRbhEg4IVDs5tLB4qzPr0ZlP9 -gC2bCLI/ycO5taTDNlV+QFqXnVIl5yGzWE3wutMPOrZOdGbe5qG/Rm9LhqY/ -fN6ddZSqw0ex0jyxW+YP3uIx/lQnH7nWhqKFcDr0ja8cdxzno5+/+mlGJh2o -bkZ+uctD0XY7r1pwlQ4+2myPXeahuNJYayJ2nA60q5NmZzO/fLLv9UavAGC8 -fK9wOiRAeaP9TiQygG85JzzXF4atNuoC5eJA+HD2x6npmTCMexVryKwNhFAl -EoOiJsTINnlUZUcgCB5EHFSAEA0aHoyOLQRCOO2jlUuBEN/nSpSIHkwQpS7O -z9DC0c08rfLEIhMSRpdHu76JQLeb8ZO6Tizw0ikmh2cdR41jmjvnnoaAcdWg -57eaJ1GUqkszIPLh19OXayjr4vH1iaZ9H0sFcMO1YWF8LAFTmi9+Eq8Kh4d3 -xZPz80loRKHH7amNhH/vrq5omU9ByZm6MFKwCOp7Q7ZG0qRINB9epqz8O1DK -q/ffGZVhF66KHvkQCwTFeqaTWzpOFnZ5BRw4CeTjvm9LqjNwl5HB66brp+DJ -kEozyTILrfgvLorI8SC7cT9xKT8bn7r/sXixSQz5wqmyhc056ESYnHvnnwjm -3Ont3UW5KAoI73RVT4KZ/rWlQ1/n4fdr/NqHy5JBxShPoJ+cj4lLRUXMkBSw -n0CzPMU5HOmx/un0ljSg3yos2QwF2PiSEd0aL4X3Zul+gZ8LEM0mk5qjZSCl -ZubeqSpEbZUzDRGMM9AjdIqxFxRhMrHgUn9wOpi5qD59RCzG3Hj7vcjMgCdQ -F9D1vBip2HpZSs8EHV2twqm8EqQYOm44H5MFx5skHnpu53Gjl35MRWI2xFEu -V4VplmI6v1H1TYUcHs40ki0el+KpmzWQ1JMDO472u6ollKHNvbk/n03nwmpT -F4s1xhewvXv9g7sWV+A/JuhOSw== - "]], LineBox[CompressedData[" -1:eJwBgQF+/iFib1JlAgAAABcAAAACAAAA78+1yuoyqECi1xYy1pOrPljCkDEP -/qhAtHGaEpcknT6782GTi6+pQMhC68oXOZ4+xhLioCJwqkAw7hDbvlyfPubs -cibTI6tA8wLk/B4xoD6utLJXnuarQBx8NP//taA+izcDAYOcrEBRaGbdIiOh -Phw6eFBMn6xAbjkQQqEkoT6sPO2fFaKsQO5n744jJqE+PT9i796krECUijn+ -rCehPs5B1z6op6xAxCL2gUIpoT5eREyOcaqsQDEEQc7rKqE+70bB3TqtrECJ -z8MltSyhPoBJNi0EsKxA1vS4lbIuoT4QTKt8zbKsQOR7Yg0GMaE+oE4gzJa1 -rEDOz5B/6zOhPjFRlRtguKxAkrfEwNI3oT7CUwprKbusQJhUnKGbPaE+UlZ/ -uvK9rEDzmRT9MUehPuJY9Am8wKxAgdX2fWRZoT5zW2lZhcOsQFDf0uDGgqE+ -BF7eqE7GrEBUhXIRFQCiPhAwSjUVyaxA01SQ36yzpD5jnLXD - "]], LineBox[CompressedData[" -1:eJwV1nk4VN8bAHAihaRCiRJJhLKWFMer8k0phUposdXQZl8SkS0JZTfZ5o5s -mZl757ZYQ0LSIktSWdqztlmj9Du/P+aZ5/M8c88973LOO0rOHtYn5ggICEzj -z/+/v7XcbR58zoH9V+otPokWoM5TqpuMOzhgGyZgICzORifPZkWJvOJAO1tM -gq4j0KTH4pctrzmwK2Sy2YBFoBjv6DXMbg7UnKYC1sUTSNZvxse5jwNx7Wyl -gksEKgrwfKjxgQM6sVIZe4IIZBj0ecn4Jw7kl9Vt9fUjUHOwvXP1Vw60XMuz -NPAmkH1oC//yIAfcLZrGJD0JNHhph6DVCAdGAo+Gl5wj0IXI8v1yPzhQuXjK -u+MsgRZc3sD6+IsD5KHiupPYWVfyvnPGOZCRacfYha0ZJ2viP8UBR/uNF05h -30+ITzCZ4YB1m9SnKmzLxDm982dxfK0/Ozfh9XuTA9a3CXDh4y7fvhfY59KG -gzOFuFDy8D/DKA8C/ctweuoqwoXeydKj+/D+rmd2ym8Q5YJx3NXbGl4EUsyx -OD0pzgWNjHsHl+F4KFZtRe1CLtRtaBqQ9CGQad5GsdjFXEgYM7ok5Usg56JV -xSuWceFefGf6Rn8C3aRHv5iu5kIn9YJoxPnSv+u2SVyFC/pe+aYTFwjUUNoT -1aHKhVHmLdN1IQT6UvVoDWM9F5rdElnpoQRSe5TpHLeZC2mbhHbGRRKI+3Z7 -b6clF25fN05kJxBojMnI6LbC+1dLXjjnOoGMDl+1/nCAC3f1f3o7JeJ6dLQ1 -jthzQSZ1UcyqFLz+MydSmMEFzwcWgWlMHF9taJhuKBdO5n9rcbxJoKSblasT -SC685BYrriwn0Gvnvu5kmgvPmTL7j1bg3ysJpTPvcsG7jy2YVUkgXvZu8fxK -LiTG+3VJVxPoSdrr0cpHXAiSTOgaxf0lfGWyfqCPC25mG2JdnhIo4Kwew2wR -D04wJuf96CHQrXMGl5dJ8cBk0GvH115cL4+thQMyPNhRMPKsu49AO7y3f42X -54HGeOr9uvcEWhJgw+hcix1+/9H5z/j9YT4MhjEPttU4WCQNE+jDpYDLhsAD -Z+Eba86OEEgm4kKh+HYeCM37o/TfNwIFR0V8Jc15ECs7c/HXdwLtjk1mTNnw -oKPAN0h/FOcn+Tbjyike1GUtMnT4TSC51NLLDmfxevWWSsumCbQ3rbJwvScP -DFxihVux72Q8/Nrqx4NRrUg++kOg8Ox2htwlHkQwBx0E/xFIoXCUUZLOg0qZ -u7lKwmxkXTR5OeQGD1T2GE1XYkcVzxTuy+ZBv/gilQNz2Wi4RKh/lM2Dpa8L -3oWIsFEFJeVmxOMBJ20f+958NjpUoef2rJ4H/wiznooFbAQBX369fcSDY8vn -3dkiwUbq+syQwWYeXC91qS/FnuXOJs1rxfkpV44oXshGhcTj+6Y9PLggZLPo -9CI2SjoWbL7/HQ++K2RbdGAHy2u1H/vIg+4dEewti9lof2pK/4UBHsiVdyTP -Yk/FHJe6N86D5L8esi5SbPTBbElO/RQPfj/IrL+D/XROg1r7DA8mnG3OCkmz -EStYHf0QJEElP+ZmOnasYU/TrDAJmz+Ja/Rg+05cs5GYT0Kf6tqcVTJstMtz -3E19IQmX1kwaZmLrry8a3byYhHsZ8fYd2AqD9hd3SpPA8Q2yFVvKRvMLJUQP -LcPreROaxti/XGqTXeVIED3+/uUZ7G5FHwWflfj5JdL7mNiNPSrFlxRJKDmx -MKUOm7rRpXddmYQoVRarH/uG7dXqnLUkJMukeIovY6NIabSLu46E463kP3Xs -c60/2is1SUCvbu/aiX04Ie9YsxYJk74Oux2xt1kcGujSJWGk5shfP2zN+aK+ -XzeScCTO7VgM9tKGytnxzSSsdFF3T8cWCD93RdiIhIpA8+V52ENISVrKhITu -PJdTJdi1ZdHrtM1ICIz+3cPHTtEdRnstSNgqGM26hX3xe85jB0sSpKugg8B2 -41gdOGWF8/N0d0IqtrW7cF/gARLOn1NojsI2WlvqftmWhC5d7Qhv7LUf3cdS -7UnIm/x2xwF7EWtF6M2jJMT2PLQ3xZ4+0iJ625EEP7TEUxn70/LwlAcuJNB5 -Bj8EsZ936q96cZKE4Kqrnd04f2XJX4t73UnYfcBR4Q52nMTemhkPEqbD7tTY -Yvs3/9sl5oPr8b5ccg2242W6Q9afBK6ZBW/4//UWlB3cGEyCueTbh97/r3d1 -s++OUBLsbmzQ0caefyHkn3U4ju942esB3D89Yx+kPWNIaLzW0WSFvcf7xBHP -qzgfuW1XBbGrvn/N80wgoUdxlMnF/XljcFjXK4WEsWtk5PQSNhJ18wjySifh -UHyjbSZ24OefD7xu4PXEJpw3Yx96N7Hfm0VC+bjVQgbu/4aj5zO880jY9rDp -5hQ+L/pvZ/q8C0houT98PBpbqlPAw4eD+6EoTjtNko1ePBGL9y3Dz4vMktH4 -PJrsiu/wrSRhh8Xbd1P4/PIaJVf4VZPwy81pIQM7/oF0iV897l+7od0GeF7v -LlV47P+ChFvpy8sL8Pkv1ycWBbST8J6XgKbmsZEarXw4oJMErdtz082w53HV -vgZ0k+BxKr+kHd8n9Wzduef7STBxevO0ag4b6Sne3XN+iAQFl/s2w4JsxM42 -SDn/jQSz8B3hy7AvZRgpB42RIGQvWuuI769VO/NYxgIUPBU7plQ9Q6DOKNf6 -+4IUPEmMNG/G919CvUq/sRAF/s4qg634vpw1LdJCIhSsvHU7qn2SQN1G3Gq0 -gIKUW25Bufh+Tblw7kO1BAVDlTOt0b8IZFGhJWIiScGeLX993X8SqMKA3muy -hILZSJ0oRXw/Z+iWdpvIUqATM6h8cJBAB9UeTMMaChrNdg234fkQHuNtVahC -wddcyi4Szw+qX7lIQpWCz9Wah3XwfFlQHH3wzToKRL6sHQ15Q6D6dXsoHy0K -OjeKir/vIJCuxqsTBVso6JHKnnncRCDHqzFVC4woUDx4+LvOIxzfkKGUjzEF -ev5rV6Q2EGigJKvWBCjQPDBPbC+ebyxNZ/nXZhSE7c5MCcfzcOGGkRfiVhRQ -omNb/nHwPE7IUfW2pkChQ0lAtoRAp77tu9hlQ4HHyNZcjWI8/3m0Rv4hCl4o -OFtvz8fzSSswGh2h4NyX39162fj/kraQkReDgqhJgxGpOAI16i0v7AyhgLsf -0okTBGr5qaTnEEpBjbA894UzgbpI9Zq+MArGHqSUTR3Hz2sYveqPoKDSee9V -PXu8vzXH581coaBUw2G5jSWBbKXzGavSKNCeq3VeZyOOv407mpdOQehtDb8h -Hbzf6/dC1ZgU2A15P83egPe3oCldJ4uCdZNerkOqOH7hoUfb2RSM+C5dsU6O -QP1j2mpuPArcGzRiVf6y0E/a8M4wScGJVGtHx98sNO25Dbz4FDgaXR5IGmeh -BSM2h4Pu4PUm5g70jrCQzmf/mLgKClYL+rgu7mWhoJdV/VQjBSrx9fadVSwk -fs+8+Hcvrp+1DiPeh4ViU03dXN9R4BmmTcycYyExvy2qLe8pOB/y3MrpFAvN -19fMv/kJO8t2eIkTCwnTksS+QQqcCspfS1iy8HzszMgfp8BX2kHQbi0L/cp3 -jbFawIcnhaYTA7m5yCvq6M4qCT5YDF17FJiSi364HhJRleQDb/Bw4WhMLvqu -bB75ZzEfnrq1b+B65aJhQiOscBkfnN8J52huy0Vfsn8F/F3NhyNu/7L+68tB -b1LDGMWGfDClTcn1ojko6+B7YYmtfPA/6KZmM5ONjslsY3sa8YHB6wHnkWz0 -PkWox8CED/x90h+NWrNRf3K0deMOPhTffjbyLj0bTSTGGX/cx4cXcU8ePlHM -RlIJGVIrT/JhvOVBrotiFurY+5sKY/Dh2Cb/TdGSWShNwt7ykxt+v7xLS8Js -JpKLl79ScpoP20ab4qy6M9HquJxZQy8+dJkubWOmZSLt2JsDh4L5IGOeKCUn -kon2RFM115P4AM3qfVMtTDSQ55a0JIUP69L8TD6UM1H0A8UTKal8OJVf819R -HhPV/rkulpHBh5jelbmP/Zloo4/XwdwcPtzKvF9/RJ6JFBx1h7i3+NCybfea -3KMZ6LvhnaVP6viw2bnF4kRDGoqzPTOwp54Pts6//ly7lYbU/dZUPW/ggzcx -byzxWhpypVKc2pr44PPUZoG8XRrqWuvHef2cD2GZGvbGg6moVmrTtv43fPCd -8HmVI5yKkkZKz84d5cNnoY0vm2WTUb6mo8/ZMZyfhsS8yukkVHZ6/vmX43wQ -Lk6ZE9WdhPoGDkfmT/GBfFIvT+QmIc0vv2+YzfKhf7lc5B/lJNTYu7UpSpSG -Rf6hmjoqiWi6pWa1iCINsv5vT7OXJCBn+tErkb00VM4w9pmURSIJ+f1VGZY0 -bAni3007HonKIrpY6vtpyHgRXkaIRCLJgwPuljY0VBxoaHltE4GqJsX+pNrR -cGOLXrnY0CUkY2ypqHKSBtfTY156Ky+i2vxO4VIGDe4p01ujXEPQmYXHB8zd -aUgLXNaQWhKM6vo86DNnaBBeLdImbXgBnQtP3HHHmwYf5pR2knUganrU4bY9 -lAa2uefTsiveyEf76N6XYTSIBBS5y7V5IQXmZx1GOA1dr7daiMt7Ib9TE9Ox -UTQM386X7z3qgVZLyMa3XaWhqOytcnWdO3rmx/JyjafBaWr1y0InNxTYq3Zo -IoEG9aUhIrZCDNRCGq6SS6JhUlygRn2/Kwq2duA7ZdBwQbeAqa57DKlWfkwd -ZdLwJ7wpc4bngNqUzwRFZdKwjbFW39/ADq0bD95enEPD56AzcbKeB1DH0blq -W1k0jC+KkBhdbY3CGuMXPCNomJ5of9f5bB/qTM95+eMmDdJ3l9Y9sdmJLgmo -VoQX0FBldB6tctiONN3JHOkiGvTkP+Wd1jJBr1oNIgqKaSjZucnhk9JmFL6l -lrG5hAY7nwgDV5YOWp9nvqeZQ4Pf3nFXzmVV1CXeqn2ER8PV5DNERY0civS1 -k/lG0nDMutrc6rcw0up5/zuUT4PaqCoUJJUZ/w8n+I0F - "]]}, - Annotation[#, - "Charting`Private`Tag$109142#1"]& ], {}}, {{}, {}}, {{}, {}}}, {}}, + Opacity[1.], PointBox[CompressedData[" +1:eJwl2dMSINgOBdC2bdu2bdu2bdu2bdu2Ztq27Z427+q6D6tSdT4gydlJ2Kh9 +pXYBAwQIsDFYgACB1MAEISieAgQnBCEJRWjCEJZwhCcCEYlEZKIQlWhEJwYx +iUVs4hCXeMQnAQlJRGKSkJRkJCcFKUlFatKQlnSkJwMZyURmspCVbGQnBznJ +RW7ykJd85KcABSlEYYpQlGIUpwQlKUVpylCWcpSnAhWpRGWqUJVqVKcGNalF +bepQl3rUpwENaURjmtCUZjSnBS1pRWva0JZ2tKcDHelEZ7rQlW50pwc96UVv ++tCXfvRnAAMZxGCGMJRhDGcEIxnFaMYwlnGMZwITmcRkpjCVaUxnBjOZxWzm +MJd5zGcBC1nEYpawlGUsZwUrWcVq1rCWdaxnAxvZxGa2sJVtbGcHO9nFbvaw +l33s5wAHOcRhjnCUYxznBCc5xT/8y2nOcJZznOcCF7nEZa5wlWtc5wY3ucVt +7nCXe9znAQ95xGOe8JRnPOcFL3nFa97wlne85wP/8ZFPfOYLX/nGd37wk1/8 +5g8BNICABCIwQQhKMIITgpCEIjRhCEs4whOBiEQiMlGISjSiE4OYxCI2cYhL +POKTgIQkIjFJSEoykpOClKQiNWlISzrSk4GMZCIzWchKNrKTg5zkIjd5yEs+ +8lOAghSiMEUoSjGKU4KSlKI0ZShLOcpTgYpUojJVqEo1qlODmtSiNnWoSz3q +04CGNKIxTWhKM5rTgpa0ojVtaMvfxt2eDnSkE53pQle60Z0e9KQXvelDX/rR +nwEMZBCDGcJQhjGcEYxkFKMZw1jGMZ4JTGQSk5nCVKYxnRnMZBazmcNc5jGf +BSxkEYtZwlKWsZwVrGQVq1nDWtaxng1sZBOb2cJWtrGdHexkF7vZw172sZ8D +HOQQhznCUY5xnBOc5BT/8C+nOcNZznGeC1zkEpe5wlWucZ0b3OQWt7nDXe5x +nwc85BGPecJTnvGcF7zkFa95w1ve8Z4P/MdHPvGZL3zlG9/5wU9+8Zs//B38 +AQlEYIIQlGAEJwQhCUVowhCWcIQnAhGJRGSiEJVoRCcGMYlFbOIQl3jEJwEJ +SURikpCUZCQnBSlJRWrSkJZ0pCcDGclEZrKQlWxkJwc5yUVu8pCXfOSnAAUp +RGGKUJRiFKcEJSlFacpQlnKUpwIVqURlqlCValSnBjWpRW3qUJd61KcBDWlE +Y5rQlGY0pwUtaUVr2tCWdrSnAx3pRGe60JVudKcHPelFb/rQl370ZwADGcRg +hjCUYQxnBCMZxWjGMJZxjGcCE5nEZKYwlWlMZwYzmcVs5jCXecxnAQtZxGKW +sJRlLGcFK1nFatawlnWsZwMb2cRmtrCVbWxnBzvZxW72sJd97OcABznEYY5w +lGMc5wQnOcU//MtpznCWc5znAhe5xGWucJVrXOcGN7nFbe5wl3vc5wEPecRj +nvCUZzznBS95xWve8JZ3vOcD//GRT3zmC1/5xnd+8JNf/OYPf5f+gAQiMEEI +SjCCE4KQhCI0YQhLOMITgYhEIjJRiEo0ohODmMQiNnGISzzik4CEJCIxSUhK +MpKTgpSkIjVpSEs60pOBjGQiM1nISjayk4Oc5CI3echLPvJTgIIUojBFKEox +ilOCkpSiNGUoSznKU4GKVKIyVahKNapTg5rUojZ1qEs96tOAhjSiMU1oSjOa +04KWtKI1bWhLO9rTgY50ojNd6Eo3utODnvSiN33oSz/6M4CBDGIwQxjKMIYz +gpGMYjRjGMs4xjOBiUxiMlOYyjSmM4OZzGI2c5jLPOazgIUsYjFLWMoylrOC +laxiNWtYyzrWs4GNbGIzW9jKNrazg53sYjd72Ms+9nOAgxziMEc4yjGOc4KT +nOIf/uU0ZzjLOc5zgYtc4jJXuMo1rnODm9ziNne4yz3u84CHPOIxT3jKM57z +gpe84jVveMs73vOB//jIJz7zha984zs/+MkvfvOHvx/+gAQiMEEISjCCE4KQ +hCI0YQhLOMITgYhEIjJRiEo0ohODmMQiNnGISzzik4CEJCIxSUhKMpKTgpSk +IjVpSEs60pOBjGQiM1nISjayk4Oc5CI3echLPvJTgIIUojBFKEoxilOCkpSi +NGUoSznKU4GKVKIyVahKNapTg5rUojZ1qEs96tOAhjSiMU1oSjOa04KWtKI1 +bWhLO9rTgY50ojNd6Eo3utODnvSiN33oSz/6M4CBDGIwQxjKMIYzgpGMYjRj +GMs4xjOBiUxiMlOYyjSmM4OZzGI2c5jLPOazgIUsYjFLWMoylrOClaxiNWtY +yzrWs4GNbGIzW9jKNrazg53sYjd72Ms+9nOAgxziMEc4yjGOc4KTnOIf/uU0 +ZzjLOc5zgYtc4jJXuMo1rnODm9ziNne4yz3u84CHPOIxT3jKM57zgpe84jVv +eMs73vOB//jIJz7zha984zs/+MkvfvOHv2FfQAIRmCAEJRjBCUFIQhGaMIQl +HOGJQEQiEZkoRCUa0YlBTGIRmzjEJR7xSUBCEpGYJCQlGclJQUpSkZo0pCUd +6clARjKRmSxkJRvZyUFOcpGbPOQlH/kpQEEKUZgiFKUYxSlBSUpRmjKUpRzl +qUBFKlGZKlSlGtWpQU1qUZs61KUe9WlAQxrRmCY0pRnNaUFLWtGaNrSlHe3p +QEc60ZkudKUb3elBT3rRmz70pR/9GcBABjGYIQxlGMMZwUhGMZoxjGUc45nA +RCYxmSlMZRrTmcFMZjGbOcxlHvNZwEIWsZglLGUZy1nBSlaxmjWsZR3r2cBG +NrGZLWxlG9vZwU52sZs97GUf+znAQQ5xmCMc5RjHOcFJTvEP/3KaM5zlHOe5 +wEUucZkrXOUa17nBTW5xmzvc5R73ecBDHvGYJzzlGc95wUte8Zo3vOUd7/nA +Rz7xmS985Rvf+cFPfvGbP/wN+QP+zf4JTBCCEozghCAkoQhNGMISjvBEICKR +iEwUohKN6MQgJrGITRziEo/4JCAhiUhMEpKSjOSkICWpSE0a0pKO9GQgI5nI +TBayko3s5CAnuchNHvKSj/wUoCCFKEwRilKM4pSgJKUoTRnKUo7yVKAilahM +FapSjerUoCa1qENd6lGfBjSkEY1pQlOa0ZwWtKQVrWlDW9rRng50pBOd6UJX +utGdHvSkF73pQ1/60Z8BDGQQgxnCUIYxnBGMZBSjGcNYxjGeCUxkEpOZwlSm +MZ0ZzGQWs5nDXOYxnwUsZBGLWcJSlrGcFaxkFatZw1rWsZ4Nwf5/t9rEZrbw +P6OVUR4= + "]]}, {}}, { + {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], + Opacity[1.]}, {}}}], {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, - AxesOrigin->{211.4, 0}, + AxesOrigin->{3000., 3.9943029533487583`*^-7}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, @@ -1377,7 +1969,7 @@ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, - PlotRange->{{211.4, 4785.5}, {0., 9.00330995720893*^-7}}, + PlotRange->{{3000, 4000}, {3.9943029533487583`*^-7, 6.819193219987319*^-7}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], @@ -1398,9 +1990,10 @@ 3.7685447230703335`*^9}, {3.768544820728234*^9, 3.768544847998358*^9}, 3.7685454336392765`*^9, {3.7685454945943155`*^9, 3.7685455079067216`*^9}, { 3.7685455509376764`*^9, 3.7685455963662157`*^9}, 3.7685458074518476`*^9, - 3.7685458868156705`*^9, 3.7685459540898037`*^9, 3.768548131293475*^9}, - CellLabel-> - "Out[147]=",ExpressionUUID->"8dc41d3e-6f51-416e-b35f-8d0b7a84ebe6"] + 3.7685458868156705`*^9, 3.7685459540898037`*^9, 3.768548131293475*^9, { + 3.7685482401863365`*^9, 3.7685482571400075`*^9}, {3.76854842462544*^9, + 3.768548463396747*^9}, 3.7685604185101895`*^9}, + CellLabel->"Out[74]=",ExpressionUUID->"863e5267-4792-4c73-88f7-cf403592ee7c"] }, Open ]], Cell[CellGroupData[{ @@ -1408,6699 +2001,31 @@ Cell[BoxData[ RowBox[{"Integrate", "[", RowBox[{ - RowBox[{"dgamma", "[", "x", "]"}], ",", - RowBox[{"{", - RowBox[{"x", ",", - RowBox[{"xmin", "+", "0.01"}], ",", "y"}], "}"}]}], "]"}]], "Input", + RowBox[{"dgamma", "[", "x", "]"}], ",", "x", ",", + RowBox[{"Assumptions", "\[Rule]", + RowBox[{"xmin", "<", "x", "<", "xmax"}]}]}], "]"}]], "Input", CellChangeTimes->{{3.768243742674552*^9, 3.7682437731480513`*^9}, { - 3.768244104933549*^9, 3.7682441630531597`*^9}, {3.7682443392505217`*^9, - 3.7682443620356054`*^9}, {3.76854672978654*^9, 3.7685467321013517`*^9}}, - CellLabel-> - "In[138]:=",ExpressionUUID->"1f401330-d01a-41d9-92dc-375db5b59cd7"], + 3.768244104933549*^9, 3.7682441630531597`*^9}, {3.7682443392505217`*^9, + 3.7682443620356054`*^9}, {3.76854672978654*^9, 3.7685467321013517`*^9}, { + 3.7685484997306385`*^9, 3.768548500964332*^9}, {3.768548546767845*^9, + 3.768548575816181*^9}, 3.7685551691781044`*^9}, + CellLabel->"In[75]:=",ExpressionUUID->"1f401330-d01a-41d9-92dc-375db5b59cd7"], Cell[BoxData["$Aborted"], "Output", CellChangeTimes->{3.7685442239689226`*^9, 3.7685446205664234`*^9, - 3.768546593251582*^9, 3.7685467905790057`*^9}, - CellLabel-> - "Out[138]=",ExpressionUUID->"24628233-8038-4700-8387-fc589ee91f56"] -}, Open ]], - -Cell[CellGroupData[{ - -Cell[BoxData[ - RowBox[{"NIntegrate", "[", - RowBox[{ - RowBox[{"dgamma", "[", "x", "]"}], ",", - RowBox[{"{", - RowBox[{"x", ",", "xmin", ",", "y"}], "}"}]}], "]"}]], "Input", - CellChangeTimes->{{3.768244285328244*^9, 3.768244346314646*^9}}, - CellLabel-> - "In[332]:=",ExpressionUUID->"e8d9247c-81d3-45ea-b40d-269423746d1f"], - -Cell[BoxData[ - TemplateBox[{ - "NIntegrate","nlim", - "\:f3b5x = y is not a valid limit of integration.\:f3b5",2,332,17, - 30451589600358312201,"Local"}, - "MessageTemplate"]], "Message", "MSG", - GeneratedCell->False, - CellAutoOverwrite->False, - CellChangeTimes->{ - 3.7682443082021313`*^9, {3.768247322541181*^9, 3.7682473229431057`*^9}, - 3.768391961619032*^9},ExpressionUUID->"0f0125de-9962-48b1-8548-\ -ddbcf39d76a4"] + 3.768546593251582*^9, 3.7685467905790057`*^9, 3.7685485642550945`*^9, + 3.7685669445683055`*^9}, + CellLabel->"Out[75]=",ExpressionUUID->"56317672-98f8-4319-a837-3565218e385c"] }, Open ]], Cell[BoxData[ - RowBox[{"Integrate", "[", - RowBox[{ - RowBox[{"prefactor", "*", - RowBox[{"bracketleft", "[", "x", "]"}]}], ",", - RowBox[{"{", - RowBox[{"x", ",", "400", ",", "4500"}], "}"}]}], "]"}]], "Input", - CellChangeTimes->{{3.7683965120195723`*^9, 3.768396530237864*^9}, { - 3.768396562836707*^9, 3.768396640109146*^9}}, - CellLabel->"In[78]:=",ExpressionUUID->"112b93a5-9a00-4ce2-8bd3-4700707f2f5b"], - -Cell[BoxData[ - RowBox[{ - RowBox[{"dgammaapprox", "[", "x_", "]"}], ":=", - RowBox[{"Evaluate", "[", - RowBox[{"Series", "[", - RowBox[{ - RowBox[{"dgamma", "[", "x", "]"}], ",", - RowBox[{"{", - RowBox[{"x", ",", "0", ",", "10"}], "}"}]}], "]"}], "]"}]}]], "Input", - CellChangeTimes->{{3.7683971926398563`*^9, 3.7683972119392576`*^9}, { - 3.7683973094256167`*^9, 3.7683973200821247`*^9}, {3.768397448380106*^9, - 3.7683974655372353`*^9}, 3.768397496115326*^9, {3.7683984852983713`*^9, - 3.768398508044559*^9}, {3.76839863281896*^9, 3.7683986341963015`*^9}, { - 3.768400241121296*^9, 3.768400250925091*^9}}, - CellLabel-> - "In[100]:=",ExpressionUUID->"28a4a194-a354-42bf-8db1-6082ef9fae81"], - -Cell[BoxData[ - RowBox[{"Evaluate", "[", - RowBox[{"Series", "[", - RowBox[{ - RowBox[{"dgamma", "[", "x", "]"}], ",", - RowBox[{"{", - RowBox[{"x", ",", "0", ",", "10"}], "}"}]}], "]"}], "]"}]], "Input", - CellChangeTimes->{{3.768397479401168*^9, 3.768397492263625*^9}, { - 3.7683981316092587`*^9, 3.76839818001584*^9}, {3.7683985118942623`*^9, - 3.768398536566328*^9}, 3.7683986364423*^9, 3.768399962013547*^9, { - 3.768400263369813*^9, 3.7684002668445215`*^9}, 3.768401412060625*^9}, - CellLabel-> - "In[102]:=",ExpressionUUID->"1c5e8b38-0475-420a-a988-7faf1f33823d"], - -Cell[BoxData[ - InterpretationBox[ - TagBox[ - FrameBox[GridBox[{ - { - ItemBox[ - TagBox[ - TagBox[GridBox[{ - {"\[Piecewise]", GridBox[{ - { - RowBox[{ - RowBox[{"4.586187924509184`*^-19", " ", - RowBox[{"Abs", "[", - RowBox[{"1.`", "\[VeryThinSpace]", "-", - FractionBox["44689.96`", - SuperscriptBox["x", "2"]]}], "]"}], " ", - RowBox[{"Abs", "[", - RowBox[{"2.787314006110919`*^7", "+", - RowBox[{"3.58795771727742`*^-8", " ", - SuperscriptBox["x", "4"]}], "-", - RowBox[{"7.17591543455484`*^-8", " ", - RowBox[{"(", - RowBox[{"6.793270969339969`*^12", "+", - RowBox[{"2.811474818`*^7", " ", - SuperscriptBox["x", "2"]}]}], ")"}]}]}], "]"}], " ", - SuperscriptBox[ - RowBox[{"Abs", "[", - FractionBox[ - RowBox[{"0.466`", "\[VeryThinSpace]", "-", - FractionBox[ - RowBox[{"0.355`", " ", - SuperscriptBox[ - TemplateBox[{"1"}, - "OutputSizeLimit`Skeleton"], "2"]}], - SuperscriptBox[ - RowBox[{"(", - TemplateBox[{"1"}, - "OutputSizeLimit`Skeleton"], ")"}], "2"]], "-", - FractionBox[ - RowBox[{"0.59`", " ", - RowBox[{"(", - RowBox[{ - SqrtBox[ - RowBox[{ - RowBox[{ - RowBox[{"-", "1.`"}], " ", - SuperscriptBox["x", "2"]}], "+", - RowBox[{"4785.6`", "^", "2"}]}]], "-", - RowBox[{"1.`", " ", - SqrtBox[ - TemplateBox[{"1"}, - "OutputSizeLimit`Skeleton"]]}]}], ")"}]}], - RowBox[{ - SqrtBox[ - RowBox[{ - RowBox[{ - RowBox[{"-", "1.`"}], " ", - SuperscriptBox["x", "2"]}], "+", - RowBox[{"4785.6`", "^", "2"}]}]], "+", - SqrtBox[ - RowBox[{ - RowBox[{ - RowBox[{"-", "5773.`"}], " ", - TemplateBox[{"1"}, - "OutputSizeLimit`Skeleton"]}], "+", - TemplateBox[{"1"}, - "OutputSizeLimit`Skeleton"]}]]}]]}], - RowBox[{"1.`", "\[VeryThinSpace]", "-", - RowBox[{"3.409878611199379`*^-8", " ", - SuperscriptBox["x", "2"]}]}]], "]"}], "2"]}], "+", - RowBox[{"4.086392435228984`*^-20", " ", - RowBox[{"Abs", "[", - RowBox[{"2.787314006110919`*^7", "+", - RowBox[{"3.58795771727742`*^-8", " ", - SuperscriptBox["x", "4"]}], "-", - RowBox[{"7.17591543455484`*^-8", " ", - RowBox[{"(", - RowBox[{"6.793270969339969`*^12", "+", - RowBox[{"2.811474818`*^7", " ", - SuperscriptBox["x", "2"]}]}], ")"}]}]}], "]"}], " ", - SuperscriptBox[ - RowBox[{"Abs", "[", - InterpretationBox[ - RowBox[{ - FractionBox[ - RowBox[{"4.814654274380738`", " ", - RowBox[{"(", - TemplateBox[{"1"}, - "OutputSizeLimit`Skeleton"], ")"}]}], - SuperscriptBox[ - RowBox[{"(", - TemplateBox[{"1"}, - "OutputSizeLimit`Skeleton"], ")"}], "2"]], "+", - TemplateBox[{"10"}, - "OutputSizeLimit`Skeleton"], "+", - TemplateBox[{"1"}, - "OutputSizeLimit`Skeleton"], "+", - InterpretationBox[ - SuperscriptBox[ - RowBox[{"O", "[", "x", "]"}], "11"], - SeriesData[$CellContext`x, 0, {}, 0, 11, 1], - Editable->False]}], - - SeriesData[$CellContext`x, - 0, {(4.814654274380738 ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[ - 1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-2)) ((-3903.9246292336447`) - NonCommutativeMultiply[50.439430695308474`, 2] + - 0.457098084745592 - NonCommutativeMultiply[4785.6, 2] + (1. - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2]) ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]), - 0. + (Complex[-0.11372839935870264`, 1.603731919276721] ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[ - 1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-2)) ((-2464.599878197321) - NonCommutativeMultiply[50.439430695308474`, 2] + - 0.13520097442143736` - NonCommutativeMultiply[4785.6, 2] + (1. - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2]) ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]), (( - Complex[-17.793749745669817`, 250.9171409718755] - NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[ - 1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( - Complex[1.377512709543011, 19.424885460978636`] - NonCommutativeMultiply[50.439430695308474`, 2] + - Complex[-0.0002386129758432377, -0.0033647818224456323`] - NonCommutativeMultiply[4785.6, 2] + ( - Complex[-7256.512339097185, -5.836572684787645*^-7] - NonCommutativeMultiply[50.439430695308474`, 2]) - NonCommutativeMultiply[4785.6, 2] + - Complex[1., 0.] - NonCommutativeMultiply[4785.6, 2]^2 + ( - Complex[-0.0009736593535405198, -0.013729979614351108`] - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2]) ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2] + (( - Complex[-2171.0692059743997`, 4.820577002371502*^-7] - NonCommutativeMultiply[50.439430695308474`, 2]) - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2]) ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2] + ( - Complex[1., -1.6241365107797606`*^-18] - NonCommutativeMultiply[4785.6, 2]^ - Rational[3, 2]) ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]), - 0. + (Complex[-2706.4944257244497`, 38165.41448181983] ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[ - 1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-2)) ((-2464.599878197321) - NonCommutativeMultiply[50.439430695308474`, 2] + - 0.13520097442143736` - NonCommutativeMultiply[4785.6, 2] + (1. - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2]) ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + - Complex[-0.06926211897606739, - 0.9766942261124977] (((1.2999999999999998` - NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( - 532.8923076923078 - NonCommutativeMultiply[50.439430695308474`, 2] - - 0.09230769230769227 - NonCommutativeMultiply[ - 4785.6, 2] + (1. - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2]) ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + ( - 5.5990206795893796`*^-8 ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-2)) ((-2464.599878197321) - NonCommutativeMultiply[50.439430695308474`, 2] + - 0.13520097442143736` - NonCommutativeMultiply[4785.6, 2] + (1. - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2]) ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])), ( - Complex[-429996.4106908003, 6.063559962927495*^6] ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[ - 1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-2)) ((-2464.599878197321) - NonCommutativeMultiply[50.439430695308474`, 2] + - 0.13520097442143736` - NonCommutativeMultiply[4785.6, 2] + (1. - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2]) ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + - Complex[-9.54600321077642, - 134.6122000922079] (((1.2999999999999998` - NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( - 532.8923076923078 - NonCommutativeMultiply[50.439430695308474`, 2] - - 0.09230769230769227 - NonCommutativeMultiply[ - 4785.6, 2] + (1. - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2]) ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + ( - 5.5990206795893796`*^-8 ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-2)) ((-2464.599878197321) - NonCommutativeMultiply[50.439430695308474`, 2] + - 0.13520097442143736` - NonCommutativeMultiply[4785.6, 2] + (1. - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2]) ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) - - 0.45319591200415726` (((1.5137587781317778`*^-7 - NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( - 3884.7894578765577` - NonCommutativeMultiply[50.439430695308474`, 2] - - 0.672923862441808 - NonCommutativeMultiply[ - 4785.6, 2] + (1. - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2]) ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + ( - 5.387302759643285*^-15 ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( - 835.6313669064749 - NonCommutativeMultiply[50.439430695308474`, 2] - - 0.6028776978417266 - NonCommutativeMultiply[ - 4785.6, 2] + (1. - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2]) ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + - 1. ((-0.726) (((-0.25)/NonCommutativeMultiply[ - 4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) - - 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) + (( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) ((0.25/NonCommutativeMultiply[ - 4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) - - 1.8566666666666667` ((((-1)/NonCommutativeMultiply[ - 4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-3) + ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) ( - 0.25/NonCommutativeMultiply[4785.6, 2] - (0.25 - NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - Rational[1, 4] ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^2) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( - 0. + (3./NonCommutativeMultiply[ - 4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))))) + - 4.211 (((4.432842194559192*^-8 - NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( - 532.8923076923078 - NonCommutativeMultiply[50.439430695308474`, 2] - - 0.09230769230769227 - NonCommutativeMultiply[ - 4785.6, 2] + (1. - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2]) ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + ( - 1.9091980858994836`*^-15 ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-2)) ((-2464.599878197321) - NonCommutativeMultiply[50.439430695308474`, 2] + - 0.13520097442143736` - NonCommutativeMultiply[4785.6, 2] + (1. - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2]) ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + - 1. ((-0.59) (((-0.25)/NonCommutativeMultiply[ - 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) - - 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) + (( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) ((0.25/NonCommutativeMultiply[ - 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) - - 0.355 ((((-1)/NonCommutativeMultiply[4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-3) + ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) ( - 0.25/NonCommutativeMultiply[4785.6, 2] - (0.25 - NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - Rational[1, 4] ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^2) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( - 0. + (3./NonCommutativeMultiply[ - 4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))))), - 0. + (Complex[-7.035253225548905*^7, - 9.920706016815953*^8] ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[ - 1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-2)) ((-2464.599878197321) - NonCommutativeMultiply[50.439430695308474`, 2] + - 0.13520097442143736` - NonCommutativeMultiply[4785.6, 2] + (1. - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2]) ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + - Complex[-1648.291367676279, - 23243.24877090124] (((1.2999999999999998` - NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( - 532.8923076923078 - NonCommutativeMultiply[50.439430695308474`, 2] - - 0.09230769230769227 - NonCommutativeMultiply[ - 4785.6, 2] + (1. - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2]) ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + ( - 5.5990206795893796`*^-8 ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-2)) ((-2464.599878197321) - NonCommutativeMultiply[50.439430695308474`, 2] + - 0.13520097442143736` - NonCommutativeMultiply[4785.6, 2] + (1. - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2]) ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + - Complex[-0.06926211897606739, - 0.9766942261124977] (((4.432842194559192*^-8 - NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( - 532.8923076923078 - NonCommutativeMultiply[50.439430695308474`, 2] - - 0.09230769230769227 - NonCommutativeMultiply[ - 4785.6, 2] + (1. - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2]) ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + ( - 1.9091980858994836`*^-15 ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-2)) ((-2464.599878197321) - NonCommutativeMultiply[50.439430695308474`, 2] + - 0.13520097442143736` - NonCommutativeMultiply[4785.6, 2] + (1. - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2]) ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + - 1. ((-0.59) (((-0.25)/NonCommutativeMultiply[ - 4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) - - 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) + (( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) ((0.25/NonCommutativeMultiply[ - 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) - - 0.355 ((((-1)/NonCommutativeMultiply[4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-3) + ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) ( - 0.25/NonCommutativeMultiply[4785.6, 2] - (0.25 - NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - Rational[1, 4] ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^2) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( - 0. + (3./NonCommutativeMultiply[ - 4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))))), ( - Complex[-1.1389763095700577`*^10, 1.606118325112725*^11] ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[ - 1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-2)) ((-2464.599878197321) - NonCommutativeMultiply[50.439430695308474`, 2] + - 0.13520097442143736` - NonCommutativeMultiply[4785.6, 2] + (1. - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2]) ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + - Complex[-261873.57532935464`, - 3.692789258786538*^6] (((1.2999999999999998` - NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( - 532.8923076923078 - NonCommutativeMultiply[50.439430695308474`, 2] - - 0.09230769230769227 - NonCommutativeMultiply[ - 4785.6, 2] + (1. - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2]) ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + ( - 5.5990206795893796`*^-8 ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-2)) ((-2464.599878197321) - NonCommutativeMultiply[50.439430695308474`, 2] + - 0.13520097442143736` - NonCommutativeMultiply[4785.6, 2] + (1. - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2]) ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + - Complex[-9.54600321077642, - 134.6122000922079] (((4.432842194559192*^-8 - NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( - 532.8923076923078 - NonCommutativeMultiply[50.439430695308474`, 2] - - 0.09230769230769227 - NonCommutativeMultiply[ - 4785.6, 2] + (1. - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2]) ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + ( - 1.9091980858994836`*^-15 ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-2)) ((-2464.599878197321) - NonCommutativeMultiply[50.439430695308474`, 2] + - 0.13520097442143736` - NonCommutativeMultiply[4785.6, 2] + (1. - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2]) ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + - 1. ((-0.59) (((-0.25)/NonCommutativeMultiply[ - 4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) - - 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) + (( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) ((0.25/NonCommutativeMultiply[ - 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) - - 0.355 ((((-1)/NonCommutativeMultiply[4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-3) + ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) ( - 0.25/NonCommutativeMultiply[4785.6, 2] - (0.25 - NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - Rational[1, 4] ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^2) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( - 0. + (3./NonCommutativeMultiply[ - 4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))))) - - 0.45319591200415726` (((5.161733680066854*^-15 - NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( - 3884.7894578765577` - NonCommutativeMultiply[50.439430695308474`, 2] - - 0.672923862441808 - NonCommutativeMultiply[ - 4785.6, 2] + (1. - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2]) ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + ( - 1.8370048452163027`*^-22 ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( - 835.6313669064749 - NonCommutativeMultiply[50.439430695308474`, 2] - - 0.6028776978417266 - NonCommutativeMultiply[ - 4785.6, 2] + (1. - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2]) ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + - 3.409878611199379*^-8 ((-0.726) (((-0.25)/ - NonCommutativeMultiply[ - 4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) - - 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) + (( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) ((0.25/NonCommutativeMultiply[ - 4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) - - 1.8566666666666667` ((((-1)/NonCommutativeMultiply[ - 4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-3) + ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) ( - 0.25/NonCommutativeMultiply[4785.6, 2] - (0.25 - NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - Rational[1, 4] ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^2) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( - 0. + (3./NonCommutativeMultiply[ - 4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))))) + - 1. ((-0.726) (((-0.0625) - NonCommutativeMultiply[4785.6, 2]^(-2)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) - - 0.0625 (NonCommutativeMultiply[4785.6, 2]^ - Rational[-5, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) + (( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) ((0.125 - NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-3) + (0.125 - NonCommutativeMultiply[4785.6, 2]^(-2)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.0625 (NonCommutativeMultiply[4785.6, 2]^ - Rational[-5, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) - (( - 0.5 NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) ((0.25/NonCommutativeMultiply[ - 4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) - - 1.8566666666666667` (( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) ( - 0.125 NonCommutativeMultiply[4785.6, 2]^(-2) - (0.125 - NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( - 0.25/NonCommutativeMultiply[4785.6, 2] - (0.25 - NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) - ((( - 0.25 NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( - 0. + (3./NonCommutativeMultiply[ - 4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) + (( - Rational[1, 6] ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^2) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( - 0. + (1.25 - NonCommutativeMultiply[4785.6, 2]^(-2)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.75 (NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - 0. + (3./NonCommutativeMultiply[ - 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))))))) + - 4.211 (((1.5115453786049503`*^-15 - NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( - 532.8923076923078 - NonCommutativeMultiply[50.439430695308474`, 2] - - 0.09230769230769227 - NonCommutativeMultiply[ - 4785.6, 2] + (1. - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2]) ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + ( - 6.510133717651443*^-23 ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-2)) ((-2464.599878197321) - NonCommutativeMultiply[50.439430695308474`, 2] + - 0.13520097442143736` - NonCommutativeMultiply[4785.6, 2] + (1. - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2]) ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + - 3.409878611199379*^-8 ((-0.59) (((-0.25)/ - NonCommutativeMultiply[ - 4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) - - 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) + (( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) ((0.25/NonCommutativeMultiply[ - 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) - - 0.355 ((((-1)/NonCommutativeMultiply[4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-3) + ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) ( - 0.25/NonCommutativeMultiply[4785.6, 2] - (0.25 - NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - Rational[1, 4] ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^2) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( - 0. + (3./NonCommutativeMultiply[ - 4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))))) + - 1. ((-0.59) (((-0.0625) - NonCommutativeMultiply[4785.6, 2]^(-2)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) - - 0.0625 (NonCommutativeMultiply[4785.6, 2]^ - Rational[-5, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) + (( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) ((0.125 - NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-3) + (0.125 - NonCommutativeMultiply[4785.6, 2]^(-2)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.0625 (NonCommutativeMultiply[4785.6, 2]^ - Rational[-5, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) - (( - 0.5 NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) ((0.25/NonCommutativeMultiply[ - 4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) - - 0.355 ((NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) ( - 0.125 NonCommutativeMultiply[4785.6, 2]^(-2) - (0.125 - NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( - 0.25/NonCommutativeMultiply[4785.6, 2] - (0.25 - NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) - ((( - 0.25 NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( - 0. + (3./NonCommutativeMultiply[ - 4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) + (( - Rational[1, 6] ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^2) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( - 0. + (1.25 NonCommutativeMultiply[4785.6, 2]^(-2)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.75 (NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - 0. + (3./NonCommutativeMultiply[ - 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))))))), - 0. + (Complex[-1.8509043208942212`*^12, - 2.61003791109641*^13] ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[ - 1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-2)) ((-2464.599878197321) - NonCommutativeMultiply[50.439430695308474`, 2] + - 0.13520097442143736` - NonCommutativeMultiply[4785.6, 2] + (1. - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2]) ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + - Complex[-4.284563474755728*^7, - 6.041842884784381*^8] (((1.2999999999999998` - NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( - 532.8923076923078 - NonCommutativeMultiply[50.439430695308474`, 2] - - 0.09230769230769227 - NonCommutativeMultiply[ - 4785.6, 2] + (1. - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2]) ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + ( - 5.5990206795893796`*^-8 ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-2)) ((-2464.599878197321) - NonCommutativeMultiply[50.439430695308474`, 2] + - 0.13520097442143736` - NonCommutativeMultiply[4785.6, 2] + (1. - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2]) ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + - Complex[-1648.291367676279, - 23243.24877090124] (((4.432842194559192*^-8 - NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( - 532.8923076923078 - NonCommutativeMultiply[50.439430695308474`, 2] - - 0.09230769230769227 - NonCommutativeMultiply[ - 4785.6, 2] + (1. - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2]) ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + ( - 1.9091980858994836`*^-15 ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-2)) ((-2464.599878197321) - NonCommutativeMultiply[50.439430695308474`, 2] + - 0.13520097442143736` - NonCommutativeMultiply[4785.6, 2] + (1. - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2]) ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + - 1. ((-0.59) (((-0.25)/NonCommutativeMultiply[ - 4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) - - 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) + (( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) ((0.25/NonCommutativeMultiply[ - 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) - - 0.355 ((((-1)/NonCommutativeMultiply[4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-3) + ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) ( - 0.25/NonCommutativeMultiply[4785.6, 2] - (0.25 - NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - Rational[1, 4] ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^2) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( - 0. + (3./NonCommutativeMultiply[ - 4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))))) + - Complex[-0.06926211897606739, - 0.9766942261124977] (((1.5115453786049503`*^-15 - NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( - 532.8923076923078 - NonCommutativeMultiply[50.439430695308474`, 2] - - 0.09230769230769227 - NonCommutativeMultiply[ - 4785.6, 2] + (1. - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2]) ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + ( - 6.510133717651443*^-23 ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-2)) ((-2464.599878197321) - NonCommutativeMultiply[50.439430695308474`, 2] + - 0.13520097442143736` - NonCommutativeMultiply[4785.6, 2] + (1. - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2]) ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + - 3.409878611199379*^-8 ((-0.59) (((-0.25)/ - NonCommutativeMultiply[ - 4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) - - 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) + (( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) ((0.25/NonCommutativeMultiply[ - 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) - - 0.355 ((((-1)/NonCommutativeMultiply[4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-3) + ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) ( - 0.25/NonCommutativeMultiply[4785.6, 2] - (0.25 - NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - Rational[1, 4] ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^2) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( - 0. + (3./NonCommutativeMultiply[ - 4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))))) + - 1. ((-0.59) (((-0.0625) - NonCommutativeMultiply[4785.6, 2]^(-2)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) - - 0.0625 (NonCommutativeMultiply[4785.6, 2]^ - Rational[-5, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) + (( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) ((0.125 - NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-3) + (0.125 - NonCommutativeMultiply[4785.6, 2]^(-2)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.0625 (NonCommutativeMultiply[4785.6, 2]^ - Rational[-5, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) - (( - 0.5 NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) ((0.25/NonCommutativeMultiply[ - 4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) - - 0.355 ((NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) ( - 0.125 NonCommutativeMultiply[4785.6, 2]^(-2) - (0.125 - NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( - 0.25/NonCommutativeMultiply[4785.6, 2] - (0.25 - NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) - ((( - 0.25 NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( - 0. + (3./NonCommutativeMultiply[ - 4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) + (( - Rational[1, 6] ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^2) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( - 0. + (1.25 NonCommutativeMultiply[4785.6, 2]^(-2)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.75 (NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - 0. + (3./NonCommutativeMultiply[ - 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2]))))))), ( - Complex[-3.0037845520468*^14, 4.235762739923902*^15] ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[ - 1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-2)) ((-2464.599878197321) - NonCommutativeMultiply[50.439430695308474`, 2] + - 0.13520097442143736` - NonCommutativeMultiply[4785.6, 2] + (1. - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2]) ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + - Complex[-6.936518328684883*^9, - 9.781475792403928*^10] (((1.2999999999999998` - NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( - 532.8923076923078 - NonCommutativeMultiply[50.439430695308474`, 2] - - 0.09230769230769227 - NonCommutativeMultiply[ - 4785.6, 2] + (1. - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2]) ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + ( - 5.5990206795893796`*^-8 ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-2)) ((-2464.599878197321) - NonCommutativeMultiply[50.439430695308474`, 2] + - 0.13520097442143736` - NonCommutativeMultiply[4785.6, 2] + (1. - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2]) ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + - Complex[-261873.57532935464`, - 3.692789258786538*^6] (((4.432842194559192*^-8 - NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( - 532.8923076923078 - NonCommutativeMultiply[50.439430695308474`, 2] - - 0.09230769230769227 - NonCommutativeMultiply[ - 4785.6, 2] + (1. - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2]) ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + ( - 1.9091980858994836`*^-15 ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-2)) ((-2464.599878197321) - NonCommutativeMultiply[50.439430695308474`, 2] + - 0.13520097442143736` - NonCommutativeMultiply[4785.6, 2] + (1. - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2]) ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + - 1. ((-0.59) (((-0.25)/NonCommutativeMultiply[ - 4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) - - 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) + (( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) ((0.25/NonCommutativeMultiply[ - 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) - - 0.355 ((((-1)/NonCommutativeMultiply[4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-3) + ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) ( - 0.25/NonCommutativeMultiply[4785.6, 2] - (0.25 - NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - Rational[1, 4] ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^2) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( - 0. + (3./NonCommutativeMultiply[ - 4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))))) + - Complex[-9.54600321077642, - 134.6122000922079] (((1.5115453786049503`*^-15 - NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( - 532.8923076923078 - NonCommutativeMultiply[50.439430695308474`, 2] - - 0.09230769230769227 - NonCommutativeMultiply[ - 4785.6, 2] + (1. - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2]) ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + ( - 6.510133717651443*^-23 ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-2)) ((-2464.599878197321) - NonCommutativeMultiply[50.439430695308474`, 2] + - 0.13520097442143736` - NonCommutativeMultiply[4785.6, 2] + (1. - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2]) ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + - 3.409878611199379*^-8 ((-0.59) (((-0.25)/ - NonCommutativeMultiply[ - 4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) - - 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) + (( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) ((0.25/NonCommutativeMultiply[ - 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) - - 0.355 ((((-1)/NonCommutativeMultiply[4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-3) + ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) ( - 0.25/NonCommutativeMultiply[4785.6, 2] - (0.25 - NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - Rational[1, 4] ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^2) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( - 0. + (3./NonCommutativeMultiply[ - 4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))))) + - 1. ((-0.59) (((-0.0625) - NonCommutativeMultiply[4785.6, 2]^(-2)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) - - 0.0625 (NonCommutativeMultiply[4785.6, 2]^ - Rational[-5, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) + (( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) ((0.125 - NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-3) + (0.125 - NonCommutativeMultiply[4785.6, 2]^(-2)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.0625 (NonCommutativeMultiply[4785.6, 2]^ - Rational[-5, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) - (( - 0.5 NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) ((0.25/NonCommutativeMultiply[ - 4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) - - 0.355 ((NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) ( - 0.125 NonCommutativeMultiply[4785.6, 2]^(-2) - (0.125 - NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( - 0.25/NonCommutativeMultiply[4785.6, 2] - (0.25 - NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) - ((( - 0.25 NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( - 0. + (3./NonCommutativeMultiply[ - 4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) + (( - Rational[1, 6] ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^2) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( - 0. + (1.25 NonCommutativeMultiply[4785.6, 2]^(-2)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.75 (NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - 0. + (3./NonCommutativeMultiply[ - 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))))))) - - 0.45319591200415726` (((1.7600885272367424`*^-22 - NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( - 3884.7894578765577` - NonCommutativeMultiply[50.439430695308474`, 2] - - 0.672923862441808 - NonCommutativeMultiply[ - 4785.6, 2] + (1. - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2]) ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + ( - 6.263963530372696*^-30 ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( - 835.6313669064749 - NonCommutativeMultiply[50.439430695308474`, 2] - - 0.6028776978417266 - NonCommutativeMultiply[ - 4785.6, 2] + (1. - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2]) ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + - 1.1627272143115003`*^-15 ((-0.726) (((-0.25)/ - NonCommutativeMultiply[ - 4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) - - 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) + (( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) ((0.25/NonCommutativeMultiply[ - 4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) - - 1.8566666666666667` ((((-1)/NonCommutativeMultiply[ - 4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-3) + ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) ( - 0.25/NonCommutativeMultiply[4785.6, 2] - (0.25 - NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - Rational[1, 4] ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^2) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( - 0. + (3./NonCommutativeMultiply[ - 4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))))) + - 3.409878611199379*^-8 ((-0.726) (((-0.0625) - NonCommutativeMultiply[4785.6, 2]^(-2)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) - - 0.0625 (NonCommutativeMultiply[4785.6, 2]^ - Rational[-5, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) + (( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) ((0.125 - NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-3) + (0.125 - NonCommutativeMultiply[4785.6, 2]^(-2)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.0625 (NonCommutativeMultiply[4785.6, 2]^ - Rational[-5, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) - (( - 0.5 NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) ((0.25/NonCommutativeMultiply[ - 4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) - - 1.8566666666666667` (( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) ( - 0.125 NonCommutativeMultiply[4785.6, 2]^(-2) - (0.125 - NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( - 0.25/NonCommutativeMultiply[4785.6, 2] - (0.25 - NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) - ((( - 0.25 NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( - 0. + (3./NonCommutativeMultiply[ - 4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) + (( - Rational[1, 6] ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^2) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( - 0. + (1.25 - NonCommutativeMultiply[4785.6, 2]^(-2)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.75 (NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - 0. + (3./NonCommutativeMultiply[ - 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))))) + - 1. ((-0.726) (((-0.03125) - NonCommutativeMultiply[4785.6, 2]^(-3)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) - - 0.0390625 ( - NonCommutativeMultiply[4785.6, 2]^Rational[-7, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) + (( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) ((0.0625 - NonCommutativeMultiply[4785.6, 2]^(-2)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-4) + (0.09375 - NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-3) + (0.078125 - NonCommutativeMultiply[4785.6, 2]^(-3)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.0390625 (NonCommutativeMultiply[4785.6, 2]^ - Rational[-7, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) - (( - 0.5 NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) ((0.125 - NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-3) + (0.125 - NonCommutativeMultiply[4785.6, 2]^(-2)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.0625 (NonCommutativeMultiply[4785.6, 2]^ - Rational[-5, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) - (( - 0.125 NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) ((0.25/NonCommutativeMultiply[ - 4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) - - 1.8566666666666667` (( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) ( - 0.078125 NonCommutativeMultiply[4785.6, 2]^(-3) - ( - 0.078125 NonCommutativeMultiply[4785.6, 2]^ - Rational[-7, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( - 0.125 NonCommutativeMultiply[4785.6, 2]^(-2) - (0.125 - NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - Rational[1, 4] ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( - 0.25/NonCommutativeMultiply[4785.6, 2] - (0.25 - NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) ( - 0. + (3./NonCommutativeMultiply[ - 4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) - ((( - 0.16666666666666666` - NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( - 0. + (1.25 - NonCommutativeMultiply[4785.6, 2]^(-2)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.75 (NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - 0. + (3./NonCommutativeMultiply[ - 4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) + (( - Rational[1, 8] ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^2) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( - 0. + (0.875 - NonCommutativeMultiply[4785.6, 2]^(-3)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.625 (NonCommutativeMultiply[4785.6, 2]^Rational[-7, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - 0.375 NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - 0. + (3./NonCommutativeMultiply[ - 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) + (( - 0.8333333333333333 - NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - 0. + (1.25 NonCommutativeMultiply[4785.6, 2]^(-2)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.75 (NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - 0. + (3./NonCommutativeMultiply[ - 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))))))) + - 4.211 (((5.154186256362287*^-23 - NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( - 532.8923076923078 - NonCommutativeMultiply[50.439430695308474`, 2] - - 0.09230769230769227 - NonCommutativeMultiply[ - 4785.6, 2] + (1. - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2]) ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + ( - 2.2198765719867552`*^-30 ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-2)) ((-2464.599878197321) - NonCommutativeMultiply[50.439430695308474`, 2] + - 0.13520097442143736` - NonCommutativeMultiply[4785.6, 2] + (1. - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2]) ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + - 1.1627272143115003`*^-15 ((-0.59) (((-0.25)/ - NonCommutativeMultiply[ - 4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) - - 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) + (( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) ((0.25/NonCommutativeMultiply[ - 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) - - 0.355 ((((-1)/NonCommutativeMultiply[4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-3) + ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) ( - 0.25/NonCommutativeMultiply[4785.6, 2] - (0.25 - NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - Rational[1, 4] ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^2) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( - 0. + (3./NonCommutativeMultiply[ - 4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))))) + - 3.409878611199379*^-8 ((-0.59) (((-0.0625) - NonCommutativeMultiply[4785.6, 2]^(-2)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) - - 0.0625 (NonCommutativeMultiply[4785.6, 2]^ - Rational[-5, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) + (( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) ((0.125 - NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-3) + (0.125 - NonCommutativeMultiply[4785.6, 2]^(-2)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.0625 (NonCommutativeMultiply[4785.6, 2]^ - Rational[-5, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) - (( - 0.5 NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) ((0.25/NonCommutativeMultiply[ - 4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) - - 0.355 ((NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) ( - 0.125 NonCommutativeMultiply[4785.6, 2]^(-2) - (0.125 - NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( - 0.25/NonCommutativeMultiply[4785.6, 2] - (0.25 - NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) - ((( - 0.25 NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( - 0. + (3./NonCommutativeMultiply[ - 4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) + (( - Rational[1, 6] ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^2) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( - 0. + (1.25 NonCommutativeMultiply[4785.6, 2]^(-2)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.75 (NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - 0. + (3./NonCommutativeMultiply[ - 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))))) + - 1. ((-0.59) (((-0.03125) - NonCommutativeMultiply[4785.6, 2]^(-3)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) - - 0.0390625 ( - NonCommutativeMultiply[4785.6, 2]^Rational[-7, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) + (( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) ((0.0625 - NonCommutativeMultiply[4785.6, 2]^(-2)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-4) + (0.09375 - NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-3) + (0.078125 - NonCommutativeMultiply[4785.6, 2]^(-3)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.0390625 (NonCommutativeMultiply[4785.6, 2]^ - Rational[-7, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) - (( - 0.5 NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) ((0.125 - NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-3) + (0.125 - NonCommutativeMultiply[4785.6, 2]^(-2)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.0625 (NonCommutativeMultiply[4785.6, 2]^ - Rational[-5, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) - (( - 0.125 NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) ((0.25/NonCommutativeMultiply[ - 4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) - - 0.355 ((NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) ( - 0.078125 NonCommutativeMultiply[4785.6, 2]^(-3) - ( - 0.078125 NonCommutativeMultiply[4785.6, 2]^ - Rational[-7, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( - 0.125 NonCommutativeMultiply[4785.6, 2]^(-2) - (0.125 - NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - Rational[1, 4] ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( - 0.25/NonCommutativeMultiply[4785.6, 2] - (0.25 - NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) ( - 0. + (3./NonCommutativeMultiply[ - 4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) - ((( - 0.16666666666666666` - NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( - 0. + (1.25 - NonCommutativeMultiply[4785.6, 2]^(-2)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.75 (NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - 0. + (3./NonCommutativeMultiply[ - 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) + (( - Rational[1, 8] ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^2) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( - 0. + (0.875 - NonCommutativeMultiply[4785.6, 2]^(-3)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.625 (NonCommutativeMultiply[4785.6, 2]^Rational[-7, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - 0.375 NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - 0. + (3./NonCommutativeMultiply[ - 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) + (( - 0.8333333333333333 - NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - 0. + (1.25 NonCommutativeMultiply[4785.6, 2]^(-2)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.75 (NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - 0. + (3./NonCommutativeMultiply[ - 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))))))), - 0. + (Complex[-4.8771088174541816`*^16, - 6.877415956297549*^17] ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[ - 1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-2)) ((-2464.599878197321) - NonCommutativeMultiply[50.439430695308474`, 2] + - 0.13520097442143736` - NonCommutativeMultiply[4785.6, 2] + (1. - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2]) ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + - Complex[-1.1272255303862493`*^12, - 1.5895480579149879`*^13] (((1.2999999999999998` - NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( - 532.8923076923078 - NonCommutativeMultiply[50.439430695308474`, 2] - - 0.09230769230769227 - NonCommutativeMultiply[ - 4785.6, 2] + (1. - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2]) ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + ( - 5.5990206795893796`*^-8 ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-2)) ((-2464.599878197321) - NonCommutativeMultiply[50.439430695308474`, 2] + - 0.13520097442143736` - NonCommutativeMultiply[4785.6, 2] + (1. - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2]) ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + - Complex[-4.284563474755728*^7, - 6.041842884784381*^8] (((4.432842194559192*^-8 - NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( - 532.8923076923078 - NonCommutativeMultiply[50.439430695308474`, 2] - - 0.09230769230769227 - NonCommutativeMultiply[ - 4785.6, 2] + (1. - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2]) ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + ( - 1.9091980858994836`*^-15 ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-2)) ((-2464.599878197321) - NonCommutativeMultiply[50.439430695308474`, 2] + - 0.13520097442143736` - NonCommutativeMultiply[4785.6, 2] + (1. - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2]) ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + - 1. ((-0.59) (((-0.25)/NonCommutativeMultiply[ - 4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) - - 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) + (( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) ((0.25/NonCommutativeMultiply[ - 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) - - 0.355 ((((-1)/NonCommutativeMultiply[4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-3) + ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) ( - 0.25/NonCommutativeMultiply[4785.6, 2] - (0.25 - NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - Rational[1, 4] ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^2) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( - 0. + (3./NonCommutativeMultiply[ - 4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))))) + - Complex[-1648.291367676279, - 23243.24877090124] (((1.5115453786049503`*^-15 - NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( - 532.8923076923078 - NonCommutativeMultiply[50.439430695308474`, 2] - - 0.09230769230769227 - NonCommutativeMultiply[ - 4785.6, 2] + (1. - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2]) ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + ( - 6.510133717651443*^-23 ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-2)) ((-2464.599878197321) - NonCommutativeMultiply[50.439430695308474`, 2] + - 0.13520097442143736` - NonCommutativeMultiply[4785.6, 2] + (1. - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2]) ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + - 3.409878611199379*^-8 ((-0.59) (((-0.25)/ - NonCommutativeMultiply[ - 4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) - - 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) + (( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) ((0.25/NonCommutativeMultiply[ - 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) - - 0.355 ((((-1)/NonCommutativeMultiply[4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-3) + ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) ( - 0.25/NonCommutativeMultiply[4785.6, 2] - (0.25 - NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - Rational[1, 4] ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^2) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( - 0. + (3./NonCommutativeMultiply[ - 4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))))) + - 1. ((-0.59) (((-0.0625) - NonCommutativeMultiply[4785.6, 2]^(-2)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) - - 0.0625 (NonCommutativeMultiply[4785.6, 2]^ - Rational[-5, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) + (( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) ((0.125 - NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-3) + (0.125 - NonCommutativeMultiply[4785.6, 2]^(-2)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.0625 (NonCommutativeMultiply[4785.6, 2]^ - Rational[-5, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) - (( - 0.5 NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) ((0.25/NonCommutativeMultiply[ - 4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) - - 0.355 ((NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) ( - 0.125 NonCommutativeMultiply[4785.6, 2]^(-2) - (0.125 - NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( - 0.25/NonCommutativeMultiply[4785.6, 2] - (0.25 - NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) - ((( - 0.25 NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( - 0. + (3./NonCommutativeMultiply[ - 4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) + (( - Rational[1, 6] ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^2) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( - 0. + (1.25 NonCommutativeMultiply[4785.6, 2]^(-2)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.75 (NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - 0. + (3./NonCommutativeMultiply[ - 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))))))) + - Complex[-0.06926211897606739, - 0.9766942261124977] (((5.154186256362287*^-23 - NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( - 532.8923076923078 - NonCommutativeMultiply[50.439430695308474`, 2] - - 0.09230769230769227 - NonCommutativeMultiply[ - 4785.6, 2] + (1. - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2]) ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + ( - 2.2198765719867552`*^-30 ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-2)) ((-2464.599878197321) - NonCommutativeMultiply[50.439430695308474`, 2] + - 0.13520097442143736` - NonCommutativeMultiply[4785.6, 2] + (1. - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2]) ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + - 1.1627272143115003`*^-15 ((-0.59) (((-0.25)/ - NonCommutativeMultiply[ - 4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) - - 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) + (( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) ((0.25/NonCommutativeMultiply[ - 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) - - 0.355 ((((-1)/NonCommutativeMultiply[4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-3) + ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) ( - 0.25/NonCommutativeMultiply[4785.6, 2] - (0.25 - NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - Rational[1, 4] ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^2) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( - 0. + (3./NonCommutativeMultiply[ - 4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))))) + - 3.409878611199379*^-8 ((-0.59) (((-0.0625) - NonCommutativeMultiply[4785.6, 2]^(-2)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) - - 0.0625 (NonCommutativeMultiply[4785.6, 2]^ - Rational[-5, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) + (( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) ((0.125 - NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-3) + (0.125 - NonCommutativeMultiply[4785.6, 2]^(-2)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.0625 (NonCommutativeMultiply[4785.6, 2]^ - Rational[-5, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) - (( - 0.5 NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) ((0.25/NonCommutativeMultiply[ - 4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) - - 0.355 ((NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) ( - 0.125 NonCommutativeMultiply[4785.6, 2]^(-2) - (0.125 - NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( - 0.25/NonCommutativeMultiply[4785.6, 2] - (0.25 - NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) - ((( - 0.25 NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( - 0. + (3./NonCommutativeMultiply[ - 4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) + (( - Rational[1, 6] ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^2) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( - 0. + (1.25 NonCommutativeMultiply[4785.6, 2]^(-2)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.75 (NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - 0. + (3./NonCommutativeMultiply[ - 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))))) + - 1. ((-0.59) (((-0.03125) - NonCommutativeMultiply[4785.6, 2]^(-3)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) - - 0.0390625 ( - NonCommutativeMultiply[4785.6, 2]^Rational[-7, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) + (( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) ((0.0625 - NonCommutativeMultiply[4785.6, 2]^(-2)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-4) + (0.09375 - NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-3) + (0.078125 - NonCommutativeMultiply[4785.6, 2]^(-3)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.0390625 (NonCommutativeMultiply[4785.6, 2]^ - Rational[-7, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) - (( - 0.5 NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) ((0.125 - NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-3) + (0.125 - NonCommutativeMultiply[4785.6, 2]^(-2)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.0625 (NonCommutativeMultiply[4785.6, 2]^ - Rational[-5, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) - (( - 0.125 NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) ((0.25/NonCommutativeMultiply[ - 4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) - - 0.355 ((NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) ( - 0.078125 NonCommutativeMultiply[4785.6, 2]^(-3) - ( - 0.078125 NonCommutativeMultiply[4785.6, 2]^ - Rational[-7, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( - 0.125 NonCommutativeMultiply[4785.6, 2]^(-2) - (0.125 - NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - Rational[1, 4] ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( - 0.25/NonCommutativeMultiply[4785.6, 2] - (0.25 - NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) ( - 0. + (3./NonCommutativeMultiply[ - 4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) - ((( - 0.16666666666666666` - NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( - 0. + (1.25 - NonCommutativeMultiply[4785.6, 2]^(-2)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.75 (NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - 0. + (3./NonCommutativeMultiply[ - 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) + (( - Rational[1, 8] ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^2) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( - 0. + (0.875 - NonCommutativeMultiply[4785.6, 2]^(-3)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.625 (NonCommutativeMultiply[4785.6, 2]^Rational[-7, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - 0.375 NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - 0. + (3./NonCommutativeMultiply[ - 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) + (( - 0.8333333333333333 - NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - 0. + (1.25 NonCommutativeMultiply[4785.6, 2]^(-2)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.75 (NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - 0. + (3./NonCommutativeMultiply[ - 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])))))))), ( - Complex[-7.917379416470458*^18, 1.1164629203274333`*^20] ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[ - 1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-2)) ((-2464.599878197321) - NonCommutativeMultiply[50.439430695308474`, 2] + - 0.13520097442143736` - NonCommutativeMultiply[4785.6, 2] + (1. - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2]) ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + - Complex[-1.8293450377873325`*^14, - 2.57963626061139*^15] (((1.2999999999999998` - NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( - 532.8923076923078 - NonCommutativeMultiply[50.439430695308474`, 2] - - 0.09230769230769227 - NonCommutativeMultiply[ - 4785.6, 2] + (1. - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2]) ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + ( - 5.5990206795893796`*^-8 ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-2)) ((-2464.599878197321) - NonCommutativeMultiply[50.439430695308474`, 2] + - 0.13520097442143736` - NonCommutativeMultiply[4785.6, 2] + (1. - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2]) ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + - Complex[-6.936518328684883*^9, - 9.781475792403928*^10] (((4.432842194559192*^-8 - NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( - 532.8923076923078 - NonCommutativeMultiply[50.439430695308474`, 2] - - 0.09230769230769227 - NonCommutativeMultiply[ - 4785.6, 2] + (1. - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2]) ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + ( - 1.9091980858994836`*^-15 ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-2)) ((-2464.599878197321) - NonCommutativeMultiply[50.439430695308474`, 2] + - 0.13520097442143736` - NonCommutativeMultiply[4785.6, 2] + (1. - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2]) ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + - 1. ((-0.59) (((-0.25)/NonCommutativeMultiply[ - 4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) - - 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) + (( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) ((0.25/NonCommutativeMultiply[ - 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) - - 0.355 ((((-1)/NonCommutativeMultiply[4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-3) + ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) ( - 0.25/NonCommutativeMultiply[4785.6, 2] - (0.25 - NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - Rational[1, 4] ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^2) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( - 0. + (3./NonCommutativeMultiply[ - 4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))))) + - Complex[-261873.57532935464`, - 3.692789258786538*^6] (((1.5115453786049503`*^-15 - NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( - 532.8923076923078 - NonCommutativeMultiply[50.439430695308474`, 2] - - 0.09230769230769227 - NonCommutativeMultiply[ - 4785.6, 2] + (1. - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2]) ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + ( - 6.510133717651443*^-23 ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-2)) ((-2464.599878197321) - NonCommutativeMultiply[50.439430695308474`, 2] + - 0.13520097442143736` - NonCommutativeMultiply[4785.6, 2] + (1. - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2]) ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + - 3.409878611199379*^-8 ((-0.59) (((-0.25)/ - NonCommutativeMultiply[ - 4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) - - 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) + (( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) ((0.25/NonCommutativeMultiply[ - 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) - - 0.355 ((((-1)/NonCommutativeMultiply[4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-3) + ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) ( - 0.25/NonCommutativeMultiply[4785.6, 2] - (0.25 - NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - Rational[1, 4] ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^2) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( - 0. + (3./NonCommutativeMultiply[ - 4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))))) + - 1. ((-0.59) (((-0.0625) - NonCommutativeMultiply[4785.6, 2]^(-2)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) - - 0.0625 (NonCommutativeMultiply[4785.6, 2]^ - Rational[-5, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) + (( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) ((0.125 - NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-3) + (0.125 - NonCommutativeMultiply[4785.6, 2]^(-2)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.0625 (NonCommutativeMultiply[4785.6, 2]^ - Rational[-5, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) - (( - 0.5 NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) ((0.25/NonCommutativeMultiply[ - 4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) - - 0.355 ((NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) ( - 0.125 NonCommutativeMultiply[4785.6, 2]^(-2) - (0.125 - NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( - 0.25/NonCommutativeMultiply[4785.6, 2] - (0.25 - NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) - ((( - 0.25 NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( - 0. + (3./NonCommutativeMultiply[ - 4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) + (( - Rational[1, 6] ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^2) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( - 0. + (1.25 NonCommutativeMultiply[4785.6, 2]^(-2)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.75 (NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - 0. + (3./NonCommutativeMultiply[ - 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))))))) + - Complex[-9.54600321077642, - 134.6122000922079] (((5.154186256362287*^-23 - NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( - 532.8923076923078 - NonCommutativeMultiply[50.439430695308474`, 2] - - 0.09230769230769227 - NonCommutativeMultiply[ - 4785.6, 2] + (1. - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2]) ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + ( - 2.2198765719867552`*^-30 ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-2)) ((-2464.599878197321) - NonCommutativeMultiply[50.439430695308474`, 2] + - 0.13520097442143736` - NonCommutativeMultiply[4785.6, 2] + (1. - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2]) ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + - 1.1627272143115003`*^-15 ((-0.59) (((-0.25)/ - NonCommutativeMultiply[ - 4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) - - 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) + (( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) ((0.25/NonCommutativeMultiply[ - 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) - - 0.355 ((((-1)/NonCommutativeMultiply[4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-3) + ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) ( - 0.25/NonCommutativeMultiply[4785.6, 2] - (0.25 - NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - Rational[1, 4] ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^2) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( - 0. + (3./NonCommutativeMultiply[ - 4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))))) + - 3.409878611199379*^-8 ((-0.59) (((-0.0625) - NonCommutativeMultiply[4785.6, 2]^(-2)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) - - 0.0625 (NonCommutativeMultiply[4785.6, 2]^ - Rational[-5, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) + (( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) ((0.125 - NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-3) + (0.125 - NonCommutativeMultiply[4785.6, 2]^(-2)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.0625 (NonCommutativeMultiply[4785.6, 2]^ - Rational[-5, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) - (( - 0.5 NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) ((0.25/NonCommutativeMultiply[ - 4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) - - 0.355 ((NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) ( - 0.125 NonCommutativeMultiply[4785.6, 2]^(-2) - (0.125 - NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( - 0.25/NonCommutativeMultiply[4785.6, 2] - (0.25 - NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) - ((( - 0.25 NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( - 0. + (3./NonCommutativeMultiply[ - 4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) + (( - Rational[1, 6] ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^2) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( - 0. + (1.25 NonCommutativeMultiply[4785.6, 2]^(-2)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.75 (NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - 0. + (3./NonCommutativeMultiply[ - 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))))) + - 1. ((-0.59) (((-0.03125) - NonCommutativeMultiply[4785.6, 2]^(-3)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) - - 0.0390625 ( - NonCommutativeMultiply[4785.6, 2]^Rational[-7, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) + (( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) ((0.0625 - NonCommutativeMultiply[4785.6, 2]^(-2)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-4) + (0.09375 - NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-3) + (0.078125 - NonCommutativeMultiply[4785.6, 2]^(-3)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.0390625 (NonCommutativeMultiply[4785.6, 2]^ - Rational[-7, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) - (( - 0.5 NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) ((0.125 - NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-3) + (0.125 - NonCommutativeMultiply[4785.6, 2]^(-2)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.0625 (NonCommutativeMultiply[4785.6, 2]^ - Rational[-5, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) - (( - 0.125 NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) ((0.25/NonCommutativeMultiply[ - 4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) - - 0.355 ((NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) ( - 0.078125 NonCommutativeMultiply[4785.6, 2]^(-3) - ( - 0.078125 NonCommutativeMultiply[4785.6, 2]^ - Rational[-7, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( - 0.125 NonCommutativeMultiply[4785.6, 2]^(-2) - (0.125 - NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - Rational[1, 4] ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( - 0.25/NonCommutativeMultiply[4785.6, 2] - (0.25 - NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) ( - 0. + (3./NonCommutativeMultiply[ - 4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) - ((( - 0.16666666666666666` - NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( - 0. + (1.25 - NonCommutativeMultiply[4785.6, 2]^(-2)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.75 (NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - 0. + (3./NonCommutativeMultiply[ - 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) + (( - Rational[1, 8] ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^2) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( - 0. + (0.875 - NonCommutativeMultiply[4785.6, 2]^(-3)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.625 (NonCommutativeMultiply[4785.6, 2]^Rational[-7, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - 0.375 NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - 0. + (3./NonCommutativeMultiply[ - 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) + (( - 0.8333333333333333 - NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - 0. + (1.25 NonCommutativeMultiply[4785.6, 2]^(-2)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.75 (NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - 0. + (3./NonCommutativeMultiply[ - 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))))))) - - 0.45319591200415726` (((6.001688222841983*^-30 - NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( - 3884.7894578765577` - NonCommutativeMultiply[50.439430695308474`, 2] - - 0.672923862441808 - NonCommutativeMultiply[ - 4785.6, 2] + (1. - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2]) ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + ( - 2.1359355263550803`*^-37 ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( - 835.6313669064749 - NonCommutativeMultiply[50.439430695308474`, 2] - - 0.6028776978417266 - NonCommutativeMultiply[ - 4785.6, 2] + (1. - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2]) ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + - 3.964758658740221*^-23 ((-0.726) (((-0.25)/ - NonCommutativeMultiply[ - 4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) - - 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) + (( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) ((0.25/NonCommutativeMultiply[ - 4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) - - 1.8566666666666667` ((((-1)/NonCommutativeMultiply[ - 4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-3) + ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) ( - 0.25/NonCommutativeMultiply[4785.6, 2] - (0.25 - NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - Rational[1, 4] ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^2) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( - 0. + (3./NonCommutativeMultiply[ - 4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))))) + - 1.1627272143115003`*^-15 ((-0.726) (((-0.0625) - NonCommutativeMultiply[4785.6, 2]^(-2)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) - - 0.0625 (NonCommutativeMultiply[4785.6, 2]^ - Rational[-5, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) + (( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) ((0.125 - NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-3) + (0.125 - NonCommutativeMultiply[4785.6, 2]^(-2)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.0625 (NonCommutativeMultiply[4785.6, 2]^ - Rational[-5, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) - (( - 0.5 NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) ((0.25/NonCommutativeMultiply[ - 4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) - - 1.8566666666666667` (( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) ( - 0.125 NonCommutativeMultiply[4785.6, 2]^(-2) - (0.125 - NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( - 0.25/NonCommutativeMultiply[4785.6, 2] - (0.25 - NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) - ((( - 0.25 NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( - 0. + (3./NonCommutativeMultiply[ - 4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) + (( - Rational[1, 6] ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^2) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( - 0. + (1.25 - NonCommutativeMultiply[4785.6, 2]^(-2)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.75 (NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - 0. + (3./NonCommutativeMultiply[ - 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))))) + - 3.409878611199379*^-8 ((-0.726) (((-0.03125) - NonCommutativeMultiply[4785.6, 2]^(-3)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) - - 0.0390625 ( - NonCommutativeMultiply[4785.6, 2]^Rational[-7, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) + (( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) ((0.0625 - NonCommutativeMultiply[4785.6, 2]^(-2)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-4) + (0.09375 - NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-3) + (0.078125 - NonCommutativeMultiply[4785.6, 2]^(-3)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.0390625 (NonCommutativeMultiply[4785.6, 2]^ - Rational[-7, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) - (( - 0.5 NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) ((0.125 - NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-3) + (0.125 - NonCommutativeMultiply[4785.6, 2]^(-2)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.0625 (NonCommutativeMultiply[4785.6, 2]^ - Rational[-5, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) - (( - 0.125 NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) ((0.25/NonCommutativeMultiply[ - 4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) - - 1.8566666666666667` (( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) ( - 0.078125 NonCommutativeMultiply[4785.6, 2]^(-3) - ( - 0.078125 NonCommutativeMultiply[4785.6, 2]^ - Rational[-7, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( - 0.125 NonCommutativeMultiply[4785.6, 2]^(-2) - (0.125 - NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - Rational[1, 4] ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( - 0.25/NonCommutativeMultiply[4785.6, 2] - (0.25 - NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) ( - 0. + (3./NonCommutativeMultiply[ - 4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) - ((( - 0.16666666666666666` - NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( - 0. + (1.25 - NonCommutativeMultiply[4785.6, 2]^(-2)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.75 (NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - 0. + (3./NonCommutativeMultiply[ - 4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) + (( - Rational[1, 8] ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^2) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( - 0. + (0.875 - NonCommutativeMultiply[4785.6, 2]^(-3)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.625 (NonCommutativeMultiply[4785.6, 2]^Rational[-7, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - 0.375 NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - 0. + (3./NonCommutativeMultiply[ - 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) + (( - 0.8333333333333333 - NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - 0. + (1.25 NonCommutativeMultiply[4785.6, 2]^(-2)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.75 (NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - 0. + (3./NonCommutativeMultiply[ - 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))))))) + - 1. ((-0.726) (((-0.01953125) - NonCommutativeMultiply[4785.6, 2]^(-4)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) - - 0.02734375 ( - NonCommutativeMultiply[4785.6, 2]^Rational[-9, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) + (( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) ((0.03125 - NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-5) + (0.0625 - NonCommutativeMultiply[4785.6, 2]^(-3)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-4) + (0.0703125 - NonCommutativeMultiply[4785.6, 2]^Rational[-7, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-3) + (0.0546875 - NonCommutativeMultiply[4785.6, 2]^(-4)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.02734375 ( - NonCommutativeMultiply[4785.6, 2]^Rational[-9, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) - (( - 0.5 NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) ((0.0625 - NonCommutativeMultiply[4785.6, 2]^(-2)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-4) + (0.09375 - NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-3) + (0.078125 - NonCommutativeMultiply[4785.6, 2]^(-3)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.0390625 ( - NonCommutativeMultiply[4785.6, 2]^Rational[-7, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) - (( - 0.125 NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) ((0.125 - NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-3) + (0.125 - NonCommutativeMultiply[4785.6, 2]^(-2)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.0625 (NonCommutativeMultiply[4785.6, 2]^ - Rational[-5, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) - (( - 0.0625 NonCommutativeMultiply[4785.6, 2]^ - Rational[-5, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) ((0.25/NonCommutativeMultiply[ - 4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) - - 1.8566666666666667` (( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) ( - 0.0546875 NonCommutativeMultiply[4785.6, 2]^(-4) - ( - 0.0546875 - NonCommutativeMultiply[4785.6, 2]^Rational[-9, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( - 0.078125 NonCommutativeMultiply[4785.6, 2]^(-3) - ( - 0.078125 NonCommutativeMultiply[4785.6, 2]^ - Rational[-7, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - Rational[1, 4] ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( - 0.125 NonCommutativeMultiply[4785.6, 2]^(-2) - (0.125 - NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) ( - 0. + (3./NonCommutativeMultiply[ - 4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) + (( - Rational[1, 6] ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( - 0.25/NonCommutativeMultiply[4785.6, 2] - (0.25 - NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) ( - 0. + (1.25 - NonCommutativeMultiply[4785.6, 2]^(-2)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.75 (NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - 0. + (3./NonCommutativeMultiply[ - 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])))) - (((0.125 - NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( - 0. + (0.875 - NonCommutativeMultiply[4785.6, 2]^(-3)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.625 (NonCommutativeMultiply[4785.6, 2]^Rational[-7, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - 0.375 NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - 0. + (3./NonCommutativeMultiply[ - 4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) + (( - 0.8333333333333333 - NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - 0. + (1.25 NonCommutativeMultiply[4785.6, 2]^(-2)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.75 (NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - 0. + (3./NonCommutativeMultiply[ - 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2]))))) + (( - Rational[1, 10] ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^2) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( - 0. + (0.703125 - NonCommutativeMultiply[4785.6, 2]^(-4)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.546875 (NonCommutativeMultiply[4785.6, 2]^ - Rational[-9, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - 0.25 NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - 0. + (3./NonCommutativeMultiply[ - 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) + (( - 0.29166666666666663` - NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - 0. + (1.25 NonCommutativeMultiply[4785.6, 2]^(-2)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.75 (NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - 0. + (3./NonCommutativeMultiply[ - 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) + (( - 0.75 NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - 0. + (0.875 NonCommutativeMultiply[4785.6, 2]^(-3)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.625 (NonCommutativeMultiply[4785.6, 2]^Rational[-7, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - 0.375 NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - 0. + (3./NonCommutativeMultiply[ - 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) + (( - 0.8333333333333333 - NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - 0. + (1.25 NonCommutativeMultiply[4785.6, 2]^(-2)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.75 (NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - 0. + (3./NonCommutativeMultiply[ - 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2]))))))))) + - 4.211 (((1.757514947370756*^-30 - NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( - 532.8923076923078 - NonCommutativeMultiply[50.439430695308474`, 2] - - 0.09230769230769227 - NonCommutativeMultiply[ - 4785.6, 2] + (1. - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2]) ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + ( - 7.569509642320234*^-38 ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-2)) ((-2464.599878197321) - NonCommutativeMultiply[50.439430695308474`, 2] + - 0.13520097442143736` - NonCommutativeMultiply[4785.6, 2] + (1. - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2]) ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]) + - 3.964758658740221*^-23 ((-0.59) (((-0.25)/ - NonCommutativeMultiply[ - 4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) - - 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) + (( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) ((0.25/NonCommutativeMultiply[ - 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) - - 0.355 ((((-1)/NonCommutativeMultiply[4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-3) + ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) ( - 0.25/NonCommutativeMultiply[4785.6, 2] - (0.25 - NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - Rational[1, 4] ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^2) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( - 0. + (3./NonCommutativeMultiply[ - 4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))))) + - 1.1627272143115003`*^-15 ((-0.59) (((-0.0625) - NonCommutativeMultiply[4785.6, 2]^(-2)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) - - 0.0625 (NonCommutativeMultiply[4785.6, 2]^ - Rational[-5, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) + (( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) ((0.125 - NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-3) + (0.125 - NonCommutativeMultiply[4785.6, 2]^(-2)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.0625 (NonCommutativeMultiply[4785.6, 2]^ - Rational[-5, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) - (( - 0.5 NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) ((0.25/NonCommutativeMultiply[ - 4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) - - 0.355 ((NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) ( - 0.125 NonCommutativeMultiply[4785.6, 2]^(-2) - (0.125 - NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( - 0.25/NonCommutativeMultiply[4785.6, 2] - (0.25 - NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) - ((( - 0.25 NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( - 0. + (3./NonCommutativeMultiply[ - 4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) + (( - Rational[1, 6] ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^2) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( - 0. + (1.25 NonCommutativeMultiply[4785.6, 2]^(-2)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.75 (NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - 0. + (3./NonCommutativeMultiply[ - 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))))) + - 3.409878611199379*^-8 ((-0.59) (((-0.03125) - NonCommutativeMultiply[4785.6, 2]^(-3)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) - - 0.0390625 ( - NonCommutativeMultiply[4785.6, 2]^Rational[-7, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) + (( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) ((0.0625 - NonCommutativeMultiply[4785.6, 2]^(-2)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-4) + (0.09375 - NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-3) + (0.078125 - NonCommutativeMultiply[4785.6, 2]^(-3)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.0390625 (NonCommutativeMultiply[4785.6, 2]^ - Rational[-7, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) - (( - 0.5 NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) ((0.125 - NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-3) + (0.125 - NonCommutativeMultiply[4785.6, 2]^(-2)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.0625 (NonCommutativeMultiply[4785.6, 2]^ - Rational[-5, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) - (( - 0.125 NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) ((0.25/NonCommutativeMultiply[ - 4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) - - 0.355 ((NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) ( - 0.078125 NonCommutativeMultiply[4785.6, 2]^(-3) - ( - 0.078125 NonCommutativeMultiply[4785.6, 2]^ - Rational[-7, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( - 0.125 NonCommutativeMultiply[4785.6, 2]^(-2) - (0.125 - NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - Rational[1, 4] ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( - 0.25/NonCommutativeMultiply[4785.6, 2] - (0.25 - NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) ( - 0. + (3./NonCommutativeMultiply[ - 4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) - ((( - 0.16666666666666666` - NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( - 0. + (1.25 - NonCommutativeMultiply[4785.6, 2]^(-2)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.75 (NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - 0. + (3./NonCommutativeMultiply[ - 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) + (( - Rational[1, 8] ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^2) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( - 0. + (0.875 - NonCommutativeMultiply[4785.6, 2]^(-3)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.625 (NonCommutativeMultiply[4785.6, 2]^Rational[-7, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - 0.375 NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - 0. + (3./NonCommutativeMultiply[ - 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) + (( - 0.8333333333333333 - NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - 0. + (1.25 NonCommutativeMultiply[4785.6, 2]^(-2)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.75 (NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - 0. + (3./NonCommutativeMultiply[ - 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))))))) + - 1. ((-0.59) (((-0.01953125) - NonCommutativeMultiply[4785.6, 2]^(-4)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) - - 0.02734375 ( - NonCommutativeMultiply[4785.6, 2]^Rational[-9, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) + (( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) ((0.03125 - NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-5) + (0.0625 - NonCommutativeMultiply[4785.6, 2]^(-3)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-4) + (0.0703125 - NonCommutativeMultiply[4785.6, 2]^Rational[-7, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-3) + (0.0546875 - NonCommutativeMultiply[4785.6, 2]^(-4)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.02734375 (NonCommutativeMultiply[4785.6, 2]^ - Rational[-9, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) - (( - 0.5 NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) ((0.0625 - NonCommutativeMultiply[4785.6, 2]^(-2)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-4) + (0.09375 - NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-3) + (0.078125 - NonCommutativeMultiply[4785.6, 2]^(-3)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.0390625 (NonCommutativeMultiply[4785.6, 2]^ - Rational[-7, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) - (( - 0.125 NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) ((0.125 - NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])^(-3) + (0.125 - NonCommutativeMultiply[4785.6, 2]^(-2)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.0625 (NonCommutativeMultiply[4785.6, 2]^ - Rational[-5, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) - (( - 0.0625 NonCommutativeMultiply[4785.6, 2]^ - Rational[-5, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])) ((0.25/NonCommutativeMultiply[ - 4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.125 (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) - - 0.355 ((NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) ( - 0.0546875 NonCommutativeMultiply[4785.6, 2]^(-4) - ( - 0.0546875 NonCommutativeMultiply[4785.6, 2]^ - Rational[-9, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-3)) ( - 0.078125 NonCommutativeMultiply[4785.6, 2]^(-3) - ( - 0.078125 NonCommutativeMultiply[4785.6, 2]^ - Rational[-7, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - Rational[1, 4] ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( - 0.125 NonCommutativeMultiply[4785.6, 2]^(-2) - (0.125 - NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) ( - 0. + (3./NonCommutativeMultiply[ - 4785.6, 2]) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) + (( - Rational[1, 6] ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( - 0.25/NonCommutativeMultiply[4785.6, 2] - (0.25 - NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) ( - 0. + (1.25 NonCommutativeMultiply[4785.6, 2]^(-2)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.75 (NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - 0. + (3./NonCommutativeMultiply[ - 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])))) - (((0.125 - NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2]) ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( - 0. + (0.875 - NonCommutativeMultiply[4785.6, 2]^(-3)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.625 (NonCommutativeMultiply[4785.6, 2]^Rational[-7, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - 0.375 NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - 0. + (3./NonCommutativeMultiply[ - 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) + (( - 0.8333333333333333 - NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - 0. + (1.25 NonCommutativeMultiply[4785.6, 2]^(-2)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.75 (NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - 0. + (3./NonCommutativeMultiply[ - 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2]))))) + (( - Rational[1, 10] ( - NonCommutativeMultiply[4785.6, 2]^Rational[1, 2] - - 1. ((-5773.) NonCommutativeMultiply[ - 50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^2) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2)) ( - 0. + (0.703125 - NonCommutativeMultiply[4785.6, 2]^(-4)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.546875 (NonCommutativeMultiply[4785.6, 2]^ - Rational[-9, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - 0.25 NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - 0. + (3./NonCommutativeMultiply[ - 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) + (( - 0.29166666666666663` - NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - 0. + (1.25 NonCommutativeMultiply[4785.6, 2]^(-2)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.75 (NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - 0. + (3./NonCommutativeMultiply[ - 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])))) + (( - 0.75 NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - 0. + (0.875 NonCommutativeMultiply[4785.6, 2]^(-3)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.625 (NonCommutativeMultiply[4785.6, 2]^Rational[-7, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - 0.375 NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - 0. + (3./NonCommutativeMultiply[ - 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2]))) + (( - 0.8333333333333333 - NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - 0. + (1.25 NonCommutativeMultiply[4785.6, 2]^(-2)) ( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 0.75 (NonCommutativeMultiply[4785.6, 2]^Rational[-5, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) + (( - 1. NonCommutativeMultiply[4785.6, 2]^Rational[-1, 2])/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])) ( - 0. + (3./NonCommutativeMultiply[ - 4785.6, 2]) (NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^Rational[1, 2])^(-2) + - 1. (NonCommutativeMultiply[4785.6, 2]^Rational[-3, 2]/( - NonCommutativeMultiply[4785.6, 2]^ - Rational[1, 2] + ((-5773.) - NonCommutativeMultiply[50.439430695308474`, 2] + - NonCommutativeMultiply[4785.6, 2])^ - Rational[1, 2])))))))))}, 0, 11, 1], - Editable->False], "]"}], "2"]}], "-", - TemplateBox[{"1"}, - "OutputSizeLimit`Skeleton"], "+", - RowBox[{ - SuperscriptBox[ - RowBox[{"Abs", "[", - FractionBox[ - RowBox[{"0.292`", "\[VeryThinSpace]", "+", - FractionBox[ - TemplateBox[{"1"}, - "OutputSizeLimit`Skeleton"], - SuperscriptBox[ - TemplateBox[{"1"}, - "OutputSizeLimit`Skeleton"], "2"]], "+", - FractionBox[ - RowBox[{"0.281`", " ", - RowBox[{"(", - TemplateBox[{"1"}, - "OutputSizeLimit`Skeleton"], ")"}]}], - RowBox[{ - SqrtBox[ - RowBox[{ - TemplateBox[{"1"}, - "OutputSizeLimit`Skeleton"], "+", - TemplateBox[{"1"}, - "OutputSizeLimit`Skeleton"]}]], "+", - TemplateBox[{"1"}, - "OutputSizeLimit`Skeleton"]}]]}], - RowBox[{"1.`", "\[VeryThinSpace]", "-", - RowBox[{"3.0660249149477024`*^-8", " ", - SuperscriptBox["x", "2"]}]}]], "]"}], "2"], " ", - RowBox[{"(", - InterpretationBox[ - RowBox[{ - FractionBox["8.419306000241433`*^-7", - SuperscriptBox["x", "2"]], "+", - InterpretationBox[ - SuperscriptBox[ - RowBox[{"O", "[", "x", "]"}], "11"], - SeriesData[$CellContext`x, 0, {}, -2, 11, 1], - Editable->False]}], - - SeriesData[$CellContext`x, 0, {8.419306000241433*^-7}, -2, - 11, 1], - Editable->False], ")"}]}]}], - RowBox[{ - RowBox[{"Im", "[", - SuperscriptBox["x", "2"], "]"}], "<", "0"}]}, - { - TemplateBox[{"1"}, - "OutputSizeLimit`Skeleton"], - TagBox["True", - "PiecewiseDefault", - AutoDelete->True]} - }, - AllowedDimensions->{2, Automatic}, - Editable->True, - - GridBoxAlignment->{ - "Columns" -> {{Left}}, "Rows" -> {{Baseline}}}, - GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{1.}}}, - GridBoxSpacings->{"Columns" -> { - Offset[0.27999999999999997`], { - Offset[0.84]}, - Offset[0.27999999999999997`]}, "Rows" -> { - Offset[0.2], { - Offset[0.4]}, - Offset[0.2]}}, - Selectable->True]} - }, - GridBoxAlignment->{"Columns" -> {{Left}}, "Rows" -> {{Baseline}}}, - GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{1.}}}, - GridBoxSpacings->{"Columns" -> { - Offset[0.27999999999999997`], { - Offset[0.35]}, - Offset[0.27999999999999997`]}, "Rows" -> { - Offset[0.2], { - Offset[0.4]}, - Offset[0.2]}}], - "Piecewise", - DeleteWithContents->True, - Editable->False, - SelectWithContents->True, - Selectable->False, - StripWrapperBoxes->True], - Short[#, 5]& ], - BaseStyle->{Deployed -> False}, - StripOnInput->False]}, - {GridBox[{ - { - PaneBox[ - TagBox[ - TooltipBox[ - StyleBox[ - StyleBox[ - DynamicBox[ToBoxes[ - FEPrivate`FrontEndResource[ - "FEStrings", "sizeBriefExplanation"], StandardForm], - ImageSizeCache->{65., {3., 9.}}], - StripOnInput->False, - DynamicUpdating->True, - LineSpacing->{1, 2}, - LineIndent->0, - LinebreakAdjustments->{1., 100, 0, 0, 0}], "OSLText", - StripOnInput->False], - StyleBox[ - DynamicBox[ - ToBoxes[ - FEPrivate`FrontEndResource["FEStrings", "sizeExplanation"], - StandardForm]], DynamicUpdating -> True, LineIndent -> 0, - LinebreakAdjustments -> {1., 100, 0, 0, 0}, - LineSpacing -> {1, 2}, StripOnInput -> False]], - Annotation[#, - Style[ - Dynamic[ - FEPrivate`FrontEndResource["FEStrings", "sizeExplanation"]], - DynamicUpdating -> True, LineIndent -> 0, - LinebreakAdjustments -> {1., 100, 0, 0, 0}, - LineSpacing -> {1, 2}], "Tooltip"]& ], - Alignment->Center, - BaselinePosition->Baseline, - ImageSize->{Automatic, {25, Full}}], - ButtonBox[ - PaneSelectorBox[{False-> - StyleBox[ - StyleBox[ - DynamicBox[ToBoxes[ - FEPrivate`FrontEndResource["FEStrings", "sizeShowLess"], - StandardForm], - ImageSizeCache->{52., {1., 9.}}], - StripOnInput->False, - DynamicUpdating->True, - LineSpacing->{1, 2}, - LineIndent->0, - LinebreakAdjustments->{1., 100, 0, 0, 0}], "OSLControl", - StripOnInput->False], True-> - StyleBox[ - StyleBox[ - DynamicBox[ToBoxes[ - FEPrivate`FrontEndResource["FEStrings", "sizeShowLess"], - StandardForm]], - StripOnInput->False, - DynamicUpdating->True, - LineSpacing->{1, 2}, - LineIndent->0, - LinebreakAdjustments->{1., 100, 0, 0, 0}], "OSLControlActive", - StripOnInput->False]}, Dynamic[ - CurrentValue["MouseOver"]], - Alignment->Center, - FrameMargins->0, - ImageSize->{Automatic, {25, Full}}], - Appearance->None, - BaselinePosition->Baseline, - - ButtonFunction:>OutputSizeLimit`ButtonFunction[ - OutputSizeLimit`Defer, 102, 30452638846179461121, 5/2], - Enabled->True, - Evaluator->Automatic, - Method->"Queued"], - ButtonBox[ - PaneSelectorBox[{False-> - StyleBox[ - StyleBox[ - DynamicBox[ToBoxes[ - FEPrivate`FrontEndResource["FEStrings", "sizeShowMore"], - StandardForm], - ImageSizeCache->{62., {1., 9.}}], - StripOnInput->False, - DynamicUpdating->True, - LineSpacing->{1, 2}, - LineIndent->0, - LinebreakAdjustments->{1., 100, 0, 0, 0}], "OSLControl", - StripOnInput->False], True-> - StyleBox[ - StyleBox[ - DynamicBox[ToBoxes[ - FEPrivate`FrontEndResource["FEStrings", "sizeShowMore"], - StandardForm], - ImageSizeCache->{62., {1., 9.}}], - StripOnInput->False, - DynamicUpdating->True, - LineSpacing->{1, 2}, - LineIndent->0, - LinebreakAdjustments->{1., 100, 0, 0, 0}], "OSLControlActive", - StripOnInput->False]}, Dynamic[ - CurrentValue["MouseOver"]], - Alignment->Center, - FrameMargins->0, - ImageSize->{Automatic, {25, Full}}], - Appearance->None, - BaselinePosition->Baseline, - - ButtonFunction:>OutputSizeLimit`ButtonFunction[ - OutputSizeLimit`Defer, 102, 30452638846179461121, 5 2], - Enabled->True, - Evaluator->Automatic, - Method->"Queued"], - ButtonBox[ - PaneSelectorBox[{False-> - StyleBox[ - StyleBox[ - DynamicBox[ToBoxes[ - FEPrivate`FrontEndResource["FEStrings", "sizeShowAll"], - StandardForm], - ImageSizeCache->{44., {1., 9.}}], - StripOnInput->False, - DynamicUpdating->True, - LineSpacing->{1, 2}, - LineIndent->0, - LinebreakAdjustments->{1., 100, 0, 0, 0}], "OSLControl", - StripOnInput->False], True-> - StyleBox[ - StyleBox[ - DynamicBox[ToBoxes[ - FEPrivate`FrontEndResource["FEStrings", "sizeShowAll"], - StandardForm], - ImageSizeCache->{44., {1., 9.}}], - StripOnInput->False, - DynamicUpdating->True, - LineSpacing->{1, 2}, - LineIndent->0, - LinebreakAdjustments->{1., 100, 0, 0, 0}], "OSLControlActive", - StripOnInput->False]}, Dynamic[ - CurrentValue["MouseOver"]], - Alignment->Center, - FrameMargins->0, - ImageSize->{Automatic, {25, Full}}], - Appearance->None, - BaselinePosition->Baseline, - - ButtonFunction:>OutputSizeLimit`ButtonFunction[ - OutputSizeLimit`Defer, 102, 30452638846179461121, Infinity], - Enabled->True, - Evaluator->Automatic, - Method->"Queued"], - ButtonBox[ - PaneSelectorBox[{False-> - StyleBox[ - StyleBox[ - DynamicBox[ToBoxes[ - FEPrivate`FrontEndResource["FEStrings", "sizeChangeLimit"], - StandardForm], - ImageSizeCache->{78., {1., 9.}}], - StripOnInput->False, - DynamicUpdating->True, - LineSpacing->{1, 2}, - LineIndent->0, - LinebreakAdjustments->{1., 100, 0, 0, 0}], "OSLControl", - StripOnInput->False], True-> - StyleBox[ - StyleBox[ - DynamicBox[ToBoxes[ - FEPrivate`FrontEndResource["FEStrings", "sizeChangeLimit"], - StandardForm]], - StripOnInput->False, - DynamicUpdating->True, - LineSpacing->{1, 2}, - LineIndent->0, - LinebreakAdjustments->{1., 100, 0, 0, 0}], "OSLControlActive", - StripOnInput->False]}, Dynamic[ - CurrentValue["MouseOver"]], - Alignment->Center, - FrameMargins->0, - ImageSize->{Automatic, {25, Full}}], - Appearance->None, - BaselinePosition->Baseline, - ButtonFunction:>FrontEndExecute[{ - FrontEnd`SetOptions[ - FrontEnd`$FrontEnd, - FrontEnd`PreferencesSettings -> {"Page" -> "Advanced"}], - FrontEnd`FrontEndToken["PreferencesDialog"]}], - Evaluator->None, - Method->"Preemptive"]} - }, - AutoDelete->False, - FrameStyle->GrayLevel[0.85], - GridBoxDividers->{"Columns" -> {False, {True}}}, - GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, - GridBoxSpacings->{"Columns" -> {{2}}}]} - }, - DefaultBaseStyle->"Column", - GridBoxAlignment->{"Columns" -> {{Left}}, "Rows" -> {{Baseline}}}, - GridBoxDividers->{"Columns" -> {{False}}, "Rows" -> {{False}}}, - GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{1.}}}, - GridBoxSpacings->{"Columns" -> { - Offset[0.27999999999999997`], { - Offset[0.5599999999999999]}, - Offset[0.27999999999999997`]}, "Rows" -> { - Offset[0.2], - Offset[1.2], { - Offset[0.4]}, - Offset[0.2]}}], - BaseStyle->"OutputSizeLimit", - FrameMargins->{{12, 12}, {0, 15}}, - FrameStyle->GrayLevel[0.85], - RoundingRadius->5, - StripOnInput->False], - Deploy, - DefaultBaseStyle->"Deploy"], - If[30452638846179461121 === $SessionID, - Out[102], Message[ - MessageName[Syntax, "noinfoker"]]; Missing["NotAvailable"]; Null]]], \ -"Input", - CellChangeTimes->{{3.768543087777726*^9, - 3.7685430879442806`*^9}},ExpressionUUID->"6554b1a2-4ef3-4028-b6d7-\ -fb29421dd8b6"], - -Cell[CellGroupData[{ - -Cell[BoxData[ - RowBox[{"Evaluate", "[", - RowBox[{"Integrate", "[", - RowBox[{ - RowBox[{"dgammaapprox", "[", "x", "]"}], ",", - RowBox[{"{", - RowBox[{"x", ",", "xmin", ",", "y"}], "}"}], ",", - RowBox[{"Assumptions", "\[Rule]", - RowBox[{"{", - RowBox[{ - RowBox[{"y", "\[LessEqual]", "xmax"}], ",", - RowBox[{"y", "\[GreaterEqual]", " ", "xmin"}]}], "}"}]}]}], "]"}], - "]"}]], "Input", - CellChangeTimes->{{3.7683985434030504`*^9, 3.7683986072433367`*^9}, { - 3.7683987122645473`*^9, 3.7683987207159576`*^9}, {3.76839886944032*^9, - 3.768398892933509*^9}, {3.7683990098878174`*^9, 3.7683990336223617`*^9}, { - 3.7684001261407275`*^9, 3.768400130011361*^9}, 3.76840018234347*^9}, - CellLabel->"In[98]:=",ExpressionUUID->"e5a90656-1849-48dd-b31b-5210c25cb5e6"], - -Cell[BoxData[ - RowBox[{"dgammaapprox", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "211.4`"}], "+", "y"}], ")"}]}]], "Output", - CellChangeTimes->{3.768400132142707*^9}, - CellLabel->"Out[98]=",ExpressionUUID->"43ab291e-14f1-44d4-944c-b6e7b367f516"] -}, Open ]], - -Cell[BoxData[""], "Input", - CellChangeTimes->{{3.7683999486093597`*^9, 3.768399995543908*^9}, - 3.768401511411*^9, - 3.7684015501165133`*^9},ExpressionUUID->"6ec1ff3f-fd33-4925-b360-\ -3bd71dbbb9b6"], - -Cell[BoxData[""], "Input", - CellChangeTimes->{{3.768399999754644*^9, - 3.7683999997626295`*^9}},ExpressionUUID->"bab53862-b037-401f-bad7-\ -c3c6b54a0b12"] + RowBox[{"FortranForm", "[", "%", "]"}]], "Input", + CellChangeTimes->{{3.7685564379611263`*^9, + 3.768556440645036*^9}},ExpressionUUID->"97837c7e-6026-4a3f-9cfa-\ +273fc5caf3c8"] }, WindowSize->{1536, 781}, -WindowMargins->{{-8, Automatic}, {Automatic, -8}}, +WindowMargins->{{-8, Automatic}, {Automatic, 0}}, FrontEndVersion->"12.0 for Microsoft Windows (64-bit) (April 8, 2019)", StyleDefinitions->"Default.nb" ] @@ -8115,53 +2040,41 @@ *) (*NotebookFileOutline Notebook[{ -Cell[558, 20, 5316, 156, 1093, "Input",ExpressionUUID->"037a651f-7204-4dd6-865b-a90153e54791"], -Cell[5877, 178, 4010, 129, 291, "Input",ExpressionUUID->"8d2adb61-5946-4313-bd6e-7ea714537656"], +Cell[558, 20, 5635, 164, 1150, "Input",ExpressionUUID->"037a651f-7204-4dd6-865b-a90153e54791"], +Cell[6196, 186, 4010, 129, 291, "Input",ExpressionUUID->"8d2adb61-5946-4313-bd6e-7ea714537656"], Cell[CellGroupData[{ -Cell[9912, 311, 779, 18, 28, "Input",ExpressionUUID->"1bb2a22e-ee7e-457c-9fa5-3ad0259e7bb1"], -Cell[10694, 331, 13904, 252, 261, "Output",ExpressionUUID->"cb6b9de2-9043-4280-88ed-0c7952450d3a"] +Cell[10231, 319, 775, 17, 28, "Input",ExpressionUUID->"1bb2a22e-ee7e-457c-9fa5-3ad0259e7bb1"], +Cell[11009, 338, 13970, 252, 261, "Output",ExpressionUUID->"2b432197-b4be-4234-b069-ea0ceae093db"] }, Open ]], -Cell[24613, 586, 1734, 44, 67, "Input",ExpressionUUID->"6c45ba6a-a2e4-4dfa-bf7a-543610b4d110"], -Cell[26350, 632, 543, 17, 28, "Input",ExpressionUUID->"04e4efe9-ea24-435a-a90c-3bf1b8c0b336"], +Cell[24994, 593, 1734, 44, 67, "Input",ExpressionUUID->"6c45ba6a-a2e4-4dfa-bf7a-543610b4d110"], +Cell[26731, 639, 591, 17, 28, "Input",ExpressionUUID->"04e4efe9-ea24-435a-a90c-3bf1b8c0b336"], Cell[CellGroupData[{ -Cell[26918, 653, 967, 21, 28, "Input",ExpressionUUID->"44f1aff7-c138-4f4d-86fa-5ca7df87f6ff"], -Cell[27888, 676, 16852, 296, 236, "Output",ExpressionUUID->"d27e723d-41c6-4407-b1a7-e41abec2eae8"] +Cell[27347, 660, 967, 21, 28, "Input",ExpressionUUID->"44f1aff7-c138-4f4d-86fa-5ca7df87f6ff"], +Cell[28317, 683, 16902, 297, 236, "Output",ExpressionUUID->"b94229de-f6a6-4f4b-96f7-f3a03ecef3ed"] }, Open ]], Cell[CellGroupData[{ -Cell[44777, 977, 2266, 62, 67, "Input",ExpressionUUID->"a731069b-1b83-412b-b454-26db50b1cc27"], -Cell[47046, 1041, 732, 18, 59, "Output",ExpressionUUID->"861145d9-a838-4010-aacf-b313bfdb4b00"] +Cell[45256, 985, 2266, 62, 67, "Input",ExpressionUUID->"a731069b-1b83-412b-b454-26db50b1cc27"], +Cell[47525, 1049, 783, 19, 59, "Output",ExpressionUUID->"58736143-4ff2-4ace-b27c-23f706b8596d"] }, Open ]], -Cell[47793, 1062, 595, 16, 28, "Input",ExpressionUUID->"6fc8f691-fb14-4e78-ab99-1dc2d62ef10b"], -Cell[48391, 1080, 847, 23, 28, "Input",ExpressionUUID->"cc0a0d90-49af-490d-8c27-e1b8c06612e1"], -Cell[49241, 1105, 1356, 37, 48, "Input",ExpressionUUID->"3223564e-c632-41a1-86b2-1263eda30155"], -Cell[50600, 1144, 1020, 23, 67, "Input",ExpressionUUID->"5a733281-bb2b-4eac-bf46-072d6163fbcd"], +Cell[48323, 1071, 591, 15, 28, "Input",ExpressionUUID->"6fc8f691-fb14-4e78-ab99-1dc2d62ef10b"], +Cell[48917, 1088, 843, 22, 28, "Input",ExpressionUUID->"cc0a0d90-49af-490d-8c27-e1b8c06612e1"], +Cell[49763, 1112, 1352, 36, 48, "Input",ExpressionUUID->"3223564e-c632-41a1-86b2-1263eda30155"], +Cell[51118, 1150, 838, 17, 28, "Input",ExpressionUUID->"5a733281-bb2b-4eac-bf46-072d6163fbcd"], Cell[CellGroupData[{ -Cell[51645, 1171, 216, 4, 28, "Input",ExpressionUUID->"de858e80-3c44-4ea0-a374-ba372a5e43fa"], -Cell[51864, 1177, 570, 9, 32, "Output",ExpressionUUID->"a234b46c-2591-4717-b3ce-58eb977ba7d5"] +Cell[51981, 1171, 212, 3, 28, "Input",ExpressionUUID->"de858e80-3c44-4ea0-a374-ba372a5e43fa"], +Cell[52196, 1176, 618, 9, 32, "Output",ExpressionUUID->"1893da70-0168-4162-8384-e0660be1306e"] }, Open ]], -Cell[52449, 1189, 250, 4, 28, "Input",ExpressionUUID->"d5c88e0e-f64c-4c7b-a72d-9d86409b15d6"], +Cell[52829, 1188, 272, 4, 28, "Input",ExpressionUUID->"d5c88e0e-f64c-4c7b-a72d-9d86409b15d6"], Cell[CellGroupData[{ -Cell[52724, 1197, 811, 15, 28, "Input",ExpressionUUID->"2c1e3732-16d5-42ed-930d-8f72fb168b51"], -Cell[53538, 1214, 10280, 188, 223, "Output",ExpressionUUID->"8dc41d3e-6f51-416e-b35f-8d0b7a84ebe6"] +Cell[53126, 1196, 1072, 18, 28, "Input",ExpressionUUID->"2c1e3732-16d5-42ed-930d-8f72fb168b51"], +Cell[54201, 1216, 512, 11, 21, "Message",ExpressionUUID->"2298e405-8520-4a21-b61c-4f7574b19f67"], +Cell[54716, 1229, 45465, 766, 216, "Output",ExpressionUUID->"863e5267-4792-4c73-88f7-cf403592ee7c"] }, Open ]], Cell[CellGroupData[{ -Cell[63855, 1407, 512, 11, 28, "Input",ExpressionUUID->"1f401330-d01a-41d9-92dc-375db5b59cd7"], -Cell[64370, 1420, 235, 4, 32, "Output",ExpressionUUID->"24628233-8038-4700-8387-fc589ee91f56"] +Cell[100218, 2000, 636, 11, 28, "Input",ExpressionUUID->"1f401330-d01a-41d9-92dc-375db5b59cd7"], +Cell[100857, 2013, 282, 4, 32, "Output",ExpressionUUID->"56317672-98f8-4319-a837-3565218e385c"] }, Open ]], -Cell[CellGroupData[{ -Cell[64642, 1429, 331, 8, 28, "Input",ExpressionUUID->"e8d9247c-81d3-45ea-b40d-269423746d1f"], -Cell[64976, 1439, 424, 11, 21, "Message",ExpressionUUID->"0f0125de-9962-48b1-8548-ddbcf39d76a4"] -}, Open ]], -Cell[65415, 1453, 417, 9, 28, "Input",ExpressionUUID->"112b93a5-9a00-4ce2-8bd3-4700707f2f5b"], -Cell[65835, 1464, 714, 15, 28, "Input",ExpressionUUID->"28a4a194-a354-42bf-8db1-6082ef9fae81"], -Cell[66552, 1481, 583, 12, 28, "Input",ExpressionUUID->"1c5e8b38-0475-420a-a988-7faf1f33823d"], -Cell[67138, 1495, 391593, 6563, 270, "Input",ExpressionUUID->"6554b1a2-4ef3-4028-b6d7-fb29421dd8b6"], -Cell[CellGroupData[{ -Cell[458756, 8062, 800, 17, 28, "Input",ExpressionUUID->"e5a90656-1849-48dd-b31b-5210c25cb5e6"], -Cell[459559, 8081, 254, 6, 32, "Output",ExpressionUUID->"43ab291e-14f1-44d4-944c-b6e7b367f516"] -}, Open ]], -Cell[459828, 8090, 202, 4, 28, "Input",ExpressionUUID->"6ec1ff3f-fd33-4925-b360-3bd71dbbb9b6"], -Cell[460033, 8096, 154, 3, 28, "Input",ExpressionUUID->"bab53862-b037-401f-bad7-c3c6b54a0b12"] +Cell[101154, 2020, 192, 4, 28, "Input",ExpressionUUID->"97837c7e-6026-4a3f-9cfa-273fc5caf3c8"] } ] *) diff --git a/raremodel-nb.ipynb b/raremodel-nb.ipynb index 35e06f0..49d09d1 100644 --- a/raremodel-nb.ipynb +++ b/raremodel-nb.ipynb @@ -53,7 +53,9 @@ "import zfit\n", "from zfit import ztf\n", "from IPython.display import clear_output\n", - "import os" + "import os\n", + "import tensorflow_probability as tfp\n", + "tfd = tfp.distributions" ] }, { @@ -77,7 +79,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -153,7 +155,7 @@ "\n", " p0 = 0.5 * ztf.sqrt(_mass**2 - 4*mmu**2)\n", "\n", - " gamma_j = tf.divide(p, p0) * _mass * width / q\n", + " gamma_j = tf.divide(p, p0) * _mass * width / q2\n", "\n", " #Calculate the resonance\n", "\n", @@ -479,7 +481,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 9, "metadata": {}, "outputs": [], "source": [ @@ -522,12 +524,20 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 24, "metadata": {}, "outputs": [ { + "name": "stderr", + "output_type": "stream", + "text": [ + "c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\numpy\\core\\numeric.py:538: ComplexWarning: Casting complex values to real discards the imaginary part\n", + " return array(a, dtype, copy=False, order=order)\n" + ] + }, + { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAD8CAYAAABjAo9vAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XmcXGWd7/HPU3v1nk53kk46S4eEsCUEDJssIlECYZnr1TvAjCjqlZlxGX2NXgfG64Be9cJ1xhkdnFFUxLkquOHGIhdZVFSyQQfIvpLupLf0vtf23D/OqV6STtJJqvpUVX/fr9d5nXOeOnXqVw/Ut0+eOueUsdYiIiKFw+d1ASIiklkKdhGRAqNgFxEpMAp2EZECo2AXESkwCnYRkQKjYBcRKTAKdhGRAqNgFxEpMIFs7LSqqsouWrQoG7sWESlImzZtOmytrc7EvrIS7IsWLWLjxo3Z2LWISEEyxryRqX1pKEZEpMAo2EVECoyCXUSkwGRljH0i8XicxsZGhoaGpuolT1kkEqG2tpZgMOh1KSIiJ23Kgr2xsZHS0lIWLVqEMWaqXvakWWtpb2+nsbGRuro6r8sRETlpUzYUMzQ0xMyZM3M61AGMMcycOTMv/mUhIjKRKR1jz/VQT8uXOkVEJqIvT0VEMuD5A8/z0OsPeV0GMM2C/de//jXLli1jyZIl3HfffV6XIyIF5NkDz/KDbT/wugxgGgV7Mpnkwx/+ME899RRbt27lkUceYevWrV6XJSIFonO4kxmRGV6XAUyjYF+/fj1Llixh8eLFhEIhbr31Vn7xi194XZaIFIiuoS5mhHMj2KfsdMexPvurLWw91JPRfZ4zt4x7bjr3mI8fPHiQ+fPnj6zX1taybt26jNYgItNXx1AHtaW1XpcBTKMjdmvtUW06+0VEMiWXhmI8OWI/3pF1ttTW1tLQ0DCy3tjYyNy5c6e8DhEpPIOJQfrj/VRFq7wuBZhGR+wXXXQRu3btYt++fcRiMR599FFuvvlmr8sSkQJwePAwADMjMz2uxOHJEbsXAoEADzzwAGvWrCGZTPL+97+fc8+d+n85iEjhSQd7dVFGfifjtE2bYAdYu3Yta9eu9boMESkwbQNtAFRHcyPYp81QjIhItrQNOsGuMXYRkQLRPtiO3/hz5qwYBbuIyGlqG2xjZmQmPpMbkZobVYiI5LG2wTaqinJjGAYU7CIip+3wwOGc+eIUFOwiIqft8ODhnPniFKbJ6Y7t7e2sXr0agObmZvx+P9XVzl/X9evXEwqFvCxPRPJYIpWgY6hDwT7VZs6cSX19PQD33nsvJSUlfPKTn/S4KhEpBO2D7Vgss4pmeV3KCA3FiIichqb+JgDmFM/xuJJRkz5iN8b4gY3AQWvtjaf1qk/dBc2vndYujjJnOVyvX0USkanV3N8MQE1xjceVjDqZI/aPAduyVYiISD5KB3veHbEbY2qBG4AvAH932q+qI2sRKRBN/U2UBEsoDZV6XcqIyR6x/yvwKSB1rA2MMXcaYzYaYza2tbVlpDgRkVzX1N+UU0frMIlgN8bcCLRaazcdbztr7YPW2lXW2lXpUwlFRApdc39zTo2vw+SGYi4HbjbGrAUiQJkx5nvW2ndnt7TsuPfee70uQUQKSHN/M+dVned1GeOc8IjdWnu3tbbWWrsIuBV4Ll9DXUQkkwYTg3QOd+bcEbvOYxcROUW5eEYMnOSVp9baF4AXslKJiEieSV+cpCN2EZEC0dLfAuTeEbuCXUTkFDX0NuA3fmYXz/a6lHEU7CIip6ixr5E5xXMI+oJelzKOgl1E5BQ19jYyv3S+12UcZVoG+wsvvMAdd9zhdRkikucaexupLa31uoyjTMtgFxE5XX2xPjqHO3PyiN2TH9q4f/39bO/YntF9nlV5Fn9/8d9ndJ8iIsfS0NsAoGD32iWXXMLw8DB9fX10dHSwcuVKAO6//37WrFnjcXUikk8a+xoBqC1xh2J2Pg3te+CSvwaft4MhngS7V0fW69atA5wx9ocffpiHH37YkzpEJP+lj9hHxtjrvw+HXoHLPuRhVQ6NsYuInILG3kYqwhWj92Fv2AC1F3tblEvBLiJyChp6G0bH17sbofcQzM+NYJ9WY+xpV199NVdffbXXZYhIHmvobWBF9QpnpXGDM69d5V1BY+iIXUTkJMWSMZr6m1hQusBpaNgAgQjMXu5tYS4Fu4jISTrQc4CUTbG4fLHT0Lge5l4AgZC3hbmmNNittVP5cqcsX+oUEW/s69kHQF15HSSGoWlzzgzDwBQGeyQSob29PedD01pLe3s7kUjE61JEJEft63aCfWHZQmh6FZKxnDkjBqbwy9Pa2loaGxtpa2ubqpc8ZZFIhNra3Lv/g4jkhn3d+5hTPIeiYJEzDANQe5G3RY0xZcEeDAapq6ubqpcTEcmafd37qCtz86xhPZTPh7Lc+RUlfXkqInISrLVOsJe7wd64MaeO1kHBLiJyUloHWhlIDDjB3nMIehpz5sKkNAW7iMhJ2N+zH3DPiGnIvfF1ULCLiJyU9BkxdeV1zhWn/jDMWeFxVeMp2EVETsKerj2UBEuojlY7wT53Zc5cmJSmYBcROQm7unaxpGIJJhmHQ/U5NwwDCnYRkUmz1rKzcydnzjjTudo0OaxgFxHJZy0DLfTGelk6Yykc+JPTuOAyb4uagIJdRGSSdnbuBHCO2A+8BJWLoXS2x1UdTcEuIjJJ6WBfUnEGNLwE8y/1uKKJKdhFRCZpV+cuaoprKOtthYF2WKBgFxHJazs7d+b8+Doo2EVEJiWejLO/e//o+Hq0EqqWel3WhBTsIiKTsLd7LwmbYGnFUifYF1wGxnhd1oQU7CIik7C9YzsAyyJV0LEHFlzicUXHpmAXEZmELe1biAaiLOo85DTk6Pg6KNhFRCZla/tWzq48G3/DOghEoOZ8r0s6JgW7iMgJJFIJdnTs4Nyqc2Hf7537rwfCXpd1TCcMdmNMxBiz3hiz2RizxRjz2akoTEQkV+zt3stQcohzShZAy2tQd5XXJR3XZH7zdBi4xlrbZ4wJAi8aY56y1r6U5dpERHLClsNbADh3oM9pWJTnwW6ttYD7bgi6k81mUSIiuWRL+xaKg8UsbNoKwWKYd6HXJR3XpMbYjTF+Y0w90Ao8Y61dl92yRERyx7b2bZxdeTa+/S/CwsvAH/S6pOOaVLBba5PW2pVALXCxMea8I7cxxtxpjNlojNnY1taW6TpFRDwRT8XZ3rGdc8sWweEdOT++Did5Voy1tgt4AbhugscetNaustauqq6uzlB5IiLe2tm5k1gqxnlxdwS6EILdGFNtjKlwl6PA24Dt2S5MRCQX1LfWA7Cy8yBEynPuh6snMpmzYmqA7xpj/Dh/CH5krX08u2WJiOSG+tZ65hTPYc4b62Hh5eDze13SCU3mrJhXgQumoBYRkZxT31bPyvIl8Pp6uOwjXpczKbryVETkGJr7m2nub2Zlwo3KJau9LWiSFOwiIsdQ3+aOr7cfcH7ftHKxxxVNjoJdROQY6lvrifojnPnGRljyNq/LmTQFu4jIMdS31nNeSS3B+ICCXUQk3/XH+9nesZ2VCQP+ECy6wuuSJk3BLiIygZdbXiZpk1x0uAEWvhlCxV6XNGkKdhGRCWxo3kDQF2Blyy5Y8navyzkpCnYRkQmsa17HishsotbCUgW7iEhe6x7uZnvHdi4eGIDKM6DqTK9LOikKdhGRI2xq2UTKprioeTectRaM8bqkk6JgFxE5wobmDYRNgPMH+2HZDV6Xc9IU7CIiR1jfvJ6VpohQUZXzw9V5RsEuIjJG20AbOzt3cmlXCyy7Li/u5ngkBbuIyBgvHnwRgCt7u/JyGAYU7CIi4/z+4O+ZZcKcmQrA4qu9LueUKNhFRFyJVIKXDv2Jywf6MWdeC6Eir0s6JQp2ERHX5rbN9Mb7uLKnE879r16Xc8oU7CIirhcPvkgAw6UJPyy91utyTpmCXUTE9WLj7zk/Fqd02fV5OwwDCnYREQCa+prY3rmDq/p683oYBhTsIiIAPHvgWQBWxwN589umx6JgFxEBnn3jGZbEkyxcej0Ewl6Xc1oU7CIy7XUMdfBy6yus7uuD5e/yupzTpmAXkWnvhYYXSGF5mynJ24uSxlKwi8i095s9TzAvnmDZubfk5b1hjqRgF5FprTfWy0stG7lmYACz8i+9LicjFOwiMq39Zv8zxElxXXEdVC3xupyMULCLyLT2xI4fMj8eZ/mK93hdSsYo2EVk2modaGV9x1ZuGIhhzsvvi5LGUrCLyLT11K6fY4Eb5l0F0Qqvy8kYBbuITFtPbH+Uc4eHWXTpR70uJaMU7CIyLe3t3MO2oTZu8M2AeW/yupyMUrCLyLT02MsPELCW65e/z+tSMk7BLiLTTiwZ45eNL/DWoQRVFxTO2TBpCnYRmXae2/kzOknwzjmX5/V9149FwS4i085PNz9ITSLBpVfe5XUpWaFgF5FppaF9By8Nt/KOSC3+mUu9LicrThjsxpj5xpjnjTHbjDFbjDEfm4rCRESy4Sd//CI+a3nHxZ/wupSsCUximwTwCWvty8aYUmCTMeYZa+3WLNcmIpJRg7E+fnL4Za4hypyl13ldTtac8IjdWttkrX3ZXe4FtgHzsl2YiEimPf7H/02PD959zu1el5JVJzXGboxZBFwArJvgsTuNMRuNMRvb2toyU52ISIbYVIrv7Xucs5Nw4aoPeV1OVk062I0xJcBPgY9ba3uOfNxa+6C1dpW1dlV1dXUmaxQROW1/2vBv7PWluH3RDRj/ZEah89ek3p0xJogT6t+31j6W3ZJERDLMWv5z63epAtZc8Rmvq8m6yZwVY4BvA9ustV/OfkkiIpm1rf47/MEX5y/mXEEoVOx1OVk3maGYy4HbgWuMMfXutDbLdYmIZIa1fLP+3ylNwa1v+bzX1UyJEw7FWGtfBMwU1CIiknG7N/9fnvEN81fVl1BaNNPrcqaErjwVkcKVSvKtTf9C1MK73/JFr6uZMgp2ESlYb2z4D57yx7llzpupKJ7ldTlTRsEuIoUpPsQDm79OGMN7r5weY+tpCnYRKUhbfvcFfh023L7wOqqKp9e1NQp2ESk8/e18Zc+PqcDP+y6/x+tqppyCXUQKzku//hh/Cgf54Fl/SUmoxOtyppyCXUQKSrJxA19u38AcX5RbVv2t1+V4QsEuIoUjleKnT/8t28IhPnHJXYT9Ya8r8oSCXUQKRtfGb/JV081FJQtZs/QdXpfjGQW7iBSGvjYe2PQv9Pn83PXWf8a5zdX0pGAXkYKw9YkP8+NogFsXXc+Zlcu8LsdTCnYRyXvxLb/gnu7NVAaK+NCb/6fX5XiusO82LyKFb7CLh397F9uLQ/zr5f+LslCZ1xV5TkfsIpLX9j75cf6jyM+1sy9mdd0ar8vJCQp2Eclbidd/yj8e/iNF/jB3v+V+r8vJGQp2EclP3Y1884W72BwJc/dl91AVrfK6opyhYBeR/JNK8srP7uDrJWFunPcWblhys9cV5RQFu4jknd7ff4m7EgepCVfw6avu87qcnKOzYkQkr9i9v+WzW75JS3ERD69+YFre5OtEdMQuIvmj+yD/+eSdPF1cxEdW/DUrZ630uqKcpGAXkfyQiLHuJ7fx5ZIgb5t9CR9Y+SGvK8pZCnYRyQtNT3yM/2EOszBazedXf2Va3wvmRBTsIpLz+v/4VT7a8hyxQJivXPcQxcFir0vKafryVERyWnzbE3zi1X9jdzTCA2/9CnXldV6XlPN0xC4iOcse2swXnvs4f4hG+MzFd3PF/Ku8LikvKNhFJDd1HeAbP7+Nn5ZE+OCZt/HOs//C64ryhoJdRHJPbwvfffQmvlbs56a5V/LRS+/2uqK8omAXkdwy2MkPH72Rf4qmuHbWKj63+qs6A+YkKdhFJHfE+vnZIzfx+dAQV1eex31rHiTg0zkeJ0s9JiK5YbiXR35wPV/0d/PmsiX809qHCfqCXleVlxTsIuI5O9DJtx5dy1f9fby1/Cy+dNP3CPvDXpeVtxTsIuIp29/Ovzx6Hd8JDHHjzJV8bu1DOlI/TQp2EfHMcOcbfOax/8JTgQS3zL6Mf1jzdXxGX/2dLgW7iHiio2EdH3v6A9QHDR9fdBPvv+oLOvslQxTsIjLl9mz9CR/+0z0cDhj+ecXfcu0FH/S6pIKiYBeRKfXUb+/lnr0/psjn4ztX/TPLF1/rdUkF54TBbox5CLgRaLXWnpf9kkSkEMXjQ3zpF7fwSP9eLjARvnTTD5g9c5nXZRWkyXxL8TBwXZbrEJEC1ti2lTt+cCWP9O/l9sgCvv0Xv1OoZ9EJj9ittb8zxizKfikiUmistfz85a9x32vfwGdT/NOCG1mz+n6vyyp4GmMXkazoGGznc099gGd797AqnuILV93H3GU3eV3WtJCxYDfG3AncCbBgwYJM7VZE8oy1ll/v/Cn3vfQFem2cT/iquP3WR/CX1nhd2rSRsWC31j4IPAiwatUqm6n9ikj+aOxt5PPPf5I/dG7hnOEYD55xC8veei/4dNHRVNJQjIictngyzvdef4h/r/93TCrB3w/5ue2G7+JfcKnXpU1Lkznd8RHgaqDKGNMI3GOt/Xa2CxOR3Get5fmG5/nyS1/gjcFWru4f4NPz1zJnzX0Q0g9Oe2UyZ8XcNhWFiEh+2dGxgy+t+yLrWl+mLhbna8NBrlz7Hcxi/S6p1zQUIyIn5UDPAb6++T94fO/jlKUsd3d28d/Ouo3g6nsgXOJ1eYKCXUQmqbG3kW+8+g1+teeXBFOW93b38N+Lz6D8tu9DzflelydjKNhF5Lj2d+/n4S0P84vdP8dnU9zW3cMHhg1V13wOLrhdZ7zkIAW7iEyovrWe77z+HZ5veJ4ghnf29fPBrh5mX/h+eMunoKjS6xLlGBTsIjIikUrwQsMLfHfLd6lvq6fMF+aD/XFuO9xM1Vk3w233QOVir8uUE1Cwiwgt/S08tusxfrLrJ7QOtDIvWMpdvXHe0d5A0YI3w/v+E+Zf5HWZMkkKdpFpKplK8lLTS/xox4/4beNvSdkUlxfN5392x7myYwuBhVfADd+Euiu9LlVOkoJdZJrZ0bGDx/c+zpN7n6R1sJXKcAV3lCzlnXs2ML//RVh0Jdz8LVh0hdelyilSsItMAy39LTy17yl+tfdX7OzcScAEuKLqfD5FJW/d/jyh1Gtw9o1w2UdAtwHIewp2kQLV0NvAs288y28O/IbNbZsBWDHzPP5h/lrWHHiVyvU/g2ARrHofXPo3+lK0gCjYRQqEtZbdXbt57sBz/ObAb9jesR2AsyvP5qPL3s21nS0sev2X0P8kVCyA1ffAm+7QaYsFSMEuksf6Yn2sa1rH7w/+nj8c+gPN/c0ArKxeySdXfpTVMUvttqdg0xfB+GHZ9fCm98EZ1+jCogKmYBfJI8lUkp2dO/lT05948eCLvNLyCgmboDhYzKU1l/JXyz/IVckgs7b/Gh6/F+L9UD4frv4HuPB2KJvr9VvImqF4ku7BOF0DcboGYnQNxukfTjAQSzIYSzIQSzIQT4wsD8aTpFIWa8FiSVmwFvw+KA4FiIb8FIcDlIQDzCmLUFMRoaY8woLKYkKB3P6jqGAXyWHpIN/QvIENLRvY1LKJ3lgvAGfOOJP3nPserqh5MyvjSYLbn4BffQb6miFcDsvfBStugQWX5dXR+VA86YTzYGw0pAfidLmh3T0Yo7N/9PHuwTidAzGG4qkT7jsU8BEN+ikK+YkG/fh9BmPAZwwAxhhSKctAPMHAcJL+WOKo/Yb8PpbOLmH5vHKuXFrNlWdWURYJZqUvTpWCXSSHDCWG2Nq+lVfbXmVT66ZxQb6gdAHXLryWi+ZcxEXVFzDr8G7Y+kt44b3Q2wS+ICy9Fs6/BZaugWDE0/cSS6RGwrezP+YGc4zOgfi4wO4ciI0eaQ8eP6CDfkNFUYgZRUEqoiHmVxaxPBpkRnGI8miQCrd9RlGQsmiQknDACXE3yAP+k/8DN5xI0tozTFP3EAe7Btje3MvWQz08+VoTj25oIOAzvHlJFZfUVfKOC+YxtyJ6Ot2WEcbazP+K3apVq+zGjRszvl+RQmKtpbG3kc2HN/Nq26tsbtvMzo6dJGwCgPml850Qn3MRq2avYk6gBPb9DnY86UwD7RCIwpLVcM6fwZlrIFKe8TqTKUuPe1Q8Es798TFBnT6yjo9ZjtEfSx5zn0cGdEWRG8pFTkDPKHLbokHKi0bXo0E/xj269loimaK+oYvfbGvlidcO0dAxSEk4wCv/+HaCp/AHxBizyVq7KhO1KdhFpkDKpjjQc4DtHdtHpq3tW+kc7gQgGoiyvGo5K6pXsKJqBcurl1MVmQmHd8KuZ2D3M/DGHyEZg1ApLLsOzr4JlrzthL9UlEpZ+mIJegadYYuewQQ9Q3F6BuP0DCXc+bHb+4YTHCsmfIaRIB4bwOmj5oriEBVjg9rdpiiUOwGdCdZaNjd24zOworbilPaRyWDXUIxIhg0mBtnbvZcdHTtGQnxHxw4GEgMABEyAMyrO4Kraq1hRvYLzq8/njIozCPgCMNAB+1+EV7+I3f0MpusAAMOVy+g+5w5aZl3FofLz6Y376O9K0PeHJvqGE/QPJ+gbStA3nDgqpHuPE8xppeEAZdEgpZEA5dEgtTOilNWUURYNUBoJOiHtHlHPKBoN69JIAJ+vcAL6VBljWDn/1AI9GxTsIqeoP97P3q697Onew+7OPezq3M3e7r20DDRhcZI07ItSE13M8vLVVAbrqPDXUcRchuI++g7HeeVAF63dT7On72XOGqpnUXI/PiwDNswfUufxfOrt/Da5goOHquFQ+pVfG1dHwGcoiThnb5SEA5RFgsytiHJWtJSyiDPWXBYJuPMgZVFnm3J3vSQSwK9wLigKdilY1lpiyRRD8RTDiSTD8RRD8STDiYnn6e2G4ikG40kGYwn6hofpGG6mM95ET7KZgVQzg7aFmK+JlL9z9LVSflKxalLDs0nFziU1PIvkUA298UoO4xuJ4tk0caHvd6zy7+Jm/3aWsR8/KYYJsSdyDk9UvI/G8jfRUbGcomiUunCA88IBN7j9lISDFIf9lLrz4nCAcMBXUMMacvoU7JJR6TCNJVLEk9adpxh257Ex83HbJZPEE5bhZIq4+1h6nt5uOJFywtkNaSeEjx3Qw4nUCYcgAPAN4Qt2YYId+ELtzhRsxx9uxwQ6wbg78YHPRIgwiyrfWVQEaqkMzqc6sohZ0RpKwiGiofSpdAGK/Ulm9u1gRkc9pW2vEG3ZhL/3oLMvfxjmvQnq/hzqriQ8bxXnBCOck7X/MjKdKNingLXOxQ/JlCVlLcmUJWktqdTYZca1pWx626Ofl0haEskUiZQlkXKCMZmyxJMpEunllLOcSI3ZNjl2e2eeSKXc5x69XXo5nnS3Se8rORreseT4wI4nM/9lfCjgI+z3EQ76CAf8hIM+ImPmxcUBIgE/EffxSNBHJOgnHPARChgSppthOhi0h+lPHqY30UZPvJXOWCsdwy0MJPrGvV5psJSFZQuZX3YJC0oXsKBsAQtKFzC/dD6VkcqJj46TcWjbDk2bx0+JIefxslpYcDHUXgzzL4Y5KyAQynhfiUCOBfunf/bayFGWxb0izA1Fi7M89rHUyPrYxyZuT9nxV5gx7moz6z4PGFlOvz5Hh7EbxOn2kcdTowE+dtssnHh0yoyBoM9HwG/w+wxBv4+AzziT32l31n0E3W0CbqgW+XwE3ecEAz5Cfic4Q34fQb+PUGB0HjpiPeg3hAOT3M7vJ+ju17mA5OggtdbSG+/l8MBhWgdbaRtooW2wjbaBNtoG29g/0EZrbystAy3EU/Fxzy0NllJTUsMZM2q5ovgi5pbMpaa4hrklc1lYtpDy8AlOGYwPQuu2MQFeDy1bITnsPB4shpoVsOoDzo9T1F4M5fMy9Z9Q5IRyKtj/uKed4XgSY5yrwdJXhBkYbXOXfQYM6e3S27jbj9kuvTzSnt7WBz7jcx8f/5hvgn36fQafz+BPL7s1TNTu9zFBm7P9hO0jbWNeyxyj3WdGgtkJXieYg24IBv1uQI8Na59xtvf5cvoMhpRN0RvrpX2onc7eTjqHOukY6hiZtw+1jwR320AbQ8mho/ZRFChiVtEsqouqWV69nLcXv525xXOZWzKXOcVzqCmuoTRUOrmCEjFo3w2tW50gb9vuLHfsA/fLUSLlUHM+XHIn1Kx0livPyKsrPaXw5FSwP//Jq70uQTIkkUrQE+uhZ7jHmY9Z7hx2Qjs9tQ+10znUSddwF0k78UUtpcFSKqOVzCqaxXlV5zEr6oR3dbR63Lw4ePxzuic01A3te6Bjrxvkboi374aUc7EQxg8zz4A5y2H5n8Oss2HuSqhY6Pz1F8khORXskhustcRSMfpiffTH++mP99MX72MgPkBfvI++WN9oWLuB3R3rHhfi/fH+475GaaiUykglM8IzWFC6gPOrz3fWIzPGz8MzmBGZQch/muPR8cHR4G7f4wb5Hme9v23MhgZmLHKC+6wbYNY5UH0WVC2FQPj0ahCZIgr2PJeyKYYSQwwlhxhMDDKUcOZjl4eSQwzGnfmRIT1RcPfH+kcuaz+esD9MWajMmcJl1BTXsKxy2bi2slAZ5eHycW3loXKC/gzfNCkxDN2N0PUGdL4BXQfGT33N47cvmQ0zl8CZ1znzmUucI/IZdZ7fY0XkdCnYMyCZSpKwCeLJOLFUjFjSmYaTw0evj1mOp+Lj2mKpo7eJJWMMJseE9JHzCcaZTyQaiFISLKE4WExxsJiSYAm1JbXj20IlFAWKKAmN364oWERJsISyUBmRwBQFYCoJfS3Q0wS9h0bn3Y2jwd3bNP45vgCU1zo/KLH0bc6QSeViJ8ArF0OkbGpqF/FATgX7k3ufJGETJFNJLJakTWKtM0/Z1PEnUiPPm+jxsfuKp+IkUonRySbGr6cSzjZuezKVHLftkc9PX2V4ugK+ACFfiLA/TNAfJOwPE/KFiAaiRAIRZkZmEglEiAaiI1N6PeKPHN2W3tYfJRoc3cbv82ek3tOWSsFgB/S1Qn8r9DZDzyEnpHsOjS73tYA94o5/viCU1TiBfcZqJ8DHTqU14M+p/71FpkxO/Z/A1yAJAAAHhElEQVR/zx/vOaUj0DSf8eHD58yPMfmNn4AvMH4yAYK+4Mh6JBAh4AuM23bkcRM4+vnpx02AkN8J5pA/NLrsC41bHxvaY7f3mQI4kyIxDP2HnaDuPzwa2iPLbc7U1woDh48ObHDONCmd6wT3rHOceWkNlM1zl+dC0UydeSJyDDkV7I/d/BgYRgLYYPD73Llx7gbnN/5jhrZkUDIOg13OEfVgp3NzqsHO46x3OvNjfWkaLIbiKiiZ5RxRz3uTs1xcPTqVzYXSOSe8W6GIHF9OBfv8svlel1AYEjEY7nGmoSPmw73ucvcEbWO2i/Ude/++AERnuFOlc1XlnBWjbcVVbljPGg1zhbXIlMmpYJ82UknnUvP4kDNPT/FBiPU7U3zACdfYgHMUHOt3lmP949fHPdbnPC8ZO3ENgQiEy5wvEdPz0jmjyyPB7U5FlaNBHi7VudsiOaxwgt1aZ7w2lQSbPGKeci40Scad0EslnHky7kwptz3ptqfio9seb5tEzA3lYUgMOvO4Ox8b2OPaB0cvejkZvoBz1BssduahIgiVQFGVM7QRKoFgkftYiRvYpUeHd7jcadd9SkQKVm4F+zeuco48xwWyG9DjQjt1dHhn6MyUSfMFwR9yznkORJ2LVwIRdz3ifAEYmO20B8c8np7S2wXCo88PRt1gTgd40eiyglhEJim3gr1qmXMkbPzg87tz35j1I5ZHtnHnxnfE9kfM/SHwB50pHcz+gDOfcD09hZwj5vTzfQENRYhIzppUsBtjrgO+AviBb1lr78tKNe/8ZlZ2KyIynZzwHEFjjB/4GnA9cA5wmzFGvwcgIpKjJnPy98XAbmvtXmttDHgU+LPsliUiIqdqMsE+D2gYs97otomISA6aTLBP9C3hUaegGGPuNMZsNMZsbGtrm+ApIiIyFSYT7I3A2EtCa4FDR25krX3QWrvKWruquro6U/WJiMhJmkywbwCWGmPqjDEh4Fbgl9ktS0RETtUJT3e01iaMMR8BnsY53fEha+2WrFcmIiKnZFLnsVtrnwSezHItIiKSAcbazF+Kb4xpA/qBwxnfef6pQv2Qpr4Ypb5wqB9GLbPWlmZiR1m5pYC1ttoYs9Fauyob+88n6odR6otR6guH+mGUMWZjpvalX6cQESkwCnYRkQKTzWB/MIv7zifqh1Hqi1HqC4f6YVTG+iIrX56KiIh3NBQjIlJgMh7sxpjrjDE7jDG7jTF3ZXr/ucAY85AxptUY8/qYtkpjzDPGmF3ufIbbbowxX3X741VjzIVjnvNed/tdxpj3evFeTocxZr4x5nljzDZjzBZjzMfc9unYFxFjzHpjzGa3Lz7rttcZY9a57+uH7tXbGGPC7vpu9/FFY/Z1t9u+wxizxpt3dHqMMX5jzCvGmMfd9enaD/uNMa8ZY+rTZ71MyefDWpuxCefK1D3AYiAEbAbOyeRr5MIEXAVcCLw+pu3/AHe5y3cB97vLa4GncG6mdimwzm2vBPa68xnu8gyv39tJ9kMNcKG7XArsxLln/3TsCwOUuMtBYJ37Hn8E3Oq2fx34G3f5Q8DX3eVbgR+6y+e4n5swUOd+nvxev79T6I+/A34APO6uT9d+2A9UHdGW9c9Hpt/EZcDTY9bvBu72unOz9B9s0RHBvgOocZdrgB3u8jeA247cDrgN+MaY9nHb5eME/AJ4+3TvC6AIeBm4BOfim4DbPvL5wLlFx2XucsDdzhz5mRm7Xb5MODcKfBa4BnjcfV/Trh/cuicK9qx/PjI9FDOd790+21rbBODOZ7ntx+qTguor95/QF+AcqU7LvnCHH+qBVuAZnKPMLmttwt1k7Psaec/u493ATAqjL/4V+BSQctdnMj37AZxbnP8/Y8wmY8ydblvWPx+ZvvJ0Uvdun2aO1ScF01fGmBLgp8DHrbU95tg/9F3QfWGtTQIrjTEVwM+AsyfazJ0XZF8YY24EWq21m4wxV6ebJ9i0oPthjMuttYeMMbOAZ4wx24+zbcb6ItNH7JO6d3uBajHG1AC481a3/Vh9UhB9ZYwJ4oT69621j7nN07Iv0qy1XcALOOOkFcaY9AHU2Pc18p7dx8uBDvK/Ly4HbjbG7Mf5Gc1rcI7gp1s/AGCtPeTOW3H+2F/MFHw+Mh3s0/ne7b8E0t9WvxdnvDnd/h73G+9LgW73n19PA9caY2a434pf67blDeMcmn8b2Gat/fKYh6ZjX1S7R+oYY6LA24BtwPPAu9zNjuyLdB+9C3jOOgOovwRudc8WqQOWAuun5l2cPmvt3dbaWmvtIpzP/3PW2r9kmvUDgDGm2BhTml7G+f/6dabi85GFLwvW4pwdsQf4tNdfXmTpC5FHgCYgjvPX9AM444LPArvceaW7rQG+5vbHa8CqMft5P7Dbnd7n9fs6hX64AuefhK8C9e60dpr2xQrgFbcvXgf+0W1fjBNIu4EfA2G3PeKu73YfXzxmX592+2gHcL3X7+00+uRqRs+KmXb94L7nze60JZ2HU/H50JWnIiIFRleeiogUGAW7iEiBUbCLiBQYBbuISIFRsIuIFBgFu4hIgVGwi4gUGAW7iEiB+f+vkvM2LCdH6gAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAD8CAYAAACVZ8iyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAEoNJREFUeJzt3X+s3XV9x/HnS6h0qWX86IUgrd5quoySOWxuWBnLxnAqVLc6MxbIMhunqZuQaDZj6pbMzWkylw2McXOpE0GjIFOJHWFTLC5uJlIKViyUwp129q4N7UBQxsqP9r0/zvfaM7i3vb33e+65597nI7k53/M5n+/3+/5+2nNf9/vjfE+qCknSwvaifhcgSeo/w0CSZBhIkgwDSRKGgSQJw0CShGEgScIwkCRhGEiSgJP7XQDAsmXLanh4uN9lSNJAueeee/67qobaWNacCIPh4WG2b9/e7zIkaaAk+c+2luVhIkmSYSBJMgwkScyRcwaS1AvPPvssY2NjHDp0qN+lzMjixYtZvnw5ixYt6tk6DANJ89bY2BhLly5leHiYJP0uZ1qqikcffZSxsTFWrlzZs/V4mEjSvHXo0CHOPPPMgQ0CgCSceeaZPd+7MQwkzWuDHATjZmMbDANpQB05UtyyfS/PHT7S71I0DxgG0oD6wj1jvPcL9/GJf/t+v0vRPGAYSAPq8f99BoDH/ufpPleiqagqjhyZu3txhoEk9ciePXs477zzeOc738maNWv4zGc+w0UXXcSaNWu44oorePLJJwHYtGkTq1ev5lWvehXvec97+lKrl5ZKWhD+/J/u54F9P2p1matfeirv//Xzj9ln9+7dfOpTn+IDH/gAb37zm/na177GkiVL+PCHP8y1117LNddcw6233sqDDz5IEh5//PFWa5wqw0CSeujlL385a9eu5bbbbuOBBx7g4osvBuCZZ57hoosu4tRTT2Xx4sW8/e1v5w1veANvfOMb+1KnYSBpQTjeX/C9smTJEqBzzuC1r30tN9100wv6bNu2ja1bt3LzzTfzsY99jDvvvHO2y/ScgSTNhrVr1/LNb36T0dFRAJ566ikeeughnnzySZ544gnWrVvHRz7yEXbs2NGX+twzkKRZMDQ0xA033MBVV13F0093rgD74Ac/yNKlS1m/fj2HDh2iqrjuuuv6Up9hIEk9Mjw8zM6dO3/y/NJLL+Xuu+9+Qb9t27bNZlkT8jCRJMkwkCQZBpLmuarqdwkzNhvbYBhImrcWL17Mo48+OtCBMP59BosXL+7pejyBLA24Af4913PLly9nbGyMgwcP9ruUGRn/prNeMgykARUG/z79vbZo0aKefjvYfOJhIkmSYSBJmkIYJFmR5OtJdiW5P8m7mvY/S/JfSXY0P+u65nlfktEku5O8vpcbIEmauamcM3gO+KOqujfJUuCeJHc0r11XVX/d3TnJauBK4HzgpcDXkvxMVR1us3BJUnuOu2dQVfur6t5m+sfALuDcY8yyHri5qp6uqu8Do8CFbRQrSeqNEzpnkGQYeDVwV9N0TZL7klyf5PSm7Vxgb9dsY0wQHkk2JtmeZPugX/YlSYNuymGQ5CXAF4F3V9WPgI8DrwQuAPYDfzPedYLZX3AldFVtrqqRqhoZGho64cIlSe2ZUhgkWUQnCD5bVV8CqKpHqupwVR0BPsHRQ0FjwIqu2ZcD+9orWZLUtqlcTRTgk8Cuqrq2q/2crm6/CYzfp3ULcGWSU5KsBFYB/b8/qyRpUlO5muhi4HeB7yYZ/wqePwauSnIBnUNAe4B3AFTV/UluAR6gcyXS1V5JJElz23HDoKr+nYnPA9x+jHk+BHxoBnVJkmaRn0CWBpz3qVMbDANpQMX71KlFhoEkyTCQJBkGkiQMA0kShoEkCcNAkoRhIEnCMJAkYRhIkjAMJEkYBpIkDANp4JV3qlMLDANJkmEgSTIMJEkYBpIkDANJEoaBJAnDQJKEYSBJwjCQJGEYSJIwDCRJGAaSJKYQBklWJPl6kl1J7k/yrqb9jCR3JHm4eTy9aU+SjyYZTXJfkjW93ghpISu8U51mbip7Bs8Bf1RV5wFrgauTrAY2AVurahWwtXkOcDmwqvnZCHy89aolkaTfJWgeOW4YVNX+qrq3mf4xsAs4F1gP3Nh0uxF4UzO9Hvh0dXwLOC3JOa1XLklqzQmdM0gyDLwauAs4u6r2QycwgLOabucCe7tmG2vaJElz1JTDIMlLgC8C766qHx2r6wRtLziomWRjku1Jth88eHCqZUiSemBKYZBkEZ0g+GxVfalpfmT88E/zeKBpHwNWdM2+HNj3/GVW1eaqGqmqkaGhoenWL0lqwVSuJgrwSWBXVV3b9dIWYEMzvQH4clf7W5qritYCT4wfTpIkzU0nT6HPxcDvAt9NsqNp+2PgL4FbkrwN+AFwRfPa7cA6YBR4CnhrqxVLklp33DCoqn9n4vMAAK+ZoH8BV8+wLknSLPITyJIkw0CSZBhIkjAMJEkYBpIkDANp4JU3LVULDANpQHnPUrXJMJAkGQaSJMNAkoRhIEnCMJAkYRhIkjAMJEkYBpIkDANJEoaBJAnDQJKEYSBJwjCQBla8U51aZBhIkgwDSZJhIEnCMJAkYRhIkjAMJEkYBpIkphAGSa5PciDJzq62P0vyX0l2ND/rul57X5LRJLuTvL5XhUuS2jOVPYMbgMsmaL+uqi5ofm4HSLIauBI4v5nn75Kc1FaxkqTeOG4YVNU3gMemuLz1wM1V9XRVfR8YBS6cQX2SpFkwk3MG1yS5rzmMdHrTdi6wt6vPWNP2Akk2JtmeZPvBgwdnUIYkaaamGwYfB14JXADsB/6maZ/obik10QKqanNVjVTVyNDQ0DTLkFQ14VtMOiHTCoOqeqSqDlfVEeATHD0UNAas6Oq6HNg3sxIlTcT71KlN0wqDJOd0Pf1NYPxKoy3AlUlOSbISWAVsm1mJkqReO/l4HZLcBFwCLEsyBrwfuCTJBXQOAe0B3gFQVfcnuQV4AHgOuLqqDvemdElSW44bBlV11QTNnzxG/w8BH5pJUZKk2eUnkCVJhoEkyTCQJGEYSJIwDCRJGAaSJAwDSRKGgSQJw0AaeN6mTm0wDKQBlXirOrXHMJAkGQaSJMNAkoRhIEnCMJAkYRhIkjAMJEkYBpIkDANJEoaBJAnDQJKEYSANvPJOdWqBYSANKO9TpzYZBpIkw0CSZBhIkphCGCS5PsmBJDu72s5IckeSh5vH05v2JPloktEk9yVZ08viJUntmMqewQ3AZc9r2wRsrapVwNbmOcDlwKrmZyPw8XbKlCT10nHDoKq+ATz2vOb1wI3N9I3Am7raP10d3wJOS3JOW8VKknpjuucMzq6q/QDN41lN+7nA3q5+Y02bJGkOa/sE8kRXPk/4kZgkG5NsT7L94MGDLZchSToR0w2DR8YP/zSPB5r2MWBFV7/lwL6JFlBVm6tqpKpGhoaGplmGJKkN0w2DLcCGZnoD8OWu9rc0VxWtBZ4YP5wkSZq7Tj5ehyQ3AZcAy5KMAe8H/hK4JcnbgB8AVzTdbwfWAaPAU8Bbe1CzJKllxw2DqrpqkpdeM0HfAq6eaVGSpNnlJ5ClAVcTX6MhnRDDQBpwmfAiPunEGAaSJMNAkmQYSJIwDCRJGAaSJAwDSRKGgSQJw0CShGEgScIwkCRhGEiSMAykgeeN6tQGw0AaUN6eTm0yDKQB5f6A2mQYSAPOW1irDYaBJMkwkCQZBpIkDANJEoaBJAnDQJKEYSBJwjCQJGEYSJIwDKSB543q1IaTZzJzkj3Aj4HDwHNVNZLkDODzwDCwB/jtqvrhzMqU9HzehEJtamPP4Fer6oKqGmmebwK2VtUqYGvzXJI0h/XiMNF64MZm+kbgTT1YhySpRTMNgwK+muSeJBubtrOraj9A83jWRDMm2Zhke5LtBw8enGEZ0sLjmQK1aUbnDICLq2pfkrOAO5I8ONUZq2ozsBlgZGTE/9fSNHkLa7VhRnsGVbWveTwA3ApcCDyS5ByA5vHATIuUJPXWtMMgyZIkS8engdcBO4EtwIam2wbgyzMtUpLUWzM5THQ2cGuS8eV8rqr+JcndwC1J3gb8ALhi5mVKknpp2mFQVd8Dfn6C9keB18ykKEnS7PITyJIkw0CSZBhIkjAMpIHnjerUBsNAGlB+1ExtMgwkSYaBJMkwkCRhGEiSMAykgeU1RGqTYSANOG9hrTYYBpIkw0CSZBhIkjAMJEkYBpIkDANp4HmjOrXBMJAGlBeUqk2GgSTJMJAkGQaSJAwDSRKGgSQJw0CShGEgDSw/XaA2GQbSgKomDV4UP3GgmetZGCS5LMnuJKNJNvVqPdJCdaRJA8NAbehJGCQ5Cfhb4HJgNXBVktW9WJe0UB1p9gzMArXh5B4t90JgtKq+B5DkZmA98ECbKzn07GGefPq5CV+rSQ6oTnofl2McgJ3spcnWcaz1HHueydZz4suadB0t1nys1U9a8zHnmfSVE55n1v7NTvT/2XGWdyL9v7P3caDzPnjif5+FOrreqqNjMNm/heaGxYtOYskpvfpVPHW9quBcYG/X8zHgF9peydZdB7j6c/e2vVhpoNy0bS83bdt7/I6ak37/V17Jpst/tt9l9CwMJtpx/X9/niTZCGwEeNnLXjatlZz/0lP5i/XnH6OKifefJ9urPtbu9mTfM3vsedpbzwk2N+s5se3vzHOC7cdY2nQOX7Ra8yz9m0021/TWM/Xtf/bwET637Qf84iuX8eKTX/STfuOLSNfyPJQ0d53/0p/udwlA78JgDFjR9Xw5sK+7Q1VtBjYDjIyMTGs/dnjZEoaXLZlujdLAu/znzul3CZonenU10d3AqiQrk7wYuBLY0qN1SZJmqCd7BlX1XJJrgK8AJwHXV9X9vViXJGnmenYKu6puB27v1fIlSe3xE8iSJMNAkmQYSJIwDCRJGAaSJCBz4b4lSQ4C/wP8d79rmSOW4ViMcyw6HIejHIuOZcCSqhpqY2FzIgwAkmyvqpF+1zEXOBZHORYdjsNRjkVH2+PgYSJJkmEgSZpbYbC53wXMIY7FUY5Fh+NwlGPR0eo4zJlzBpKk/plLewaSpD6ZE2GQ5LIku5OMJtnU73raluT6JAeS7OxqOyPJHUkebh5Pb9qT5KPNWNyXZE3XPBua/g8n2dCPbZmpJCuSfD3JriT3J3lX076gxiPJ4iTbknynGYc/b9pXJrmr2abPN7eAJ8kpzfPR5vXhrmW9r2nfneT1/dmimUtyUpJvJ7mteb4gxyLJniTfTbIjyfamrffvj6rq6w+dW1z/B/AK4MXAd4DV/a6r5W38ZWANsLOr7a+ATc30JuDDzfQ64J/pfFHVWuCupv0M4HvN4+nN9On93rZpjMU5wJpmeinwELB6oY1Hsz0vaaYXAXc123cLcGXT/vfAHzTT7wT+vpm+Evh8M726ec+cAqxs3ksn9Xv7pjkmfwh8Driteb4gxwLYAyx7XlvP3x9zYc/gQmC0qr5XVc8ANwPr+1xTq6rqG8Bjz2teD9zYTN8IvKmr/dPV8S3gtCTnAK8H7qiqx6rqh8AdwGW9r75dVbW/qu5tpn8M7KLzndkLajya7Xmyebqo+SngUuALTfvzx2F8fL4AvCad77RcD9xcVU9X1feBUTrvqYGSZDnwBuAfmudhgY7FJHr+/pgLYXAu0P1t3mNN23x3dlXth84vSOCspn2y8Zh349Ts3r+azl/FC248msMiO4ADdN6s/wE8XlXPNV26t+kn29u8/gRwJvNgHBofAd4LHGmen8nCHYsCvprknnS+Kx5m4f3Rsy+3OQETfVX3Qr7EabLxmFfjlOQlwBeBd1fVjzL5N7bP2/GoqsPABUlOA24FzpuoW/M4b8chyRuBA1V1T5JLxpsn6Drvx6JxcVXtS3IWcEeSB4/Rt7WxmAt7BmPAiq7ny4F9faplNj3S7M7RPB5o2icbj3kzTkkW0QmCz1bVl5rmBTseVfU48K90jvmelmT8j7TubfrJ9jav/zSdQ4/zYRwuBn4jyR46h4kvpbOnsBDHgqra1zweoPNHwoXMwvtjLoTB3cCq5sqBF9M5IbSlzzXNhi3A+Bn+DcCXu9rf0lwlsBZ4otkt/ArwuiSnN1cSvK5pGyjNsd1PAruq6tqulxbUeCQZavYISPJTwK/ROX/ydeC3mm7PH4fx8fkt4M7qnCncAlzZXGGzElgFbJudrWhHVb2vqpZX1TCd9/+dVfU7LMCxSLIkydLxaTr/r3cyG++Pfp857zoj/hCdY6Z/0u96erB9NwH7gWfpJPbb6Bzj3Ao83Dye0fQN8LfNWHwXGOlazu/ROSk2Cry139s1zbH4JTq7q/cBO5qfdQttPIBXAd9uxmEn8KdN+yvo/AIbBf4ROKVpX9w8H21ef0XXsv6kGZ/dwOX93rYZjsslHL2aaMGNRbPN32l+7h//fTgb7w8/gSxJmhOHiSRJfWYYSJIMA0mSYSBJwjCQJGEYSJIwDCRJGAaSJOD/AH+PdktLjDUhAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -542,10 +552,10 @@ "plt.clf()\n", "# plt.plot(x_part, calcs, '.')\n", "# plt.plot(test_q, calcs_test, label = 'pdf')\n", - "plt.plot(test_q, f0_y, label = '0')\n", - "plt.plot(test_q, fT_y, label = 'T')\n", - "plt.plot(test_q, fplus_y, label = '+')\n", - "# plt.plot(test_q, res_y, label = 'res')\n", + "# plt.plot(test_q, f0_y, label = '0')\n", + "# plt.plot(test_q, fT_y, label = 'T')\n", + "# plt.plot(test_q, fplus_y, label = '+')\n", + "plt.plot(test_q, res_y, label = 'res')\n", "plt.legend()\n", "# plt.ylim(0.0, 6e-4)\n", "# plt.yscale('log')\n", @@ -614,7 +624,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 13, "metadata": {}, "outputs": [], "source": [ @@ -643,7 +653,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 14, "metadata": {}, "outputs": [], "source": [ @@ -660,7 +670,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 15, "metadata": {}, "outputs": [], "source": [ @@ -690,7 +700,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 16, "metadata": {}, "outputs": [], "source": [ @@ -699,7 +709,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 17, "metadata": {}, "outputs": [], "source": [ @@ -721,7 +731,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 18, "metadata": {}, "outputs": [], "source": [ @@ -758,7 +768,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 19, "metadata": {}, "outputs": [], "source": [ @@ -780,7 +790,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 20, "metadata": {}, "outputs": [], "source": [ @@ -807,44 +817,121 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 21, "metadata": {}, "outputs": [], "source": [ + "class UniformSampleAndWeights(zfit.util.execution.SessionHolderMixin):\n", + " def __call__(self, limits, dtype, n_to_produce):\n", + " # n_to_produce = tf.cast(n_to_produce, dtype=tf.int32)\n", + " low, high = limits.limit1d\n", + " low = tf.cast(low, dtype=dtype)\n", + " high = tf.cast(high, dtype=dtype)\n", + "# uniform = tfd.Uniform(low=low, high=high)\n", + "# uniformjpsi = tfd.Uniform(low=tf.constant(3080, dtype=dtype), high=tf.constant(3112, dtype=dtype))\n", + "# uniformpsi2s = tfd.Uniform(low=tf.constant(3670, dtype=dtype), high=tf.constant(3702, dtype=dtype))\n", + " mixture = tfd.MixtureSameFamily(mixture_distribution=tfd.Categorical(probs=[tf.constant(0.007, dtype=dtype),\n", + " tf.constant(0.917, dtype=dtype),\n", + " tf.constant(0.076, dtype=dtype)]),\n", + " components_distribution=tfd.Uniform(low=[tf.constant(x_min, dtype=dtype), \n", + " tf.constant(3080, dtype=dtype),\n", + " tf.constant(3670, dtype=dtype)], \n", + " high=[tf.constant(x_max, dtype=dtype),\n", + " tf.constant(3112, dtype=dtype), \n", + " tf.constant(3702, dtype=dtype)]))\n", + " mixture = tfd.Uniform(tf.constant(x_min, dtype=dtype), tf.constant(x_max, dtype=dtype))\n", + " sample = mixture.sample((n_to_produce, 1))\n", + " sample = tf.random.uniform((n_to_produce, 1), dtype=dtype)\n", + " weights = mixture.prob(sample)\n", + " weights = tf.broadcast_to(tf.constant(1., dtype=dtype), shape=(n_to_produce,))\n", + " # sample = tf.expand_dims(sample, axis=-1)\n", + " print(sample, weights)\n", + " weights_max = None\n", + " thresholds = tf.random_uniform(shape=(n_to_produce,), dtype=dtype)\n", + " return sample, thresholds, weights, weights_max, n_to_produce" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [], + "source": [ + "# total_f._sample_and_weights = UniformSampleAndWeights" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "WARNING:tensorflow:From c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\core\\sample.py:98: to_int64 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.\n", + "Instructions for updating:\n", + "Use tf.cast instead.\n" + ] + }, + { + "ename": "InvalidArgumentError", + "evalue": "assertion failed: [Not all weights are >= probs so the sampling will be biased. If a custom `sample_and_weights` was used, make sure that either the shape of the custom sampler (resp. it\\'s weights) overlap better or decrease the `max_weight`] [Condition x >= y did not hold element-wise:x (ZPDF_1/create_sampler/mul_3:0) = ] [-nan(ind)] [y (ZPDF_1/create_sampler/ZPDF/unnormalized_pdf/add_36:0) = ] [-nan(ind) -nan(ind) -nan(ind)...]\n\t [[node ZPDF_1/create_sampler/assert_greater_equal/Assert/AssertGuard/Assert (defined at c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\core\\sample.py:146) ]]\n\t [[{{node ConstantFoldingCtrl/ZPDF_1/create_sampler/while/assert_greater_equal/Assert/AssertGuard/Switch_0}}]]\n\nCaused by op 'ZPDF_1/create_sampler/assert_greater_equal/Assert/AssertGuard/Assert', defined at:\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\runpy.py\", line 193, in _run_module_as_main\n \"__main__\", mod_spec)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\runpy.py\", line 85, in _run_code\n exec(code, run_globals)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\ipykernel_launcher.py\", line 16, in \n app.launch_new_instance()\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\traitlets\\config\\application.py\", line 658, in launch_instance\n app.start()\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\ipykernel\\kernelapp.py\", line 505, in start\n self.io_loop.start()\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tornado\\platform\\asyncio.py\", line 148, in start\n self.asyncio_loop.run_forever()\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\asyncio\\base_events.py\", line 539, in run_forever\n self._run_once()\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\asyncio\\base_events.py\", line 1775, in _run_once\n handle._run()\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\asyncio\\events.py\", line 88, in _run\n self._context.run(self._callback, *self._args)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tornado\\ioloop.py\", line 690, in \n lambda f: self._run_callback(functools.partial(callback, future))\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tornado\\ioloop.py\", line 743, in _run_callback\n ret = callback()\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tornado\\gen.py\", line 781, in inner\n self.run()\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tornado\\gen.py\", line 742, in run\n yielded = self.gen.send(value)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\ipykernel\\kernelbase.py\", line 357, in process_one\n yield gen.maybe_future(dispatch(*args))\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tornado\\gen.py\", line 209, in wrapper\n yielded = next(result)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\ipykernel\\kernelbase.py\", line 267, in dispatch_shell\n yield gen.maybe_future(handler(stream, idents, msg))\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tornado\\gen.py\", line 209, in wrapper\n yielded = next(result)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\ipykernel\\kernelbase.py\", line 534, in execute_request\n user_expressions, allow_stdin,\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tornado\\gen.py\", line 209, in wrapper\n yielded = next(result)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\ipykernel\\ipkernel.py\", line 294, in do_execute\n res = shell.run_cell(code, store_history=store_history, silent=silent)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\ipykernel\\zmqshell.py\", line 536, in run_cell\n return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\IPython\\core\\interactiveshell.py\", line 2848, in run_cell\n raw_cell, store_history, silent, shell_futures)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\IPython\\core\\interactiveshell.py\", line 2874, in _run_cell\n return runner(coro)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\IPython\\core\\async_helpers.py\", line 67, in _pseudo_sync_runner\n coro.send(None)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\IPython\\core\\interactiveshell.py\", line 3049, in run_cell_async\n interactivity=interactivity, compiler=compiler, result=result)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\IPython\\core\\interactiveshell.py\", line 3214, in run_ast_nodes\n if (yield from self.run_code(code, result)):\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\IPython\\core\\interactiveshell.py\", line 3296, in run_code\n exec(code_obj, self.user_global_ns, self.user_ns)\n File \"\", line 11, in \n sampler = total_f.create_sampler(n=event_stack)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\core\\basemodel.py\", line 814, in create_sampler\n limits=limits, n=n, name=name)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\core\\basemodel.py\", line 835, in _create_sampler_tensor\n sample = self._single_hook_sample(n=n, limits=limits, name=name)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\core\\basemodel.py\", line 877, in _single_hook_sample\n return self._hook_sample(n=n, limits=limits, name=name)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\core\\basepdf.py\", line 489, in _hook_sample\n samples = super()._hook_sample(limits=limits, n=n, name=name)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\core\\basemodel.py\", line 880, in _hook_sample\n return self._norm_sample(n=n, limits=limits, name=name)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\core\\basemodel.py\", line 884, in _norm_sample\n return self._limits_sample(n=n, limits=limits, name=name)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\core\\basemodel.py\", line 887, in _limits_sample\n return self._call_sample(n=n, limits=limits, name=name)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\core\\basemodel.py\", line 901, in _call_sample\n return self._fallback_sample(n=n, limits=limits)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\core\\basemodel.py\", line 934, in _fallback_sample\n sample_and_weights_factory=self._sample_and_weights)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\core\\sample.py\", line 171, in accept_reject_sample\n n_total_drawn=0, eff=efficiency_estimation),\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\core\\sample.py\", line 146, in sample_body\n message=\"Not all weights are >= probs so the sampling \"\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\ops\\check_ops.py\", line 1023, in assert_greater_equal\n return control_flow_ops.Assert(condition, data, summarize=summarize)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\util\\tf_should_use.py\", line 193, in wrapped\n return _add_should_use_warning(fn(*args, **kwargs))\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\ops\\control_flow_ops.py\", line 168, in Assert\n guarded_assert = cond(condition, no_op, true_assert, name=\"AssertGuard\")\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\util\\deprecation.py\", line 507, in new_func\n return func(*args, **kwargs)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\ops\\control_flow_ops.py\", line 2108, in cond\n orig_res_f, res_f = context_f.BuildCondBranch(false_fn)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\ops\\control_flow_ops.py\", line 1941, in BuildCondBranch\n original_result = fn()\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\ops\\control_flow_ops.py\", line 166, in true_assert\n condition, data, summarize, name=\"Assert\")\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\ops\\gen_logging_ops.py\", line 72, in _assert\n name=name)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\framework\\op_def_library.py\", line 788, in _apply_op_helper\n op_def=op_def)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\util\\deprecation.py\", line 507, in new_func\n return func(*args, **kwargs)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\framework\\ops.py\", line 3300, in create_op\n op_def=op_def)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\framework\\ops.py\", line 1801, in __init__\n self._traceback = tf_stack.extract_stack()\n\nInvalidArgumentError (see above for traceback): assertion failed: [Not all weights are >= probs so the sampling will be biased. If a custom `sample_and_weights` was used, make sure that either the shape of the custom sampler (resp. it\\'s weights) overlap better or decrease the `max_weight`] [Condition x >= y did not hold element-wise:x (ZPDF_1/create_sampler/mul_3:0) = ] [-nan(ind)] [y (ZPDF_1/create_sampler/ZPDF/unnormalized_pdf/add_36:0) = ] [-nan(ind) -nan(ind) -nan(ind)...]\n\t [[node ZPDF_1/create_sampler/assert_greater_equal/Assert/AssertGuard/Assert (defined at c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\core\\sample.py:146) ]]\n\t [[{{node ConstantFoldingCtrl/ZPDF_1/create_sampler/while/assert_greater_equal/Assert/AssertGuard/Switch_0}}]]\n", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mInvalidArgumentError\u001b[0m Traceback (most recent call last)", + "\u001b[1;32mc:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\client\\session.py\u001b[0m in \u001b[0;36m_do_call\u001b[1;34m(self, fn, *args)\u001b[0m\n\u001b[0;32m 1333\u001b[0m \u001b[1;32mtry\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1334\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mfn\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m*\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 1335\u001b[0m \u001b[1;32mexcept\u001b[0m \u001b[0merrors\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mOpError\u001b[0m \u001b[1;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32mc:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\client\\session.py\u001b[0m in \u001b[0;36m_run_fn\u001b[1;34m(feed_dict, fetch_list, target_list, options, run_metadata)\u001b[0m\n\u001b[0;32m 1318\u001b[0m return self._call_tf_sessionrun(\n\u001b[1;32m-> 1319\u001b[1;33m options, feed_dict, fetch_list, target_list, run_metadata)\n\u001b[0m\u001b[0;32m 1320\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32mc:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\client\\session.py\u001b[0m in \u001b[0;36m_call_tf_sessionrun\u001b[1;34m(self, options, feed_dict, fetch_list, target_list, run_metadata)\u001b[0m\n\u001b[0;32m 1406\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_session\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0moptions\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfeed_dict\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfetch_list\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mtarget_list\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1407\u001b[1;33m run_metadata)\n\u001b[0m\u001b[0;32m 1408\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;31mInvalidArgumentError\u001b[0m: assertion failed: [Not all weights are >= probs so the sampling will be biased. If a custom `sample_and_weights` was used, make sure that either the shape of the custom sampler (resp. it\\'s weights) overlap better or decrease the `max_weight`] [Condition x >= y did not hold element-wise:x (ZPDF_1/create_sampler/mul_3:0) = ] [-nan(ind)] [y (ZPDF_1/create_sampler/ZPDF/unnormalized_pdf/add_36:0) = ] [-nan(ind) -nan(ind) -nan(ind)...]\n\t [[{{node ZPDF_1/create_sampler/assert_greater_equal/Assert/AssertGuard/Assert}}]]\n\t [[{{node ConstantFoldingCtrl/ZPDF_1/create_sampler/while/assert_greater_equal/Assert/AssertGuard/Switch_0}}]]", + "\nDuring handling of the above exception, another exception occurred:\n", + "\u001b[1;31mInvalidArgumentError\u001b[0m Traceback (most recent call last)", + "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[0;32m 21\u001b[0m \u001b[1;32mfor\u001b[0m \u001b[0mcall\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mcalls\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 22\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 23\u001b[1;33m \u001b[0msampler\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mresample\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mn\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mevent_stack\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 24\u001b[0m \u001b[0ms\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0msampler\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0munstack_x\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 25\u001b[0m \u001b[0msam\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mzfit\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mrun\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0ms\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32mc:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\core\\data.py\u001b[0m in \u001b[0;36mresample\u001b[1;34m(self, param_values, n)\u001b[0m\n\u001b[0;32m 624\u001b[0m \u001b[1;32mraise\u001b[0m \u001b[0mRuntimeError\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m\"Cannot set a new `n` if not a Tensor-like object was given\"\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 625\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mn_samples\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mload\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mvalue\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mn\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0msession\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0msess\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 626\u001b[1;33m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0msess\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mrun\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0msample_holder\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0minitializer\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 627\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_initial_resampled\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;32mTrue\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 628\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32mc:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\client\\session.py\u001b[0m in \u001b[0;36mrun\u001b[1;34m(self, fetches, feed_dict, options, run_metadata)\u001b[0m\n\u001b[0;32m 927\u001b[0m \u001b[1;32mtry\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 928\u001b[0m result = self._run(None, fetches, feed_dict, options_ptr,\n\u001b[1;32m--> 929\u001b[1;33m run_metadata_ptr)\n\u001b[0m\u001b[0;32m 930\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mrun_metadata\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 931\u001b[0m \u001b[0mproto_data\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mtf_session\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mTF_GetBuffer\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mrun_metadata_ptr\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32mc:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\client\\session.py\u001b[0m in \u001b[0;36m_run\u001b[1;34m(self, handle, fetches, feed_dict, options, run_metadata)\u001b[0m\n\u001b[0;32m 1150\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mfinal_fetches\u001b[0m \u001b[1;32mor\u001b[0m \u001b[0mfinal_targets\u001b[0m \u001b[1;32mor\u001b[0m \u001b[1;33m(\u001b[0m\u001b[0mhandle\u001b[0m \u001b[1;32mand\u001b[0m \u001b[0mfeed_dict_tensor\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1151\u001b[0m results = self._do_run(handle, final_targets, final_fetches,\n\u001b[1;32m-> 1152\u001b[1;33m feed_dict_tensor, options, run_metadata)\n\u001b[0m\u001b[0;32m 1153\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1154\u001b[0m \u001b[0mresults\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;33m[\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32mc:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\client\\session.py\u001b[0m in \u001b[0;36m_do_run\u001b[1;34m(self, handle, target_list, fetch_list, feed_dict, options, run_metadata)\u001b[0m\n\u001b[0;32m 1326\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mhandle\u001b[0m \u001b[1;32mis\u001b[0m \u001b[1;32mNone\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1327\u001b[0m return self._do_call(_run_fn, feeds, fetches, targets, options,\n\u001b[1;32m-> 1328\u001b[1;33m run_metadata)\n\u001b[0m\u001b[0;32m 1329\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1330\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_do_call\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0m_prun_fn\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mhandle\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfeeds\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfetches\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32mc:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\client\\session.py\u001b[0m in \u001b[0;36m_do_call\u001b[1;34m(self, fn, *args)\u001b[0m\n\u001b[0;32m 1346\u001b[0m \u001b[1;32mpass\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1347\u001b[0m \u001b[0mmessage\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0merror_interpolation\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0minterpolate\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mmessage\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_graph\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1348\u001b[1;33m \u001b[1;32mraise\u001b[0m \u001b[0mtype\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0me\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mnode_def\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mop\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mmessage\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 1349\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1350\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0m_extend_graph\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;31mInvalidArgumentError\u001b[0m: assertion failed: [Not all weights are >= probs so the sampling will be biased. If a custom `sample_and_weights` was used, make sure that either the shape of the custom sampler (resp. it\\'s weights) overlap better or decrease the `max_weight`] [Condition x >= y did not hold element-wise:x (ZPDF_1/create_sampler/mul_3:0) = ] [-nan(ind)] [y (ZPDF_1/create_sampler/ZPDF/unnormalized_pdf/add_36:0) = ] [-nan(ind) -nan(ind) -nan(ind)...]\n\t [[node ZPDF_1/create_sampler/assert_greater_equal/Assert/AssertGuard/Assert (defined at c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\core\\sample.py:146) ]]\n\t [[{{node ConstantFoldingCtrl/ZPDF_1/create_sampler/while/assert_greater_equal/Assert/AssertGuard/Switch_0}}]]\n\nCaused by op 'ZPDF_1/create_sampler/assert_greater_equal/Assert/AssertGuard/Assert', defined at:\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\runpy.py\", line 193, in _run_module_as_main\n \"__main__\", mod_spec)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\runpy.py\", line 85, in _run_code\n exec(code, run_globals)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\ipykernel_launcher.py\", line 16, in \n app.launch_new_instance()\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\traitlets\\config\\application.py\", line 658, in launch_instance\n app.start()\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\ipykernel\\kernelapp.py\", line 505, in start\n self.io_loop.start()\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tornado\\platform\\asyncio.py\", line 148, in start\n self.asyncio_loop.run_forever()\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\asyncio\\base_events.py\", line 539, in run_forever\n self._run_once()\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\asyncio\\base_events.py\", line 1775, in _run_once\n handle._run()\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\asyncio\\events.py\", line 88, in _run\n self._context.run(self._callback, *self._args)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tornado\\ioloop.py\", line 690, in \n lambda f: self._run_callback(functools.partial(callback, future))\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tornado\\ioloop.py\", line 743, in _run_callback\n ret = callback()\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tornado\\gen.py\", line 781, in inner\n self.run()\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tornado\\gen.py\", line 742, in run\n yielded = self.gen.send(value)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\ipykernel\\kernelbase.py\", line 357, in process_one\n yield gen.maybe_future(dispatch(*args))\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tornado\\gen.py\", line 209, in wrapper\n yielded = next(result)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\ipykernel\\kernelbase.py\", line 267, in dispatch_shell\n yield gen.maybe_future(handler(stream, idents, msg))\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tornado\\gen.py\", line 209, in wrapper\n yielded = next(result)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\ipykernel\\kernelbase.py\", line 534, in execute_request\n user_expressions, allow_stdin,\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tornado\\gen.py\", line 209, in wrapper\n yielded = next(result)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\ipykernel\\ipkernel.py\", line 294, in do_execute\n res = shell.run_cell(code, store_history=store_history, silent=silent)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\ipykernel\\zmqshell.py\", line 536, in run_cell\n return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\IPython\\core\\interactiveshell.py\", line 2848, in run_cell\n raw_cell, store_history, silent, shell_futures)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\IPython\\core\\interactiveshell.py\", line 2874, in _run_cell\n return runner(coro)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\IPython\\core\\async_helpers.py\", line 67, in _pseudo_sync_runner\n coro.send(None)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\IPython\\core\\interactiveshell.py\", line 3049, in run_cell_async\n interactivity=interactivity, compiler=compiler, result=result)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\IPython\\core\\interactiveshell.py\", line 3214, in run_ast_nodes\n if (yield from self.run_code(code, result)):\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\IPython\\core\\interactiveshell.py\", line 3296, in run_code\n exec(code_obj, self.user_global_ns, self.user_ns)\n File \"\", line 11, in \n sampler = total_f.create_sampler(n=event_stack)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\core\\basemodel.py\", line 814, in create_sampler\n limits=limits, n=n, name=name)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\core\\basemodel.py\", line 835, in _create_sampler_tensor\n sample = self._single_hook_sample(n=n, limits=limits, name=name)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\core\\basemodel.py\", line 877, in _single_hook_sample\n return self._hook_sample(n=n, limits=limits, name=name)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\core\\basepdf.py\", line 489, in _hook_sample\n samples = super()._hook_sample(limits=limits, n=n, name=name)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\core\\basemodel.py\", line 880, in _hook_sample\n return self._norm_sample(n=n, limits=limits, name=name)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\core\\basemodel.py\", line 884, in _norm_sample\n return self._limits_sample(n=n, limits=limits, name=name)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\core\\basemodel.py\", line 887, in _limits_sample\n return self._call_sample(n=n, limits=limits, name=name)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\core\\basemodel.py\", line 901, in _call_sample\n return self._fallback_sample(n=n, limits=limits)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\core\\basemodel.py\", line 934, in _fallback_sample\n sample_and_weights_factory=self._sample_and_weights)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\core\\sample.py\", line 171, in accept_reject_sample\n n_total_drawn=0, eff=efficiency_estimation),\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\core\\sample.py\", line 146, in sample_body\n message=\"Not all weights are >= probs so the sampling \"\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\ops\\check_ops.py\", line 1023, in assert_greater_equal\n return control_flow_ops.Assert(condition, data, summarize=summarize)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\util\\tf_should_use.py\", line 193, in wrapped\n return _add_should_use_warning(fn(*args, **kwargs))\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\ops\\control_flow_ops.py\", line 168, in Assert\n guarded_assert = cond(condition, no_op, true_assert, name=\"AssertGuard\")\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\util\\deprecation.py\", line 507, in new_func\n return func(*args, **kwargs)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\ops\\control_flow_ops.py\", line 2108, in cond\n orig_res_f, res_f = context_f.BuildCondBranch(false_fn)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\ops\\control_flow_ops.py\", line 1941, in BuildCondBranch\n original_result = fn()\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\ops\\control_flow_ops.py\", line 166, in true_assert\n condition, data, summarize, name=\"Assert\")\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\ops\\gen_logging_ops.py\", line 72, in _assert\n name=name)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\framework\\op_def_library.py\", line 788, in _apply_op_helper\n op_def=op_def)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\util\\deprecation.py\", line 507, in new_func\n return func(*args, **kwargs)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\framework\\ops.py\", line 3300, in create_op\n op_def=op_def)\n File \"c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\framework\\ops.py\", line 1801, in __init__\n self._traceback = tf_stack.extract_stack()\n\nInvalidArgumentError (see above for traceback): assertion failed: [Not all weights are >= probs so the sampling will be biased. If a custom `sample_and_weights` was used, make sure that either the shape of the custom sampler (resp. it\\'s weights) overlap better or decrease the `max_weight`] [Condition x >= y did not hold element-wise:x (ZPDF_1/create_sampler/mul_3:0) = ] [-nan(ind)] [y (ZPDF_1/create_sampler/ZPDF/unnormalized_pdf/add_36:0) = ] [-nan(ind) -nan(ind) -nan(ind)...]\n\t [[node ZPDF_1/create_sampler/assert_greater_equal/Assert/AssertGuard/Assert (defined at c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\core\\sample.py:146) ]]\n\t [[{{node ConstantFoldingCtrl/ZPDF_1/create_sampler/while/assert_greater_equal/Assert/AssertGuard/Switch_0}}]]\n" + ] + } + ], + "source": [ "nr_of_toys = 1\n", "nevents = int(pdg[\"number_of_decays\"])\n", - "event_stack = 100000\n", - "\n", + "event_stack = 1000\n", + "zfit.settings.set_verbosity(10)\n", "calls = int(nevents/event_stack + 1)\n", "\n", "total_samp = []\n", "\n", "start = time.time()\n", "\n", - "# sampler = total_f.create_sampler(n=event_stack)\n", + "sampler = total_f.create_sampler(n=event_stack)\n", "\n", - "# for toy in range(nr_of_toys):\n", + "for toy in range(nr_of_toys):\n", " \n", - "# dirName = 'data/zfit_toys/toy_{0}'.format(toy)\n", + " dirName = 'data/zfit_toys/toy_{0}'.format(toy)\n", " \n", - "# if not os.path.exists(dirName):\n", - "# os.mkdir(dirName)\n", - "# print(\"Directory \" , dirName , \" Created \")\n", + " if not os.path.exists(dirName):\n", + " os.mkdir(dirName)\n", + " print(\"Directory \" , dirName , \" Created \")\n", "\n", - "# for call in range(calls):\n", + " for call in range(calls):\n", "\n", - "# sampler.resample(n=event_stack)\n", - "# s = sampler.unstack_x()\n", - "# sam = zfit.run(s)\n", - "# # clear_output(wait=True)\n", + " sampler.resample(n=event_stack)\n", + " s = sampler.unstack_x()\n", + " sam = zfit.run(s)\n", + " clear_output(wait=True)\n", "\n", - "# c = call + 1 \n", - "# print(\"{0}/{1}\".format(c, calls))\n", - "# print(\"Time taken: {}\".format(display_time(int(time.time() - start))))\n", - "# print(\"Projected time left: {}\".format(display_time(int((time.time() - start)/c*(calls-c)))))\n", + " c = call + 1 \n", + " print(\"{0}/{1}\".format(c, calls))\n", + " print(\"Time taken: {}\".format(display_time(int(time.time() - start))))\n", + " print(\"Projected time left: {}\".format(display_time(int((time.time() - start)/c*(calls-c)))))\n", "\n", - "# with open(\"data/zfit_toys/toy_{0}/{1}.pkl\".format(toy, call), \"wb\") as f:\n", - "# pkl.dump(sam, f, pkl.HIGHEST_PROTOCOL)" + " with open(\"data/zfit_toys/toy_{0}/{1}.pkl\".format(toy, call), \"wb\") as f:\n", + " pkl.dump(sam, f, pkl.HIGHEST_PROTOCOL)" ] }, { @@ -1031,7 +1118,14 @@ "execution_count": null, "metadata": {}, "outputs": [], - "source": [] + "source": [ + "_tot = 4.37e-7+6.02e-5+4.97e-6\n", + "_probs = []\n", + "_probs.append(6.02e-5/_tot)\n", + "_probs.append(4.97e-6/_tot)\n", + "_probs.append(4.37e-7/_tot)\n", + "print(_probs)" + ] }, { "cell_type": "code", diff --git a/test.png b/test.png index e63de94..c2d899f 100644 --- a/test.png +++ b/test.png Binary files differ