diff --git a/.ipynb_checkpoints/raremodel-nb-checkpoint.ipynb b/.ipynb_checkpoints/raremodel-nb-checkpoint.ipynb index 4047084..196fc5f 100644 --- a/.ipynb_checkpoints/raremodel-nb-checkpoint.ipynb +++ b/.ipynb_checkpoints/raremodel-nb-checkpoint.ipynb @@ -9,14 +9,14 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\util\\execution.py:57: UserWarning: Not running on Linux. Determining available cpus for thread can failand be overestimated. Workaround (only if too many cpus are used):`zfit.run.set_n_cpu(your_cpu_number)`\n", + "c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\util\\execution.py:53: UserWarning: Not running on Linux. Determining available cpus for thread can failand be overestimated. Workaround (only if too many cpus are used):`zfit.run.set_n_cpu(your_cpu_number)`\n", " warnings.warn(\"Not running on Linux. Determining available cpus for thread can fail\"\n" ] }, @@ -52,7 +52,8 @@ "import tensorflow as tf\n", "import zfit\n", "from zfit import ztf\n", - "from IPython.display import clear_output" + "from IPython.display import clear_output\n", + "import os" ] }, { @@ -65,7 +66,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -266,7 +267,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 5, "metadata": {}, "outputs": [], "source": [ @@ -321,7 +322,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ @@ -365,7 +366,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ @@ -374,14 +375,14 @@ "\n", "obs = zfit.Space('q', limits = (x_min, x_max))\n", "\n", - "with open(r\"./data/slim_points/slim_points_toy_0_range({0}-{1}).pkl\".format(int(x_min), int(x_max)), \"rb\") as input_file:\n", - " part_set = pkl.load(input_file)\n", + "# with open(r\"./data/slim_points/slim_points_toy_0_range({0}-{1}).pkl\".format(int(x_min), int(x_max)), \"rb\") as input_file:\n", + "# part_set = pkl.load(input_file)\n", "\n", - "x_part = part_set['x_part']\n", + "# x_part = part_set['x_part']\n", "\n", - "x_part = x_part.astype('float64')\n", + "# x_part = x_part.astype('float64')\n", "\n", - "data = zfit.data.Data.from_numpy(array=x_part, obs=obs)" + "# data = zfit.data.Data.from_numpy(array=x_part, obs=obs)" ] }, { @@ -393,14 +394,14 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "WARNING:tensorflow:From C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\ops\\resource_variable_ops.py:435: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.\n", + "WARNING:tensorflow:From c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\ops\\resource_variable_ops.py:435: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.\n", "Instructions for updating:\n", "Colocations handled automatically by placer.\n" ] @@ -445,7 +446,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 9, "metadata": {}, "outputs": [], "source": [ @@ -465,7 +466,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 10, "metadata": {}, "outputs": [], "source": [ @@ -505,17 +506,10 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 11, "metadata": {}, "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "0.09\n" - ] - }, - { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZkAAAD8CAYAAACl69mTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xl4VdW5+PHvS+YQSCAJJJAAAQIYBBHCJNaLVQuOtBYrjsggXivXtvZXh3tvbeutvdp6tdWqiKKiBYGitqkTdawTUxgljGEOUyCEhBAynOT9/XE2EGJCDpCwz/B+nieP+6yz9trv2ZLzZu219tqiqhhjjDEtoZXbARhjjAlelmSMMca0GEsyxhhjWowlGWOMMS3GkowxxpgWY0nGGGNMi/EpyYjIaBHZICL5IvJgA+9Hichc5/3FItKtznsPOeUbRGTUabT5jIiU+XIMY4wx/qnJJCMiYcCzwJVAFnCTiGTVqzYJKFbVnsBTwOPOvlnAOKAvMBp4TkTCmmpTRLKBBF+OYYwxxn/50pMZAuSr6hZVrQLmAGPq1RkDzHS25wOXiYg45XNUtVJVtwL5TnuNtukkoD8A9/t4DGOMMX4q3Ic6nYGddV4XAEMbq6OqHhEpARKd8kX19u3sbDfW5lQgR1X31MshjR3jQN1KIjIFmALQunXrQX369PHhIxpjjtl/uJK9pRUkxUWRGh/tdjgn8dQq6/aUAtCvc7zL0QSvZcuWHVDV5OZoy5ck01Bvof5aNI3Vaay8oR6Uikgn4AZg5BnGgapOB6YDZGdna25ubgO7GWMaM+1fm3ns/fVMuaQ7/3nVeW6Hc5L9hysZ/OhHAOQ+drXL0QQvEdneXG35crmsAEiv8zoN2N1YHREJB+KBg6fYt7HyC4GeQL6IbANiRSS/iWMYY5qRP1+D1m//XWn8nC9JZimQKSIZIhKJdyA/p16dHGC8sz0W+ES9K2/mAOOcmWEZQCawpLE2VfVdVU1R1W6q2g0odwb6T3UMY0yosN/4gNPk5TJn/GMqsAAIA15W1TwReQTIVdUcYAbwutPrOIg3aeDUmwesBTzAPapaA9BQm02E0uAxjDGhw3JM4PFlTAZVfQ94r17Zw3W2K/COpTS076PAo7602UCdOF+OcTqqq6spKCigoqLibJtyXXR0NGlpaURERLgdiglC/nihwA9DMk3wKckEk4KCAtq0aUO3bt0I5BnQqkpRUREFBQVkZGS4HY4x54SNyQSekFtWpqKigsTExIBOMAAiQmJiYlD0yIzxlfVkAk/IJRkg4BPMMcHyOYx/8ed/VpZjAk9IJhljTGDyx3Eic2qWZPzUZ599xjXXXANAZWUll19+OQMGDGDu3LkuR2ZChT9+n/tjTObUQm7gPxCtWLGC6upqVq5c6XYoJgSIH9+OaUkm8FhPxgXbtm2jT58+jB8/nv79+zN27FjKy8v54IMP6NOnDxdffDFvvfUWAIWFhdx6662sXLmSAQMGsHnzZpejN6HCH7/PPbW1bodgTlNI92R+84881u4ubdY2szq15VfX9m2y3oYNG5gxYwYjRoxg4sSJPPnkk7zwwgt88skn9OzZkxtvvBGADh068NJLL/HEE0/wzjvvNGusxgSamlp/TH3mVEI6ybgpPT2dESNGAHDrrbfy9NNPk5GRQWZm5vGy6dOnuxmiMX7H0wxJ5nBFNSt2HGLjvsNs3n+EkqNVlFXWEBXeirbREXRPbs15qW0YmpFI6yj7ijxbIX0GfelxtJT6049LSkpsSrLxC8f+Gfrj+MeZ9mQKSyt4e8UuPl5XyPIdxceTVfvWkbSLjSAuKpxKTy2Hyqt5c3kBAJFhrfhOZhK3De/KJZnJtGplv59nIqSTjJt27NjBwoULGT58OG+88QaXX345L7zwAps3b6ZHjx688cYbbodoQtSx5OKPf/OcTk9GVfkqv4gZX27hXxv3U6twfue2TLmkOxf1SOK81DYkxkV9a7/DFdWsLijhk/WF5KzazR2vLCUrtS2/vCaL4T0Sm/PjhARLMi4577zzmDlzJnfddReZmZn86U9/YtCgQVx99dUkJSVx8cUXs2bNGrfDNCHMD3MMNT4M/KsqC/L28dxn+awuKCG5TRR3j+zBDwem0T05rsn920RHMKJnEiN6JvHA6D68s3o3//fPjdz04iJ+lJ3Gr6/rS2ykfXX6ys6US1q1asW0adNOKhs9ejTr16//Vt2RI0cycuTIcxSZMf6r0nPqJLNy5yF++85acrcXk5HUmseu78cPBnYmKjzsjI4XGd6K6wemcVW/VJ7+eBPP/2szuduLeXn8YLoltT6jNkONJRljzEmOLULpj5fLyio8ANQfHik+UsX/vLuWt5bvIikuiseu78cN2emENdM4SnREGPeP7sN3MpO5Z/Zyrn/+a2aMz+bCLu2apf1gZvfJuKBbt252Kcz4rRNjMv6XZcoqvUmmdZ3LVe99s4crnvoXOSt3c/fIHnz2i5GMG9Kl2RJMXcN7JPLm3RcRFxXObTOW8E1BSbMfI9iEZJIJlvWPguVzGOOrA2WVAERFhFFe5eG+uSv58azlpMRHkzP1Yh4Y3Ye4Fp52nJHUmrl3DSM+JoLbX15MfuHhFj1eoAu5JBMdHU1RUVHAf0Efe55MdHS026GYIOPPvxkb95UB3mTz/We/4u2Vu/jJZZn87ccjyOrU9pzFkRofw+w7hxLWqhWTZ+ZScrT6nB070ITcmExaWhoFBQXs37/f7VDO2rEnYxrTnPz1769D5VV8tG7f8df7D1fy2sQhfCcz2ZV4uia25vlbB3LT9EX8bO5KXro92+6laYBPSUZERgN/AsKAl1T1sXrvRwGvAYOAIuBGVd3mvPcQMAmoAe5V1QWnalNEZgDZeGdQbgTuUNUyEbkD+AOwyznsn1X1pdP9wBEREfYkSWNO4fjAv8tx1HXwSBUTXl3K4QoPsyYPZfHWg9w4OJ3OCTGuxjW4W3sevjaLh/+ex6tfb2PixfbdUl+Tl8tEJAx4FrgSyAJuEpGsetUmAcWq2hN4Cnjc2TcLGAf0BUYDz4lIWBNt/kxVL1DV/sAOYGqd48xV1QHOz2knGGNM0/ytJ7PzYDljn/+a9XtKef6WgYzomcR9V/RyPcEcc9uwrlzWpwOPf7CezfvL3A7H7/gyJjMEyFfVLapaBcwBxtSrMwaY6WzPBy4T79SUMcAcVa1U1a1AvtNeo22qaimAs38M/n2J2BjTgtbuLuX657/mQFklsyYP5Xt9U9wO6VtEhP+9vh8xkWH8fN4qam0Rz5P4kmQ6AzvrvC5wyhqso6oeoARIPMW+p2xTRF4B9gJ9gGfq1PuhiKwWkfkiku5D7MaY03R8UozL18sWbi7ixhcWEt5KmH/3RWR3a+9uQKfQoW00D1+Txcqdh5i/rMDtcPyKL0mmoX9q9VN1Y3VOt9y7oToB6ASsA250iv8BdHMuo33EiZ7TyYGITBGRXBHJDYbBfWPOtdrjOca9LPPeN3sY//ISOsZH8+bdF9GrYxvXYvHVDy7szKCu7fj9gvWUVthss2N8STIFQN1eQxqwu7E6IhIOxAMHT7Fvk22qag0wF/ih87pIVSudt1/EO8ngW1R1uqpmq2p2crI7s06MCWRuj8m8vnAb98xeTr+0eOb/+3A6+cnYS1NEhF9f25eiI1X8+ZN8t8PxG74kmaVApohkiEgk3oH8nHp1coDxzvZY4BP19rlzgHEiEiUiGUAmsKSxNsWrJxwfk7kWWO+8Tq1zvOvw9nKMMc3MrWVlVJUn/7mBX/49j8v6dOAvk4aSEBt5boM4S/3S4rn+wjRmfr2NwtIKt8PxC00mGWeMZSqwAO8X+zxVzRORR0TkOqfaDCBRRPKB+4AHnX3zgHnAWuAD4B5VrWmsTbyX0WaKyDfAN0Aq8IhzjHtFJE9EVgH3Anec9ac3xnyLGz2ZmlrlP99ew9Of5POj7DSm3TqImMgzW9TSbT+5LBNPrfLcZ/aodPDxPhlVfQ94r17Zw3W2K4AbGtn3UeBRH9usBUY00s5DwEO+xGuMOXPHcsy5SjYV1TX8ZM4KFuTt455Le/D/vtfbL9dN81WXxFhuGJTG7MU7uOvfupMaHxiX+1pKyC0rY4xpwjnsypQcreb2l5ewIG8fv7o2i1+M6hPQCeaYey7tSY0qM77Y6nYorrMkY4w5yfGeTAvfolZYWsGNLyxkxY5i/jRuABNGBM/d8untY7m6Xypzlu7kcIjPNLMkY4w5Se2xnkwL5pidB8sZO20hOw6WM2P8YMYMqH/rXeCb/J0Myio9zF26s+nKQcySjDHmJC19tWzrgSPc+MJCDpVXMWvyUC7pFZy3GvRPS2BIt/a88tU2PDVNPzY6WFmSMcacROv9tzlt3HeYH72wkApPLW9MGRb0T5aceHE3dh06ymcbQvfGcEsyxpiTHL9a1sxdmjW7Shg3fREAc6cMo2+n+GZt3x9ddl5HkuKimJsbupfMLMkYY07SEgP+K3YUc/OLi4gOb8W8u4aTGQDLxDSHiLBWjB2UxifrC0P25kxLMsaYkx3vyTRPc4u3FHHrS4tJiI1k3r8PJyOpdfM0HCBuHJxOTa0yf3loLpxpScYYc5Jjs8uaI8d8uekA419ZQkp8NPPuGk5au9hmaDWwZCS1ZmhGe/6aWxDwj30/E5ZkjDEn8TjLMJ/t9+GXmw4waeZSuiW2Zu5dw0mJj26G6ALTDwemsfXAEdbsKnU7lHPOkowx5iQ1zfDQra/yvQkmI6k1s+8cRlJcVDNEFrhG9U0hIkz4x+r6C9gHP0syxpiTHO/JnOEFs6/rJJhZk4fSvnVgraTcEuJjI7gkM5l3Vu0OuSdnWpIxxpykpubML5d9nX+AiTOX0rW9N8EkhngPpq5rL+jE7pIKlu8odjuUc8qSjDHmJDVnOBizcHMRE2cupUv7WGbdaQmmvsuzOhIV3oqcVaF1ycySjDHmJGcyJrNoSxETX11KertYG4NpRFxUOCN7J/PPvH0hNcvMkowx5iTHxmRqffwiXLSliAmvLCWtXYwlmCZcfl5H9pZWkLc7dGaZWZIxxpykpta7mKPHhx7NYifBdHYSTHIbSzCncmmfDojAR+v2uR3KOWNJxhhzEo8z8F/tOfXKwct3FDPh1aV0Sohm9p1DLcH4ICkuioFd2lmSMcaErqqapnsyebtLuOPlJSS3ieKNO4fRoU3o3mh5ui4/ryNrdpWyp+So26GcEz4lGREZLSIbRCRfRB5s4P0oEZnrvL9YRLrVee8hp3yDiIxqqk0RmSEiq0RktYjMF5G4po5hjGk+R6tqgBPJpr78wsPcPmMJcVHhzJo8lA5tLcGcjsvP6wDAx+sKXY7k3GgyyYhIGPAscCWQBdwkIln1qk0CilW1J/AU8LizbxYwDugLjAaeE5GwJtr8mapeoKr9gR3A1FMdwxjTvI5We5NMQ5fLdhSVc8tLixERZt05LCTXIjtbPTvEkdYuhs83hsYzZnzpyQwB8lV1i6pWAXOAMfXqjAFmOtvzgctERJzyOapaqapbgXynvUbbVNVSAGf/GE6s09fYMYwxzehYT6a6Xk9m96Gj3PzSIio9tcyaPDTkVlNuLiLCdzKTWLilKCSemOlLkukM1H3iToFT1mAdVfUAJUDiKfY9ZZsi8gqwF+gDPNPEMU4iIlNEJFdEcvfvD42/FIxpTuXHk8yJMZn9hyu59aXFlJRX8/rEofROCY3nwbSUET2TOFzhYfWuErdDaXG+JJmGegv1RwQbq3O65d4N1QlAJ2AdcONpxIGqTlfVbFXNTk4OzmeHG9NSVJWiI5XAiTGZQ+VV3DZjMXtKKnh5wmD6pQX/Ey1b2ogeSYh4V6oOdr4kmQIgvc7rNKD+ugjH64hIOBAPHDzFvk22qao1wFzgh00cwxjTTMoqPVRUe5NLeZWHwxXVjH95CVv2H+HF27MZ3K29yxEGh3atIzm/U7wlGcdSIFNEMkQkEu9Afk69OjnAeGd7LPCJetdNyAHGOTPDMoBMYEljbYpXTzg+JnMtsL6JYxhjmsmOg+WAdwmULfuPMOnVXPJ2l/LcLQO5ODPJ5eiCy4ieSSzfUcyRSo/bobSoJpOMM/4xFViA9/LVPFXNE5FHROQ6p9oMIFFE8oH7gAedffOAecBa4APgHlWtaaxNvJfEZorIN8A3QCrwyKmOYYxpPmucMYKr+6VSXlXDkm0H+eO4AVye1dHlyILPdzKT8NQqi7cWuR1Kiwr3pZKqvge8V6/s4TrbFcANjez7KPCoj23WAiMaaafRYxhjmseCvH2kxkfz0FV9iIkMY2TvZEb27uB2WEFpUNd2RIQJi7ce5Lt9gjeJ+5RkjDHBb82uEj7dUMg9I3uSEBvJr6/r63ZIQS06Ioz+aQks3RrcQ8u2rIwxhorqGh54czUJMRHceUl3t8MJGYO7teebXSVUODfABiNLMsaEOFXlN/9YS97uUp644QLiYyLcDilkDO7WjuoaZcWOQ26H0mIsyRgT4l74fAtvLNnB3SN7cNl5wTs24I+yu7ZHBJZuC95LZpZkjAlh83J38tj767n2gk784nu93Q4n5MTHRtC7YxtLMsaY4PPh2n089NY3fCczif+74QJatbKlAN0wuFt7lm8vDtp1zCzJGBOClmw9yNTZyzm/U1um3TqIyHD7KnDL4Iz2HKmqYd2ew26H0iLsX5YxIWblzkNMfHUpnRNiePmOwbSOsjsZ3HRhegIAK3cWuxxJy7AkY0wIWbOrhNtnLKZd6whm3TmUxDh7ZLLb0trFkBQXycqdwbkisyUZY0LE+r2l3DpjMW2iI5g9eRip8TFuh2TwPl/mgrQEVhUE5zRmSzLGhID8wsPc8uJiosJbMfvOoaS3tyda+pML0hPYvL+M0opqt0NpdpZkjAlyWw8c4eYXvY9Mnn3nMLom2hMt/c0F6QmowjcFwXfJzJKMMUFsR1E5N7+4CE+tMvvOofRIjnM7JNOAC5wHwa3cGXyXzCzJGBOkCorLuenFRRytruEvk4bSq6M9MtlfJcRGkpHUmlWWZIwxgWBvSQU3v7iY0opq/jJpKFmd2rodkmnCBWnxQTn4b0nGmCBTeLiCm19cxMEjVbw2cQjnd453OyTjgwvSE9hXWsm+0gq3Q2lWlmSMCSL7D1dyy4uL2VtawSsTBnNhl3Zuh2R81LeT94+BtbtLXY6keVmSMSZIFB6u4KYXF1FQfJQZ4wczuFt7t0Myp+G8VO+YWd7u4Jph5lOSEZHRIrJBRPJF5MEG3o8SkbnO+4tFpFud9x5yyjeIyKim2hSRWU75GhF5WUQinPKRIlIiIiudn4cxxgBQWFrBTdMXsav4KK9MGMzwHoluh2ROU5voCLomxrJ2T4j1ZEQkDHgWuBLIAm4Skax61SYBxaraE3gKeNzZNwsYB/QFRgPPiUhYE23OAvoA/YAYYHKd43yhqgOcn0fO5AMbE2wKSysY9+Ii9pRU8OqEwQzrbgkmUGWltg3Jy2VDgHxV3aKqVcAcYEy9OmOAmc72fOAyERGnfI6qVqrqViDfaa/RNlX1PXUAS4C0s/uIxgSvfaUVjJu+iL0lFbw6YQhDLcEEtKzUtmwrKqes0uN2KM3GlyTTGdhZ53WBU9ZgHVX1ACVA4in2bbJN5zLZbcAHdYqHi8gqEXlfRPo2FKyITBGRXBHJ3b9/vw8fz5jAtM+5RLavtIKZE4cwJMPGYALdsanm64LokpkvSaahJxmpj3VOt7yu54DPVfUL5/VyoKuqXgA8A/ytoWBVdbqqZqtqdnJyckNVjAl4e0u8PZhjCcYG+YNDMM4w8yXJFADpdV6nAbsbqyMi4UA8cPAU+56yTRH5FZAM3HesTFVLVbXM2X4PiBCRJB/iNyao7Ck5yrjpC9l/uJLXJg0h2xJM0OjYNor2rSNDLsksBTJFJENEIvEO5OfUq5MDjHe2xwKfOGMqOcA4Z/ZZBpCJd5yl0TZFZDIwCrhJVY8/j1REUpxxHkRkiBN70Zl8aGMC1e5DRxk3fREHyqqYOXEIg7paggkmIkJWalvy9gTPNOYmH4mnqh4RmQosAMKAl1U1T0QeAXJVNQeYAbwuIvl4ezDjnH3zRGQesBbwAPeoag1AQ206h5wGbAcWOjnlLWcm2VjgbhHxAEeBcU4iMyYkHEswxUeqeG3SEAbajZZBKatTW179ahuemlrCwwL/VkYJ5u/p7Oxszc3NdTsMY87azoPl3PzSIg4dqea1SUPsTv4gNn9ZAf/vr6v4+Of/5tqq2SKyTFWzm6OtwE+TxgS5rQeOcOMLCykpr+b1yUMtwQS5Xh29iWXTvsMuR9I8LMkY48c27TvMj15YSIWnljlThjMgPcHtkEwL69nBm2Q27itzOZLm0eSYjDHGHXm7S7htxhLCWglzpwwj054HExJiI8NJbx/DRuvJGGNaysqdh7hp+iKiw1sx767hlmBCTK8ObdgUJD0ZSzLG+Jml2w5y60uLSYiNZO5dw8lIau12SOYcy+zYhi0HyqiuqW26sp+zJGOMH/kq/wC3z1hCh7ZRzLtrOOntY90OybigV8c4qmuUbQeOuB3KWbMkY4yf+HR9IRNeXUrXxFjmThlOSny02yEZl/RyLo8Gw+C/JRlj/MAHa/Yy5fVcenWM4407h5HcJsrtkIyLenaIo5UQFIP/NrvMGJf9bcUufv7XVVyQFs8rE4YQHxPhdkjGZdERYXRpH8umwsBPMtaTMcZFry3cxk/nrmRIt/a8NmmoJRhzXGbHNna5zBhzZlSVZz7exMN/z+OKrI68MmEwcVF2YcGc0LNDHNuLjuAJ8BlmlmSMOcdqa5XfvruO//twI9cP7MzztwwkOiLM7bCMn8lIak11jVJQfNTtUM6KJRljziFPTS33v7maGV9u5Y6LuvHE2AuCYqVd0/x6JHvvj9pyILAvmdm/bmPOkYrqGu6ZvZz5ywr42eW9+NW1WbRq1dBDYo2BjCTvGmZb9gf2vTJ2EdiYc6Cs0sNdr+fyVX4Rv7o2iwkjMtwOyfi59q0jSYiNYEuA35BpScaYFlZ8pIo7Xl3Kml0lPPmjC7h+YJrbIZkAkZHUmq0B3pOxy2XGtKB9pRXcOH0h6/aUMu3WQZZgzGnpnhRnYzLGmIblF5Zx/XNfs6v4KK9OGMwVWR3dDskEmO7JrdlXWklZpcftUM6YT0lGREaLyAYRyReRBxt4P0pE5jrvLxaRbnXee8gp3yAio5pqU0RmOeVrRORlEYlwykVEnnbqrxaRgWfzwY1pScu2FzN22tdUemqZe9dwLuqR5HZIJgB1d1bgDuSFMptMMiISBjwLXAlkATeJSFa9apOAYlXtCTwFPO7smwWMA/oCo4HnRCSsiTZnAX2AfkAMMNkpvxLIdH6mAM+fyQc2pqV9vG4ft7y0iISYCN66+yLO7xzvdkgmQGU405g37w/cS2a+9GSGAPmqukVVq4A5wJh6dcYAM53t+cBlIiJO+RxVrVTVrUC+016jbarqe+oAlgBpdY7xmvPWIiBBRFLP8HMb0yLmLt3BlNeX0btjG+bffRFdEm2pfnPmuiW2RgS2BnNPBugM7KzzusApa7COqnqAEiDxFPs22aZzmew24IPTiAMRmSIiuSKSu3//fh8+njFnT1V5+uNNPPDmN1zcM4nZdw4jKc5WUjZnJzoijE7xMQF9r4wvSaahu8XUxzqnW17Xc8DnqvrFacSBqk5X1WxVzU5OTm5gF2OaV02t8t9/W8OTzjIxL43PprWtQ2aaSffk1gE9w8yX34QCIL3O6zRgdyN1CkQkHIgHDjaxb6NtisivgGTgrtOMw5hzqqK6hnvfWME/1+7j7pE9uH9Ub7xXio1pHt0SW7Ny5yFUNSD/bfnSk1kKZIpIhohE4h3Iz6lXJwcY72yPBT5xxlRygHHO7LMMvIP2S07VpohMBkYBN6lqbb1j3O7MMhsGlKjqnjP4zMY0i5Lyam6bsZgP1+3jV9dm8cDoPgH5JWD8W9fEWA5XeDhUXu12KGekyZ6MqnpEZCqwAAgDXlbVPBF5BMhV1RxgBvC6iOTj7cGMc/bNE5F5wFrAA9yjqjUADbXpHHIasB1Y6PzCvqWqjwDvAVfhnTxQDkxojhNgzJnYUVTOHa8uoeDgUZ656UKu6d/J7ZBMkEpv7508suNgOe1aR7oczenz6cKxqr6H90u+btnDdbYrgBsa2fdR4FFf2nTKG4zJ6Rnd40u8xrSkFTuKmTwzF0+t8vqkIQztnuh2SCaIdXVmKG4/WM4F6QkuR3P6bHTSmNPw/jd7+OnclXRsG80rEwbTIznO7ZBMkOvi9GR2Hix3OZIzY0nGGB+oKi99sZXfvb+OAekJvHR7Nok2RdmcA7GR4STFRbG9KDCnMVuSMaYJnppafv2PPP6yaAdX9UvhyR8NsCdZmnOqa2Is24usJ2NM0DlS6WHq7OV8umE/d/1bdx4Y1cceNGbOua7tY1m0pcjtMM6IrcJsTCP2llRww7SFfL7pAL/7QT8euvI8SzDGFentY9lTWkGlp8btUE6b9WSMacDa3aVMmrmU0qPVzBifzcjeHdwOyYSwromxqMLOg0fp2SGwJptYT8aYehbk7WXstK8B+Ou/X2QJxrju2DTmQJxhZj0ZYxyqynOfbeYPCzYwID2B6bcNokPbaLfDMub4DZmBOMPMkowxeNcge/DN1fxt5W7GDOjE4z/sbzPIjN9IjosiNjKMHQePuh3KabMkY0Je4eEK7np9GSt2HOIXo3rz45E9bA0y41dEhC7tY9lx0HoyxgSUNbtKmPJaLsXl1Uy7dRCjz09xOyRjGpTePjYgH8NsA/8mZH2wZg83TFsIwPy7h1uCMX4tvV0suw4dxbuMY+CwnowJOarKs5/m88Q/N3oH+G8fRIc2NsBv/FvndjGUV9VQXF5N+wBajdmSjAkpRyo93D9/Ne9+s4fvD+jEYzbAbwJE54QYAHYVH7UkY4w/2l50hCmvLWNT4WEeurIPUy7pbgP8JmCktXOSzKFy+qXFuxyN7yzJmJDw2YZC7n1jBSLCzIlD+E5mstshGXNajvVkCooDaxqzJRkT1FSV5//lvcGyd8c2TL8tmy7O3dPGBJKE2AhiI8PYdciSjDF+oe74yzVaZifVAAAXXElEQVT9U/n92P7ERto/eROYRIS0djEB15PxaQqziIwWkQ0iki8iDzbwfpSIzHXeXywi3eq895BTvkFERjXVpohMdcpURJLqlI8UkRIRWen8HH/8szH1bS86wvXPfc37a/bw0JV9eOamCy3BmIDXOSGGXQGWZJr8rRORMOBZ4AqgAFgqIjmqurZOtUlAsar2FJFxwOPAjSKSBYwD+gKdgI9EpJezT2NtfgW8A3zWQDhfqOo1Z/A5TQix8RcTrDq3i2H5jkNuh3FafOnJDAHyVXWLqlYBc4Ax9eqMAWY62/OBy8Q7bWcMMEdVK1V1K5DvtNdom6q6QlW3neXnMiGotlZ5+uNNTHh1KZ0SYvjH1IstwZig0jkhlpKj1ZRVetwOxWe+JJnOwM46rwucsgbrqKoHKAEST7GvL202ZLiIrBKR90Wkb0MVRGSKiOSKSO7+/ft9aNIEg+IjVUx4dSlPfriRMRd04q0fX2QD/CbodG534l6ZQOHLReqGbiSov65BY3UaK28ouTW1VsJyoKuqlonIVcDfgMxvNaI6HZgOkJ2dHVjrL5gzsnLnIe6ZtZz9hyv57ffP55ahXez+FxOUTkxjLqd3ShuXo/GNLz2ZAiC9zus0YHdjdUQkHIgHDp5iX1/aPImqlqpqmbP9HhBRd2KACT2qyusLt3GD84Cx+XcP59ZhXS3BmKCVfvyGzMDpyfiSZJYCmSKSISKReAfyc+rVyQHGO9tjgU/Uu4pbDjDOmX2WgbfnscTHNk8iIinOOA8iMsSJvciXD2mCz5FKDz+du5Jf/j2Pi3sm8e69F9M/LcHtsIxpUUlxUUSGtQquy2Wq6hGRqcACIAx4WVXzROQRIFdVc4AZwOsiko+3BzPO2TdPROYBawEPcI+q1oB3qnL9Np3ye4H7gRRgtYi8p6qT8Savu0XEAxwFxmmgLUdqmkV+4WHu/styNu8v4/99rxc/HtmTVq2s92KCX6tWQqeEaAoCqCcjwfw9nZ2drbm5uW6HYZrRP1bt5oE3VxMTEcbTN13IiJ52xdSEllteWsSRyhr+ds+IFjuGiCxT1ezmaMvuTjMBoaK6hv95Zy2zFu9gUNd2/PnmC0mNj3E7LGPOuc4JMXyyPnBmzlqSMX4vv7CMqbOXs37vYaZc0p1fjOpNRJg9b8+Eps4JsRwoq6TSU0NUuP8/psKSjPFbqsr8ZQU8/Pc8YiLDeGXCYC7t3cHtsIxxVWq89wF7haWVpLf3/3vBLMkYv1RW6eGXf1vD2yt2Max7e/5444WkxNvTK41JTfD+Huw+dNSSjDFnIm93CVNnr2B70RF+enkm//HdTMJs9pgxwImezN7SCpcj8Y0lGeM3VJXXFm7n0XfX0a51BLPvHMaw7oluh2WMX0lxJrzsKbEkY4zPDpVX8cCbq1mQt49LeyfzxA0XkBgX5XZYxviduKhw2kSHsydA7pWxJGNc9/XmA9w3dxUHyir576vPY+KIDLu50phTSI2Ptp6MMU2p8tTyf//cwPQvtpCR2Jq3fnyRLQ1jjA9S42NsTMaYU8kvPMxP5qwkb3cpNw/twn9ffZ49udIYH6XGR5O3u9TtMHxiv9XmnFJV/rJ4B4++u5bYyHCm3zaI7/VNcTssYwJKSnw0B8oqqfLUEhnu3zcmW5Ix58yBskoemL+aj9cXckmvZJ4Y258Obe3eF2NOVydnhtm+0gq/v1fGkow5Jz7dUMgv/rqK0goPv7o2i/HDu9ngvjFn6NiNyXtKLMmYEFde5eHx99czc+F2+qS0YdbkYQHzRD9j/FWnhGNJxv+nMVuSMS1m2faD/HzeKrYVlTNxRAb3j+5NdIT/L+hnjL8LpBsyLcmYZlfpqeGpDzcx/fPNpMbH8Madwxjew+7cN6a5HLshc68lGRNq1uwq4efzVrFh32FuGpLOf12dRVyU/TMzprl5b8i0y2UmRFTX1PLcp5t55pNNtG8dySt3DObSPrYsvzEtJSU+JiAul/k0wVpERovIBhHJF5EHG3g/SkTmOu8vFpFudd57yCnfICKjmmpTRKY6ZSoiSXXKRUSedt5bLSIDz/RDm+a1ad9hrn/ua576aCNX90/lnz+7xBKMMS2sU4AsLdNkT0ZEwoBngSuAAmCpiOSo6to61SYBxaraU0TGAY8DN4pIFjAO6At0Aj4SkV7OPo21+RXwDvBZvVCuBDKdn6HA885/jUtqapUZX27hiX9uJC4qnOduGchV/VLdDsuYkBAoN2T6crlsCJCvqlsARGQOMAaom2TGAL92tucDfxYRccrnqGolsFVE8p32aKxNVV3hlNWPYwzwmqoqsEhEEkQkVVX3nM4HNs0jv/AwD7z5Dcu2F3NFVkd+94N+JLexVZONOVc6xceg6v83ZPqSZDoDO+u8LuDbPYjjdVTVIyIlQKJTvqjevp2d7aba9CWOzsBJSUZEpgBTALp06dJEk+Z0VdfUMv3zLfzpo03ERoXx5I8u4AcXdm7ojwJjTAtKqfPwskBPMg19e6iPdRorb6hvV7/NM4kDVZ0OTAfIzs5uqk1zGvJ2l3D//NXk7S7lqn4p/Oa68633YoxLjj0hc7efP1fGlyRTAKTXeZ0G7G6kToGIhAPxwMEm9m2qzTOJw7SASk8Nz3ycz7R/bSYhNpJptw5k9Pk29mKMm471ZPb5+ZL/vowWLQUyRSRDRCLxDuTn1KuTA4x3tscCnzhjJznAOGf2WQbeQfslPrZZXw5wuzPLbBhQYuMxLW/Z9mKufvpL/vxpPtcN6MRH911iCcYYP9AmOoK4qHC/n2HWZE/GGWOZCiwAwoCXVTVPRB4BclU1B5gBvO4M7B/EmzRw6s3DO0nAA9yjqjXgnapcv02n/F7gfiAFWC0i76nqZOA94CogHygHJjTXSTDfVl7l4YkFG3nl662kto3mlQmDubS3TUs2xp+kxEf7/V3/4u1wBKfs7GzNzc11O4yA8+WmA/zn29+w42A5tw7rwgOj+9AmOsLtsIwx9dw2YzFllR7e/vGIZm1XRJapanZztGV3/JvjDpRV8ui763h7xS66JcYyZ8owhnW3NceM8VcpbaP5Mv+A22GckiUZg6ry19wCfvf+Oo5Uerj3uz358aU9bcVkY/xcSnw0hYcr8dTUEh7mnzdkWpIJcfmFZfzn29+wZOtBBndrx+9+0I/Mjva8F2MCQUp8NDW1yoGyquOzzfyNJZkQVVFdw3Ofbeb5z/KJiQjjsev78aPsdHtapTEBJDX+xMPLLMkYv/H15gP899tr2HLgCN8f0In/ujrLbqo0JgCltPU+vMyfZ5hZkgkhRWWV/O699by5vICuibG8PmkI38lMdjssY8wZOtGTsSRjXFRTq8xesoMnFmzgSKWHey7twX98N9MG9o0JcAmxEUSFt/Lru/4tyQS5FTuK+eXf17BmVynDuyfyyJi+NrBvTJAQEVL8/LkylmSCVFFZJb//YANzc3fSsW0Uz9x0Idf0T7XVko0JMilt/fuuf0syQab+pbG7LunOf1yWSVyU/a82JhilxkezbEex22E0yr55gohdGjMm9KTEx7CvZC+1teqXtyBYkgkCRWWV/GHBBuYs9V4ae/qmC7nWLo0ZExJS46OpqqnlYHkVSXH+dyuCJZkAVuWp5bWF2/jTx5s4WlXDlEu6c69dGjMmpBx/QmZJhSUZ0zxUlU/WF/Lou+vYcuAI/9YrmV9ecx49O9ilMWNCTUrbE0nm/M7xLkfzbZZkAsymfYf5n3fX8fnG/XRPbs0rdwzm0j72nBdjQtXxGzL99F4ZSzIB4lB5FX/8aBOvL9pObGQYv7wmi9uHdyXCT1deNcacG4lxUYS3EvaWHHU7lAZZkvFznppaZi3ewVMfbaT0aDU3D+3CfVf0pn3rSLdDM8b4gbBWQse2/ntDpiUZP6WqfLqhkP99bz2bCsu4qEciD1+bRZ+Utm6HZozxM/78GGafrrWIyGgR2SAi+SLyYAPvR4nIXOf9xSLSrc57DznlG0RkVFNtikiG08Ymp81Ip/wOEdkvIiudn8ln88H92fIdxdw4fRETX82luqaWF24bxKzJQy3BGGMalBIfzd5AHZMRkTDgWeAKoABYKiI5qrq2TrVJQLGq9hSRccDjwI0ikgWMA/oCnYCPRKSXs09jbT4OPKWqc0RkmtP2884+c1V16ll+Zr+VX1jGHxasZ0HePpLiovif75/PuMHpNu5ijDmllLbRfLq+EFX1u/vjfLlcNgTIV9UtACIyBxgD1E0yY4BfO9vzgT+L95OOAeaoaiWwVUTynfZoqE0RWQd8F7jZqTPTafdYkglK+0or+ONHG5mXW0B0eCvuu6IXky7OoLXd72KM8UFqfDTlVTWUVniIj4lwO5yT+PIt1hnYWed1ATC0sTqq6hGREiDRKV9Ub9/OznZDbSYCh1TV00B9gB+KyCXARuBnqlq3jYBTcrSaF/61mZe/2kpNrXL78K5MvbQniX54Q5Uxxn/VvSEzEJNMQ30v9bFOY+UNXf85VX2AfwBvqGqliPw73l7Od78VrMgUYApAly5dGmjOfRXVNfxl0Xb+/Gk+h8qr+f6ATtx3RW+6JMa6HZoxJgDVfQxz7xT/uinblyRTAKTXeZ0G7G6kToGIhAPxwMEm9m2o/ACQICLhTm/meH1VLapT/0W8YzffoqrTgekA2dnZ9ZOhq2pqlb+t2MWTH25k16GjXNIrmftH9fbLu3SNMYEjJd5/H8PsS5JZCmSKSAawC+9A/s316uQA44GFwFjgE1VVEckBZovIk3gH/jOBJXh7LN9q09nnU6eNOU6bfwcQkVRV3eMc7zpg3Rl+5nNOVflsw34e/2A96/cepl/neH4/tj8jeia5HZoxJgh0aBOFCH45w6zJJOOMsUwFFgBhwMuqmicijwC5qpoDzABedwb2D+JNGjj15uGdJOAB7lHVGoCG2nQO+QAwR0R+C6xw2ga4V0Suc9o5CNxx1p/+HFixo5jH3l/P4q0H6ZoYy59vvpCrzk/1yyW5jTGBKSKsFUlxUX7ZkxFVv7qi1Kyys7M1NzfXlWNv3l/GEws28P6avSTFRfKTyzK5cXAXIsNtOrIxpvld9+cvaRcbycyJQ5qu3AQRWaaq2c0Qlt3x39wKSyv408ebmLN0J9HhrfjZ5b2Y/B2bjmyMaVkpbaPZXlTudhjfYt98zeRIpYcXPt/Ci59vwVNby23DujL1uz398vkOxpjgkxofzaItRU1XPMcsyZwlT00tc3N38tSHmzhQVsnV/VO5f1Rvuia2djs0Y0wISYmPobTCw5FKj19dOfGfSALQws1FPPz3NWwqLGNwt3a8ePsgLuzSzu2wjDEh6Ni9MntLK+iRHOdyNCdYkjkDB49U8ei763hzeQHp7WOYdusgRvXt6HdrBhljQkdH5wmZ+0osyQS0r/MP8NO5Kykur+KeS3sw9dJMYiLD3A7LGBPiTtz171/TmC3J+EhVefGLLfzv++vpntSaVycMIauTLb1vjPEPKXUul/kTSzI+UFUee389L3y+hav7p/KHsf2JjbRTZ4zxH9ERYbSLjWCPnz2G2b4pffDSF1t54fMt3DasK7+5rq/drW+M8Usp8TF+d9e/3X7ehOU7ivnf99dxVb8USzDGGL+WGh/td2MylmROoaZWeWD+alLaRvP4D/tbgjHG+LWObaPZ52djMpZkTuGd1bvZVFjGL6/Jok20fz0IyBhj6kuNj+ZAWRWVnhq3QznOkswpzPhyK706xjGqb4rboRhjTJOOzTArLK10OZITLMk0Ysv+MlYXlPCj7HS7TGaMCQj+eK+MJZlGfLyuEICr+6e6HIkxxvim7mOY/YUlmUYs215Ml/axpDqPNTXGGH/nj49htiTTiFUFhxjYJcHtMIwxxmdxUeHERYX71V3/lmQaUFFdw56SCrr70SJzxhjji5T4aHYV2+Uyv1bg/A9Kb2+XyowxgaVnchz5hWVuh3GcT0lGREaLyAYRyReRBxt4P0pE5jrvLxaRbnXee8gp3yAio5pqU0QynDY2OW1GNnWM5nbwSBUAyXHRLXUIY4xpEb1T2rCt6AhHq/zjXpkmk4yIhAHPAlcCWcBNIpJVr9okoFhVewJPAY87+2YB44C+wGjgOREJa6LNx4GnVDUTKHbabvQYLaG8ygNgS/gbYwLOealtqFXYVHjY7VAA33oyQ4B8Vd2iqlXAHGBMvTpjgJnO9nzgMvE+wWsMMEdVK1V1K5DvtNdgm84+33XawGnz+00co9lVVHv/Aoi1JGOMCTD907wTlr7YdMDlSLx8WYW5M7CzzusCYGhjdVTVIyIlQKJTvqjevp2d7YbaTAQOqaqngfqNHeOkMykiU4ApzssyESmqX8dXWS3WV3JNEmd4LoKQnQsvOw8nBNW5mPo4TD2zXZOArs0Vhy9JpqHegvpYp7HyhnpQp6rvaxyo6nRg+vHARHJVNbuBfUOOnYsT7Fx42Xk4wc6Fl3MeujVXe75cLisA0uu8TgN2N1ZHRMKBeODgKfZtrPwAkOC0Uf9YjR3DGGOMn/IlySwFMp1ZX5F4B/Jz6tXJAcY722OBT1RVnfJxzsywDCATWNJYm84+nzpt4LT59yaOYYwxxk81ebnMGf+YCiwAwoCXVTVPRB4BclU1B5gBvC4i+Xh7F+OcffNEZB6wFvAA96hqDUBDbTqHfACYIyK/BVY4bdPYMXwwvekqIcPOxQl2LrzsPJxg58KrWc+DWGfAGGNMS7E7/o0xxrQYSzLGGGNaTFAnmaaWwwl0IvKyiBSKyJo6Ze1F5ENnWZ4PRaSdUy4i8rRzLlaLyMA6+4x36m8SkfENHcvfiUi6iHwqIutEJE9EfuKUh9T5EJFoEVkiIquc8/Abp/y0l2tqbEmoQOOsMrJCRN5xXofkuRCRbSLyjYisFJFcp6zlfz9UNSh/8E4o2Ax0ByKBVUCW23E182e8BBgIrKlT9nvgQWf7QeBxZ/sq4H289xsNAxY75e2BLc5/2znb7dz+bGdwLlKBgc52G2Aj3iWLQup8OJ8nztmOABY7n28eMM4pnwbc7Wz/GJjmbI8D5jrbWc7vTBSQ4fwuhbn9+c7wnNwHzAbecV6H5LkAtgFJ9cpa/PcjmHsyviyHE9BU9XO+fa9Q3eV36i/L85p6LcJ7P1IqMAr4UFUPqmox8CHedeYCiqruUdXlzvZhYB3eVSJC6nw4n+fYErwRzo9y+ss1NbYkVEARkTTgauAl5/WZLF0VFOeiES3++xHMSaah5XA6N1I3mHRU1T3g/eIFOjjljZ2PoDtPzmWOC/H+FR9y58O5PLQSKMT7JbAZH5drAuouCRXQ58HxR+B+oNZ57fPSVQTfuVDgnyKyTLzLb8E5+P3wZVmZQOXTMjQh5HSX/glIIhIHvAn8VFVLpfE1VIP2fKj3XrQBIpIAvA2c11A1579Bex5E5BqgUFWXicjIY8UNVA36c+EYoaq7RaQD8KGIrD9F3WY7F8Hck/FlOZxgtM/p1uL8t9ApP90lfgKOiETgTTCzVPUtpzhkz4eqHgI+w3tN/XSXawqG8zACuE5EtuG9XP5dvD2bUDwXqOpu57+FeP/4GMI5+P0I5iTjy3I4waju8jv1l+W53Zk1MgwocbrHC4DviUg7Z2bJ95yygOJcO58BrFPVJ+u8FVLnQ0SSnR4MIhIDXI53fOp0l2tqbEmogKGqD6lqmnoXexyH97PdQgieCxFpLSJtjm3j/Xe9hnPx++H2jIeW/ME7Q2Ij3mvS/+V2PC3w+d4A9gDVeP/CmIT3GvLHwCbnv+2duoL3QXGbgW+A7DrtTMQ7mJkPTHD7c53hubgYb7d9NbDS+bkq1M4H0B/vckyrnS+Rh53y7ni/GPOBvwJRTnm08zrfeb97nbb+yzk/G4Ar3f5sZ3leRnJidlnInQvnM69yfvKOfR+ei98PW1bGGGNMiwnmy2XGGGNcZknGGGNMi7EkY4wxpsVYkjHGGNNiLMkYY4xpMZZkjDHGtBhLMsYYY1rM/we5gZknDF8RXwAAAABJRU5ErkJggg==\n", "text/plain": [ @@ -538,7 +532,7 @@ "# plt.yscale('log')\n", "# plt.xlim(3080, 3110)\n", "plt.savefig('test.png')\n", - "print(jpsi_width)" + "# print(jpsi_width)" ] }, { @@ -550,7 +544,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 12, "metadata": {}, "outputs": [], "source": [ @@ -563,7 +557,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 13, "metadata": {}, "outputs": [], "source": [ @@ -580,7 +574,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 14, "metadata": {}, "outputs": [], "source": [ @@ -612,24 +606,16 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 15, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "5404695.652173913\n" - ] - } - ], + "outputs": [], "source": [ - "print(36000*(1+ pdg[\"jpsi_BR\"]/pdg[\"NR_BR\"] + pdg[\"psi2s_BR\"]/pdg[\"NR_BR\"]))" + "# print(36000*(1+ pdg[\"jpsi_BR\"]/pdg[\"NR_BR\"] + pdg[\"psi2s_BR\"]/pdg[\"NR_BR\"]))" ] }, { "cell_type": "code", - "execution_count": 14, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -652,20 +638,125 @@ "cell_type": "code", "execution_count": null, "metadata": {}, + "outputs": [], + "source": [ + "# nevents = int(pdg[\"number_of_decays\"])\n", + "# event_stack = 5000\n", + "\n", + "# calls = int(nevents/event_stack + 1)\n", + "\n", + "# total_samp = []\n", + "\n", + "# start = time.time()\n", + "\n", + "# samp = total_f.sample(n=event_stack)\n", + "# s = samp.unstack_x()\n", + "\n", + "# for call in range(calls):\n", + "\n", + "# sam = zfit.run(s)\n", + "# clear_output(wait=True)\n", + " \n", + "# # if call != 0:\n", + "# # print(np.sum(_last_sam-sam))\n", + " \n", + "# # _last_sam = sam\n", + " \n", + "# c = call + 1 \n", + "# print(\"{0}/{1}\".format(c, calls))\n", + "# print(\"Time taken: {}\".format(display_time(int(time.time() - start))))\n", + "# print(\"Projected time left: {}\".format(display_time(int((time.time() - start)/c*(calls-c)))))\n", + " \n", + "# with open(\"data/zfit_toys/toy_1/{}.pkl\".format(call), \"wb\") as f:\n", + "# pkl.dump(sam, f, pkl.HIGHEST_PROTOCOL)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# print(\"Time to generate full toy: {} s\".format(int(time.time()-start)))\n", + "\n", + "# total_samp = []\n", + "\n", + "# for call in range(calls):\n", + "# with open(r\"data/zfit_toys/toy_1/{}.pkl\".format(call), \"rb\") as input_file:\n", + "# sam = pkl.load(input_file)\n", + "# total_samp = np.append(total_samp, sam)\n", + "\n", + "# total_samp = total_samp.astype('float64')\n", + "\n", + "# data2 = zfit.data.Data.from_numpy(array=total_samp[:int(nevents)], obs=obs)\n", + "\n", + "# print(total_samp[:nevents].shape)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# bins = int((x_max-x_min)/7)\n", + "\n", + "# # calcs = zfit.run(total_test_tf(samp))\n", + "\n", + "# plt.hist(total_samp[:event_stack], bins = bins, range = (x_min,x_max))\n", + "\n", + "# # plt.plot(sam, calcs, '.')\n", + "# # plt.plot(test_q, calcs_test)\n", + "# plt.ylim(0, 20)\n", + "# # plt.xlim(3000, 3750)\n", + "\n", + "# plt.savefig('test2.png')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Toys" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "1/1081\n", - "Time taken: 5 min, 13 s\n", - "Projected time left: 3 d, 21 h\n" + "2/1081\n", + "Time taken: 44 s\n", + "Projected time left: 6 h, 38 min\n" + ] + }, + { + "ename": "KeyboardInterrupt", + "evalue": "", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", + "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[0;32m 21\u001b[0m \u001b[1;32mfor\u001b[0m \u001b[0mcall\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mcalls\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 22\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 23\u001b[1;33m \u001b[0msampler\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mresample\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mn\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mevent_stack\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 24\u001b[0m \u001b[0ms\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0msampler\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0munstack_x\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 25\u001b[0m \u001b[0msam\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mzfit\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mrun\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0ms\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32mc:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\core\\data.py\u001b[0m in \u001b[0;36mresample\u001b[1;34m(self, param_values, n)\u001b[0m\n\u001b[0;32m 624\u001b[0m \u001b[1;32mraise\u001b[0m \u001b[0mRuntimeError\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m\"Cannot set a new `n` if not a Tensor-like object was given\"\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 625\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mn_samples\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mload\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mvalue\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mn\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0msession\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0msess\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 626\u001b[1;33m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0msess\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mrun\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0msample_holder\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0minitializer\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 627\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_initial_resampled\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;32mTrue\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 628\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32mc:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\client\\session.py\u001b[0m in \u001b[0;36mrun\u001b[1;34m(self, fetches, feed_dict, options, run_metadata)\u001b[0m\n\u001b[0;32m 927\u001b[0m \u001b[1;32mtry\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 928\u001b[0m result = self._run(None, fetches, feed_dict, options_ptr,\n\u001b[1;32m--> 929\u001b[1;33m run_metadata_ptr)\n\u001b[0m\u001b[0;32m 930\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mrun_metadata\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 931\u001b[0m \u001b[0mproto_data\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mtf_session\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mTF_GetBuffer\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mrun_metadata_ptr\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32mc:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\client\\session.py\u001b[0m in \u001b[0;36m_run\u001b[1;34m(self, handle, fetches, feed_dict, options, run_metadata)\u001b[0m\n\u001b[0;32m 1150\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mfinal_fetches\u001b[0m \u001b[1;32mor\u001b[0m \u001b[0mfinal_targets\u001b[0m \u001b[1;32mor\u001b[0m \u001b[1;33m(\u001b[0m\u001b[0mhandle\u001b[0m \u001b[1;32mand\u001b[0m \u001b[0mfeed_dict_tensor\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1151\u001b[0m results = self._do_run(handle, final_targets, final_fetches,\n\u001b[1;32m-> 1152\u001b[1;33m feed_dict_tensor, options, run_metadata)\n\u001b[0m\u001b[0;32m 1153\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1154\u001b[0m \u001b[0mresults\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;33m[\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32mc:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\client\\session.py\u001b[0m in \u001b[0;36m_do_run\u001b[1;34m(self, handle, target_list, fetch_list, feed_dict, options, run_metadata)\u001b[0m\n\u001b[0;32m 1326\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mhandle\u001b[0m \u001b[1;32mis\u001b[0m \u001b[1;32mNone\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1327\u001b[0m return self._do_call(_run_fn, feeds, fetches, targets, options,\n\u001b[1;32m-> 1328\u001b[1;33m run_metadata)\n\u001b[0m\u001b[0;32m 1329\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1330\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_do_call\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0m_prun_fn\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mhandle\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfeeds\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfetches\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32mc:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\client\\session.py\u001b[0m in \u001b[0;36m_do_call\u001b[1;34m(self, fn, *args)\u001b[0m\n\u001b[0;32m 1332\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0m_do_call\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfn\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m*\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1333\u001b[0m \u001b[1;32mtry\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1334\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mfn\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m*\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 1335\u001b[0m \u001b[1;32mexcept\u001b[0m \u001b[0merrors\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mOpError\u001b[0m \u001b[1;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1336\u001b[0m \u001b[0mmessage\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mcompat\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mas_text\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0me\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mmessage\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32mc:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\client\\session.py\u001b[0m in \u001b[0;36m_run_fn\u001b[1;34m(feed_dict, fetch_list, target_list, options, run_metadata)\u001b[0m\n\u001b[0;32m 1317\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_extend_graph\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1318\u001b[0m return self._call_tf_sessionrun(\n\u001b[1;32m-> 1319\u001b[1;33m options, feed_dict, fetch_list, target_list, run_metadata)\n\u001b[0m\u001b[0;32m 1320\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1321\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0m_prun_fn\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mhandle\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfeed_dict\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfetch_list\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32mc:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\client\\session.py\u001b[0m in \u001b[0;36m_call_tf_sessionrun\u001b[1;34m(self, options, feed_dict, fetch_list, target_list, run_metadata)\u001b[0m\n\u001b[0;32m 1405\u001b[0m return tf_session.TF_SessionRun_wrapper(\n\u001b[0;32m 1406\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_session\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0moptions\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfeed_dict\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfetch_list\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mtarget_list\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1407\u001b[1;33m run_metadata)\n\u001b[0m\u001b[0;32m 1408\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1409\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0m_call_tf_sessionprun\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mhandle\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfeed_dict\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfetch_list\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;31mKeyboardInterrupt\u001b[0m: " ] } ], "source": [ + "nr_of_toys = 1\n", "nevents = int(pdg[\"number_of_decays\"])\n", - "event_stack = 5000\n", + "event_stack = 100000\n", "\n", "calls = int(nevents/event_stack + 1)\n", "\n", @@ -673,20 +764,47 @@ "\n", "start = time.time()\n", "\n", - "samp = total_f.sample(n=event_stack)\n", + "sampler = total_f.create_sampler(n=event_stack)\n", "\n", - "for call in range(calls):\n", - " sam = samp.unstack_x()\n", - " sam = zfit.run(sam)\n", - " clear_output(wait=True)\n", + "for toy in range(nr_of_toys):\n", " \n", - " c = call + 1 \n", - " print(\"{0}/{1}\".format(c, calls))\n", - " print(\"Time taken: {}\".format(display_time(int(time.time() - start))))\n", - " print(\"Projected time left: {}\".format(display_time(int((time.time() - start)/c*(calls-c)))))\n", + " dirName = 'data/zfit_toys/toy_{0}'.format(toy)\n", " \n", - " with open(\"data/zfit_toys/toy_1/{}.pkl\".format(call), \"wb\") as f:\n", - " pkl.dump(sam, f, pkl.HIGHEST_PROTOCOL)" + " if not os.path.exists(dirName):\n", + " os.mkdir(dirName)\n", + " print(\"Directory \" , dirName , \" Created \")\n", + "\n", + " for call in range(calls):\n", + "\n", + " sampler.resample(n=event_stack)\n", + " s = sampler.unstack_x()\n", + " sam = zfit.run(s)\n", + " clear_output(wait=True)\n", + "\n", + " c = call + 1 \n", + " print(\"{0}/{1}\".format(c, calls))\n", + " print(\"Time taken: {}\".format(display_time(int(time.time() - start))))\n", + " print(\"Projected time left: {}\".format(display_time(int((time.time() - start)/c*(calls-c)))))\n", + "\n", + " with open(\"data/zfit_toys/toy_{0}/{1}.pkl\".format(toy, call), \"wb\") as f:\n", + " pkl.dump(sam, f, pkl.HIGHEST_PROTOCOL)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# with open(r\"data/zfit_toys/toy_0/0.pkl\", \"rb\") as input_file:\n", + "# sam = pkl.load(input_file)\n", + "# print(sam[:10])\n", + "\n", + "# with open(r\"data/zfit_toys/toy_0/1.pkl\", \"rb\") as input_file:\n", + "# sam2 = pkl.load(input_file)\n", + "# print(sam2[:10])\n", + "\n", + "# print(np.sum(sam-sam2))" ] }, { @@ -700,7 +818,7 @@ "total_samp = []\n", "\n", "for call in range(calls):\n", - " with open(r\"data/zfit_toys/toy_1/{}.pkl\".format(call), \"rb\") as input_file:\n", + " with open(r\"data/zfit_toys/toy_0/{}.pkl\".format(call), \"rb\") as input_file:\n", " sam = pkl.load(input_file)\n", " total_samp = np.append(total_samp, sam)\n", "\n", @@ -721,24 +839,17 @@ "\n", "# calcs = zfit.run(total_test_tf(samp))\n", "\n", - "plt.hist(total_samp, bins = bins, range = (x_min,x_max))\n", + "plt.hist(total_samp[:event_stack], bins = bins, range = (x_min,x_max))\n", "\n", "# plt.plot(sam, calcs, '.')\n", "# plt.plot(test_q, calcs_test)\n", - "plt.ylim(4000, 12000)\n", - "plt.xlim(3000, 3750)\n", + "plt.ylim(0, 20)\n", + "# plt.xlim(3000, 3750)\n", "\n", "plt.savefig('test2.png')" ] }, { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Toys" - ] - }, - { "cell_type": "code", "execution_count": null, "metadata": {}, diff --git a/__pycache__/pdg_const.cpython-37.pyc b/__pycache__/pdg_const.cpython-37.pyc index af58ea9..cb5c59e 100644 --- a/__pycache__/pdg_const.cpython-37.pyc +++ b/__pycache__/pdg_const.cpython-37.pyc Binary files differ diff --git a/data/zfit_toys/toy_0/0.pkl b/data/zfit_toys/toy_0/0.pkl new file mode 100644 index 0000000..3be2c50 --- /dev/null +++ b/data/zfit_toys/toy_0/0.pkl Binary files differ diff --git a/data/zfit_toys/toy_0/1.pkl b/data/zfit_toys/toy_0/1.pkl new file mode 100644 index 0000000..8667fff --- /dev/null +++ b/data/zfit_toys/toy_0/1.pkl Binary files differ diff --git a/data/zfit_toys/toy_0/10.pkl b/data/zfit_toys/toy_0/10.pkl new file mode 100644 index 0000000..bea7370 --- /dev/null +++ b/data/zfit_toys/toy_0/10.pkl Binary files differ diff --git a/data/zfit_toys/toy_0/11.pkl b/data/zfit_toys/toy_0/11.pkl new file mode 100644 index 0000000..11ba025 --- /dev/null +++ b/data/zfit_toys/toy_0/11.pkl Binary files differ diff --git a/data/zfit_toys/toy_0/12.pkl b/data/zfit_toys/toy_0/12.pkl new file mode 100644 index 0000000..381e08e --- /dev/null +++ b/data/zfit_toys/toy_0/12.pkl Binary files differ diff --git a/data/zfit_toys/toy_0/13.pkl b/data/zfit_toys/toy_0/13.pkl new file mode 100644 index 0000000..9531f17 --- /dev/null +++ b/data/zfit_toys/toy_0/13.pkl Binary files differ diff --git a/data/zfit_toys/toy_0/14.pkl b/data/zfit_toys/toy_0/14.pkl new file mode 100644 index 0000000..4548726 --- /dev/null +++ b/data/zfit_toys/toy_0/14.pkl Binary files differ diff --git a/data/zfit_toys/toy_0/15.pkl b/data/zfit_toys/toy_0/15.pkl new file mode 100644 index 0000000..a5bb205 --- /dev/null +++ b/data/zfit_toys/toy_0/15.pkl Binary files differ diff --git a/data/zfit_toys/toy_0/16.pkl b/data/zfit_toys/toy_0/16.pkl new file mode 100644 index 0000000..fb1496e --- /dev/null +++ b/data/zfit_toys/toy_0/16.pkl Binary files differ diff --git a/data/zfit_toys/toy_0/17.pkl b/data/zfit_toys/toy_0/17.pkl new file mode 100644 index 0000000..884e7e4 --- /dev/null +++ b/data/zfit_toys/toy_0/17.pkl Binary files differ diff --git a/data/zfit_toys/toy_0/18.pkl b/data/zfit_toys/toy_0/18.pkl new file mode 100644 index 0000000..00db079 --- /dev/null +++ b/data/zfit_toys/toy_0/18.pkl Binary files differ diff --git a/data/zfit_toys/toy_0/19.pkl b/data/zfit_toys/toy_0/19.pkl new file mode 100644 index 0000000..1aad2f9 --- /dev/null +++ b/data/zfit_toys/toy_0/19.pkl Binary files differ diff --git a/data/zfit_toys/toy_0/2.pkl b/data/zfit_toys/toy_0/2.pkl new file mode 100644 index 0000000..e160c46 --- /dev/null +++ b/data/zfit_toys/toy_0/2.pkl Binary files differ diff --git a/data/zfit_toys/toy_0/20.pkl b/data/zfit_toys/toy_0/20.pkl new file mode 100644 index 0000000..12ffdd0 --- /dev/null +++ b/data/zfit_toys/toy_0/20.pkl Binary files differ diff --git a/data/zfit_toys/toy_0/21.pkl b/data/zfit_toys/toy_0/21.pkl new file mode 100644 index 0000000..4cbca93 --- /dev/null +++ b/data/zfit_toys/toy_0/21.pkl Binary files differ diff --git a/data/zfit_toys/toy_0/22.pkl b/data/zfit_toys/toy_0/22.pkl new file mode 100644 index 0000000..892caa8 --- /dev/null +++ b/data/zfit_toys/toy_0/22.pkl Binary files differ diff --git a/data/zfit_toys/toy_0/23.pkl b/data/zfit_toys/toy_0/23.pkl new file mode 100644 index 0000000..e035550 --- /dev/null +++ b/data/zfit_toys/toy_0/23.pkl Binary files differ diff --git a/data/zfit_toys/toy_0/24.pkl b/data/zfit_toys/toy_0/24.pkl new file mode 100644 index 0000000..1ba9e83 --- /dev/null +++ b/data/zfit_toys/toy_0/24.pkl Binary files differ diff --git a/data/zfit_toys/toy_0/25.pkl b/data/zfit_toys/toy_0/25.pkl new file mode 100644 index 0000000..5b06fb4 --- /dev/null +++ b/data/zfit_toys/toy_0/25.pkl Binary files differ diff --git a/data/zfit_toys/toy_0/26.pkl b/data/zfit_toys/toy_0/26.pkl new file mode 100644 index 0000000..6f604d9 --- /dev/null +++ b/data/zfit_toys/toy_0/26.pkl Binary files differ diff --git a/data/zfit_toys/toy_0/27.pkl b/data/zfit_toys/toy_0/27.pkl new file mode 100644 index 0000000..62cd104 --- /dev/null +++ b/data/zfit_toys/toy_0/27.pkl Binary files differ diff --git a/data/zfit_toys/toy_0/28.pkl b/data/zfit_toys/toy_0/28.pkl new file mode 100644 index 0000000..c0d3b3d --- /dev/null +++ b/data/zfit_toys/toy_0/28.pkl Binary files differ diff --git a/data/zfit_toys/toy_0/29.pkl b/data/zfit_toys/toy_0/29.pkl new file mode 100644 index 0000000..f1d6955 --- /dev/null +++ b/data/zfit_toys/toy_0/29.pkl Binary files differ diff --git a/data/zfit_toys/toy_0/3.pkl b/data/zfit_toys/toy_0/3.pkl new file mode 100644 index 0000000..8cbb957 --- /dev/null +++ b/data/zfit_toys/toy_0/3.pkl Binary files differ diff --git a/data/zfit_toys/toy_0/30.pkl b/data/zfit_toys/toy_0/30.pkl new file mode 100644 index 0000000..4af21e0 --- /dev/null +++ b/data/zfit_toys/toy_0/30.pkl Binary files differ diff --git a/data/zfit_toys/toy_0/31.pkl b/data/zfit_toys/toy_0/31.pkl new file mode 100644 index 0000000..eb343cd --- /dev/null +++ b/data/zfit_toys/toy_0/31.pkl Binary files differ diff --git a/data/zfit_toys/toy_0/32.pkl b/data/zfit_toys/toy_0/32.pkl new file mode 100644 index 0000000..d8abbde --- /dev/null +++ b/data/zfit_toys/toy_0/32.pkl Binary files differ diff --git a/data/zfit_toys/toy_0/33.pkl b/data/zfit_toys/toy_0/33.pkl new file mode 100644 index 0000000..fa2ddf0 --- /dev/null +++ b/data/zfit_toys/toy_0/33.pkl Binary files differ diff --git a/data/zfit_toys/toy_0/34.pkl b/data/zfit_toys/toy_0/34.pkl new file mode 100644 index 0000000..7f4ce0c --- /dev/null +++ b/data/zfit_toys/toy_0/34.pkl Binary files differ diff --git a/data/zfit_toys/toy_0/35.pkl b/data/zfit_toys/toy_0/35.pkl new file mode 100644 index 0000000..e5c94dd --- /dev/null +++ b/data/zfit_toys/toy_0/35.pkl Binary files differ diff --git a/data/zfit_toys/toy_0/36.pkl b/data/zfit_toys/toy_0/36.pkl new file mode 100644 index 0000000..5b1e40c --- /dev/null +++ b/data/zfit_toys/toy_0/36.pkl Binary files differ diff --git a/data/zfit_toys/toy_0/37.pkl b/data/zfit_toys/toy_0/37.pkl new file mode 100644 index 0000000..8ae5890 --- /dev/null +++ b/data/zfit_toys/toy_0/37.pkl Binary files differ diff --git a/data/zfit_toys/toy_0/38.pkl b/data/zfit_toys/toy_0/38.pkl new file mode 100644 index 0000000..17030d5 --- /dev/null +++ b/data/zfit_toys/toy_0/38.pkl Binary files differ diff --git a/data/zfit_toys/toy_0/39.pkl b/data/zfit_toys/toy_0/39.pkl new file mode 100644 index 0000000..771c140 --- /dev/null +++ b/data/zfit_toys/toy_0/39.pkl Binary files differ diff --git a/data/zfit_toys/toy_0/4.pkl b/data/zfit_toys/toy_0/4.pkl new file mode 100644 index 0000000..fd56e89 --- /dev/null +++ b/data/zfit_toys/toy_0/4.pkl Binary files differ diff --git a/data/zfit_toys/toy_0/40.pkl b/data/zfit_toys/toy_0/40.pkl new file mode 100644 index 0000000..09a4a4a --- /dev/null +++ b/data/zfit_toys/toy_0/40.pkl Binary files differ diff --git a/data/zfit_toys/toy_0/41.pkl b/data/zfit_toys/toy_0/41.pkl new file mode 100644 index 0000000..c9fbe91 --- /dev/null +++ b/data/zfit_toys/toy_0/41.pkl Binary files differ diff --git a/data/zfit_toys/toy_0/42.pkl b/data/zfit_toys/toy_0/42.pkl new file mode 100644 index 0000000..ce864b2 --- /dev/null +++ b/data/zfit_toys/toy_0/42.pkl Binary files differ diff --git a/data/zfit_toys/toy_0/43.pkl b/data/zfit_toys/toy_0/43.pkl new file mode 100644 index 0000000..d581b21 --- /dev/null +++ b/data/zfit_toys/toy_0/43.pkl Binary files differ diff --git a/data/zfit_toys/toy_0/44.pkl b/data/zfit_toys/toy_0/44.pkl new file mode 100644 index 0000000..d86a74a --- /dev/null +++ b/data/zfit_toys/toy_0/44.pkl Binary files differ diff --git a/data/zfit_toys/toy_0/45.pkl b/data/zfit_toys/toy_0/45.pkl new file mode 100644 index 0000000..f0ee4fb --- /dev/null +++ b/data/zfit_toys/toy_0/45.pkl Binary files differ diff --git a/data/zfit_toys/toy_0/46.pkl b/data/zfit_toys/toy_0/46.pkl new file mode 100644 index 0000000..399ee01 --- /dev/null +++ b/data/zfit_toys/toy_0/46.pkl Binary files differ diff --git a/data/zfit_toys/toy_0/47.pkl b/data/zfit_toys/toy_0/47.pkl new file mode 100644 index 0000000..1ff6230 --- /dev/null +++ b/data/zfit_toys/toy_0/47.pkl Binary files differ diff --git a/data/zfit_toys/toy_0/48.pkl b/data/zfit_toys/toy_0/48.pkl new file mode 100644 index 0000000..4f32ce8 --- /dev/null +++ b/data/zfit_toys/toy_0/48.pkl Binary files differ diff --git a/data/zfit_toys/toy_0/49.pkl b/data/zfit_toys/toy_0/49.pkl new file mode 100644 index 0000000..fb05a42 --- /dev/null +++ b/data/zfit_toys/toy_0/49.pkl Binary files differ diff --git a/data/zfit_toys/toy_0/5.pkl b/data/zfit_toys/toy_0/5.pkl new file mode 100644 index 0000000..9651511 --- /dev/null +++ b/data/zfit_toys/toy_0/5.pkl Binary files differ diff --git a/data/zfit_toys/toy_0/50.pkl b/data/zfit_toys/toy_0/50.pkl new file mode 100644 index 0000000..dc914b9 --- /dev/null +++ b/data/zfit_toys/toy_0/50.pkl Binary files differ diff --git a/data/zfit_toys/toy_0/51.pkl b/data/zfit_toys/toy_0/51.pkl new file mode 100644 index 0000000..f59c507 --- /dev/null +++ b/data/zfit_toys/toy_0/51.pkl Binary files differ diff --git a/data/zfit_toys/toy_0/52.pkl b/data/zfit_toys/toy_0/52.pkl new file mode 100644 index 0000000..ae6786d --- /dev/null +++ b/data/zfit_toys/toy_0/52.pkl Binary files differ diff --git a/data/zfit_toys/toy_0/53.pkl b/data/zfit_toys/toy_0/53.pkl new file mode 100644 index 0000000..6b49403 --- /dev/null +++ b/data/zfit_toys/toy_0/53.pkl Binary files differ diff --git a/data/zfit_toys/toy_0/54.pkl b/data/zfit_toys/toy_0/54.pkl new file mode 100644 index 0000000..0275d51 --- /dev/null +++ b/data/zfit_toys/toy_0/54.pkl Binary files differ diff --git a/data/zfit_toys/toy_0/6.pkl b/data/zfit_toys/toy_0/6.pkl new file mode 100644 index 0000000..98ea412 --- /dev/null +++ b/data/zfit_toys/toy_0/6.pkl Binary files differ diff --git a/data/zfit_toys/toy_0/7.pkl b/data/zfit_toys/toy_0/7.pkl new file mode 100644 index 0000000..9465bb1 --- /dev/null +++ b/data/zfit_toys/toy_0/7.pkl Binary files differ diff --git a/data/zfit_toys/toy_0/8.pkl b/data/zfit_toys/toy_0/8.pkl new file mode 100644 index 0000000..2b97a95 --- /dev/null +++ b/data/zfit_toys/toy_0/8.pkl Binary files differ diff --git a/data/zfit_toys/toy_0/9.pkl b/data/zfit_toys/toy_0/9.pkl new file mode 100644 index 0000000..613178d --- /dev/null +++ b/data/zfit_toys/toy_0/9.pkl Binary files differ diff --git a/data/zfit_toys/toy_1/0.pkl b/data/zfit_toys/toy_1/0.pkl deleted file mode 100644 index e3b4e36..0000000 --- a/data/zfit_toys/toy_1/0.pkl +++ /dev/null Binary files differ diff --git a/data/zfit_toys/toy_1/1.pkl b/data/zfit_toys/toy_1/1.pkl deleted file mode 100644 index 319eb8b..0000000 --- a/data/zfit_toys/toy_1/1.pkl +++ /dev/null Binary files differ diff --git a/data/zfit_toys/toy_1/10.pkl b/data/zfit_toys/toy_1/10.pkl deleted file mode 100644 index 423bda4..0000000 --- a/data/zfit_toys/toy_1/10.pkl +++ /dev/null Binary files differ diff --git a/data/zfit_toys/toy_1/11.pkl b/data/zfit_toys/toy_1/11.pkl deleted file mode 100644 index 117c716..0000000 --- a/data/zfit_toys/toy_1/11.pkl +++ /dev/null Binary files differ diff --git a/data/zfit_toys/toy_1/12.pkl b/data/zfit_toys/toy_1/12.pkl deleted file mode 100644 index 75f43d2..0000000 --- a/data/zfit_toys/toy_1/12.pkl +++ /dev/null Binary files differ diff --git a/data/zfit_toys/toy_1/13.pkl b/data/zfit_toys/toy_1/13.pkl deleted file mode 100644 index 2f53882..0000000 --- a/data/zfit_toys/toy_1/13.pkl +++ /dev/null Binary files differ diff --git a/data/zfit_toys/toy_1/14.pkl b/data/zfit_toys/toy_1/14.pkl deleted file mode 100644 index 3b07370..0000000 --- a/data/zfit_toys/toy_1/14.pkl +++ /dev/null Binary files differ diff --git a/data/zfit_toys/toy_1/15.pkl b/data/zfit_toys/toy_1/15.pkl deleted file mode 100644 index a465ae6..0000000 --- a/data/zfit_toys/toy_1/15.pkl +++ /dev/null Binary files differ diff --git a/data/zfit_toys/toy_1/16.pkl b/data/zfit_toys/toy_1/16.pkl deleted file mode 100644 index 373b614..0000000 --- a/data/zfit_toys/toy_1/16.pkl +++ /dev/null Binary files differ diff --git a/data/zfit_toys/toy_1/17.pkl b/data/zfit_toys/toy_1/17.pkl deleted file mode 100644 index ad9e2a2..0000000 --- a/data/zfit_toys/toy_1/17.pkl +++ /dev/null Binary files differ diff --git a/data/zfit_toys/toy_1/18.pkl b/data/zfit_toys/toy_1/18.pkl deleted file mode 100644 index f65a61f..0000000 --- a/data/zfit_toys/toy_1/18.pkl +++ /dev/null Binary files differ diff --git a/data/zfit_toys/toy_1/19.pkl b/data/zfit_toys/toy_1/19.pkl deleted file mode 100644 index 6aa8f65..0000000 --- a/data/zfit_toys/toy_1/19.pkl +++ /dev/null Binary files differ diff --git a/data/zfit_toys/toy_1/2.pkl b/data/zfit_toys/toy_1/2.pkl deleted file mode 100644 index dbd1dde..0000000 --- a/data/zfit_toys/toy_1/2.pkl +++ /dev/null Binary files differ diff --git a/data/zfit_toys/toy_1/20.pkl b/data/zfit_toys/toy_1/20.pkl deleted file mode 100644 index 568f24a..0000000 --- a/data/zfit_toys/toy_1/20.pkl +++ /dev/null Binary files differ diff --git a/data/zfit_toys/toy_1/21.pkl b/data/zfit_toys/toy_1/21.pkl deleted file mode 100644 index dd8e221..0000000 --- a/data/zfit_toys/toy_1/21.pkl +++ /dev/null Binary files differ diff --git a/data/zfit_toys/toy_1/22.pkl b/data/zfit_toys/toy_1/22.pkl deleted file mode 100644 index d5de54c..0000000 --- a/data/zfit_toys/toy_1/22.pkl +++ /dev/null Binary files differ diff --git a/data/zfit_toys/toy_1/23.pkl b/data/zfit_toys/toy_1/23.pkl deleted file mode 100644 index 0c41e46..0000000 --- a/data/zfit_toys/toy_1/23.pkl +++ /dev/null Binary files differ diff --git a/data/zfit_toys/toy_1/24.pkl b/data/zfit_toys/toy_1/24.pkl deleted file mode 100644 index 89df721..0000000 --- a/data/zfit_toys/toy_1/24.pkl +++ /dev/null Binary files differ diff --git a/data/zfit_toys/toy_1/25.pkl b/data/zfit_toys/toy_1/25.pkl deleted file mode 100644 index 15ee33d..0000000 --- a/data/zfit_toys/toy_1/25.pkl +++ /dev/null Binary files differ diff --git a/data/zfit_toys/toy_1/26.pkl b/data/zfit_toys/toy_1/26.pkl deleted file mode 100644 index 9dbb293..0000000 --- a/data/zfit_toys/toy_1/26.pkl +++ /dev/null Binary files differ diff --git a/data/zfit_toys/toy_1/27.pkl b/data/zfit_toys/toy_1/27.pkl deleted file mode 100644 index e68208f..0000000 --- a/data/zfit_toys/toy_1/27.pkl +++ /dev/null Binary files differ diff --git a/data/zfit_toys/toy_1/28.pkl b/data/zfit_toys/toy_1/28.pkl deleted file mode 100644 index fa10112..0000000 --- a/data/zfit_toys/toy_1/28.pkl +++ /dev/null Binary files differ diff --git a/data/zfit_toys/toy_1/29.pkl b/data/zfit_toys/toy_1/29.pkl deleted file mode 100644 index c6adfb9..0000000 --- a/data/zfit_toys/toy_1/29.pkl +++ /dev/null Binary files differ diff --git a/data/zfit_toys/toy_1/3.pkl b/data/zfit_toys/toy_1/3.pkl deleted file mode 100644 index 4af34bf..0000000 --- a/data/zfit_toys/toy_1/3.pkl +++ /dev/null Binary files differ diff --git a/data/zfit_toys/toy_1/30.pkl b/data/zfit_toys/toy_1/30.pkl deleted file mode 100644 index 9a781ad..0000000 --- a/data/zfit_toys/toy_1/30.pkl +++ /dev/null Binary files differ diff --git a/data/zfit_toys/toy_1/31.pkl b/data/zfit_toys/toy_1/31.pkl deleted file mode 100644 index 4a64c1d..0000000 --- a/data/zfit_toys/toy_1/31.pkl +++ /dev/null Binary files differ diff --git a/data/zfit_toys/toy_1/32.pkl b/data/zfit_toys/toy_1/32.pkl deleted file mode 100644 index e6f4b01..0000000 --- a/data/zfit_toys/toy_1/32.pkl +++ /dev/null Binary files differ diff --git a/data/zfit_toys/toy_1/33.pkl b/data/zfit_toys/toy_1/33.pkl deleted file mode 100644 index 7bceb8f..0000000 --- a/data/zfit_toys/toy_1/33.pkl +++ /dev/null Binary files differ diff --git a/data/zfit_toys/toy_1/34.pkl b/data/zfit_toys/toy_1/34.pkl deleted file mode 100644 index 2c772ce..0000000 --- a/data/zfit_toys/toy_1/34.pkl +++ /dev/null Binary files differ diff --git a/data/zfit_toys/toy_1/35.pkl b/data/zfit_toys/toy_1/35.pkl deleted file mode 100644 index 141fabb..0000000 --- a/data/zfit_toys/toy_1/35.pkl +++ /dev/null Binary files differ diff --git a/data/zfit_toys/toy_1/36.pkl b/data/zfit_toys/toy_1/36.pkl deleted file mode 100644 index ccf5be8..0000000 --- a/data/zfit_toys/toy_1/36.pkl +++ /dev/null Binary files differ diff --git a/data/zfit_toys/toy_1/37.pkl b/data/zfit_toys/toy_1/37.pkl deleted file mode 100644 index 2456338..0000000 --- a/data/zfit_toys/toy_1/37.pkl +++ /dev/null Binary files differ diff --git a/data/zfit_toys/toy_1/38.pkl b/data/zfit_toys/toy_1/38.pkl deleted file mode 100644 index dac0815..0000000 --- a/data/zfit_toys/toy_1/38.pkl +++ /dev/null Binary files differ diff --git a/data/zfit_toys/toy_1/39.pkl b/data/zfit_toys/toy_1/39.pkl deleted file mode 100644 index 5ac71b6..0000000 --- a/data/zfit_toys/toy_1/39.pkl +++ /dev/null Binary files differ diff --git a/data/zfit_toys/toy_1/4.pkl b/data/zfit_toys/toy_1/4.pkl deleted file mode 100644 index 391e9b5..0000000 --- a/data/zfit_toys/toy_1/4.pkl +++ /dev/null Binary files differ diff --git a/data/zfit_toys/toy_1/40.pkl b/data/zfit_toys/toy_1/40.pkl deleted file mode 100644 index 0c18293..0000000 --- a/data/zfit_toys/toy_1/40.pkl +++ /dev/null Binary files differ diff --git a/data/zfit_toys/toy_1/41.pkl b/data/zfit_toys/toy_1/41.pkl deleted file mode 100644 index c13564a..0000000 --- a/data/zfit_toys/toy_1/41.pkl +++ /dev/null Binary files differ diff --git a/data/zfit_toys/toy_1/42.pkl b/data/zfit_toys/toy_1/42.pkl deleted file mode 100644 index 84eafa1..0000000 --- a/data/zfit_toys/toy_1/42.pkl +++ /dev/null Binary files differ diff --git a/data/zfit_toys/toy_1/43.pkl b/data/zfit_toys/toy_1/43.pkl deleted file mode 100644 index 37c50b8..0000000 --- a/data/zfit_toys/toy_1/43.pkl +++ /dev/null Binary files differ diff --git a/data/zfit_toys/toy_1/44.pkl b/data/zfit_toys/toy_1/44.pkl deleted file mode 100644 index 32433f5..0000000 --- a/data/zfit_toys/toy_1/44.pkl +++ /dev/null Binary files differ diff --git a/data/zfit_toys/toy_1/45.pkl b/data/zfit_toys/toy_1/45.pkl deleted file mode 100644 index 1fba254..0000000 --- a/data/zfit_toys/toy_1/45.pkl +++ /dev/null Binary files differ diff --git a/data/zfit_toys/toy_1/46.pkl b/data/zfit_toys/toy_1/46.pkl deleted file mode 100644 index 5708771..0000000 --- a/data/zfit_toys/toy_1/46.pkl +++ /dev/null Binary files differ diff --git a/data/zfit_toys/toy_1/47.pkl b/data/zfit_toys/toy_1/47.pkl deleted file mode 100644 index 5758900..0000000 --- a/data/zfit_toys/toy_1/47.pkl +++ /dev/null Binary files differ diff --git a/data/zfit_toys/toy_1/48.pkl b/data/zfit_toys/toy_1/48.pkl deleted file mode 100644 index 9b2a2b7..0000000 --- a/data/zfit_toys/toy_1/48.pkl +++ /dev/null Binary files differ diff --git a/data/zfit_toys/toy_1/49.pkl b/data/zfit_toys/toy_1/49.pkl deleted file mode 100644 index 720e13d..0000000 --- a/data/zfit_toys/toy_1/49.pkl +++ /dev/null Binary files differ diff --git a/data/zfit_toys/toy_1/5.pkl b/data/zfit_toys/toy_1/5.pkl deleted file mode 100644 index ed572a1..0000000 --- a/data/zfit_toys/toy_1/5.pkl +++ /dev/null Binary files differ diff --git a/data/zfit_toys/toy_1/50.pkl b/data/zfit_toys/toy_1/50.pkl deleted file mode 100644 index 24e4f03..0000000 --- a/data/zfit_toys/toy_1/50.pkl +++ /dev/null Binary files differ diff --git a/data/zfit_toys/toy_1/51.pkl b/data/zfit_toys/toy_1/51.pkl deleted file mode 100644 index 2bf7b34..0000000 --- a/data/zfit_toys/toy_1/51.pkl +++ /dev/null Binary files differ diff --git a/data/zfit_toys/toy_1/52.pkl b/data/zfit_toys/toy_1/52.pkl deleted file mode 100644 index 2e3ff8c..0000000 --- a/data/zfit_toys/toy_1/52.pkl +++ /dev/null Binary files differ diff --git a/data/zfit_toys/toy_1/53.pkl b/data/zfit_toys/toy_1/53.pkl deleted file mode 100644 index 62a3d60..0000000 --- a/data/zfit_toys/toy_1/53.pkl +++ /dev/null Binary files differ diff --git a/data/zfit_toys/toy_1/54.pkl b/data/zfit_toys/toy_1/54.pkl deleted file mode 100644 index 4613047..0000000 --- a/data/zfit_toys/toy_1/54.pkl +++ /dev/null Binary files differ diff --git a/data/zfit_toys/toy_1/6.pkl b/data/zfit_toys/toy_1/6.pkl deleted file mode 100644 index c2853d7..0000000 --- a/data/zfit_toys/toy_1/6.pkl +++ /dev/null Binary files differ diff --git a/data/zfit_toys/toy_1/7.pkl b/data/zfit_toys/toy_1/7.pkl deleted file mode 100644 index bf66a13..0000000 --- a/data/zfit_toys/toy_1/7.pkl +++ /dev/null Binary files differ diff --git a/data/zfit_toys/toy_1/8.pkl b/data/zfit_toys/toy_1/8.pkl deleted file mode 100644 index 1bb89f1..0000000 --- a/data/zfit_toys/toy_1/8.pkl +++ /dev/null Binary files differ diff --git a/data/zfit_toys/toy_1/9.pkl b/data/zfit_toys/toy_1/9.pkl deleted file mode 100644 index 92c2d22..0000000 --- a/data/zfit_toys/toy_1/9.pkl +++ /dev/null Binary files differ diff --git a/raremodel-nb.ipynb b/raremodel-nb.ipynb index 4047084..be1130c 100644 --- a/raremodel-nb.ipynb +++ b/raremodel-nb.ipynb @@ -16,7 +16,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\util\\execution.py:57: UserWarning: Not running on Linux. Determining available cpus for thread can failand be overestimated. Workaround (only if too many cpus are used):`zfit.run.set_n_cpu(your_cpu_number)`\n", + "c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\util\\execution.py:53: UserWarning: Not running on Linux. Determining available cpus for thread can failand be overestimated. Workaround (only if too many cpus are used):`zfit.run.set_n_cpu(your_cpu_number)`\n", " warnings.warn(\"Not running on Linux. Determining available cpus for thread can fail\"\n" ] }, @@ -52,7 +52,8 @@ "import tensorflow as tf\n", "import zfit\n", "from zfit import ztf\n", - "from IPython.display import clear_output" + "from IPython.display import clear_output\n", + "import os" ] }, { @@ -374,14 +375,14 @@ "\n", "obs = zfit.Space('q', limits = (x_min, x_max))\n", "\n", - "with open(r\"./data/slim_points/slim_points_toy_0_range({0}-{1}).pkl\".format(int(x_min), int(x_max)), \"rb\") as input_file:\n", - " part_set = pkl.load(input_file)\n", + "# with open(r\"./data/slim_points/slim_points_toy_0_range({0}-{1}).pkl\".format(int(x_min), int(x_max)), \"rb\") as input_file:\n", + "# part_set = pkl.load(input_file)\n", "\n", - "x_part = part_set['x_part']\n", + "# x_part = part_set['x_part']\n", "\n", - "x_part = x_part.astype('float64')\n", + "# x_part = x_part.astype('float64')\n", "\n", - "data = zfit.data.Data.from_numpy(array=x_part, obs=obs)" + "# data = zfit.data.Data.from_numpy(array=x_part, obs=obs)" ] }, { @@ -400,7 +401,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "WARNING:tensorflow:From C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\ops\\resource_variable_ops.py:435: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.\n", + "WARNING:tensorflow:From c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\ops\\resource_variable_ops.py:435: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.\n", "Instructions for updating:\n", "Colocations handled automatically by placer.\n" ] @@ -509,13 +510,6 @@ "metadata": {}, "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "0.09\n" - ] - }, - { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZkAAAD8CAYAAACl69mTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xl4VdW5+PHvS+YQSCAJJJAAAQIYBBHCJNaLVQuOtBYrjsggXivXtvZXh3tvbeutvdp6tdWqiKKiBYGitqkTdawTUxgljGEOUyCEhBAynOT9/XE2EGJCDpCwz/B+nieP+6yz9trv2ZLzZu219tqiqhhjjDEtoZXbARhjjAlelmSMMca0GEsyxhhjWowlGWOMMS3GkowxxpgWY0nGGGNMi/EpyYjIaBHZICL5IvJgA+9Hichc5/3FItKtznsPOeUbRGTUabT5jIiU+XIMY4wx/qnJJCMiYcCzwJVAFnCTiGTVqzYJKFbVnsBTwOPOvlnAOKAvMBp4TkTCmmpTRLKBBF+OYYwxxn/50pMZAuSr6hZVrQLmAGPq1RkDzHS25wOXiYg45XNUtVJVtwL5TnuNtukkoD8A9/t4DGOMMX4q3Ic6nYGddV4XAEMbq6OqHhEpARKd8kX19u3sbDfW5lQgR1X31MshjR3jQN1KIjIFmALQunXrQX369PHhIxpjjtl/uJK9pRUkxUWRGh/tdjgn8dQq6/aUAtCvc7zL0QSvZcuWHVDV5OZoy5ck01Bvof5aNI3Vaay8oR6Uikgn4AZg5BnGgapOB6YDZGdna25ubgO7GWMaM+1fm3ns/fVMuaQ7/3nVeW6Hc5L9hysZ/OhHAOQ+drXL0QQvEdneXG35crmsAEiv8zoN2N1YHREJB+KBg6fYt7HyC4GeQL6IbANiRSS/iWMYY5qRP1+D1m//XWn8nC9JZimQKSIZIhKJdyA/p16dHGC8sz0W+ES9K2/mAOOcmWEZQCawpLE2VfVdVU1R1W6q2g0odwb6T3UMY0yosN/4gNPk5TJn/GMqsAAIA15W1TwReQTIVdUcYAbwutPrOIg3aeDUmwesBTzAPapaA9BQm02E0uAxjDGhw3JM4PFlTAZVfQ94r17Zw3W2K/COpTS076PAo7602UCdOF+OcTqqq6spKCigoqLibJtyXXR0NGlpaURERLgdiglC/nihwA9DMk3wKckEk4KCAtq0aUO3bt0I5BnQqkpRUREFBQVkZGS4HY4x54SNyQSekFtWpqKigsTExIBOMAAiQmJiYlD0yIzxlfVkAk/IJRkg4BPMMcHyOYx/8ed/VpZjAk9IJhljTGDyx3Eic2qWZPzUZ599xjXXXANAZWUll19+OQMGDGDu3LkuR2ZChT9+n/tjTObUQm7gPxCtWLGC6upqVq5c6XYoJgSIH9+OaUkm8FhPxgXbtm2jT58+jB8/nv79+zN27FjKy8v54IMP6NOnDxdffDFvvfUWAIWFhdx6662sXLmSAQMGsHnzZpejN6HCH7/PPbW1bodgTlNI92R+84881u4ubdY2szq15VfX9m2y3oYNG5gxYwYjRoxg4sSJPPnkk7zwwgt88skn9OzZkxtvvBGADh068NJLL/HEE0/wzjvvNGusxgSamlp/TH3mVEI6ybgpPT2dESNGAHDrrbfy9NNPk5GRQWZm5vGy6dOnuxmiMX7H0wxJ5nBFNSt2HGLjvsNs3n+EkqNVlFXWEBXeirbREXRPbs15qW0YmpFI6yj7ijxbIX0GfelxtJT6049LSkpsSrLxC8f+Gfrj+MeZ9mQKSyt4e8UuPl5XyPIdxceTVfvWkbSLjSAuKpxKTy2Hyqt5c3kBAJFhrfhOZhK3De/KJZnJtGplv59nIqSTjJt27NjBwoULGT58OG+88QaXX345L7zwAps3b6ZHjx688cYbbodoQtSx5OKPf/OcTk9GVfkqv4gZX27hXxv3U6twfue2TLmkOxf1SOK81DYkxkV9a7/DFdWsLijhk/WF5KzazR2vLCUrtS2/vCaL4T0Sm/PjhARLMi4577zzmDlzJnfddReZmZn86U9/YtCgQVx99dUkJSVx8cUXs2bNGrfDNCHMD3MMNT4M/KsqC/L28dxn+awuKCG5TRR3j+zBDwem0T05rsn920RHMKJnEiN6JvHA6D68s3o3//fPjdz04iJ+lJ3Gr6/rS2ykfXX6ys6US1q1asW0adNOKhs9ejTr16//Vt2RI0cycuTIcxSZMf6r0nPqJLNy5yF++85acrcXk5HUmseu78cPBnYmKjzsjI4XGd6K6wemcVW/VJ7+eBPP/2szuduLeXn8YLoltT6jNkONJRljzEmOLULpj5fLyio8ANQfHik+UsX/vLuWt5bvIikuiseu78cN2emENdM4SnREGPeP7sN3MpO5Z/Zyrn/+a2aMz+bCLu2apf1gZvfJuKBbt252Kcz4rRNjMv6XZcoqvUmmdZ3LVe99s4crnvoXOSt3c/fIHnz2i5GMG9Kl2RJMXcN7JPLm3RcRFxXObTOW8E1BSbMfI9iEZJIJlvWPguVzGOOrA2WVAERFhFFe5eG+uSv58azlpMRHkzP1Yh4Y3Ye4Fp52nJHUmrl3DSM+JoLbX15MfuHhFj1eoAu5JBMdHU1RUVHAf0Efe55MdHS026GYIOPPvxkb95UB3mTz/We/4u2Vu/jJZZn87ccjyOrU9pzFkRofw+w7hxLWqhWTZ+ZScrT6nB070ITcmExaWhoFBQXs37/f7VDO2rEnYxrTnPz1769D5VV8tG7f8df7D1fy2sQhfCcz2ZV4uia25vlbB3LT9EX8bO5KXro92+6laYBPSUZERgN/AsKAl1T1sXrvRwGvAYOAIuBGVd3mvPcQMAmoAe5V1QWnalNEZgDZeGdQbgTuUNUyEbkD+AOwyznsn1X1pdP9wBEREfYkSWNO4fjAv8tx1HXwSBUTXl3K4QoPsyYPZfHWg9w4OJ3OCTGuxjW4W3sevjaLh/+ex6tfb2PixfbdUl+Tl8tEJAx4FrgSyAJuEpGsetUmAcWq2hN4Cnjc2TcLGAf0BUYDz4lIWBNt/kxVL1DV/sAOYGqd48xV1QHOz2knGGNM0/ytJ7PzYDljn/+a9XtKef6WgYzomcR9V/RyPcEcc9uwrlzWpwOPf7CezfvL3A7H7/gyJjMEyFfVLapaBcwBxtSrMwaY6WzPBy4T79SUMcAcVa1U1a1AvtNeo22qaimAs38M/n2J2BjTgtbuLuX657/mQFklsyYP5Xt9U9wO6VtEhP+9vh8xkWH8fN4qam0Rz5P4kmQ6AzvrvC5wyhqso6oeoARIPMW+p2xTRF4B9gJ9gGfq1PuhiKwWkfkiku5D7MaY03R8UozL18sWbi7ixhcWEt5KmH/3RWR3a+9uQKfQoW00D1+Txcqdh5i/rMDtcPyKL0mmoX9q9VN1Y3VOt9y7oToB6ASsA250iv8BdHMuo33EiZ7TyYGITBGRXBHJDYbBfWPOtdrjOca9LPPeN3sY//ISOsZH8+bdF9GrYxvXYvHVDy7szKCu7fj9gvWUVthss2N8STIFQN1eQxqwu7E6IhIOxAMHT7Fvk22qag0wF/ih87pIVSudt1/EO8ngW1R1uqpmq2p2crI7s06MCWRuj8m8vnAb98xeTr+0eOb/+3A6+cnYS1NEhF9f25eiI1X8+ZN8t8PxG74kmaVApohkiEgk3oH8nHp1coDxzvZY4BP19rlzgHEiEiUiGUAmsKSxNsWrJxwfk7kWWO+8Tq1zvOvw9nKMMc3MrWVlVJUn/7mBX/49j8v6dOAvk4aSEBt5boM4S/3S4rn+wjRmfr2NwtIKt8PxC00mGWeMZSqwAO8X+zxVzRORR0TkOqfaDCBRRPKB+4AHnX3zgHnAWuAD4B5VrWmsTbyX0WaKyDfAN0Aq8IhzjHtFJE9EVgH3Anec9ac3xnyLGz2ZmlrlP99ew9Of5POj7DSm3TqImMgzW9TSbT+5LBNPrfLcZ/aodPDxPhlVfQ94r17Zw3W2K4AbGtn3UeBRH9usBUY00s5DwEO+xGuMOXPHcsy5SjYV1TX8ZM4KFuTt455Le/D/vtfbL9dN81WXxFhuGJTG7MU7uOvfupMaHxiX+1pKyC0rY4xpwjnsypQcreb2l5ewIG8fv7o2i1+M6hPQCeaYey7tSY0qM77Y6nYorrMkY4w5yfGeTAvfolZYWsGNLyxkxY5i/jRuABNGBM/d8untY7m6Xypzlu7kcIjPNLMkY4w5Se2xnkwL5pidB8sZO20hOw6WM2P8YMYMqH/rXeCb/J0Myio9zF26s+nKQcySjDHmJC19tWzrgSPc+MJCDpVXMWvyUC7pFZy3GvRPS2BIt/a88tU2PDVNPzY6WFmSMcacROv9tzlt3HeYH72wkApPLW9MGRb0T5aceHE3dh06ymcbQvfGcEsyxpiTHL9a1sxdmjW7Shg3fREAc6cMo2+n+GZt3x9ddl5HkuKimJsbupfMLMkYY07SEgP+K3YUc/OLi4gOb8W8u4aTGQDLxDSHiLBWjB2UxifrC0P25kxLMsaYkx3vyTRPc4u3FHHrS4tJiI1k3r8PJyOpdfM0HCBuHJxOTa0yf3loLpxpScYYc5Jjs8uaI8d8uekA419ZQkp8NPPuGk5au9hmaDWwZCS1ZmhGe/6aWxDwj30/E5ZkjDEn8TjLMJ/t9+GXmw4waeZSuiW2Zu5dw0mJj26G6ALTDwemsfXAEdbsKnU7lHPOkowx5iQ1zfDQra/yvQkmI6k1s+8cRlJcVDNEFrhG9U0hIkz4x+r6C9gHP0syxpiTHO/JnOEFs6/rJJhZk4fSvnVgraTcEuJjI7gkM5l3Vu0OuSdnWpIxxpykpubML5d9nX+AiTOX0rW9N8EkhngPpq5rL+jE7pIKlu8odjuUc8qSjDHmJDVnOBizcHMRE2cupUv7WGbdaQmmvsuzOhIV3oqcVaF1ycySjDHmJGcyJrNoSxETX11KertYG4NpRFxUOCN7J/PPvH0hNcvMkowx5iTHxmRqffwiXLSliAmvLCWtXYwlmCZcfl5H9pZWkLc7dGaZWZIxxpykpta7mKPHhx7NYifBdHYSTHIbSzCncmmfDojAR+v2uR3KOWNJxhhzEo8z8F/tOfXKwct3FDPh1aV0Sohm9p1DLcH4ICkuioFd2lmSMcaErqqapnsyebtLuOPlJSS3ieKNO4fRoU3o3mh5ui4/ryNrdpWyp+So26GcEz4lGREZLSIbRCRfRB5s4P0oEZnrvL9YRLrVee8hp3yDiIxqqk0RmSEiq0RktYjMF5G4po5hjGk+R6tqgBPJpr78wsPcPmMJcVHhzJo8lA5tLcGcjsvP6wDAx+sKXY7k3GgyyYhIGPAscCWQBdwkIln1qk0CilW1J/AU8LizbxYwDugLjAaeE5GwJtr8mapeoKr9gR3A1FMdwxjTvI5We5NMQ5fLdhSVc8tLixERZt05LCTXIjtbPTvEkdYuhs83hsYzZnzpyQwB8lV1i6pWAXOAMfXqjAFmOtvzgctERJzyOapaqapbgXynvUbbVNVSAGf/GE6s09fYMYwxzehYT6a6Xk9m96Gj3PzSIio9tcyaPDTkVlNuLiLCdzKTWLilKCSemOlLkukM1H3iToFT1mAdVfUAJUDiKfY9ZZsi8gqwF+gDPNPEMU4iIlNEJFdEcvfvD42/FIxpTuXHk8yJMZn9hyu59aXFlJRX8/rEofROCY3nwbSUET2TOFzhYfWuErdDaXG+JJmGegv1RwQbq3O65d4N1QlAJ2AdcONpxIGqTlfVbFXNTk4OzmeHG9NSVJWiI5XAiTGZQ+VV3DZjMXtKKnh5wmD6pQX/Ey1b2ogeSYh4V6oOdr4kmQIgvc7rNKD+ugjH64hIOBAPHDzFvk22qao1wFzgh00cwxjTTMoqPVRUe5NLeZWHwxXVjH95CVv2H+HF27MZ3K29yxEGh3atIzm/U7wlGcdSIFNEMkQkEu9Afk69OjnAeGd7LPCJetdNyAHGOTPDMoBMYEljbYpXTzg+JnMtsL6JYxhjmsmOg+WAdwmULfuPMOnVXPJ2l/LcLQO5ODPJ5eiCy4ieSSzfUcyRSo/bobSoJpOMM/4xFViA9/LVPFXNE5FHROQ6p9oMIFFE8oH7gAedffOAecBa4APgHlWtaaxNvJfEZorIN8A3QCrwyKmOYYxpPmucMYKr+6VSXlXDkm0H+eO4AVye1dHlyILPdzKT8NQqi7cWuR1Kiwr3pZKqvge8V6/s4TrbFcANjez7KPCoj23WAiMaaafRYxhjmseCvH2kxkfz0FV9iIkMY2TvZEb27uB2WEFpUNd2RIQJi7ce5Lt9gjeJ+5RkjDHBb82uEj7dUMg9I3uSEBvJr6/r63ZIQS06Ioz+aQks3RrcQ8u2rIwxhorqGh54czUJMRHceUl3t8MJGYO7teebXSVUODfABiNLMsaEOFXlN/9YS97uUp644QLiYyLcDilkDO7WjuoaZcWOQ26H0mIsyRgT4l74fAtvLNnB3SN7cNl5wTs24I+yu7ZHBJZuC95LZpZkjAlh83J38tj767n2gk784nu93Q4n5MTHRtC7YxtLMsaY4PPh2n089NY3fCczif+74QJatbKlAN0wuFt7lm8vDtp1zCzJGBOClmw9yNTZyzm/U1um3TqIyHD7KnDL4Iz2HKmqYd2ew26H0iLsX5YxIWblzkNMfHUpnRNiePmOwbSOsjsZ3HRhegIAK3cWuxxJy7AkY0wIWbOrhNtnLKZd6whm3TmUxDh7ZLLb0trFkBQXycqdwbkisyUZY0LE+r2l3DpjMW2iI5g9eRip8TFuh2TwPl/mgrQEVhUE5zRmSzLGhID8wsPc8uJiosJbMfvOoaS3tyda+pML0hPYvL+M0opqt0NpdpZkjAlyWw8c4eYXvY9Mnn3nMLom2hMt/c0F6QmowjcFwXfJzJKMMUFsR1E5N7+4CE+tMvvOofRIjnM7JNOAC5wHwa3cGXyXzCzJGBOkCorLuenFRRytruEvk4bSq6M9MtlfJcRGkpHUmlWWZIwxgWBvSQU3v7iY0opq/jJpKFmd2rodkmnCBWnxQTn4b0nGmCBTeLiCm19cxMEjVbw2cQjnd453OyTjgwvSE9hXWsm+0gq3Q2lWlmSMCSL7D1dyy4uL2VtawSsTBnNhl3Zuh2R81LeT94+BtbtLXY6keVmSMSZIFB6u4KYXF1FQfJQZ4wczuFt7t0Myp+G8VO+YWd7u4Jph5lOSEZHRIrJBRPJF5MEG3o8SkbnO+4tFpFud9x5yyjeIyKim2hSRWU75GhF5WUQinPKRIlIiIiudn4cxxgBQWFrBTdMXsav4KK9MGMzwHoluh2ROU5voCLomxrJ2T4j1ZEQkDHgWuBLIAm4Skax61SYBxaraE3gKeNzZNwsYB/QFRgPPiUhYE23OAvoA/YAYYHKd43yhqgOcn0fO5AMbE2wKSysY9+Ii9pRU8OqEwQzrbgkmUGWltg3Jy2VDgHxV3aKqVcAcYEy9OmOAmc72fOAyERGnfI6qVqrqViDfaa/RNlX1PXUAS4C0s/uIxgSvfaUVjJu+iL0lFbw6YQhDLcEEtKzUtmwrKqes0uN2KM3GlyTTGdhZ53WBU9ZgHVX1ACVA4in2bbJN5zLZbcAHdYqHi8gqEXlfRPo2FKyITBGRXBHJ3b9/vw8fz5jAtM+5RLavtIKZE4cwJMPGYALdsanm64LokpkvSaahJxmpj3VOt7yu54DPVfUL5/VyoKuqXgA8A/ytoWBVdbqqZqtqdnJyckNVjAl4e0u8PZhjCcYG+YNDMM4w8yXJFADpdV6nAbsbqyMi4UA8cPAU+56yTRH5FZAM3HesTFVLVbXM2X4PiBCRJB/iNyao7Ck5yrjpC9l/uJLXJg0h2xJM0OjYNor2rSNDLsksBTJFJENEIvEO5OfUq5MDjHe2xwKfOGMqOcA4Z/ZZBpCJd5yl0TZFZDIwCrhJVY8/j1REUpxxHkRkiBN70Zl8aGMC1e5DRxk3fREHyqqYOXEIg7paggkmIkJWalvy9gTPNOYmH4mnqh4RmQosAMKAl1U1T0QeAXJVNQeYAbwuIvl4ezDjnH3zRGQesBbwAPeoag1AQ206h5wGbAcWOjnlLWcm2VjgbhHxAEeBcU4iMyYkHEswxUeqeG3SEAbajZZBKatTW179ahuemlrCwwL/VkYJ5u/p7Oxszc3NdTsMY87azoPl3PzSIg4dqea1SUPsTv4gNn9ZAf/vr6v4+Of/5tqq2SKyTFWzm6OtwE+TxgS5rQeOcOMLCykpr+b1yUMtwQS5Xh29iWXTvsMuR9I8LMkY48c27TvMj15YSIWnljlThjMgPcHtkEwL69nBm2Q27itzOZLm0eSYjDHGHXm7S7htxhLCWglzpwwj054HExJiI8NJbx/DRuvJGGNaysqdh7hp+iKiw1sx767hlmBCTK8ObdgUJD0ZSzLG+Jml2w5y60uLSYiNZO5dw8lIau12SOYcy+zYhi0HyqiuqW26sp+zJGOMH/kq/wC3z1hCh7ZRzLtrOOntY90OybigV8c4qmuUbQeOuB3KWbMkY4yf+HR9IRNeXUrXxFjmThlOSny02yEZl/RyLo8Gw+C/JRlj/MAHa/Yy5fVcenWM4407h5HcJsrtkIyLenaIo5UQFIP/NrvMGJf9bcUufv7XVVyQFs8rE4YQHxPhdkjGZdERYXRpH8umwsBPMtaTMcZFry3cxk/nrmRIt/a8NmmoJRhzXGbHNna5zBhzZlSVZz7exMN/z+OKrI68MmEwcVF2YcGc0LNDHNuLjuAJ8BlmlmSMOcdqa5XfvruO//twI9cP7MzztwwkOiLM7bCMn8lIak11jVJQfNTtUM6KJRljziFPTS33v7maGV9u5Y6LuvHE2AuCYqVd0/x6JHvvj9pyILAvmdm/bmPOkYrqGu6ZvZz5ywr42eW9+NW1WbRq1dBDYo2BjCTvGmZb9gf2vTJ2EdiYc6Cs0sNdr+fyVX4Rv7o2iwkjMtwOyfi59q0jSYiNYEuA35BpScaYFlZ8pIo7Xl3Kml0lPPmjC7h+YJrbIZkAkZHUmq0B3pOxy2XGtKB9pRXcOH0h6/aUMu3WQZZgzGnpnhRnYzLGmIblF5Zx/XNfs6v4KK9OGMwVWR3dDskEmO7JrdlXWklZpcftUM6YT0lGREaLyAYRyReRBxt4P0pE5jrvLxaRbnXee8gp3yAio5pqU0RmOeVrRORlEYlwykVEnnbqrxaRgWfzwY1pScu2FzN22tdUemqZe9dwLuqR5HZIJgB1d1bgDuSFMptMMiISBjwLXAlkATeJSFa9apOAYlXtCTwFPO7smwWMA/oCo4HnRCSsiTZnAX2AfkAMMNkpvxLIdH6mAM+fyQc2pqV9vG4ft7y0iISYCN66+yLO7xzvdkgmQGU405g37w/cS2a+9GSGAPmqukVVq4A5wJh6dcYAM53t+cBlIiJO+RxVrVTVrUC+016jbarqe+oAlgBpdY7xmvPWIiBBRFLP8HMb0yLmLt3BlNeX0btjG+bffRFdEm2pfnPmuiW2RgS2BnNPBugM7KzzusApa7COqnqAEiDxFPs22aZzmew24IPTiAMRmSIiuSKSu3//fh8+njFnT1V5+uNNPPDmN1zcM4nZdw4jKc5WUjZnJzoijE7xMQF9r4wvSaahu8XUxzqnW17Xc8DnqvrFacSBqk5X1WxVzU5OTm5gF2OaV02t8t9/W8OTzjIxL43PprWtQ2aaSffk1gE9w8yX34QCIL3O6zRgdyN1CkQkHIgHDjaxb6NtisivgGTgrtOMw5hzqqK6hnvfWME/1+7j7pE9uH9Ub7xXio1pHt0SW7Ny5yFUNSD/bfnSk1kKZIpIhohE4h3Iz6lXJwcY72yPBT5xxlRygHHO7LMMvIP2S07VpohMBkYBN6lqbb1j3O7MMhsGlKjqnjP4zMY0i5Lyam6bsZgP1+3jV9dm8cDoPgH5JWD8W9fEWA5XeDhUXu12KGekyZ6MqnpEZCqwAAgDXlbVPBF5BMhV1RxgBvC6iOTj7cGMc/bNE5F5wFrAA9yjqjUADbXpHHIasB1Y6PzCvqWqjwDvAVfhnTxQDkxojhNgzJnYUVTOHa8uoeDgUZ656UKu6d/J7ZBMkEpv7508suNgOe1aR7oczenz6cKxqr6H90u+btnDdbYrgBsa2fdR4FFf2nTKG4zJ6Rnd40u8xrSkFTuKmTwzF0+t8vqkIQztnuh2SCaIdXVmKG4/WM4F6QkuR3P6bHTSmNPw/jd7+OnclXRsG80rEwbTIznO7ZBMkOvi9GR2Hix3OZIzY0nGGB+oKi99sZXfvb+OAekJvHR7Nok2RdmcA7GR4STFRbG9KDCnMVuSMaYJnppafv2PPP6yaAdX9UvhyR8NsCdZmnOqa2Is24usJ2NM0DlS6WHq7OV8umE/d/1bdx4Y1cceNGbOua7tY1m0pcjtMM6IrcJsTCP2llRww7SFfL7pAL/7QT8euvI8SzDGFentY9lTWkGlp8btUE6b9WSMacDa3aVMmrmU0qPVzBifzcjeHdwOyYSwromxqMLOg0fp2SGwJptYT8aYehbk7WXstK8B+Ou/X2QJxrju2DTmQJxhZj0ZYxyqynOfbeYPCzYwID2B6bcNokPbaLfDMub4DZmBOMPMkowxeNcge/DN1fxt5W7GDOjE4z/sbzPIjN9IjosiNjKMHQePuh3KabMkY0Je4eEK7np9GSt2HOIXo3rz45E9bA0y41dEhC7tY9lx0HoyxgSUNbtKmPJaLsXl1Uy7dRCjz09xOyRjGpTePjYgH8NsA/8mZH2wZg83TFsIwPy7h1uCMX4tvV0suw4dxbuMY+CwnowJOarKs5/m88Q/N3oH+G8fRIc2NsBv/FvndjGUV9VQXF5N+wBajdmSjAkpRyo93D9/Ne9+s4fvD+jEYzbAbwJE54QYAHYVH7UkY4w/2l50hCmvLWNT4WEeurIPUy7pbgP8JmCktXOSzKFy+qXFuxyN7yzJmJDw2YZC7n1jBSLCzIlD+E5mstshGXNajvVkCooDaxqzJRkT1FSV5//lvcGyd8c2TL8tmy7O3dPGBJKE2AhiI8PYdciSjDF+oe74yzVaZifVAAAXXElEQVT9U/n92P7ERto/eROYRIS0djEB15PxaQqziIwWkQ0iki8iDzbwfpSIzHXeXywi3eq895BTvkFERjXVpohMdcpURJLqlI8UkRIRWen8HH/8szH1bS86wvXPfc37a/bw0JV9eOamCy3BmIDXOSGGXQGWZJr8rRORMOBZ4AqgAFgqIjmqurZOtUlAsar2FJFxwOPAjSKSBYwD+gKdgI9EpJezT2NtfgW8A3zWQDhfqOo1Z/A5TQix8RcTrDq3i2H5jkNuh3FafOnJDAHyVXWLqlYBc4Ax9eqMAWY62/OBy8Q7bWcMMEdVK1V1K5DvtNdom6q6QlW3neXnMiGotlZ5+uNNTHh1KZ0SYvjH1IstwZig0jkhlpKj1ZRVetwOxWe+JJnOwM46rwucsgbrqKoHKAEST7GvL202ZLiIrBKR90Wkb0MVRGSKiOSKSO7+/ft9aNIEg+IjVUx4dSlPfriRMRd04q0fX2QD/CbodG534l6ZQOHLReqGbiSov65BY3UaK28ouTW1VsJyoKuqlonIVcDfgMxvNaI6HZgOkJ2dHVjrL5gzsnLnIe6ZtZz9hyv57ffP55ahXez+FxOUTkxjLqd3ShuXo/GNLz2ZAiC9zus0YHdjdUQkHIgHDp5iX1/aPImqlqpqmbP9HhBRd2KACT2qyusLt3GD84Cx+XcP59ZhXS3BmKCVfvyGzMDpyfiSZJYCmSKSISKReAfyc+rVyQHGO9tjgU/Uu4pbDjDOmX2WgbfnscTHNk8iIinOOA8iMsSJvciXD2mCz5FKDz+du5Jf/j2Pi3sm8e69F9M/LcHtsIxpUUlxUUSGtQquy2Wq6hGRqcACIAx4WVXzROQRIFdVc4AZwOsiko+3BzPO2TdPROYBawEPcI+q1oB3qnL9Np3ye4H7gRRgtYi8p6qT8Savu0XEAxwFxmmgLUdqmkV+4WHu/styNu8v4/99rxc/HtmTVq2s92KCX6tWQqeEaAoCqCcjwfw9nZ2drbm5uW6HYZrRP1bt5oE3VxMTEcbTN13IiJ52xdSEllteWsSRyhr+ds+IFjuGiCxT1ezmaMvuTjMBoaK6hv95Zy2zFu9gUNd2/PnmC0mNj3E7LGPOuc4JMXyyPnBmzlqSMX4vv7CMqbOXs37vYaZc0p1fjOpNRJg9b8+Eps4JsRwoq6TSU0NUuP8/psKSjPFbqsr8ZQU8/Pc8YiLDeGXCYC7t3cHtsIxxVWq89wF7haWVpLf3/3vBLMkYv1RW6eGXf1vD2yt2Max7e/5444WkxNvTK41JTfD+Huw+dNSSjDFnIm93CVNnr2B70RF+enkm//HdTMJs9pgxwImezN7SCpcj8Y0lGeM3VJXXFm7n0XfX0a51BLPvHMaw7oluh2WMX0lxJrzsKbEkY4zPDpVX8cCbq1mQt49LeyfzxA0XkBgX5XZYxviduKhw2kSHsydA7pWxJGNc9/XmA9w3dxUHyir576vPY+KIDLu50phTSI2Ptp6MMU2p8tTyf//cwPQvtpCR2Jq3fnyRLQ1jjA9S42NsTMaYU8kvPMxP5qwkb3cpNw/twn9ffZ49udIYH6XGR5O3u9TtMHxiv9XmnFJV/rJ4B4++u5bYyHCm3zaI7/VNcTssYwJKSnw0B8oqqfLUEhnu3zcmW5Ix58yBskoemL+aj9cXckmvZJ4Y258Obe3eF2NOVydnhtm+0gq/v1fGkow5Jz7dUMgv/rqK0goPv7o2i/HDu9ngvjFn6NiNyXtKLMmYEFde5eHx99czc+F2+qS0YdbkYQHzRD9j/FWnhGNJxv+nMVuSMS1m2faD/HzeKrYVlTNxRAb3j+5NdIT/L+hnjL8LpBsyLcmYZlfpqeGpDzcx/fPNpMbH8Madwxjew+7cN6a5HLshc68lGRNq1uwq4efzVrFh32FuGpLOf12dRVyU/TMzprl5b8i0y2UmRFTX1PLcp5t55pNNtG8dySt3DObSPrYsvzEtJSU+JiAul/k0wVpERovIBhHJF5EHG3g/SkTmOu8vFpFudd57yCnfICKjmmpTRKY6ZSoiSXXKRUSedt5bLSIDz/RDm+a1ad9hrn/ua576aCNX90/lnz+7xBKMMS2sU4AsLdNkT0ZEwoBngSuAAmCpiOSo6to61SYBxaraU0TGAY8DN4pIFjAO6At0Aj4SkV7OPo21+RXwDvBZvVCuBDKdn6HA885/jUtqapUZX27hiX9uJC4qnOduGchV/VLdDsuYkBAoN2T6crlsCJCvqlsARGQOMAaom2TGAL92tucDfxYRccrnqGolsFVE8p32aKxNVV3hlNWPYwzwmqoqsEhEEkQkVVX3nM4HNs0jv/AwD7z5Dcu2F3NFVkd+94N+JLexVZONOVc6xceg6v83ZPqSZDoDO+u8LuDbPYjjdVTVIyIlQKJTvqjevp2d7aba9CWOzsBJSUZEpgBTALp06dJEk+Z0VdfUMv3zLfzpo03ERoXx5I8u4AcXdm7ojwJjTAtKqfPwskBPMg19e6iPdRorb6hvV7/NM4kDVZ0OTAfIzs5uqk1zGvJ2l3D//NXk7S7lqn4p/Oa68633YoxLjj0hc7efP1fGlyRTAKTXeZ0G7G6kToGIhAPxwMEm9m2qzTOJw7SASk8Nz3ycz7R/bSYhNpJptw5k9Pk29mKMm471ZPb5+ZL/vowWLQUyRSRDRCLxDuTn1KuTA4x3tscCnzhjJznAOGf2WQbeQfslPrZZXw5wuzPLbBhQYuMxLW/Z9mKufvpL/vxpPtcN6MRH911iCcYYP9AmOoK4qHC/n2HWZE/GGWOZCiwAwoCXVTVPRB4BclU1B5gBvO4M7B/EmzRw6s3DO0nAA9yjqjXgnapcv02n/F7gfiAFWC0i76nqZOA94CogHygHJjTXSTDfVl7l4YkFG3nl662kto3mlQmDubS3TUs2xp+kxEf7/V3/4u1wBKfs7GzNzc11O4yA8+WmA/zn29+w42A5tw7rwgOj+9AmOsLtsIwx9dw2YzFllR7e/vGIZm1XRJapanZztGV3/JvjDpRV8ui763h7xS66JcYyZ8owhnW3NceM8VcpbaP5Mv+A22GckiUZg6ry19wCfvf+Oo5Uerj3uz358aU9bcVkY/xcSnw0hYcr8dTUEh7mnzdkWpIJcfmFZfzn29+wZOtBBndrx+9+0I/Mjva8F2MCQUp8NDW1yoGyquOzzfyNJZkQVVFdw3Ofbeb5z/KJiQjjsev78aPsdHtapTEBJDX+xMPLLMkYv/H15gP899tr2HLgCN8f0In/ujrLbqo0JgCltPU+vMyfZ5hZkgkhRWWV/O699by5vICuibG8PmkI38lMdjssY8wZOtGTsSRjXFRTq8xesoMnFmzgSKWHey7twX98N9MG9o0JcAmxEUSFt/Lru/4tyQS5FTuK+eXf17BmVynDuyfyyJi+NrBvTJAQEVL8/LkylmSCVFFZJb//YANzc3fSsW0Uz9x0Idf0T7XVko0JMilt/fuuf0syQab+pbG7LunOf1yWSVyU/a82JhilxkezbEex22E0yr55gohdGjMm9KTEx7CvZC+1teqXtyBYkgkCRWWV/GHBBuYs9V4ae/qmC7nWLo0ZExJS46OpqqnlYHkVSXH+dyuCJZkAVuWp5bWF2/jTx5s4WlXDlEu6c69dGjMmpBx/QmZJhSUZ0zxUlU/WF/Lou+vYcuAI/9YrmV9ecx49O9ilMWNCTUrbE0nm/M7xLkfzbZZkAsymfYf5n3fX8fnG/XRPbs0rdwzm0j72nBdjQtXxGzL99F4ZSzIB4lB5FX/8aBOvL9pObGQYv7wmi9uHdyXCT1deNcacG4lxUYS3EvaWHHU7lAZZkvFznppaZi3ewVMfbaT0aDU3D+3CfVf0pn3rSLdDM8b4gbBWQse2/ntDpiUZP6WqfLqhkP99bz2bCsu4qEciD1+bRZ+Utm6HZozxM/78GGafrrWIyGgR2SAi+SLyYAPvR4nIXOf9xSLSrc57DznlG0RkVFNtikiG08Ymp81Ip/wOEdkvIiudn8ln88H92fIdxdw4fRETX82luqaWF24bxKzJQy3BGGMalBIfzd5AHZMRkTDgWeAKoABYKiI5qrq2TrVJQLGq9hSRccDjwI0ikgWMA/oCnYCPRKSXs09jbT4OPKWqc0RkmtP2884+c1V16ll+Zr+VX1jGHxasZ0HePpLiovif75/PuMHpNu5ijDmllLbRfLq+EFX1u/vjfLlcNgTIV9UtACIyBxgD1E0yY4BfO9vzgT+L95OOAeaoaiWwVUTynfZoqE0RWQd8F7jZqTPTafdYkglK+0or+ONHG5mXW0B0eCvuu6IXky7OoLXd72KM8UFqfDTlVTWUVniIj4lwO5yT+PIt1hnYWed1ATC0sTqq6hGREiDRKV9Ub9/OznZDbSYCh1TV00B9gB+KyCXARuBnqlq3jYBTcrSaF/61mZe/2kpNrXL78K5MvbQniX54Q5Uxxn/VvSEzEJNMQ30v9bFOY+UNXf85VX2AfwBvqGqliPw73l7Od78VrMgUYApAly5dGmjOfRXVNfxl0Xb+/Gk+h8qr+f6ATtx3RW+6JMa6HZoxJgDVfQxz7xT/uinblyRTAKTXeZ0G7G6kToGIhAPxwMEm9m2o/ACQICLhTm/meH1VLapT/0W8YzffoqrTgekA2dnZ9ZOhq2pqlb+t2MWTH25k16GjXNIrmftH9fbLu3SNMYEjJd5/H8PsS5JZCmSKSAawC+9A/s316uQA44GFwFjgE1VVEckBZovIk3gH/jOBJXh7LN9q09nnU6eNOU6bfwcQkVRV3eMc7zpg3Rl+5nNOVflsw34e/2A96/cepl/neH4/tj8jeia5HZoxJgh0aBOFCH45w6zJJOOMsUwFFgBhwMuqmicijwC5qpoDzABedwb2D+JNGjj15uGdJOAB7lHVGoCG2nQO+QAwR0R+C6xw2ga4V0Suc9o5CNxx1p/+HFixo5jH3l/P4q0H6ZoYy59vvpCrzk/1yyW5jTGBKSKsFUlxUX7ZkxFVv7qi1Kyys7M1NzfXlWNv3l/GEws28P6avSTFRfKTyzK5cXAXIsNtOrIxpvld9+cvaRcbycyJQ5qu3AQRWaaq2c0Qlt3x39wKSyv408ebmLN0J9HhrfjZ5b2Y/B2bjmyMaVkpbaPZXlTudhjfYt98zeRIpYcXPt/Ci59vwVNby23DujL1uz398vkOxpjgkxofzaItRU1XPMcsyZwlT00tc3N38tSHmzhQVsnV/VO5f1Rvuia2djs0Y0wISYmPobTCw5FKj19dOfGfSALQws1FPPz3NWwqLGNwt3a8ePsgLuzSzu2wjDEh6Ni9MntLK+iRHOdyNCdYkjkDB49U8ei763hzeQHp7WOYdusgRvXt6HdrBhljQkdH5wmZ+0osyQS0r/MP8NO5Kykur+KeS3sw9dJMYiLD3A7LGBPiTtz171/TmC3J+EhVefGLLfzv++vpntSaVycMIauTLb1vjPEPKXUul/kTSzI+UFUee389L3y+hav7p/KHsf2JjbRTZ4zxH9ERYbSLjWCPnz2G2b4pffDSF1t54fMt3DasK7+5rq/drW+M8Usp8TF+d9e/3X7ehOU7ivnf99dxVb8USzDGGL+WGh/td2MylmROoaZWeWD+alLaRvP4D/tbgjHG+LWObaPZ52djMpZkTuGd1bvZVFjGL6/Jok20fz0IyBhj6kuNj+ZAWRWVnhq3QznOkswpzPhyK706xjGqb4rboRhjTJOOzTArLK10OZITLMk0Ysv+MlYXlPCj7HS7TGaMCQj+eK+MJZlGfLyuEICr+6e6HIkxxvim7mOY/YUlmUYs215Ml/axpDqPNTXGGH/nj49htiTTiFUFhxjYJcHtMIwxxmdxUeHERYX71V3/lmQaUFFdw56SCrr70SJzxhjji5T4aHYV2+Uyv1bg/A9Kb2+XyowxgaVnchz5hWVuh3GcT0lGREaLyAYRyReRBxt4P0pE5jrvLxaRbnXee8gp3yAio5pqU0QynDY2OW1GNnWM5nbwSBUAyXHRLXUIY4xpEb1T2rCt6AhHq/zjXpkmk4yIhAHPAlcCWcBNIpJVr9okoFhVewJPAY87+2YB44C+wGjgOREJa6LNx4GnVDUTKHbabvQYLaG8ygNgS/gbYwLOealtqFXYVHjY7VAA33oyQ4B8Vd2iqlXAHGBMvTpjgJnO9nzgMvE+wWsMMEdVK1V1K5DvtNdgm84+33XawGnz+00co9lVVHv/Aoi1JGOMCTD907wTlr7YdMDlSLx8WYW5M7CzzusCYGhjdVTVIyIlQKJTvqjevp2d7YbaTAQOqaqngfqNHeOkMykiU4ApzssyESmqX8dXWS3WV3JNEmd4LoKQnQsvOw8nBNW5mPo4TD2zXZOArs0Vhy9JpqHegvpYp7HyhnpQp6rvaxyo6nRg+vHARHJVNbuBfUOOnYsT7Fx42Xk4wc6Fl3MeujVXe75cLisA0uu8TgN2N1ZHRMKBeODgKfZtrPwAkOC0Uf9YjR3DGGOMn/IlySwFMp1ZX5F4B/Jz6tXJAcY722OBT1RVnfJxzsywDCATWNJYm84+nzpt4LT59yaOYYwxxk81ebnMGf+YCiwAwoCXVTVPRB4BclU1B5gBvC4i+Xh7F+OcffNEZB6wFvAA96hqDUBDbTqHfACYIyK/BVY4bdPYMXwwvekqIcPOxQl2LrzsPJxg58KrWc+DWGfAGGNMS7E7/o0xxrQYSzLGGGNaTFAnmaaWwwl0IvKyiBSKyJo6Ze1F5ENnWZ4PRaSdUy4i8rRzLlaLyMA6+4x36m8SkfENHcvfiUi6iHwqIutEJE9EfuKUh9T5EJFoEVkiIquc8/Abp/y0l2tqbEmoQOOsMrJCRN5xXofkuRCRbSLyjYisFJFcp6zlfz9UNSh/8E4o2Ax0ByKBVUCW23E182e8BBgIrKlT9nvgQWf7QeBxZ/sq4H289xsNAxY75e2BLc5/2znb7dz+bGdwLlKBgc52G2Aj3iWLQup8OJ8nztmOABY7n28eMM4pnwbc7Wz/GJjmbI8D5jrbWc7vTBSQ4fwuhbn9+c7wnNwHzAbecV6H5LkAtgFJ9cpa/PcjmHsyviyHE9BU9XO+fa9Q3eV36i/L85p6LcJ7P1IqMAr4UFUPqmox8CHedeYCiqruUdXlzvZhYB3eVSJC6nw4n+fYErwRzo9y+ss1NbYkVEARkTTgauAl5/WZLF0VFOeiES3++xHMSaah5XA6N1I3mHRU1T3g/eIFOjjljZ2PoDtPzmWOC/H+FR9y58O5PLQSKMT7JbAZH5drAuouCRXQ58HxR+B+oNZ57fPSVQTfuVDgnyKyTLzLb8E5+P3wZVmZQOXTMjQh5HSX/glIIhIHvAn8VFVLpfE1VIP2fKj3XrQBIpIAvA2c11A1579Bex5E5BqgUFWXicjIY8UNVA36c+EYoaq7RaQD8KGIrD9F3WY7F8Hck/FlOZxgtM/p1uL8t9ApP90lfgKOiETgTTCzVPUtpzhkz4eqHgI+w3tN/XSXawqG8zACuE5EtuG9XP5dvD2bUDwXqOpu57+FeP/4GMI5+P0I5iTjy3I4waju8jv1l+W53Zk1MgwocbrHC4DviUg7Z2bJ95yygOJcO58BrFPVJ+u8FVLnQ0SSnR4MIhIDXI53fOp0l2tqbEmogKGqD6lqmnoXexyH97PdQgieCxFpLSJtjm3j/Xe9hnPx++H2jIeW/ME7Q2Ij3mvS/+V2PC3w+d4A9gDVeP/CmIT3GvLHwCbnv+2duoL3QXGbgW+A7DrtTMQ7mJkPTHD7c53hubgYb7d9NbDS+bkq1M4H0B/vckyrnS+Rh53y7ni/GPOBvwJRTnm08zrfeb97nbb+yzk/G4Ar3f5sZ3leRnJidlnInQvnM69yfvKOfR+ei98PW1bGGGNMiwnmy2XGGGNcZknGGGNMi7EkY4wxpsVYkjHGGNNiLMkYY4xpMZZkjDHGtBhLMsYYY1rM/we5gZknDF8RXwAAAABJRU5ErkJggg==\n", "text/plain": [ @@ -538,7 +532,7 @@ "# plt.yscale('log')\n", "# plt.xlim(3080, 3110)\n", "plt.savefig('test.png')\n", - "print(jpsi_width)" + "# print(jpsi_width)" ] }, { @@ -614,17 +608,9 @@ "cell_type": "code", "execution_count": 13, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "5404695.652173913\n" - ] - } - ], + "outputs": [], "source": [ - "print(36000*(1+ pdg[\"jpsi_BR\"]/pdg[\"NR_BR\"] + pdg[\"psi2s_BR\"]/pdg[\"NR_BR\"]))" + "# print(36000*(1+ pdg[\"jpsi_BR\"]/pdg[\"NR_BR\"] + pdg[\"psi2s_BR\"]/pdg[\"NR_BR\"]))" ] }, { @@ -650,22 +636,109 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "# nevents = int(pdg[\"number_of_decays\"])\n", + "# event_stack = 5000\n", + "\n", + "# calls = int(nevents/event_stack + 1)\n", + "\n", + "# total_samp = []\n", + "\n", + "# start = time.time()\n", + "\n", + "# samp = total_f.sample(n=event_stack)\n", + "# s = samp.unstack_x()\n", + "\n", + "# for call in range(calls):\n", + "\n", + "# sam = zfit.run(s)\n", + "# clear_output(wait=True)\n", + " \n", + "# # if call != 0:\n", + "# # print(np.sum(_last_sam-sam))\n", + " \n", + "# # _last_sam = sam\n", + " \n", + "# c = call + 1 \n", + "# print(\"{0}/{1}\".format(c, calls))\n", + "# print(\"Time taken: {}\".format(display_time(int(time.time() - start))))\n", + "# print(\"Projected time left: {}\".format(display_time(int((time.time() - start)/c*(calls-c)))))\n", + " \n", + "# with open(\"data/zfit_toys/toy_1/{}.pkl\".format(call), \"wb\") as f:\n", + "# pkl.dump(sam, f, pkl.HIGHEST_PROTOCOL)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "# print(\"Time to generate full toy: {} s\".format(int(time.time()-start)))\n", + "\n", + "# total_samp = []\n", + "\n", + "# for call in range(calls):\n", + "# with open(r\"data/zfit_toys/toy_1/{}.pkl\".format(call), \"rb\") as input_file:\n", + "# sam = pkl.load(input_file)\n", + "# total_samp = np.append(total_samp, sam)\n", + "\n", + "# total_samp = total_samp.astype('float64')\n", + "\n", + "# data2 = zfit.data.Data.from_numpy(array=total_samp[:int(nevents)], obs=obs)\n", + "\n", + "# print(total_samp[:nevents].shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "# bins = int((x_max-x_min)/7)\n", + "\n", + "# # calcs = zfit.run(total_test_tf(samp))\n", + "\n", + "# plt.hist(total_samp[:event_stack], bins = bins, range = (x_min,x_max))\n", + "\n", + "# # plt.plot(sam, calcs, '.')\n", + "# # plt.plot(test_q, calcs_test)\n", + "# plt.ylim(0, 20)\n", + "# # plt.xlim(3000, 3750)\n", + "\n", + "# plt.savefig('test2.png')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Toys" + ] + }, + { + "cell_type": "code", + "execution_count": 18, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "1/1081\n", - "Time taken: 5 min, 13 s\n", - "Projected time left: 3 d, 21 h\n" + "55/55\n", + "Time taken: 6 h, 21 min\n", + "Projected time left: \n" ] } ], "source": [ + "nr_of_toys = 1\n", "nevents = int(pdg[\"number_of_decays\"])\n", - "event_stack = 5000\n", + "event_stack = 100000\n", "\n", "calls = int(nevents/event_stack + 1)\n", "\n", @@ -673,34 +746,70 @@ "\n", "start = time.time()\n", "\n", - "samp = total_f.sample(n=event_stack)\n", + "sampler = total_f.create_sampler(n=event_stack)\n", "\n", - "for call in range(calls):\n", - " sam = samp.unstack_x()\n", - " sam = zfit.run(sam)\n", - " clear_output(wait=True)\n", + "for toy in range(nr_of_toys):\n", " \n", - " c = call + 1 \n", - " print(\"{0}/{1}\".format(c, calls))\n", - " print(\"Time taken: {}\".format(display_time(int(time.time() - start))))\n", - " print(\"Projected time left: {}\".format(display_time(int((time.time() - start)/c*(calls-c)))))\n", + " dirName = 'data/zfit_toys/toy_{0}'.format(toy)\n", " \n", - " with open(\"data/zfit_toys/toy_1/{}.pkl\".format(call), \"wb\") as f:\n", - " pkl.dump(sam, f, pkl.HIGHEST_PROTOCOL)" + " if not os.path.exists(dirName):\n", + " os.mkdir(dirName)\n", + " print(\"Directory \" , dirName , \" Created \")\n", + "\n", + " for call in range(calls):\n", + "\n", + " sampler.resample(n=event_stack)\n", + " s = sampler.unstack_x()\n", + " sam = zfit.run(s)\n", + " clear_output(wait=True)\n", + "\n", + " c = call + 1 \n", + " print(\"{0}/{1}\".format(c, calls))\n", + " print(\"Time taken: {}\".format(display_time(int(time.time() - start))))\n", + " print(\"Projected time left: {}\".format(display_time(int((time.time() - start)/c*(calls-c)))))\n", + "\n", + " with open(\"data/zfit_toys/toy_{0}/{1}.pkl\".format(toy, call), \"wb\") as f:\n", + " pkl.dump(sam, f, pkl.HIGHEST_PROTOCOL)" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 19, "metadata": {}, "outputs": [], "source": [ + "# with open(r\"data/zfit_toys/toy_0/0.pkl\", \"rb\") as input_file:\n", + "# sam = pkl.load(input_file)\n", + "# print(sam[:10])\n", + "\n", + "# with open(r\"data/zfit_toys/toy_0/1.pkl\", \"rb\") as input_file:\n", + "# sam2 = pkl.load(input_file)\n", + "# print(sam2[:10])\n", + "\n", + "# print(np.sum(sam-sam2))" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Time to generate full toy: 22915 s\n", + "(5404696,)\n" + ] + } + ], + "source": [ "print(\"Time to generate full toy: {} s\".format(int(time.time()-start)))\n", "\n", "total_samp = []\n", "\n", "for call in range(calls):\n", - " with open(r\"data/zfit_toys/toy_1/{}.pkl\".format(call), \"rb\") as input_file:\n", + " with open(r\"data/zfit_toys/toy_0/{}.pkl\".format(call), \"rb\") as input_file:\n", " sam = pkl.load(input_file)\n", " total_samp = np.append(total_samp, sam)\n", "\n", @@ -713,34 +822,40 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 21, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAD8CAYAAABzTgP2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAEsFJREFUeJzt3X+sZ3V95/Hna/lht0hkkAvFATq4S3DpD5HejDbsGtQywkjE3ZjdIU07bWmmtZpodpPtuCa6a/+hu6nddGlKpjIRNxbdrlJJQWFi3VATRe/QAYaOdAZKwzgTZnQUJDbbHfveP77nyvdz+X7nXr4/7r3c+3wk35xzPudzzvmcT+b7fd3zc1JVSJI075+sdAMkSauLwSBJahgMkqSGwSBJahgMkqSGwSBJaiwaDEkuTvLlJAeSPJbk/V35uUn2JDnYDTcMWX57V+dgku2T3gFJ0mRlsecYklwIXFhVDyU5G9gLvAv4FeBEVd2SZCewoap+e8Gy5wJzwCxQ3bI/V1XfnfieSJImYtEjhqo6WlUPdePfBw4AG4EbgTu6anfQC4uF3g7sqaoTXRjsAa6bRMMlSdNx+kupnGQT8AbgQeCCqjoKvfBIcv6ARTYCT/dNH+7KBq17B7AD4Kyzzvq5173udS+laSN59FvP8jMbX9VMA/zMxlf9aN7CsmHzl2qUZSStXf2/QePYu3fvt6tqZhLrWnIwJHkl8FngA1X1XJIlLTagbOC5q6raBewCmJ2drbm5uaU2bWSbdt7D3C3vaKYB5m55x4/mLSwbNn+pRllG0trV/xs0jiR/N5EVscS7kpKcQS8UPlVVn+uKn+muP8xfhzg2YNHDwMV90xcBR0ZvriRp2pZyV1KA24EDVfWxvll3A/N3GW0HPj9g8fuALUk2dHctbenKJEmr1FKOGK4Gfgl4a5J93WcrcAtwbZKDwLXdNElmk3wcoKpOAL8DfKP7fLQrkyStUoteY6iqrzD4WgHA2wbUnwN+vW96N7B71AZKkpaXTz5LkhoGgySpYTBIkhoGgySpYTBIkhoGwzLzqWdJq53BIElqGAySpIbBIElqGAySpIbBIElqGAySpIbBIElqGAySpIbBIElqGAySpIbBIElqGAySpMai/7Vnkt3ADcCxqvrpruwzwOVdlXOA71XVlQOWfQr4PvBD4GRVzU6o3ZKkKVk0GIBPALcCn5wvqKp/Nz+e5PeAZ0+x/Fuq6tujNlCStLwWDYaqeiDJpkHzkgT4t8BbJ9ssSdJKGfcaw78Cnqmqg0PmF3B/kr1Jdoy5LUnSMljKqaRTuQm48xTzr66qI0nOB/Yk+WZVPTCoYhccOwAuueSSMZslSRrVyEcMSU4H/g3wmWF1qupINzwG3AVsPkXdXVU1W1WzMzMzozZLkjSmcU4l/QLwzao6PGhmkrOSnD0/DmwB9o+xPUnSMlg0GJLcCXwVuDzJ4SQ3d7O2seA0UpLXJLm3m7wA+EqSh4GvA/dU1Rcn13RJ0jQs5a6km4aU/8qAsiPA1m78SeD1Y7ZPkrTM1uWTz5t23rPSTZCkVWtdBoMkaTiDQZLUMBgkSQ2DQZLUMBgkSQ2DQZLUMBgkSQ2DQZLUMBgkSQ2DQZLUWFfB0P8qjIWvxXgpr8mYr+urNSSNazX+jqyrYJAkLc5gkCQ1DAZJUsNgkCQ1DAZJUsNgkCQ1DAZJUmPRYEiyO8mxJPv7yv5zkm8l2dd9tg5Z9rokjyc5lGTnJBsuSZqOpRwxfAK4bkD571fVld3n3oUzk5wG/CFwPXAFcFOSK8ZprCRp+hYNhqp6ADgxwro3A4eq6smq+gfg08CNI6xHkrSMxrnG8L4kj3SnmjYMmL8ReLpv+nBXNlCSHUnmkswdP358jGa9dKvxkXRJWimjBsMfAf8MuBI4CvzegDoZUFbDVlhVu6pqtqpmZ2ZmRmyWJGlcIwVDVT1TVT+sqn8E/pjeaaOFDgMX901fBBwZZXuSpOUzUjAkubBv8l8D+wdU+wZwWZJLk5wJbAPuHmV7kqTlc/piFZLcCVwDnJfkMPAR4JokV9I7NfQU8Btd3dcAH6+qrVV1Msn7gPuA04DdVfXYVPZCkjQxiwZDVd00oPj2IXWPAFv7pu8FXnQrqyRp9fLJZ0lSw2CQJDUMBklSw2CQJDUMBklSY90Fg6+/kKRTW3fBIEk6NYNBktQwGCRJDYNBktQwGCRJDYNBktQwGCRJDYNBktQwGCRJjTUfDIs96bzUJ6F9YlrSerHmg0GS9NIYDJKkxqLBkGR3kmNJ9veV/bck30zySJK7kpwzZNmnkjyaZF+SuUk2XJI0HUs5YvgEcN2Csj3AT1fVzwJ/A3zwFMu/paqurKrZ0ZooSVpOiwZDVT0AnFhQdn9VnewmvwZcNIW2SZJWwCSuMfwa8IUh8wq4P8neJDtOtZIkO5LMJZk7fvz4BJolSRrFWMGQ5EPASeBTQ6pcXVVXAdcD703y5mHrqqpdVTVbVbMzMzPjNEuSNIaRgyHJduAG4BerqgbVqaoj3fAYcBewedTtSZKWx0jBkOQ64LeBd1bVD4bUOSvJ2fPjwBZg/6C6kqTVYym3q94JfBW4PMnhJDcDtwJnA3u6W1Fv6+q+Jsm93aIXAF9J8jDwdeCeqvriVPZCkjQxpy9WoapuGlB8+5C6R4Ct3fiTwOvHat2EbNp5D0/d8o6RlpOk9cYnnyVJDYNBktQwGCRJDYNBktQwGCRJDYNBktQwGCRJDYNBktQwGCRJDYNBktQwGCRJDYNBktQwGCRJDYNBktQwGCRJDYNBktQwGCRJDYNBktRYUjAk2Z3kWJL9fWXnJtmT5GA33DBk2e1dnYNJtk+q4ZKk6VjqEcMngOsWlO0EvlRVlwFf6qYbSc4FPgK8EdgMfGRYgEiSVoclBUNVPQCcWFB8I3BHN34H8K4Bi74d2FNVJ6rqu8AeXhwwkqRVZJxrDBdU1VGAbnj+gDobgaf7pg93ZS+SZEeSuSRzx48fH6NZPZt23nPKaUnSYNO++JwBZTWoYlXtqqrZqpqdmZmZcrMkScOMEwzPJLkQoBseG1DnMHBx3/RFwJExtilJmrJxguFuYP4uo+3A5wfUuQ/YkmRDd9F5S1cmSVqllnq76p3AV4HLkxxOcjNwC3BtkoPAtd00SWaTfBygqk4AvwN8o/t8tCuTJK1Spy+lUlXdNGTW2wbUnQN+vW96N7B7pNZJkpadTz5LkhoGgySpYTBIkhoGgySpYTBIkhoGgySpYTBIkhoGgySpYTBIkhoGgySpYTBIkhoGgySpYTBIkhoGgySpYTBIkhoGgySpsaT/qOflZNPOe1bFOiTp5cojBklSY+RgSHJ5kn19n+eSfGBBnWuSPNtX58PjN1mSNE0jn0qqqseBKwGSnAZ8C7hrQNW/rKobRt2OJGl5TepU0tuAJ6rq7ya0PknSCplUMGwD7hwy7+eTPJzkC0l+atgKkuxIMpdk7vjx4xNqliTppRo7GJKcCbwT+NMBsx8CfrKqXg/8D+DPhq2nqnZV1WxVzc7MzIzbLEnSiCZxxHA98FBVPbNwRlU9V1XPd+P3AmckOW8C25QkTckkguEmhpxGSvITSdKNb+62950JbFOSNCVjPeCW5MeBa4Hf6Cv7TYCqug14N/CeJCeBvwe2VVWNs01J0nSNFQxV9QPg1QvKbusbvxW4dZxtSJKW15p+8tlXW0h6OVhtv1VrOhgkSS+dwSBJahgMkqSGwSBJahgMkqSGwSBJahgMkqSGwSBJahgMkqSGwSBJahgMkqSGwSBJahgMkqSGwSBJahgMkqSGwSBJahgMkqTG2MGQ5KkkjybZl2RuwPwk+YMkh5I8kuSqcbcpSZqesf7P5z5vqapvD5l3PXBZ93kj8EfdUJK0Ci3HqaQbgU9Wz9eAc5JcuAzblSSNYBLBUMD9SfYm2TFg/kbg6b7pw11ZI8mOJHNJ5o4fPz6BZknSy8emnfesdBN+ZBLBcHVVXUXvlNF7k7x5wfwMWKZeVFC1q6pmq2p2ZmZmAs2SJI1i7GCoqiPd8BhwF7B5QZXDwMV90xcBR8bdriRpOsYKhiRnJTl7fhzYAuxfUO1u4Je7u5PeBDxbVUfH2a4kaXrGvSvpAuCuJPPr+pOq+mKS3wSoqtuAe4GtwCHgB8CvjrlNSdIUjRUMVfUk8PoB5bf1jRfw3nG2I0laPj75LElqGAySpIbBIElqGAySpIbBIElqGAySpIbBIElqGAySpIbBIElqGAySpIbBIElqGAySpIbBIElqGAySpIbBIElqGAySpIbBIElqGAySpMbIwZDk4iRfTnIgyWNJ3j+gzjVJnk2yr/t8eLzmSpKmbZz/8/kk8B+q6qEkZwN7k+ypqr9eUO8vq+qGMbYjSVpGIx8xVNXRqnqoG/8+cADYOKmGSZJWxkSuMSTZBLwBeHDA7J9P8nCSLyT5qUlsT5I0PeOcSgIgySuBzwIfqKrnFsx+CPjJqno+yVbgz4DLhqxnB7AD4JJLLhm3WZKkEY11xJDkDHqh8Kmq+tzC+VX1XFU9343fC5yR5LxB66qqXVU1W1WzMzMz4zRLkjSGce5KCnA7cKCqPjakzk909Uiyudved0bdpiRp+sY5lXQ18EvAo0n2dWX/CbgEoKpuA94NvCfJSeDvgW1VVWNsU5I0ZSMHQ1V9BcgidW4Fbh11G5Kk5eeTz5KkhsEgSWoYDJKkhsEgSWoYDJKkhsEgSWoYDJKkhsEgSWoYDJKkhsEgSWoYDJKkhsEgSWoYDJKkhsEgSWoYDJKkhsEgSWoYDJKkhsEgSWoYDJKkxljBkOS6JI8nOZRk54D5r0jymW7+g0k2jbM9SdL0jRwMSU4D/hC4HrgCuCnJFQuq3Qx8t6r+OfD7wO+Ouj1J0vIY54hhM3Coqp6sqn8APg3cuKDOjcAd3fj/Bt6WJGNsU5I0ZaePsexG4Om+6cPAG4fVqaqTSZ4FXg18e+HKkuwAdnSTzyf5zqB669B52A/z7IsX2Bc9a6ofMt45lcsn1IyxgmHQX/41Qp1eYdUuYNePFkzmqmp29OatDfbDC+yLF9gXPfbDC5LMTWpd45xKOgxc3Dd9EXBkWJ0kpwOvAk6MsU1J0pSNEwzfAC5LcmmSM4FtwN0L6twNbO/G3w38RVUNPGKQJK0OI59K6q4ZvA+4DzgN2F1VjyX5KDBXVXcDtwP/M8khekcK217CJnYtXmVdsB9eYF+8wL7osR9eMLG+iH/AS5L6+eSzJKlhMEiSGqsuGBZ7zcZakGR3kmNJ9veVnZtkT5KD3XBDV54kf9D1xyNJrupbZntX/2CS7YO2tZoluTjJl5McSPJYkvd35euxL34sydeTPNz1xX/pyi/tXidzsHu9zJld+dDXzST5YFf+eJK3r8wejSfJaUn+Ksmfd9PrtR+eSvJokn3zt6Muy/ejqlbNh95F7CeA1wJnAg8DV6x0u6awn28GrgL295X9V2BnN74T+N1ufCvwBXrPhLwJeLArPxd4shtu6MY3rPS+vcR+uBC4qhs/G/gbeq9XWY99EeCV3fgZwIPdPv4vYFtXfhvwnm78t4DbuvFtwGe68Su6780rgEu779NpK71/I/THvwf+BPjzbnq99sNTwHkLyqb+/VhtRwxLec3Gy15VPcCLn+fof33IHcC7+so/WT1fA85JciHwdmBPVZ2oqu8Ce4Drpt/6yamqo1X1UDf+feAAvafl12NfVFU9302e0X0KeCu918nAi/ti0OtmbgQ+XVX/t6r+FjhE73v1spHkIuAdwMe76bAO++EUpv79WG3BMOg1GxtXqC3L7YKqOgq9H0zg/K58WJ+sqb7qTgG8gd5fyuuyL7rTJ/uAY/S+vE8A36uqk12V/v1qXjcDzL9uZi30xX8H/iPwj930q1mf/QC9Pw7uT7I3vdcGwTJ8P8Z5JcY0LPkVGuvIsD5ZM32V5JXAZ4EPVNVzGf6exTXdF1X1Q+DKJOcAdwH/YlC1brgm+yLJDcCxqtqb5Jr54gFV13Q/9Lm6qo4kOR/Yk+Sbp6g7sb5YbUcMS3nNxlr1THfYRzc81pUP65M10VdJzqAXCp+qqs91xeuyL+ZV1feA/0PvPPE56b1OBtr9Gva6mZd7X1wNvDPJU/ROJb+V3hHEeusHAKrqSDc8Ru+Phc0sw/djtQXDUl6zsVb1vz5kO/D5vvJf7u44eBPwbHf4eB+wJcmG7q6ELV3Zy0Z3Lvh24EBVfaxv1nrsi5nuSIEk/xT4BXrXXL5M73Uy8OK+GPS6mbuBbd3dOpcClwFfX569GF9VfbCqLqqqTfS+/39RVb/IOusHgCRnJTl7fpzev+v9LMf3Y6Wvug+4Cr+V3t0pTwAfWun2TGkf7wSOAv+PXprfTO+86JeAg93w3K5u6P2HSE8AjwKzfev5NXoX1Q4Bv7rS+zVCP/xLeoe0jwD7us/WddoXPwv8VdcX+4EPd+WvpfeDdgj4U+AVXfmPddOHuvmv7VvXh7o+ehy4fqX3bYw+uYYX7kpad/3Q7fPD3eex+d/D5fh++EoMSVJjtZ1KkiStMINBktQwGCRJDYNBktQwGCRJDYNBktQwGCRJjf8Paf3UYtuvFsUAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "bins = int((x_max-x_min)/7)\n", "\n", "# calcs = zfit.run(total_test_tf(samp))\n", "\n", - "plt.hist(total_samp, bins = bins, range = (x_min,x_max))\n", + "plt.hist(total_samp[:event_stack], bins = bins, range = (x_min,x_max))\n", "\n", "# plt.plot(sam, calcs, '.')\n", "# plt.plot(test_q, calcs_test)\n", - "plt.ylim(4000, 12000)\n", - "plt.xlim(3000, 3750)\n", + "plt.ylim(0, 20)\n", + "# plt.xlim(3000, 3750)\n", "\n", "plt.savefig('test2.png')" ] }, { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Toys" - ] - }, - { "cell_type": "code", - "execution_count": null, + "execution_count": 22, "metadata": {}, "outputs": [], "source": [ @@ -770,9 +885,316 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 23, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
FCN = 18215610.730149463TOTAL NCALL = 76NCALLS = 76
EDM = 6.769469250461445e-05GOAL EDM = 5e-06\n", + " UP = 0.5
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ValidValid ParamAccurate CovarPosDefMade PosDef
TrueTrueTrueTrueFalse
Hesse FailHasCovAbove EDMReach calllim
FalseTrueFalseFalse
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
+NameValueHesse ErrorMinos Error-Minos Error+Limit-Limit+Fixed?
0psi2s_p-69.42480.023096No
1jpsi_p-21.99280.0112012No
2jpsi_s464.5310.227734No
3psi2s_s76.51020.0504588No
\n", + "
\n",
+       "\n",
+       "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "Minos status for psi2s_p: VALID\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Error-0.023307456378252020.025582271077546587
ValidTrueTrue
At LimitFalseFalse
Max FCNFalseFalse
New MinFalseFalse
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "Minos status for jpsi_p: PROBLEM\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Error-0.0112012401828034580.011201240182803458
ValidFalseFalse
At LimitFalseFalse
Max FCNFalseFalse
New MinFalseFalse
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "Minos status for jpsi_s: PROBLEM\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Error-0.227734494793661950.22773449479366195
ValidFalseFalse
At LimitFalseFalse
Max FCNFalseFalse
New MinFalseFalse
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "Minos status for psi2s_s: PROBLEM\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Error-0.050458796201811110.05045879620181111
ValidFalseFalse
At LimitFalseFalse
Max FCNFalseFalse
New MinFalseFalse
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "psi2s_p: ^{+0.025582271077546587}_{-0.02330745637825202}\n", + "jpsi_p: ^{+0.011201240182803458}_{-0.011201240182803458}\n", + "jpsi_s: ^{+0.22773449479366195}_{-0.22773449479366195}\n", + "psi2s_s: ^{+0.05045879620181111}_{-0.05045879620181111}\n", + "Function minimum: 18215610.730149463\n" + ] + } + ], "source": [ "nll = zfit.loss.UnbinnedNLL(model=total_f, data=data2, fit_range = (x_min, x_max))\n", "\n", @@ -790,9 +1212,20 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 24, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "1.0005069573828973" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "(-3.14+2*np.pi)/np.pi" ] @@ -806,25 +1239,44 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 25, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "'5 h, 55 min'" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "display_time(int(395*pdg[\"number_of_decays\"]/100000))" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 26, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "6 h, 12 min\n" + ] + } + ], "source": [ "print(display_time(22376))" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 27, "metadata": {}, "outputs": [], "source": [ @@ -836,9 +1288,29 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 28, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.09\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZkAAAD8CAYAAACl69mTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xl8VOXZ8PHflT2QkEBIAkmABBIMQRAx4oK1LlTAjdbKI7ZWq1j6Wn1t7fO21bd9bevz2Kd20VqXWqpWa1WgttpoUeq+ghBEkACBsCcsgQTCErJf7x9zAkOcIZOQyZyZXN/PJx/O3HOf+9znhMw197mXI6qKMcYYEwxRoa6AMcaYyGVBxhhjTNBYkDHGGBM0FmSMMcYEjQUZY4wxQWNBxhhjTNAEFGREZJqIlItIhYjc6eP9eBGZ77z/sYjker13l5NeLiJTu1DmQyJyKJBjGGOMcadOg4yIRAOPANOBIuBaESnqkG02sE9V84EHgPucfYuAWcBYYBrwqIhEd1amiBQDqYEcwxhjjHsF0pKZBFSo6iZVbQLmATM65JkBPO1svwBcLCLipM9T1UZV3QxUOOX5LdMJQL8GfhjgMYwxxrhUTAB5soHtXq8rgbP85VHVFhGpA9Kc9CUd9s12tv2VeRtQoqo7O8QQf8fY651JROYAcwD69+9/RmFhYQCnaIxpt7++ie37jhAbHUXhkORQV+c4Bxta2FJz2JV1iyTLly/fq6rpPVFWIEHGV2uh41o0/vL4S/fVglIRyQJmAhd0sx6o6lxgLkBxcbGWlpb62M0Y48+LKyq5Y/5KslIS+Oiui0NdneO8U17NN/+8jOzURD6886JQVydiicjWniorkNtllcAwr9c5wA5/eUQkBkgBak+wr7/004F8oEJEtgD9RKSik2MYY4LAjasaurFO5sQCCTLLgAIRyRORODwd+SUd8pQANzjbVwNvqWflzRJgljMyLA8oAJb6K1NV/6WqQ1Q1V1VzgXqno/9ExzDGBIEr/7qcOllvbPjo9HaZ0/9xG7AIiAaeVNUyEbkHKFXVEuAJ4Bmn1VGLJ2jg5FsArAFagFtVtRXAV5mdVMXnMYwxwaHWbjA9IJA+GVR1IbCwQ9rdXtsNePpSfO17L3BvIGX6yJMUyDGMMT3PjS0ZNwS+5uZmKisraWhoCHVVTlpCQgI5OTnExsYG7RgBBRljTN8T+o/zz1MX3C6rrKwkOTmZ3NxcwnkWhapSU1NDZWUleXl5QTuOLStjjPHJjV2eR4OMz8GmvaOhoYG0tLSwDjAAIkJaWlrQW2QWZIwxPrkwxhxtXYX68z3cA0y73jgPCzLGGJ9cGGNMGLIgY4zxyZ23y9xXJ7d65513uPzyywFobGxkypQpTJgwgfnz5/dqPazj3xjjkxs/zo/eLgtpLcLPihUraG5u5tNPP+31Y1tLxhhzHDc3FtrrFhUhfSLdtWXLFgoLC7nhhhsYP348V199NfX19bz22msUFhZy3nnn8Y9//AOA6upqrrvuOj799FMmTJjAxo0be7Wu1pIxxvjkxmCjx4aXucLPXy5jzY4DPVpmUdYAfnrF2E7zlZeX88QTTzB58mRuuukm7r//fv74xz/y1ltvkZ+fzzXXXANARkYGjz/+OL/5zW945ZVXerSugbCWjDHGpzYXRpk2d8WYkBo2bBiTJ08G4LrrrqO0tJS8vDwKCgoQEa677roQ19DDWjLGGN/cF2OOzvh3y+2yQFocwdJx+HFdXZ0rh1ZbS8YY45MLY8yxloz7Pkt73bZt21i8eDEAzz//PFOmTGHz5s1H+1yef/75UFbvKAsyxhif3DhcuL1ObmnJhNKYMWN4+umnGT9+PLW1tdxxxx3MnTuXyy67jPPOO48RI0aEuoqA3S4zxvjhvhDjzsEIoRIVFcVjjz12XNq0adNYt27d5/JecMEFXHDBBb1Us+NZS8YY45MbP9DbByO4se/B+GZBxhjjkxtHlx2bJxPaeoRabm4uq1evDnU1AmJBxhjjk/tCzLHAF+o+GTf2V3VHb5yHBRljjG8u/Bx1w/NkEhISqKmpCftA0/48mYSEhKAexzr+jTE+ueEplB211ymU7ZicnBwqKyvZs2dPCGvRM9qfjBlMAQUZEZkGPAhEA4+r6i87vB8P/AU4A6gBrlHVLc57dwGzgVbgdlVddKIyReQJoBjP/6P1wDdV9ZCIfBP4NVDlHPZhVX28e6dtjOmMG7+oH5snE7owExsbG9QnSUaaTm+XiUg08AgwHSgCrhWRog7ZZgP7VDUfeAC4z9m3CJgFjAWmAY+KSHQnZd6hqqep6nhgG3Cb13Hmq+oE58cCjDFB4Mbg0u7Y6LIQV8QELJA+mUlAhapuUtUmYB4wo0OeGcDTzvYLwMXi+aoxA5inqo2quhmocMrzW6aqHgBw9k/ElXeGjYl8bvzDs1WYw08gQSYb2O71utJJ85lHVVuAOiDtBPuesEwR+TOwCygEHvLK91URWSUiL4jIsADqbozpJncOYQ59n4zpmkCCjK/fZ8f/ff7ydDXds6F6I5AFrAWucZJfBnKd22hvcKzldHxFROaISKmIlEZCx5wxoeLCGHPsoWUWZcJGIEGmEvBuNeQAO/zlEZEYIAWoPcG+nZapqq3AfOCrzusaVW103v4TnkEGn6Oqc1W1WFWL09PTAzg9Y0y4aGuzGf/hJpAgswwoEJE8EYnD05Ff0iFPCXCDs3018JZ62rUlwCwRiReRPKAAWOqvTPHIh6N9MlcA65zXQ72OdyWeVo4xpg+x58mEn06HMKtqi4jcBizCM9z4SVUtE5F7gFJVLQGeAJ4RkQo8LZhZzr5lIrIAWAO0ALc6LRT8lBkFPC0iA/D8P1oJ3OJU5XYRudIppxb4Zo9cAWNM2Gi/XWYd/+EjoHkyqroQWNgh7W6v7QZgpp997wXuDbDMNmCyn3LuAu4KpL7GmMikNoQ57NiyMsaYsGHzZMKPBRljTNiweTLhx4KMMSZsuGFZGdM1FmSMMWGjzSZjhh0LMsaYsGMNmfBhQcYYcxwXTvQ/6uhkzBDXwwTOgowxJmzYPJnwY0HGGBM2bAhz+LEgY4wJG+23y+yGWfiwIGOMCRstbW7uMTK+WJAxxoSNVgsyYceCjDEmbFhLJvxYkDHGhI1jLRkLNuHCgowxJmzY7bLwY0HGGBM27HZZ+LEgY4wJG61tbaGugukiCzLGmLBhLZnwY0HGGONX+5Mo3aK9T8Zl1TInYEHGGHMc78Dito52a8mEn4CCjIhME5FyEakQkTt9vB8vIvOd9z8WkVyv9+5y0stFZGpnZYrIEyKyUkRWicgLIpLU2TGMMcHR6rImQ2uru+pjOtdpkBGRaOARYDpQBFwrIkUdss0G9qlqPvAAcJ+zbxEwCxgLTAMeFZHoTsq8Q1VPU9XxwDbgthMdwxgTPG5rybgt6JnOBdKSmQRUqOomVW0C5gEzOuSZATztbL8AXCye56POAOapaqOqbgYqnPL8lqmqBwCc/RM5NuvK3zGMMUHiuiDjsvqYzgUSZLKB7V6vK500n3lUtQWoA9JOsO8JyxSRPwO7gELgoU6OcRwRmSMipSJSumfPngBOzxjjj9tGDLf3yVioCR+BBBlfrYWOv2N/ebqa7tlQvRHIAtYC13ShHqjqXFUtVtXi9PR0H7sYYwLltttTNk8m/AQSZCqBYV6vc4Ad/vKISAyQAtSeYN9Oy1TVVmA+8NVOjmGMCZIWl32oN7W4qz6mc4EEmWVAgYjkiUgcno78kg55SoAbnO2rgbfUMw6yBJjljAzLAwqApf7KFI98ONoncwWwrpNjGGOCxGUxhkYLMmEnprMMqtoiIrcBi4Bo4ElVLRORe4BSVS0BngCeEZEKPK2LWc6+ZSKyAFgDtAC3Oi0U/JQZBTwtIgPw3B5bCdziVMXnMYwxweO222WNzZ4gY98vw0enQQZAVRcCCzuk3e213QDM9LPvvcC9AZbZBkz2U47fYxhjgqPNZaO5GltaQ10F00U2498Y45fbhgzb7bLwY0HGGOOX25ZxsSATfizIGGP8anNZ34eNLgs/FmSMMcfxDivuu13m6ZNxV63MiViQMcb45aYg09amNNsCmWHHgowxxi83BZnDTS2hroLpBgsyxhi/3DRP5lCjBZlwZEHGGHM8r7jipnkyBxuOBRkXxT7TCQsyxhi/3DSE2TvImPBhQcYY41dzq3uGDB9saA51FUw3WJAxxvjlpnkp7X0y/eKiQ1wT0xUWZIwxx1GvThk3BZl9h5sASE2MDXFNTFdYkDHG+OWmZVyqDzYSJZCWFG+TMcOIBRljjF9uasnsOdhIWlI80VG+HpJr3MqCjDHGr0YXdfxXH2wkPSk+1NUwXWRBxhhzHO85KI3N7nl+S9W+I2SlJoS6GqaLLMgYY/xqcklLprVN2VxzmJHpSaGuiukiCzLGGL/aH3ccajv2H6GppY2Rg/sD9vjlcBJQkBGRaSJSLiIVInKnj/fjRWS+8/7HIpLr9d5dTnq5iEztrEwRedZJXy0iT4pIrJN+gYjUicinzs/dGGOCyi0tmbIdBwAoyExGrN8/rHQaZEQkGngEmA4UAdeKSFGHbLOBfaqaDzwA3OfsWwTMAsYC04BHRSS6kzKfBQqBcUAicLPXcd5X1QnOzz3dOWFjzIl5txHcMrqsdEstcTFRnJo9INRVMV0USEtmElChqptUtQmYB8zokGcG8LSz/QJwsYiIkz5PVRtVdTNQ4ZTnt0xVXagOYCmQc3KnaIzprvaHhIXaRxtrmJCTSnyMzfYPN4EEmWxgu9frSifNZx5VbQHqgLQT7Ntpmc5tsm8Ar3klnyMiK0XkVREZ66uyIjJHREpFpHTPnj0BnJ4xxh839Mls2XuYNTsPcMnYzFBXxXRDTAB5fN0B7djr5i+Pv3Rfwa1jmY8C76nq+87rT4ARqnpIRC4FXgIKPleI6lxgLkBxcbH1DhrTTcnxMa54UNiC0u2IwPRxQwHfHypd0dDcymdVdazffZCK6kNUH2zkwJFmGpvbiIuJIjEumpyBiYwY1I/ThqVyanYKsdE2Rqq7AgkylcAwr9c5wA4/eSpFJAZIAWo72ddvmSLyUyAd+HZ7mqoe8NpeKCKPishgVd0bwDkYYwLUPnArOSEm5MvrH2ho5pklW5l+6hCyUxO7Xc7uAw28vHIHb66tZvm2fUf7mvrFRTMkJYEBCbEkxEZR39RC9cEGPqrYy+Emz63CxNhoLixMZ8aEbC4qzLCA00WBBJllQIGI5AFVeDryv9YhTwlwA7AYuBp4S1VVREqA50TkfiALT8tjKZ4vIz7LFJGbganAxap6tK0uIkOA3U65k/C0hmq6d9rGmM4kJ8SGPMj8+rVyDje28J0L8ru8r6ry0cYa5r63ifc27EEVCockc/3ZIzh7ZBpjsgaQlZKA+BiupqpUH2xk+dZ9fLRxL69+touFn+0iKyWBb50/kmsnDSch1vqHAtFpkFHVFhG5DVgERANPqmqZiNwDlKpqCfAE8IyIVOBpwcxy9i0TkQXAGqAFuFVVWwF8lekc8jFgK7DY+eX/wxlJdjVwi4i0AEeAWWqD5Y0JmqSEGOqOhO4ZLm+XV/PXj7dywzm5nJqd0qV9l2/dxz2vrGHl9v2kJ8dz24X5fPn0bEYFOJlTRMgckMCl44Zy6bih/OyKsbxTvoc/vreRn7+8hj9/uIWfXzmWCwszunNqfUogLRlUdSGwsEPa3V7bDcBMP/veC9wbSJlOus86qerDwMOB1NcYc/KS4mOo2nckJMdev/sgtz+/gsIhA/jhtFM+976/r5cNza3c88oanvt4G5kD4vnFV8Zx1cTsk251xERHMaUokylFmXywYS8/LVnNjU8tY+YZOfx8xlj6xQX0Udon2ZUxxvjk6ZPp/ZbMul0H+PqfPiYhNpo/XX/G5z7Afd3eAs+qADc9tYx1uw4y5/yRfPfiAvrH9/xH3HkFg3n1u+fz0FsbePjtClZs38/j1xeT66xGYI5nPVjGmOO0P7QsOSGGw02ttLb13l3pJZtquHbuEmKihXlzziZnYL+A9qvaf4T/+ONiqvYd4akbz+T/XjomKAGmXVxMFP95ySn8dfZZ1Bxq5Kt/+IhPt+8P2vHCmQUZY4xPA/vFAbCvvqlXjvfMkq1c9/jHDOwfx4JvnxNw/0lDcyvferqUuiPNPPuts7jglN7rJ5mcP5i/33Iu/eKjuXbuEpZtqe21Y4cLCzLGGJ8yB3iW1a8+0BjU4xxsaOb7Cz7l/720mvNHp/PSrZMZkXbiW0/ej4h+4PX1rNl5gAdnTWB8TmpQ6+rLyPQk/n7LuQxNSeCmPy/js8q6Xq+Dm1mQMcb4lDnA84Cw3QcbgnaM5Vv3cdnvP+ClFVXcfnEBf7q+mAEJsSfcx7tHZmvNYZ78cDMzz8jhosLQrQiQkZzAX28+iwGJsdzw56Vsr60PWV3cxoKMMeY47SO3Mo62ZHo+yDS3tvG7N9bzH39cTJsqC759Dt//0uguP1r5qY+2APB/pn5+BFpvy0pN5JnZk2hpbWPOM8upd8FqCW5gQcYY41NGsqcls6uuZ2+XfVZZx4yHP+R3b2xgxmlZLPzuFyjOHdTlcppa2vj78kqmnTr06K29UBuZnsRDX5tI+a4D/Ojvn9lzb7AgY4zxIy4miuzURDbuOdQj5R1pauV/Fq5lxiMfsPdQI49ddwb3XzOh09tj/pRureVAQwtXjB/aI/XrKV8cnc5/XnIKL6/cwYsrqkJdnZCzeTLGGL9GZyaxfvfBky7no4q93PXiZ2ytqefaScO4c/oYUhK7F1zAc0vv3fV7iI0Wzs0ffNL162n/64ujeHf9Hu7+Zxln5g5i2KDAhmJHImvJGGOO432DZ3RmMpv2HO72w8t21h3htuc+4WuPf4wAz33rLP7nqvEnFWDa52Ku2l5HUVYKSUGcD9Nd0VHC/f9xGgL86O+r+vRtMwsyxhifBOGMEQNpam3jk237urRvY0srj7xdwUW/eZfX1+zmuxcX8Nr3zufcUT3T6lCFNTsPUDTUvU/KzBnYjx9NL+SjjTWUrOy4cH3f4b6vAMYY1zhnVBoxUcLb66o5e2Rap/nb2pR/fbaT3/67nC019Uwdm8lPLivq8dtFuw40UHekmaKhyT1abk+7dtJw/la6nf96ZS0XFmZ0u/8pnFlLxhjjV3JCLBcWZvC35ZU0NPt/FLOq8va6ai5/6AP+9/MriI+J5i83TeKP3ygOSn9E+zyUziZthlp0lPDfXx5H7eFGfv/GhlBXJyQsyBhjjteh/2DO+SOpPdzELxau/VzfwuHGFhYs2870B9/nxqeWcaixhd9dM4GF3/0C549OD1oVW5z11LJO4kFmvWVcTgpXTczhL4u3UrU/NKtah5LdLjPG+NTewX5m7iBmn5fHEx9sZsPuQ5xXMJjGljbKqur4oGIvjS1tFA5J5tdXj2fGhGziYoL73VW85vxnpbpjfkxn7vjSaEpW7uB3r6/n1zNPC3V1epUFGWNMp35y2RhyBiby+Pub+fWickQgL60/s84cxmXjszgzd6DfJfiDJSUxNmye45Kdmsj1Z4/gyQ83M+f8kRRkursvqSeFx2/IGBNSIsKNk/O4cXIe9U0tREcJ8TGhffxwWlJcSI/fVbdemM9zS7fxh3c2cv81E0JdnV5jfTLGmON0NqOjX1xMyAMMEHYjtQb2j+Nrk4bzz5U7+tQCmgEFGRGZJiLlIlIhInf6eD9eROY7738sIrle793lpJeLyNTOyhSRZ5301SLypIjEOukiIr938q8SkYknc+LGmBPr3ZtfXeBU7GQmdIbK7C/kESXw+PubQl2VXtNpkBGRaOARYDpQBFwrIkUdss0G9qlqPvAAcJ+zbxEwCxgLTAMeFZHoTsp8FigExgGJwM1O+nSgwPmZA/yhOydsjIkMA8IwyAxNSeQrp2czb9l2ag4F9zk9bhFIS2YSUKGqm1S1CZgHzOiQZwbwtLP9AnCxeHoBZwDzVLVRVTcDFU55fstU1YXqAJYCOV7H+Ivz1hIgVUTctTKeMabXDEgIzy7lOeePpLGljfml20NdlV4RSJDJBryvRqWT5jOPqrYAdUDaCfbttEznNtk3gNe6UA9EZI6IlIpI6Z49ewI4PWNMWHE6jcKxJQOQn5HMuaPSeHbJNlrbIn9Ns0CCjK9bsx2vjL88XU339ijwnqq+34V6oKpzVbVYVYvT04M3GcyYSOX2tRybWj2LdbpxYcxAfePsEVTtP8I75dWhrkrQBRJkKoFhXq9zgI6rvR3NIyIxQApQe4J9T1imiPwUSAe+38V6GGN6SG/PewlUS5snyMRFh+/g2ClFmWQOiOeZJVtDXZWgC+S3tAwoEJE8EYnD05Ff0iFPCXCDs3018JbTp1ICzHJGn+Xh6bRfeqIyReRmYCpwraq2dTjG9c4os7OBOlXd2Y1zNsaEseYWT1MrNtqdQTAQsdFRXDtpOO+u30PlvsgeztxpkHH6WG4DFgFrgQWqWiYi94jIlU62J4A0EanA0/q409m3DFgArMHTt3Krqrb6K9Mp6zEgE1gsIp+KyN1O+kJgE57BA38CvnNyp26MCUfNTksmJoxbMgBfnZiDKrwU4U/PDOimpqouxPMh7512t9d2AzDTz773AvcGUqaT7rNOTsvo1kDqa4zpPrc/YKul1VO/cL5dBjBsUD/OyhvEPz6p4tYL8117e/JkhfdvyRgTNG79yGtpbW/JuLWGgbtqYjab9h5mZWVdqKsSNBZkjDFhpdkZ9hvut8sApo8bSnxMFP/4pDLUVQma8P8tGWP6lObW9tFl4d+SGZAQyyVjh1CycsfR84o0FmSMMcdxd4/MsT6ZmKjI+Pi6fPxQ9tc3s2RTTairEhSR8VsyxvQ4t/ZDt3/jjw3yw9F6yxdHp9MvLppXV+8KdVWCIjJ+S8aYPqP90cuxUS6Ngl2UEBvNhadk8O+yXRG5zIwFGWNMWGn/II6UlgzA9HFD2HuoidIttaGuSo8L38V/jDFdtudgI2+t203ZjgPUHG5icP84pp46hHNHDT6ax+XTZI6KiZCWDMCFp2QQHxPFq6t3cdbItFBXp0dZkDEmwrW2KW+u3c1TH21h8aYaVD2LS2YMiGd3XQNPL97KN84ewT0zxh43IVBcO1PGIzYChjC36x8fw/mj0/l32S5+ekVRRE3MtCBjTIRqbm1jQel2/vjuJrbV1pOdmsjtFxUw7dQhFA5JRkRobGnlV6+V88QHmykcmszXzxoR6moHLJKCDMDFhRm8vmY363cf4pQhyaGuTo+xIGNMhGlrU15etYP7X1/P1pp6JgxL5c7phVxSlPm5CYzxMdH85LIxrK6q44HX1zPzjGF+SnWfSJjx7+2CUzIAeLu8OqKCTGR9FTCmj3unvJpLf/8+3533KYmx0Tz5zWJe/M65XDpuqN8Z8iLCLReMYu+hJt5cu9v182TahfvaZR0NSUlgzNABvL0usp4xYy0ZYyLA9tp67nllDa+v2c2ItH48OGsCV4zPIirAzvHz8gczICHG+RY9wJPo8oZCpLVkAC48JZ0/vreJAw3NDEgIzyd/dhRZXwWM6WMamlv53RvrmXL/u3xYsZcfTSvk9Tu+yIwJ2QEHGPCsAzY5fzCLw2jWeaT1yQBcWJhBa5vywYa9oa5Kj7GWjDFhSFV5Y20197xSxvbaI1w+fig/vmwMQ1MSu13mqdkpvLp6FwcbmnuwpsETGyHLyng7fViqp0W5rppLxw0NdXV6hAUZY8LMlr2H+dnLZbxTvoeCjCSeu/kszs0f3PmOnRgz1NPZvG7nwZMuqzdE4u2ymOgozisYzAcVe1HViBjKbEHGmDBR39TCo29vZO57m4iLieInl43hhnNze+y2UX66J8hsqTncI+UFWyTeLgM4d9RgFn62iy019eQN7h/q6pw0CzLGuJyq8trqXfzXK2vYUdfAV07P5q7phWQMSOjR42SmxCMCVfuPAO5dILNdbAS2ZADOGeWZ8b94Y01EBJmAvgqIyDQRKReRChG508f78SIy33n/YxHJ9XrvLie9XESmdlamiNzmpKmIDPZKv0BE6kTkU+fn6OOfjYlUFdWHuP7Jpdzy7CcMSIxlwbfP4YFrJvR4gAHPnJnBSfEcbGjp8bKDIRJuJfkycnB/MgfE89HGyOj877QlIyLRwCPAl4BKYJmIlKjqGq9ss4F9qpovIrOA+4BrRKQImAWMBbKAN0RktLOPvzI/BF4B3vFRnfdV9fJunKcxYeVQYwsPvbmBJz7YTGJcND+7oojrzh4R9KdBZqUmsudgY1CPYU5MRDh31GDeW78nIvplArldNgmoUNVNACIyD5gBeAeZGcDPnO0XgIfFc2VmAPNUtRHYLCIVTnn4K1NVVzhpJ3NexoQlVeXlVTu5919r2H2gkZln5PCj6YUMTorvleMP7h/XK8cxJ3bOqDReXFEVEUvMBBJksoHtXq8rgbP85VHVFhGpA9Kc9CUd9s12tjsr05dzRGQlsAP4P6pa1jGDiMwB5gAMHz48gCKNcYfyXQf5aclqlmyq5dTsAfzhujOYOHxgr9Yhpd+xCYD2NS90znX6ZT7auLdPBBlf/9c6rjzhL4+/dF9t/s5Ws/gEGKGqh0TkUuAloOBzhajOBeYCFBcXh8sKGaYPO9DQzINvbOCpj7aQFB/Df3/5VK6dNJzoECxlP7CftWTcIGdgP4YP6sfijTXcODkv1NU5KYEEmUrAe9W8HDwtCV95KkUkBkgBajvZt7Myj6OqB7y2F4rIoyIyWFUjo3fM9DmqyosrqvjFwnXUHG5k1pnD+cHUUxgUwltWqYmRsZRJJCjOHci75eHfLxNIL+IyoEBE8kQkDk9HfkmHPCXADc721cBbqqpO+ixn9FkenpbH0gDLPI6IDHH6eRCRSU7dw2cNDGO8lO2oY+Zji/n+gpVkD0zkpe9M5n+uGhfSAAOQ2s+CjFsUjxhEzeEmttTUh7oqJ6XTlozTx3IbsAiIBp5U1TIRuQcoVdUS4AngGadjvxZP0MDJtwDPIIEW4FZVbQXPUOWOZTrptwM/BIYAq0RkoarejCd43SIiLcARYJYTyIwJG/vrm/jtv9fz7MdbGdgvjl99dTwwKC6oAAAXc0lEQVRXn5HTpXXGgmmAV0smnL89R4LiXE9/XOmW2rCeLxPQZExVXQgs7JB2t9d2AzDTz773AvcGUqaT/nvg9z7SHwYeDqS+xrhNa5uyoHQ7v3ptHXVHmrn+nFzumDL6uI52N0iMjQ51FYwjPz2JAQkxLN+6j5nF4fOcn45sxr8xQbZi2z5+WlLGqso6JuUO4mdXjqUoa0Coq+VTvzj3fyTERAktbZF/EyMqSjhjxEBKt+4LdVVOivv/RxkTpvYeauRXr61jQWklGcnxPDhrAleeluXq21CJce5vySy+62La+sid8uLcQbxdXs7++iZSw3TknwUZY3pYS2sbz368jd/+u5z6plbmnD+S2y8uICne/X9u/byCjFtDYXpy70xMdYMzRnj6ZZZv3cfFYzJDXJvucf//emPCyOKNNfz85TLW7TrIefmD+dmVReRnhM9kuuOCjFujTB9yWk4qMVFCqQUZY/q2bTX1/GLhWl4r20V2aiJ/+PpEpp06xNW3xnxJPK4lE151j0SJcdGMzRrAim3h2y9jQcaYk3CosYVH3q7gifc3Ex0l/OeXRvOt80eSEKajtLxHl4VZfIxY43NSeXFFFW1t6pqh7l1hQcaYbmhtU/6+vJJfLSpn76FGrpqYzQ+nFjIkpeeX4O9N3qPLLMi4w7icFJ5ZspVNew+Tn5EU6up0mQUZY7po6eZafv5yGWU7DjBxeCqP31DMhGGpoa5Wj/BeL81ul7nDaTme/1urKvdbkDEmkm2vreeXr67jX5/tZGhKQlgMST4ZEXpaYSc/I4l+cdGsqqzjqok5oa5Ol1mQMaYThxpbeOydjcx9fxNRAt+bUsC3zx8VFnNKTobFGHeIjhJOzUphZeX+UFelWyzIGONHc2sb85Zt58E31rP3UBNfnpDFD6cVkpWaGOqq9Yooa8q4xricFP66ZCvNrW3EBvnpqD3NgowxHagqr6/ZzS9fW8emPYeZlDuIx28YEzH9LoGyGOMe43NSaGxpY/3ug4zNSgl1dbrEgowxXlZs28f/LFzH0i21jErvz5+uL2bKmIyI7Xc5kb54zm51rPO/zoKMMeFoa81hfrWonH+t2sngpHju/cqpXFM8jJgwuzVhItOItH6kJMayqnI/104Kr8fKW5AxfVrt4SYeemsDf12ylZioKL57cQHfOn9kWKwzZvoOEeHU7AGU7TjQeWaXsb8k0ycdaWrlqY+28Og7FRxubOGaM4dxx5TRZAwI78mUJnKNGTKAZ5ZspaW1Laxa2BZkTJ/S1NLG/NLtPPTmBqoPNnJRYQZ3Ti9kdGb4LGJp+qairAE0trSxee9hCsLo/6sFGdMntLYpJSureOD1DWyrrefM3IE8/LWJTMobFOqqGROQMUM9D7pbs/NAWAWZgNpcIjJNRMpFpEJE7vTxfryIzHfe/1hEcr3eu8tJLxeRqZ2VKSK3OWkqIoO90kVEfu+8t0pEJnb3pE3foar8u2wXlz74PnfMX0lSfAx/vvFMFnz7HAswJqyMSk8iLjqKNTvDq1+m05aMiEQDjwBfAiqBZSJSoqprvLLNBvapar6IzALuA64RkSJgFjAWyALeEJHRzj7+yvwQeAV4p0NVpgMFzs9ZwB+cf43x6aONe/n1onJWbNtP3uD+PHTt6Vw2bmhYrmRrTFxMFPkZSazdeTDUVemSQG6XTQIqVHUTgIjMA2YA3kFmBvAzZ/sF4GHxDLKfAcxT1UZgs4hUOOXhr0xVXeGkdazHDOAvqqrAEhFJFZGhqrqzKydsIt/K7fv59aJyPqjYy9CUBH551TiuPiMnrDpLQ+k3M0/jgw17Ql0N40NR1gDeKQ+v300gQSYb2O71upLPtyCO5lHVFhGpA9Kc9CUd9s12tjsrM5B6ZAPHBRkRmQPMARg+PLzGk5uTU7ajjt+9sYHX1+xmUP84fnLZGK47e0TYPtslVK4+I4erzwi/hRj7gjFDB/DC8kqqDzaQkRweIyEDCTK+7i1ogHn8pfv6StmxzO7UA1WdC8wFKC4u7qxMEwHW7DjAg2+uZ1HZbpITYrhjymhmfyHP5rqYiFPkdP6v3XkwooJMJTDM63UOsMNPnkoRiQFSgNpO9u2szO7Uw/Qha3ce4ME3NvBa2S6SE2L43pQCbpycR0pibKirZkxQtAeZNTsO8MXR6SGuTWACCTLLgAIRyQOq8HTkf61DnhLgBmAxcDXwlqqqiJQAz4nI/Xg6/guApXhaJZ2V2VEJcJvTf3MWUGf9MX3Tul2e4PLq6l0kx8dw+8UFzD7PgouJfCn9YslOTWRtGI0w6zTIOH0stwGLgGjgSVUtE5F7gFJVLQGeAJ5xOvZr8QQNnHwL8AwSaAFuVdVW8AxV7limk3478ENgCLBKRBaq6s3AQuBSoAKoB27sqYtgwkP5roM8+OZ6Fn62i6T4GG6/KJ/Z540kpZ8FF9N3jBmaHFZBRjyDtSJTcXGxlpaWhroa5iSt23WAh96qYOFnO+kfF8ONk3OZfV4eqf3iQl01Y3rdfa+t40/vbWLNPdOIiwnOiEkRWa6qxT1RlvWMGtdasW0fj7y9kTfW7qZ/XDS3XpDPzV+w4GL6tlMyk2lpU7bUHA6L5ZAsyBhXUVUWb6rhkbcr+LCihtR+sdwxZTTfPDfXbosZAxRkJgGwfvdBCzLGBEpVeWtdNY+8XcEn2/aTnhzPjy8dw9fOGk5/G4pszFGj0pOIEli/+1CoqxIQ++s1IdXapry6eiePvL2RtTsPkJ2ayH99+VRmnpFjkyiN8SEhNpoRaf3ZsDs8lpexIGNCoqmljX9+WsUf3tnIpr2HGZXen9/OPI0rJ2QRa8u/GHNCBRlJlFuQMebzDjY08/zSbTz5wRZ2HWhgbNYAHv36RKaOHUK0LVxpTEBOGZLMm+uqaWxpJT7G3S1+CzKmV+yqa+DPH27muY+3cbCxhXNHpfHLr47ji6PTfS2Gaow5gYLMZFrblE17Dh99zoxbWZAxQVW+6yBz39tEycoqWtuUy8ZnMecLIxmXkxLqqhkTtkZ7jTCzIGP6nPZhyHPf28Q75XtIjI3m62eNYPZ5eQwb1C/U1TMm7OUN7k90lLAhDEaYWZAxPaaltY1XV+9i7nub+KyqjsFJcfznl0Zz3dkjGNjfJlAa01PiY6LJTesXFp3/FmTMSas70syCZdt56qMtVO0/wsjB/fnFV8Zx1cRsG4ZsTJCMzgyPNcwsyJhu27TnEE99tIUXlldS39TKWXmDuPuKIqaMybSRYsYE2ejMZF4r20VDc6urv8xZkDFdoqp8ULGXJz/YzNvle4iLjuKK07K4cXIup2ZbZ74xvWV0ZjKqsHHPIcZmufdvz4KMCciRplZe+rSKP3+4mfW7DzE4KY7vTSng62eNID05PtTVM6bPaV/DbMNuCzImjO2sO8Izi7fy3NJt7K9vZmzWAH478zQuP22o6yeBGRPJctOcEWbV7u78tyBjPkdVWbKplr8u2cqisl20qXJJ0RBunJzLpLxBNnnSGBeIi4kiN62f64cxW5AxRx1oaObFT6p4ZslWKqoPkdovlpvOy+MbZ4+w+S3GuNDozGTKd1lLxrjcul0H+Mvirby0oor6plZOy0nhNzNP4/LxQ109asWYvq4gI4lFLh9hFlCQEZFpwINANPC4qv6yw/vxwF+AM4Aa4BpV3eK8dxcwG2gFblfVRScqU0TygHnAIOAT4Buq2iQi3wR+DVQ5h31YVR/v3mmbppY2Xl29k78u2cqyLfuIj4niytOyuO7sEZw2LDXU1TPGBCA/M5k2hc173buGWadBRkSigUeALwGVwDIRKVHVNV7ZZgP7VDVfRGYB9wHXiEgRMAsYC2QBb4jIaGcff2XeBzygqvNE5DGn7D84+8xX1dtO8pz7tKr9R3j+423MW7aNvYeaGJHWjx9fOoaZxTn2WGNjwkxBhjPCrPpQ+AYZYBJQoaqbAERkHjAD8A4yM4CfOdsvAA+Lp3d4BjBPVRuBzSJS4ZSHrzJFZC1wEfA1J8/TTrntQcZ0Q3NrG2+tq2be0m28u34PClxcmMF1Z4/g/IJ0omzipDFhaWR6f6IEKly8vEwgQSYb2O71uhI4y18eVW0RkTogzUlf0mHfbGfbV5lpwH5VbfGRH+CrInI+sB64Q1W9yzAdbK+tZ96ybfyttJLqg41kJMdzywWjmHXmcOvINyYCeNYw6+/qRzEHEmR8fc3VAPP4S/f16MMT5Qd4GXheVRtF5H/haeVc9LnKiswB5gAMHz7cR3GRramljdfX7Ob5pdv4oGIvUQIXnJLBrDOHcVFhBjH21EljIkp+RpKr58oEEmQqgWFer3OAHX7yVIpIDJAC1Hayr6/0vUCqiMQ4rZmj+VW1xiv/n/D03XyOqs4F5gIUFxd3DIYRa+OeQ8xftp2/L6+k5nATWSkJ3DFlNDOLc8hKTQx19YwxQVKQmcSb66ppamkjLsZ9XyIDCTLLgAJn1FcVno78r3XIUwLcACwGrgbeUlUVkRLgORG5H0/HfwGwFE+L5XNlOvu87ZQxzynznwAiMlRVdzrHuxJY281zjhj1TS28tnoX85ZtZ+nmWqKjhCljMpg1aTjnF6TbIpXG9AGjnadkbqk5zOjM5FBX53M6DTJOH8ttwCI8w42fVNUyEbkHKFXVEuAJ4BmnY78WT9DAybcAzyCBFuBWVW0F8FWmc8gfAfNE5L+BFU7ZALeLyJVOObXAN0/67MNQa5vyYcVeXlxRxaKyXdQ3tTJ8UD9+MPUUZp6RQ8aAhFBX0RjTi/Izjj0l041BRlQj945ScXGxlpaWhroaJ01VWbPzAC9+UsU/V+5gz8FGkhNiuGzcUL5yejZn5g6yEWLG9FENza2Mufs1br+ogDu+NLrzHQIgIstVtbgnyrIZ/y62s+4IL63YwYsrKlm/+xCx0cIFp2TwldOzuagww7UzfI0xvSchNprhg/pRUe3OEWYWZFzmYEMzr67exYufVLFkcw2qMHF4Kv81YyyXj8+yxxgbYz6nICPZtSPMLMi4QHNrG+9v2MM/Pqni9TW7aWxpY0RaP757cQFfnpBN7uD+oa6iMcbFCjKTeHd9Nc2tbcS6bJqCBZkQUVVWVdbx4ooqXl65g5rDTaT2i+U/iofx5dOzmTg81ZbUN8YEpCAjieZWZWvNYfIz3NX5b0Gml22vreelFVW8+GkVm/YcJi4miiljMvjK6Tl8cXS6K8e5G2PcrcAJLBt2H7Ig0xfV1Tfzr8928uKKSpZt2QfApLxBzPnCSKaPG0pKYmyIa2iMCWf5GUmIeBbKnB7qynRgQSZImlraeLu8mpdWVPHm2mqaWtsYld6fH0w9hStPy7K1w4wxPSYxLpqcgYlscOEIMwsyPUhV+WTbPl5cUcUrq3ayv76ZwUlxfP3s4Vx1eg6nZg+wfhZjTFAUZCSzwYWrMVuQ6QGV++r5+/Iq/rGikq019STERnFJ0RC+MjGbL+QPtkUpjTFBV5CRxAcb9tLS2uaqzxwLMt3U0NzKq6t38rfSSj7a6Fm789xRafzviwqYOjaT5ATrZzHG9J6CzGSaWtvYVlvPyPSkUFfnKAsyXVRzqJG/LtnGM0u2sPdQE8MGJXLHlNF89YxscgZaP4sxJjS8n5JpQSYMNTS38vj7m/jDOxs53NTKRYUZ3DQ5j3NHpdm6YcaYkBvVHmR2H2Tq2CEhrs0xFmQCsHbnAW5/fgUbqg9xSVEmP5x2iuvGohtj+rak+BiyU903wsyCTCeWbKph9lPL6Bcfw9M3TeKLo9NDXSVjjPGpIDOJDS57FLMFmRPYsvcwNz9dytDURJ69+Swy7VktxhgXK8hIYvHGGlrb1DUPLXTPODeXUVV+8MJKYqKFp2+aZAHGGON6BRnJNLa0sb22PtRVOcqCjB/vbdjLsi37+MHUU8hOTQx1dYwxplP5mcdGmLmFBRk//la6nYHOqsjGGBMOjg1jds/MfwsyPqgq767fwyVFQ1z3bAZjjPEnOSGWoSkJVLio8z+gT1ARmSYi5SJSISJ3+ng/XkTmO+9/LCK5Xu/d5aSXi8jUzsoUkTynjA1OmXGdHaOnbaut52BDC6cPTw3WIYwxJigKMpMp23Eg1NU4qtMgIyLRwCPAdKAIuFZEijpkmw3sU9V84AHgPmffImAWMBaYBjwqItGdlHkf8ICqFgD7nLL9HiMYqvYfAWB4ms3gN8aEl3NHpVG++yA7646EuipAYC2ZSUCFqm5S1SZgHjCjQ54ZwNPO9gvAxeJZbngGME9VG1V1M1DhlOezTGefi5wycMr8cifH6HEHjrQA2HNejDFh56LCDAAWLKsMcU08Apknkw1s93pdCZzlL4+qtohIHZDmpC/psG+2s+2rzDRgv6q2+Mjv7xh7vSsiInOAOc7LQyJS0zFPoE4NWlspZAbTzWsRgexaeNh1OCairsX37oPvdW/XwcCInqpHIEHGV2tBA8zjL91XC+pE+QOtB6o6F5h7tGIipapa7GPfPseuxTF2LTzsOhxj18LDuQ65PVVeILfLKgHvcbw5wA5/eUQkBkgBak+wr7/0vUCqU0bHY/k7hjHGGJcKJMgsAwqcUV9xeDrySzrkKQFucLavBt5SVXXSZzkjw/KAAmCpvzKdfd52ysAp85+dHMMYY4xLdXq7zOn/uA1YBEQDT6pqmYjcA5SqagnwBPCMiFTgaV3McvYtE5EFwBqgBbhVVVsBfJXpHPJHwDwR+W9ghVM2/o4RgLmdZ+kz7FocY9fCw67DMXYtPHr0Oog1BowxxgSLTWc3xhgTNBZkjDHGBE1EB5nOlsMJdyLypIhUi8hqr7RBIvK6syzP6yIy0EkXEfm9cy1WichEr31ucPJvEJEbfB3L7URkmIi8LSJrRaRMRL7rpPep6yEiCSKyVERWOtfh5056l5dr8rckVLhxVhlZISKvOK/75LUQkS0i8pmIfCoipU5a8P8+VDUif/AMKNgIjATigJVAUajr1cPneD4wEVjtlfYr4E5n+07gPmf7UuBVPPONzgY+dtIHAZucfwc62wNDfW7duBZDgYnOdjKwHs+SRX3qejjnk+RsxwIfO+e3AJjlpD8G3OJsfwd4zNmeBcx3toucv5l4IM/5W4oO9fl185p8H3gOeMV53SevBbAFGNwhLeh/H5HckglkOZywpqrv8fm5Qt7L73Rclucv6rEEz3ykocBU4HVVrVXVfcDreNaZCyuqulNVP3G2DwJr8awS0aeuh3M+7Uvwxjo/SteXa/K3JFRYEZEc4DLgced1d5auiohr4UfQ/z4iOcj4Wg4n20/eSJKpqjvB88ELZDjp/q5HxF0n5zbH6Xi+xfe56+HcHvoUqMbzIbCRAJdrAryXhArr6+D4HfBDoM15HfDSVUTetVDg3yKyXDzLb0Ev/H0EsqxMuApoGZo+pKtL/4QlEUkC/g58T1UPiP81VCP2eqhnLtoEEUkFXgTG+Mrm/Bux10FELgeqVXW5iFzQnuwja8RfC8dkVd0hIhnA6yKy7gR5e+xaRHJLJpDlcCLRbqdZi/NvtZPe1SV+wo6IxOIJMM+q6j+c5D57PVR1P/AOnnvqXV2uKRKuw2TgShHZgud2+UV4WjZ98Vqgqjucf6vxfPmYRC/8fURykAlkOZxI5L38Tsdlea53Ro2cDdQ5zeNFwCUiMtAZWXKJkxZWnHvnTwBrVfV+r7f61PUQkXSnBYOIJAJT8PRPdXW5Jn9LQoUNVb1LVXPUs9jjLDzn9nX64LUQkf4ikty+jef/9Wp64+8j1CMegvmDZ4TEejz3pH8c6voE4fyeB3YCzXi+YczGcw/5TWCD8+8gJ6/geVDcRuAzoNirnJvwdGZWADeG+ry6eS3Ow9NsXwV86vxc2teuBzAez3JMq5wPkbud9JF4PhgrgL8B8U56gvO6wnl/pFdZP3auTzkwPdTndpLX5QKOjS7rc9fCOeeVzk9Z++dhb/x92LIyxhhjgiaSb5cZY4wJMQsyxhhjgsaCjDHGmKCxIGOMMSZoLMgYY4wJGgsyxhhjgsaCjDHGmKD5/91+NlTCTnEGAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "plt.clf()\n", "# plt.plot(x_part, calcs, '.')\n", diff --git a/raremodel-nb.py b/raremodel-nb.py index 2078ec1..348f99b 100644 --- a/raremodel-nb.py +++ b/raremodel-nb.py @@ -3,7 +3,7 @@ # # Import -# In[1]: +# In[3]: import numpy as np @@ -23,12 +23,14 @@ import tensorflow as tf import zfit from zfit import ztf +from IPython.display import clear_output +import os # # Build model and graphs # ## Create graphs -# In[2]: +# In[4]: def formfactor( q2, subscript): #returns real value @@ -113,16 +115,13 @@ #Rotate by the phase - r = tf.abs(com) + r = ztf.to_complex(scale*tf.abs(com)) _phase = tf.angle(com) _phase += phase - x = tf.cos(phase)*r - y = tf.sin(phase)*r - - com = tf.complex(scale* x, scale * y) + com = r * tf.exp(tf.complex(ztf.constant(0.0), _phase)) return com @@ -229,7 +228,7 @@ return c9 -# In[3]: +# In[5]: def G(y): @@ -246,23 +245,44 @@ def h_S(m, q): - return tf.constant(2) - G(tf.constant(1) - 4*tf.pow(m, 2) / tf.pow(q, 2)) + return ztf.to_complex(2) - G(ztf.to_complex(1) - 4*tf.pow(m, 2) / ztf.to_complex(tf.pow(q, 2))) def h_P(m,q): - return 2/3 + (1 - (tf.constant(1) - 4*tf.pow(m, 2) / tf.pow(q, 2))) * h_S(m,q) + return ztf.to_complex(2/3) + (ztf.to_complex(1) - 4*tf.pow(m, 2) / ztf.to_complex(tf.pow(q, 2))) * h_S(m,q) + +def two_p_ccbar(mD, m_D_bar, m_D_star, q): + + + #Load constants + nu_D_bar = ztf.to_complex(pdg["nu_D_bar"]) + nu_D = ztf.to_complex(pdg["nu_D"]) + nu_D_star = ztf.to_complex(pdg["nu_D_star"]) + + phase_D_bar = ztf.to_complex(pdg["phase_D_bar"]) + phase_D = ztf.to_complex(pdg["phase_D"]) + phase_D_star = ztf.to_complex(pdg["phase_D_star"]) + + #Calculation + left_part = nu_D_bar * tf.exp(tf.complex(ztf.constant(0.0), phase_D_bar)) * h_S(m_D_bar, q) + + right_part_D = nu_D * tf.exp(tf.complex(ztf.constant(0.0), phase_D)) * h_P(m_D, q) + + right_part_D_star = nu_D_star * tf.exp(tf.complex(ztf.constant(0.0), phase_D_star)) * h_P(m_D_star, q) + + return left_part + right_part_D + right_part_D_star # ## Build pdf -# In[4]: +# In[6]: class total_pdf(zfit.pdf.ZPDF): _N_OBS = 1 # dimension, can be omitted _PARAMS = ['jpsi_mass', 'jpsi_scale', 'jpsi_phase', 'jpsi_width', - 'psi2s_mass', 'psi2s_scale', 'psi2s_phase', 'psi2s_width', - 'cusp_mass', 'sigma_L', 'sigma_R', 'cusp_scale' + 'psi2s_mass', 'psi2s_scale', 'psi2s_phase', 'psi2s_width'#, + #'cusp_mass', 'sigma_L', 'sigma_R', 'cusp_scale' ] # the name of the parameters def _unnormalized_pdf(self, x): @@ -278,7 +298,7 @@ def cusp(q): return bifur_gauss(q, mean = self.params['cusp_mass'], sigma_L = self.params['sigma_L'], sigma_R = self.params['sigma_R'], scale = self.params['cusp_scale']) - funcs = jpsi_res(x) + psi2s_res(x) + cusp(x) + funcs = jpsi_res(x) + psi2s_res(x) #+ cusp(x) vec_f = vec(x, funcs) @@ -291,7 +311,7 @@ # ## Load data -# In[5]: +# In[7]: x_min = 2*pdg['muon_M'] @@ -299,66 +319,65 @@ obs = zfit.Space('q', limits = (x_min, x_max)) -with open(r"./data/slim_points/slim_points_toy_0_range({0}-{1}).pkl".format(int(x_min), int(x_max)), "rb") as input_file: - part_set = pkl.load(input_file) +# with open(r"./data/slim_points/slim_points_toy_0_range({0}-{1}).pkl".format(int(x_min), int(x_max)), "rb") as input_file: +# part_set = pkl.load(input_file) -x_part = part_set['x_part'] +# x_part = part_set['x_part'] -x_part = x_part.astype('float64') +# x_part = x_part.astype('float64') -data = zfit.data.Data.from_numpy(array=x_part, obs=obs) +# data = zfit.data.Data.from_numpy(array=x_part, obs=obs) # ## Setup parameters -# In[6]: +# In[8]: #jpsi jpsi_mass, jpsi_width, jpsi_phase, jpsi_scale = pdg["jpsi"] -jpsi_scale *= pdg["factor_jpsi"] +# jpsi_scale *= pdg["factor_jpsi"] jpsi_m = zfit.Parameter("jpsi_m", ztf.constant(jpsi_mass), floating = False) jpsi_w = zfit.Parameter("jpsi_w", ztf.constant(jpsi_width), floating = False) -jpsi_p = zfit.Parameter("jpsi_p", ztf.constant(jpsi_phase), floating = False) -jpsi_s = zfit.Parameter("jpsi_s", ztf.constant(jpsi_scale), floating = False) +jpsi_p = zfit.Parameter("jpsi_p", ztf.constant(jpsi_phase)) +jpsi_s = zfit.Parameter("jpsi_s", ztf.constant(jpsi_scale)) #psi2s psi2s_mass, psi2s_width, psi2s_phase, psi2s_scale = pdg["psi2s"] -psi2s_scale *= pdg["factor_psi2s"] psi2s_m = zfit.Parameter("psi2s_m", ztf.constant(psi2s_mass), floating = False) psi2s_w = zfit.Parameter("psi2s_w", ztf.constant(psi2s_width), floating = False) -psi2s_p = zfit.Parameter("psi2s_p", ztf.constant(psi2s_phase), floating = False) -psi2s_s = zfit.Parameter("psi2s_s", ztf.constant(psi2s_scale), floating = False) +psi2s_p = zfit.Parameter("psi2s_p", ztf.constant(psi2s_phase)) +psi2s_s = zfit.Parameter("psi2s_s", ztf.constant(psi2s_scale)) #cusp -cusp_mass, sigma_R, sigma_L, cusp_scale = 3550, 3e-7, 200, 0 +# cusp_mass, sigma_R, sigma_L, cusp_scale = 3550, 3e-7, 200, 0 -cusp_m = zfit.Parameter("cusp_m", ztf.constant(cusp_mass)) -sig_L = zfit.Parameter("sig_L", ztf.constant(sigma_L)) -sig_R = zfit.Parameter("sig_R", ztf.constant(sigma_R)) -cusp_s = zfit.Parameter("cusp_s", ztf.constant(cusp_scale)) +# cusp_m = zfit.Parameter("cusp_m", ztf.constant(cusp_mass), floating = False) +# sig_L = zfit.Parameter("sig_L", ztf.constant(sigma_L), floating = False) +# sig_R = zfit.Parameter("sig_R", ztf.constant(sigma_R), floating = False) +# cusp_s = zfit.Parameter("cusp_s", ztf.constant(cusp_scale), floating = False) # ## Setup pdf -# In[7]: +# In[9]: total_f = total_pdf(obs=obs, jpsi_mass = jpsi_m, jpsi_scale = jpsi_s, jpsi_phase = jpsi_p, jpsi_width = jpsi_w, - psi2s_mass = psi2s_m, psi2s_scale = psi2s_s, psi2s_phase = psi2s_p, psi2s_width = psi2s_w, - cusp_mass = cusp_m, sigma_L = sig_L, sigma_R = sig_R, cusp_scale = cusp_s) + psi2s_mass = psi2s_m, psi2s_scale = psi2s_s, psi2s_phase = psi2s_p, psi2s_width = psi2s_w)#, + #cusp_mass = cusp_m, sigma_L = sig_L, sigma_R = sig_R, cusp_scale = cusp_s) # print(total_pdf.obs) # ## Test if graphs actually work and compute values -# In[8]: +# In[10]: def total_test_tf(xq): @@ -395,7 +414,7 @@ res_y = zfit.run(jpsi_res(test_q)) -# In[9]: +# In[11]: plt.clf() @@ -407,30 +426,36 @@ # plt.yscale('log') # plt.xlim(3080, 3110) plt.savefig('test.png') -print(jpsi_width) +# print(jpsi_width) # ## Adjust scaling of different parts -# In[10]: +# In[12]: -# total_f.update_integration_options(draws_per_dim=10000000, mc_sampler=None) -# inte = total_f.integrate(limits = (3000, 3200), norm_range=False) -# print(zfit.run(inte)) -# print(pdg["jpsi_BR"]/pdg["NR_BR"], zfit.run(inte)/pdg["NR_auc"]) +# total_f.update_integration_options(draws_per_dim=2000000, mc_sampler=None) +# inte = total_f.integrate(limits = (3090, 3102), norm_range=False) +# inte_fl = zfit.run(inte) +# print(inte_fl) +# print(pdg["jpsi_BR"]/pdg["NR_BR"], inte_fl/pdg["NR_auc"]) -# In[11]: +# In[13]: # factor_jpsi = pdg["NR_auc"]*pdg["jpsi_BR"]/(pdg["NR_BR"]*pdg["jpsi_auc"]) +# factor_jpsi = pdg["NR_auc"]*pdg["jpsi_BR"]/(pdg["NR_BR"]*inte_fl) +# print(np.sqrt(factor_jpsi)*jpsi_scale) # print(np.sqrt(factor_jpsi)) +# # print(psi2s_scale) # factor_psi2s = pdg["NR_auc"]*pdg["psi2s_BR"]/(pdg["NR_BR"]*pdg["psi2s_auc"]) +# factor_psi2s = pdg["NR_auc"]*pdg["psi2s_BR"]/(pdg["NR_BR"]*inte_fl) +# print(np.sqrt(factor_psi2s)*psi2s_scale) # print(np.sqrt(factor_psi2s)) -# In[12]: +# In[14]: # def _t_f(xq): @@ -459,13 +484,13 @@ # return probs -# In[13]: +# In[15]: -print(36000*(1+ pdg["jpsi_BR"]/pdg["NR_BR"] + pdg["psi2s_BR"]/pdg["NR_BR"])) +# print(36000*(1+ pdg["jpsi_BR"]/pdg["NR_BR"] + pdg["psi2s_BR"]/pdg["NR_BR"])) -# In[14]: +# In[ ]: # start = time.time() @@ -481,21 +506,145 @@ # In[ ]: -nevents = 100 +# nevents = int(pdg["number_of_decays"]) +# event_stack = 5000 -samp = total_f.sample(n=nevents) +# calls = int(nevents/event_stack + 1) -sam = samp.unstack_x() +# total_samp = [] -sam = zfit.run(sam) -# print(sam) +# start = time.time() + +# samp = total_f.sample(n=event_stack) +# s = samp.unstack_x() + +# for call in range(calls): + +# sam = zfit.run(s) +# clear_output(wait=True) + +# # if call != 0: +# # print(np.sum(_last_sam-sam)) + +# # _last_sam = sam + +# c = call + 1 +# print("{0}/{1}".format(c, calls)) +# print("Time taken: {}".format(display_time(int(time.time() - start)))) +# print("Projected time left: {}".format(display_time(int((time.time() - start)/c*(calls-c))))) + +# with open("data/zfit_toys/toy_1/{}.pkl".format(call), "wb") as f: +# pkl.dump(sam, f, pkl.HIGHEST_PROTOCOL) # In[ ]: -with open("data/zfit_toys/test_toy.pkl", "wb") as f: - pkl.dump(sam, f, pkl.HIGHEST_PROTOCOL) +# print("Time to generate full toy: {} s".format(int(time.time()-start))) + +# total_samp = [] + +# for call in range(calls): +# with open(r"data/zfit_toys/toy_1/{}.pkl".format(call), "rb") as input_file: +# sam = pkl.load(input_file) +# total_samp = np.append(total_samp, sam) + +# total_samp = total_samp.astype('float64') + +# data2 = zfit.data.Data.from_numpy(array=total_samp[:int(nevents)], obs=obs) + +# print(total_samp[:nevents].shape) + + +# In[ ]: + + +# bins = int((x_max-x_min)/7) + +# # calcs = zfit.run(total_test_tf(samp)) + +# plt.hist(total_samp[:event_stack], bins = bins, range = (x_min,x_max)) + +# # plt.plot(sam, calcs, '.') +# # plt.plot(test_q, calcs_test) +# plt.ylim(0, 20) +# # plt.xlim(3000, 3750) + +# plt.savefig('test2.png') + + +# ## Toys + +# In[19]: + + +nr_of_toys = 1 +nevents = int(pdg["number_of_decays"]) +event_stack = 5000 + +calls = int(nevents/event_stack + 1) + +total_samp = [] + +start = time.time() + +sampler = total_f.create_sampler(n=event_stack) + +for toy in range(nr_of_toys): + + dirName = 'data/zfit_toys/toy_{0}'.format(toy) + + if not os.path.exists(dirName): + os.mkdir(dirName) + print("Directory " , dirName , " Created ") + + for call in range(calls): + + sampler.resample(n=event_stack) + s = sampler.unstack_x() + sam = zfit.run(s) +# clear_output(wait=True) + + c = call + 1 + print("{0}/{1}".format(c, calls)) + print("Time taken: {}".format(display_time(int(time.time() - start)))) + print("Projected time left: {}".format(display_time(int((time.time() - start)/c*(calls-c))))) + + with open("data/zfit_toys/toy_{0}/{1}.pkl".format(toy, call), "wb") as f: + pkl.dump(sam, f, pkl.HIGHEST_PROTOCOL) + + +# In[ ]: + + +# with open(r"data/zfit_toys/toy_0/0.pkl", "rb") as input_file: +# sam = pkl.load(input_file) +# print(sam[:10]) + +# with open(r"data/zfit_toys/toy_0/1.pkl", "rb") as input_file: +# sam2 = pkl.load(input_file) +# print(sam2[:10]) + +# print(np.sum(sam-sam2)) + + +# In[ ]: + + +print("Time to generate full toy: {} s".format(int(time.time()-start))) + +total_samp = [] + +for call in range(calls): + with open(r"data/zfit_toys/toy_0/{}.pkl".format(call), "rb") as input_file: + sam = pkl.load(input_file) + total_samp = np.append(total_samp, sam) + +total_samp = total_samp.astype('float64') + +data2 = zfit.data.Data.from_numpy(array=total_samp[:int(nevents)], obs=obs) + +print(total_samp[:nevents].shape) # In[ ]: @@ -503,20 +652,18 @@ bins = int((x_max-x_min)/7) -calcs = zfit.run(total_test_tf(samp)) +# calcs = zfit.run(total_test_tf(samp)) -plt.hist(sam, bins = bins, range = (x_min,x_max)) +plt.hist(total_samp[:event_stack], bins = bins, range = (x_min,x_max)) # plt.plot(sam, calcs, '.') # plt.plot(test_q, calcs_test) -# plt.ylim(0, 0.0000007) +plt.ylim(0, 20) # plt.xlim(3000, 3750) -plt.savefig('test.png') +plt.savefig('test2.png') -# ## Toys - # In[ ]: @@ -542,49 +689,66 @@ # In[ ]: -# nll = zfit.loss.UnbinnedNLL(model=total_f, data=data, fit_range = (x_min, x_max)) +nll = zfit.loss.UnbinnedNLL(model=total_f, data=data2, fit_range = (x_min, x_max)) -# minimizer = zfit.minimize.MinuitMinimizer() +minimizer = zfit.minimize.MinuitMinimizer() # minimizer._use_tfgrad = False -# result = minimizer.minimize(nll) +result = minimizer.minimize(nll) -# param_errors = result.error() +param_errors = result.error() -# for var, errors in param_errors.items(): -# print('{}: ^{{+{}}}_{{{}}}'.format(var.name, errors['upper'], errors['lower'])) +for var, errors in param_errors.items(): + print('{}: ^{{+{}}}_{{{}}}'.format(var.name, errors['upper'], errors['lower'])) -# print("Function minimum:", result.fmin) +print("Function minimum:", result.fmin) # In[ ]: -# samp = total_f.sample(n=nevents) +(-3.14+2*np.pi)/np.pi # In[ ]: -# sam = samp.unstack_x() -# sam = zfit.run(sam) -# bins = int((x_max-x_min)/7) -# calcs = zfit.run(total_test_tf(samp)) +# In[ ]: -# plt.clf() -# plt.hist(sam, bins = bins, range = (x_min,x_max)) +display_time(int(395*pdg["number_of_decays"]/100000)) -# # plt.plot(sam, calcs, '.') -# # plt.plot(test_q, calcs_test) -# # plt.ylim(0, 0.0000007) -# # plt.xlim(3000, 3750) -# plt.ylim(0,1000) +# In[ ]: -# plt.savefig('test.png') + +print(display_time(22376)) + + +# In[ ]: + + +probs = total_f.pdf(test_q) + +calcs_test = zfit.run(probs) +res_y = zfit.run(jpsi_res(test_q)) + + +# In[ ]: + + +plt.clf() +# plt.plot(x_part, calcs, '.') +plt.plot(test_q, calcs_test, label = 'pdf') +# plt.plot(test_q, res_y, label = 'res') +plt.legend() +plt.ylim(0.0, 4e-4) +# plt.yscale('log') +# plt.xlim(3080, 3110) +plt.savefig('test3.png') +print(jpsi_width) # In[ ]: diff --git a/test2.png b/test2.png index e9c5be6..3394ae2 100644 --- a/test2.png +++ b/test2.png Binary files differ diff --git a/test3.png b/test3.png index a86e763..3e7c598 100644 --- a/test3.png +++ b/test3.png Binary files differ