diff --git a/.ipynb_checkpoints/raremodel-nb-checkpoint.ipynb b/.ipynb_checkpoints/raremodel-nb-checkpoint.ipynb index e2d3820..3980d05 100644 --- a/.ipynb_checkpoints/raremodel-nb-checkpoint.ipynb +++ b/.ipynb_checkpoints/raremodel-nb-checkpoint.ipynb @@ -16,7 +16,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\util\\execution.py:53: UserWarning: Not running on Linux. Determining available cpus for thread can failand be overestimated. Workaround (only if too many cpus are used):`zfit.run.set_n_cpu(your_cpu_number)`\n", + "C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\util\\execution.py:53: UserWarning: Not running on Linux. Determining available cpus for thread can failand be overestimated. Workaround (only if too many cpus are used):`zfit.run.set_n_cpu(your_cpu_number)`\n", " warnings.warn(\"Not running on Linux. Determining available cpus for thread can fail\"\n" ] }, @@ -269,7 +269,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -287,12 +287,32 @@ "\n", "def h_S(m, q):\n", " \n", - " return tf.constant(2) - G(tf.constant(1) - 4*tf.pow(m, 2) / tf.pow(q, 2))\n", + " return ztf.to_complex(2) - G(ztf.to_complex(1) - 4*tf.pow(m, 2) / ztf.to_complex(tf.pow(q, 2)))\n", "\n", "def h_P(m,q):\n", " \n", - " return 2/3 + (1 - (tf.constant(1) - 4*tf.pow(m, 2) / tf.pow(q, 2))) * h_S(m,q)\n", - "\n" + " return ztf.to_complex(2/3) + (ztf.to_complex(1) - 4*tf.pow(m, 2) / ztf.to_complex(tf.pow(q, 2))) * h_S(m,q)\n", + "\n", + "def two_p_ccbar(mD, m_D_bar, m_D_star, q):\n", + " \n", + " \n", + " #Load constants\n", + " nu_D_bar = ztf.to_complex(pdg[\"nu_D_bar\"])\n", + " nu_D = ztf.to_complex(pdg[\"nu_D\"])\n", + " nu_D_star = ztf.to_complex(pdg[\"nu_D_star\"])\n", + " \n", + " phase_D_bar = ztf.to_complex(pdg[\"phase_D_bar\"])\n", + " phase_D = ztf.to_complex(pdg[\"phase_D\"])\n", + " phase_D_star = ztf.to_complex(pdg[\"phase_D_star\"])\n", + " \n", + " #Calculation\n", + " left_part = nu_D_bar * tf.exp(tf.complex(ztf.constant(0.0), phase_D_bar)) * h_S(m_D_bar, q) \n", + " \n", + " right_part_D = nu_D * tf.exp(tf.complex(ztf.constant(0.0), phase_D)) * h_P(m_D, q) \n", + " \n", + " right_part_D_star = nu_D_star * tf.exp(tf.complex(ztf.constant(0.0), phase_D_star)) * h_P(m_D_star, q) \n", + "\n", + " return left_part + right_part_D + right_part_D_star" ] }, { @@ -304,7 +324,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 5, "metadata": {}, "outputs": [], "source": [ @@ -348,7 +368,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ @@ -376,14 +396,14 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "WARNING:tensorflow:From c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\ops\\resource_variable_ops.py:435: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.\n", + "WARNING:tensorflow:From C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\ops\\resource_variable_ops.py:435: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.\n", "Instructions for updating:\n", "Colocations handled automatically by placer.\n" ] @@ -429,7 +449,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ @@ -449,7 +469,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 9, "metadata": {}, "outputs": [], "source": [ @@ -489,7 +509,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 10, "metadata": {}, "outputs": [ { @@ -534,7 +554,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 11, "metadata": {}, "outputs": [], "source": [ @@ -546,7 +566,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 12, "metadata": {}, "outputs": [], "source": [ @@ -558,7 +578,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 13, "metadata": {}, "outputs": [], "source": [ @@ -590,7 +610,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 14, "metadata": {}, "outputs": [ { @@ -607,7 +627,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 15, "metadata": {}, "outputs": [], "source": [ @@ -628,7 +648,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 16, "metadata": {}, "outputs": [], "source": [ @@ -659,7 +679,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 17, "metadata": {}, "outputs": [], "source": [ @@ -668,7 +688,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 18, "metadata": {}, "outputs": [ { @@ -696,12 +716,12 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 19, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAD8CAYAAACcjGjIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAGRpJREFUeJzt3X20ZXV93/H3JxBRTJUBwYUDFNRRfGgkeAOYtWJtiDyZBk3jCroqE0IcYyDGtKvN0HYFqyELWyLV1JA1hlGwBkTy4KwySkdSE1crD4MiDhrKFRAujDjJ4NgUg4Lf/nF+A4e7770znH3nnnNn3q+1zrr7fPdv7/uds86c7/k97H1TVUiSNOxHxp2AJGnyWBwkSR0WB0lSh8VBktRhcZAkdVgcJEkduywOSdYn+XaSLUOxg5NsSnJX+7mixZPkQ0mmk9ye5PihY1a39nclWT0Uf3WSr7ZjPpQki/2PlCQ9PbvTc/gYcNqs2FrghqpaBdzQngOcDqxqjzXAZTAoJsCFwInACcCFOwtKa7Nm6LjZv0uStMR2WRyq6q+B7bPCZwJXtO0rgDcOxa+sgRuBg5IcDpwKbKqq7VX1MLAJOK3te05VfbEGV+NdOXQuSdKY7D/icc+vqq0AVbU1yWEtvhK4f6jdTIstFJ+ZIz6nJGsY9DJ49rOf/epjjz12xPSXxlcf2PHE9j9Z+dwxZiJpkozrs+HWW2/926o6dHfajloc5jPXfEGNEJ9TVa0D1gFMTU3V5s2bR8lxyRy99rontjdf/IYxZiJpkozrsyHJN3e37airlR5qQ0K0n99u8RngyKF2RwAP7iJ+xBxxSdIYjVocNgA7VxytBj49FD+7rVo6CdjRhp+uB05JsqJNRJ8CXN/2/d8kJ7VVSmcPnUuSNCa7HFZKchXwOuB5SWYYrDq6GLgmybnAfcCbW/ONwBnANPAIcA5AVW1P8j7gltbuvVW1c5L7nQxWRD0L+Ex7SJLGaJfFoareMs+uk+doW8B585xnPbB+jvhm4JW7ykOStHS8QlqS1GFxkCR1WBwkSR0WB0lSh8VBktRhcZAkdVgcJEkdFgdJUofFQZLUYXGQJHVYHCRJHRYHSVKHxUGS1GFxkCR1WBwkSR0WB0lSh8VBktRhcZAkdfQqDkl+M8mWJHckeXeLvSfJA0lua48zhtpfkGQ6yZ1JTh2Kn9Zi00nW9slJktTfLv+G9HySvBJ4O3AC8H3gs0mua7svrapLZrV/OXAW8ArgBcDnkryk7f4w8HpgBrglyYaq+tqouUnScnH02uue2L734jeMMZOnGrk4AC8DbqyqRwCS/BXwpgXanwlcXVWPAvckmWZQWACmq+rudp6rW1uLgyQxngLSZ1hpC/DaJIckORA4Aziy7Ts/ye1J1idZ0WIrgfuHjp9psfnikqRFcPTa655SYHbHyMWhqr4OvB/YBHwW+ArwGHAZ8CLgOGAr8PvtkMx1mgXiHUnWJNmcZPO2bdtGTV2StAu9JqSr6vKqOr6qXgtsB+6qqoeq6vGq+iHwEZ4cOprhyZ4FwBHAgwvE5/p966pqqqqmDj300D6pS5IW0GfOgSSHVdW3kxwF/ALwmiSHV9XW1uRNDIafADYAf5LkAwwmpFcBNzPoOaxKcgzwAINJ67f2yUuS9kWLOTfRqzgAf5rkEOAHwHlV9XCSjyc5jsHQ0L3AOwCq6o4k1zCYaH6stX8cIMn5wPXAfsD6qrqjZ16StKw93TmCxdarOFTVT88Re9sC7S8CLpojvhHY2CcXSdLi8QppSVJH32ElSdIu7KkhooXO2/d32nOQJHXYc5Ckp2lPXbG8O9/2l2qi2uIgST1M6r2R+nJYSZLUYXGQJHU4rCRJi2RvGmKy5yBJ6rA4SJI6LA6SpA7nHCTt02ZfN7Dc5woWiz0HSVKHPQdJmsfetPro6bI4SNIeMO6/x9CXxUHSPmG5f1gvNeccJEkd9hwk7VXsISwOi4OkZWOcE8T7WtHpNayU5DeTbElyR5J3t9jBSTYluav9XNHiSfKhJNNJbk9y/NB5Vrf2dyVZ3e+fJEnqa+SeQ5JXAm8HTgC+D3w2yXUtdkNVXZxkLbAW+G3gdGBVe5wIXAacmORg4EJgCijg1iQbqurh0f9ZkpbafN+sl+Ib/r72rX4p9BlWehlwY1U9ApDkr4A3AWcCr2ttrgA+z6A4nAlcWVUF3JjkoCSHt7abqmp7O88m4DTgqh65SZpAuzMstC9fWzBJ+hSHLcBFSQ4BvgecAWwGnl9VWwGqamuSw1r7lcD9Q8fPtNh88Y4ka4A1AEcddVSP1CVpbvZCBkYuDlX19STvBzYBfw98BXhsgUMy12kWiM/1O9cB6wCmpqbmbCNp3+CH+J7Va7VSVV0OXA6Q5PcYfOt/KMnhrddwOPDt1nwGOHLo8COAB1v8dbPin++Tl6TJ54f7ZOu7Wumw9vMo4BcYzBNsAHauOFoNfLptbwDObquWTgJ2tOGn64FTkqxoK5tOaTFJ0pj0vc7hT9ucww+A86rq4SQXA9ckORe4D3hza7uRwbzENPAIcA5AVW1P8j7gltbuvTsnpyVJ49F3WOmn54j9HXDyHPECzpvnPOuB9X1ykSQtHq+QljQS5wz2bhYHSXtUnyJiARofi4Ok3eaH9b7DW3ZLkjosDpKkDoeVJAHe00hPZc9BktRhcZAkdTisJGlBrlDaN1kcpH2YH/yaj8VBUodFQxYHaYLsiRVDsz/oXYmk3WFxkPYSftvXYnK1kiSpw+IgSepwWElaxhxK0p5icZCWQN+JZm9toaVmcZD2MfY2tDt6FYckvwX8KlDAVxn8Xeg/Av4psKM1++Wqui1JgA8y+DvSj7T4l9p5VgP/obX/3aq6ok9e0t5gvg9xP9y1FEYuDklWAu8CXl5V30tyDXBW2/1vquraWYecDqxqjxOBy4ATkxwMXAhMMSgytybZUFUPj5qbJKmfvquV9geelWR/4EDgwQXanglcWQM3AgclORw4FdhUVdtbQdgEnNYzL0lSDyMXh6p6ALgEuA/YCuyoqv/Rdl+U5PYklyY5oMVWAvcPnWKmxeaLdyRZk2Rzks3btm0bNXVpXkevve6Jh7QvG7k4JFnBoDdwDPAC4NlJ/iVwAXAs8JPAwcBv7zxkjtPUAvFusGpdVU1V1dShhx46auqSpF3oM6z0s8A9VbWtqn4A/BnwU1W1tQ0dPQp8FDihtZ8Bjhw6/ggGw1DzxSVJY9JntdJ9wElJDgS+B5wMbE5yeFVtbauT3ghsae03AOcnuZrBhPSO1u564PdaTwTgFAa9D2lZmO8ahN0ZmnL4SpNq5OJQVTcluRb4EvAY8GVgHfCZJIcyGC66Dfi1dshGBstYpxksZT2nnWd7kvcBt7R2762q7aPmJUnqr9d1DlV1IYNlqMN+Zp62BZw3z771wPo+uUhLqc83fnsLWg688Z4kqcPiIEnqsDhIkjq88Z72akt9N1PnE7S3sOcgSeqwOEiSOhxWWiL+sZblzyEj7UssDton7U6xthhoX2Zx0LI0+4Pb3pi0uCwO2is4bCctLouD9joOB0n9uVpJktRhcZAkdTispH3GfMNNDkNJXfYcJEkd9hw0cVx5JI2fPQdJUoc9B43N0+0hODcgLZ1ePYckv5XkjiRbklyV5JlJjklyU5K7knwyyTNa2wPa8+m2/+ih81zQ4ncmObXfP0mS1NfIxSHJSuBdwFRVvRLYDzgLeD9waVWtAh4Gzm2HnAs8XFUvBi5t7Ujy8nbcK4DTgD9Mst+oeUmS+us7rLQ/8KwkPwAOBLYCPwO8te2/AngPcBlwZtsGuBb4r0nS4ldX1aPAPUmmgROAL/bMTUtoviEi74EkLU8j9xyq6gHgEuA+BkVhB3Ar8J2qeqw1mwFWtu2VwP3t2Mda+0OG43Mc8xRJ1iTZnGTztm3bRk1dkrQLI/cckqxg8K3/GOA7wKeA0+doWjsPmWfffPFusGodsA5gampqzjbas/ouM3VSWVoe+gwr/SxwT1VtA0jyZ8BPAQcl2b/1Do4AHmztZ4AjgZkk+wPPBbYPxXcaPkYTwA90ad/TpzjcB5yU5EDge8DJwGbgfwK/CFwNrAY+3dpvaM+/2Pb/ZVVVkg3AnyT5APACYBVwc4+8tAxZgKTJMnJxqKqbklwLfAl4DPgygyGf64Crk/xui13eDrkc+HibcN7OYIUSVXVHkmuAr7XznFdVj4+al8ZvMT/oLRrSePRarVRVFwIXzgrfzWC10ey2/wC8eZ7zXARc1CeXSeGHmaS9gVdIa04WOWnfZnHQEywIknayOCxD3rVU0p5mcdDI7GlIey+Lwxgs9Td/exqSni6Lw17EIiBpsVgc9lIO+Ujqw78EJ0nqsOewD7N3IWk+Focxc55A0iRyWEmS1GFxkCR1WBwkSR3OOSwT800eO6ksaU+w5yBJ6rDnsI+xpyFpd9hzkCR1WBwkSR0jDysleSnwyaHQC4HfAQ4C3g5sa/F/V1Ub2zEXAOcCjwPvqqrrW/w04IPAfsAfV9XFo+a1nHlBnKRJMXJxqKo7geMAkuwHPAD8OXAOcGlVXTLcPsnLgbOAVwAvAD6X5CVt94eB1wMzwC1JNlTV10bNTZLUz2JNSJ8MfKOqvplkvjZnAldX1aPAPUmmgRPavumquhsgydWt7diLw3yTt36rl7S3W6zicBZw1dDz85OcDWwG/nVVPQysBG4cajPTYgD3z4qfONcvSbIGWANw1FFHPe0kF+vD3hU/kvZ2vSekkzwD+HngUy10GfAiBkNOW4Hf39l0jsNrgXg3WLWuqqaqaurQQw/tlbckaX6L0XM4HfhSVT0EsPMnQJKPAP+9PZ0Bjhw67gjgwbY9X3yfZe9E0jgtRnF4C0NDSkkOr6qt7embgC1tewPwJ0k+wGBCehVwM4Oew6okxzCY1D4LeOsi5DUSP5QlqWdxSHIgg1VG7xgK/6ckxzEYGrp3576quiPJNQwmmh8Dzquqx9t5zgeuZ7CUdX1V3dEnL0lSP72KQ1U9AhwyK/a2BdpfBFw0R3wjsLFPLpKkxeO9lXAoSZJmW7a3z/jqAzs4eu11frBL0h6wV/ccLBySNJpl23OQJO05FgdJUofFQZLUYXGQJHVYHCRJHRYHSVKHxUGS1GFxkCR1WBwkSR17xRXSw1dC+yc8Jak/ew6SpA6LgySpY68YVhrmzfYkqT97DpKkDouDJKlj5OKQ5KVJbht6fDfJu5McnGRTkrvazxWtfZJ8KMl0ktuTHD90rtWt/V1JVi/GP0ySNLqRi0NV3VlVx1XVccCrgUeAPwfWAjdU1SrghvYc4HRgVXusAS4DSHIwcCFwInACcOHOgiJJGo/FGlY6GfhGVX0TOBO4osWvAN7Yts8ErqyBG4GDkhwOnApsqqrtVfUwsAk4bZHykiSNYLGKw1nAVW37+VW1FaD9PKzFVwL3Dx0z02LzxTuSrEmyOcnmxx/ZsUipS5Jm610ckjwD+HngU7tqOkesFoh3g1Xrqmqqqqb2O/C5Ty9RSdJuW4yew+nAl6rqofb8oTZcRPv57RafAY4cOu4I4MEF4pKkMVmM4vAWnhxSAtgA7FxxtBr49FD87LZq6SRgRxt2uh44JcmKNhF9SotJksak1xXSSQ4EXg+8Yyh8MXBNknOB+4A3t/hG4AxgmsHKpnMAqmp7kvcBt7R2762q7X3ykiT106s4VNUjwCGzYn/HYPXS7LYFnDfPedYD6/vkIklaPF4hLUnqsDhIkjosDpKkDouDJKnD4iBJ6rA4SJI6LA6SpA6LgySpw+IgSeqwOEiSOiwOkqQOi4MkqcPiIEnqsDhIkjosDpKkDouDJKnD4iBJ6rA4SJI6ehWHJAcluTbJ3yT5epLXJHlPkgeS3NYeZwy1vyDJdJI7k5w6FD+txaaTrO2TkySpv15/Qxr4IPDZqvrFJM8ADgROBS6tqkuGGyZ5OXAW8ArgBcDnkryk7f4w8HpgBrglyYaq+lrP3CRJIxq5OCR5DvBa4JcBqur7wPeTzHfImcDVVfUocE+SaeCEtm+6qu5u5726tbU4SNKY9BlWeiGwDfhoki8n+eMkz277zk9ye5L1SVa02Erg/qHjZ1psvrgkaUz6FIf9geOBy6rqJ4D/B6wFLgNeBBwHbAV+v7Wfq0tRC8Q7kqxJsjnJ5scf2dEjdUnSQvoUhxlgpqpuas+vBY6vqoeq6vGq+iHwEZ4cOpoBjhw6/gjgwQXiHVW1rqqmqmpqvwOf2yN1SdJCRi4OVfUt4P4kL22hk4GvJTl8qNmbgC1tewNwVpIDkhwDrAJuBm4BViU5pk1qn9XaSpLGpO9qpd8APtE+1O8GzgE+lOQ4BkND9wLvAKiqO5Jcw2Ci+THgvKp6HCDJ+cD1wH7A+qq6o2dekqQeehWHqroNmJoVftsC7S8CLpojvhHY2CcXSdLi8QppSVKHxUGS1GFxkCR1WBwkSR0WB0lSh8VBktRhcZAkdVgcJEkdFgdJUofFQZLUYXGQJHVYHCRJHRYHSVKHxUGS1GFxkCR1WBwkSR0WB0lSh8VBktRhcZAkdfQqDkkOSnJtkr9J8vUkr0lycJJNSe5qP1e0tknyoSTTSW5PcvzQeVa39nclWd33HyVJ6qdvz+GDwGer6ljgVcDXgbXADVW1CrihPQc4HVjVHmuAywCSHAxcCJwInABcuLOgSJLGY+TikOQ5wGuBywGq6vtV9R3gTOCK1uwK4I1t+0zgyhq4ETgoyeHAqcCmqtpeVQ8Dm4DTRs1LktTf/j2OfSGwDfhoklcBtwK/CTy/qrYCVNXWJIe19iuB+4eOn2mx+eIdSdYw6HUAPPrN9//clh75L7XnAX877iSepuWW83LLF8x5KSy3fGHP5fyPd7dhn+KwP3A88BtVdVOSD/LkENJcMkesFoh3g1XrgHUASTZX1dTTS3l8llu+sPxyXm75gjkvheWWL0xGzn3mHGaAmaq6qT2/lkGxeKgNF9F+fnuo/ZFDxx8BPLhAXJI0JiMXh6r6FnB/kpe20MnA14ANwM4VR6uBT7ftDcDZbdXSScCONvx0PXBKkhVtIvqUFpMkjUmfYSWA3wA+keQZwN3AOQwKzjVJzgXuA97c2m4EzgCmgUdaW6pqe5L3Abe0du+tqu278bvX9cx9qS23fGH55bzc8gVzXgrLLV+YgJxTNefwviRpH+YV0pKkDouDJKljYopDkmcmuTnJV5LckeQ/tvgxSW5qt9b4ZJvfIMkB7fl023/00LkuaPE7k5y6xPme3353JXneUPux3z5kgZw/0V6rLUnWJ/nRZZDz5S12e7uFy4+1+ES+L4b2/0GSvx96PtZ8F8o5yceS3JPktvY4rsUn+X2RJBcl+T8Z3NLnXZOQ8wL5fmHo9X0wyV9MQr4AVNVEPBhc7/BjbftHgZuAk4BrgLNa/I+Ad7btXwf+qG2fBXyybb8c+ApwAHAM8A1gvyXM9yeAo4F7gecNtT8D+Ew77iTgphY/mMFk/sHAira9Yolf4zPavgBXDb3Gk5zzc4bafABYO8nvi/Z8Cvg48PdD7cea7y5e448BvzhH+0l+X5wDXAn8SNt32CTkvND7YqjNnwJnT0K+VTU5PYca2PmN6kfbo4CfYXANBXRvx7HzNh3XAicnSYtfXVWPVtU9DFZHnbBU+VbVl6vq3jkOGfvtQxbIeWPbV8DNDK41mfScvwuDb1jAs3jywsmJfF8k2Q/4z8C/nXXIWPNdKOcFDpnY9wXwTgYrHn/Y2u28zmqsOe/qNU7yjxh81v3FJOQLEzSsBJBkvyS3MbhwbhODb0vfqarHWpPhW2s8cduNtn8HcAhP43Yci51vPXlB4Fx63z5kMSyUcwbDSW8DPrscck7yUeBbwLHAH8zOecLeF+cDG6rdWmbI2PNdIGeAi9qwxqVJDpid86zcJiHnFwG/lGRzks8kWTUpOe/i8+JNDG5Y+t1JyXeiikNVPV5VxzH45noC8LK5mrWfvW/H0dfsfJO8coHmY88XdpnzHwJ/XVVfaM8nOueqOgd4AYO7Af9Saz72nOfI97UMrvf5gzmajz1fmPc1voBB4f1JBsMYv92aT3LOBwD/UINbT3wEWN+ajz3nXfzfewuDId2dxp7vRBWHnWpwd9fPMxhrOyjJzov1hm+t8cRtN9r+5wLbGcPtOIbyXah7N1G3D5mdc5ILgUOBfzXUbKJzbrHHgU8C/6KFJvF98c+AFwPTSe4FDkwyPWn5zsr5tKra2oY1HgU+ypPDWpP8vphhMHYP8OfAj7fticl5jv97hzB4ba8bajb+fGsPTGSM8mDwwXRQ234W8AXg54BP8dQJ6V9v2+fx1Im8a9r2K3jqRN7d7JmJxznzHdp/L0+dkH4DT51gurmenGC6h8Hk0oq2ffASv8a/Cvxv4Fmz2k9qzv8ceHGLBbgEuGQ5vC9afHhCeqz57uJ9cfjQa/xfgIsn/H3xc8DFwK+0+OuAWyYh54XeF8CvAVfMaj/+13hPnHTEF+/HgS8DtwNbgN9p8RcymCSdZlAoDmjxZ7bn023/C4fO9e8ZzFfcCZy+xPm+i0F1f4xBRf/jFg/w4ZbXV4GpoXP9Svt3TAPnjOE1fqzldVt7/M4k58ygx/u/Wk5bgE/QVi9N6vtiVpvh4jDWfHfxvvjLodf4v/HkapuJfF+0+EEMvoF/Ffgi8KpJyHmh9wVP9tSG24/9Nfb2GZKkjomcc5AkjZfFQZLUYXGQJHVYHCRJHRYHSVKHxUGS1GFxkCR1/H/Hzgfuht0LLwAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAD8CAYAAABDwhLXAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAFslJREFUeJzt3X+MXeWd3/H3p3YgJFliAyalNls7jdUuQduGjAhtqlUUtmAgivmDSEZRsbJIVlPSZptWiWmkoiZdibTVskVKWKHgxlRpCGWzwgoQr0WIokqBMOQHP0KIJ4TCLGzsxMCyjZos2W//uM+Ey+TODJ4Znrn2vF/S1T3ne55znnMe+frjc+7DJVWFJEmvtr+10icgSVodDBxJUhcGjiSpCwNHktSFgSNJ6sLAkSR1YeBIkrowcCRJXRg4kqQu1q70CfRy2mmn1ebNm1f6NCTpmPLAAw/8pKo2LMexVk3gbN68mcnJyZU+DUk6piT5P8t1LB+pSZK6MHAkSV0YOJKkLgwcSVIXBo4kqQsDR5LUhYEjSepiwcBJsifJoSQPj9j275JUktPaepJcn2QqyYNJzhlquzPJwfbaOVR/e5KH2j7XJ0mrn5LkQGt/IMn6hfqQJI2vV3KH8zlg2+xikjOBfwY8OVS+CNjaXruAG1rbU4BrgHcA5wLXzARIa7NraL+ZvnYDd1fVVuDutj5nH5Kk8bZg4FTV14EjIzZdB3wUqKHaduDmGrgXWJfkDOBC4EBVHamqZ4EDwLa27eSq+kZVFXAzcOnQsfa25b2z6qP6kPQq2Lz7jpU+BR0nFvUdTpL3An9eVd+dtWkj8NTQ+nSrzVefHlEHeFNVPQPQ3k9foA9J0hg76t9SS/I64OPABaM2j6jVIurznsIr3SfJLgaP3fjN3/zNBQ4rSXo1LeYO5+8BW4DvJnkC2AR8K8nfZnC3ceZQ203A0wvUN42oA/x45lFZez/U6nMd69dU1Y1VNVFVExs2LMuPnUqSFumoA6eqHqqq06tqc1VtZhAA51TVXwD7gCvaTLLzgOfb47D9wAVJ1rfJAhcA+9u2F5Kc12anXQHc3rraB8zMZts5qz6qD0nSGFvwkVqSLwDvAk5LMg1cU1U3zdH8TuBiYAr4GfABgKo6kuSTwP2t3SeqamYiwgcZzIQ7CbirvQCuBW5NciWDmXDvm68PSdJ4WzBwquryBbZvHlou4Ko52u0B9oyoTwJnj6j/FDh/RH3OPiRJ48tfGpAkdWHgSJK6MHAkSV0YOJKkLgwcSVIXBo4kqQsDR5LUhYEjSerCwJEkdWHgSJK6MHAkSV0YOJKkLgwcSVIXBo4kqQsDR5LUhYEjSerCwJEkdWHgSJK6MHAkSV0YOJKkLhYMnCR7khxK8vBQ7b8k+X6SB5P8aZJ1Q9uuTjKV5LEkFw7Vt7XaVJLdQ/UtSe5LcjDJF5Oc0OontvWptn3zQn1IksbXK7nD+RywbVbtAHB2Vf028APgaoAkZwE7gLe2fT6TZE2SNcCngYuAs4DLW1uATwHXVdVW4Fngyla/Eni2qt4CXNfazdnHUV63JKmzBQOnqr4OHJlV+7OqerGt3gtsasvbgVuq6udV9SNgCji3vaaq6vGq+gVwC7A9SYB3A7e1/fcClw4da29bvg04v7Wfqw9J0hhbju9wfg+4qy1vBJ4a2jbdanPVTwWeGwqvmfrLjtW2P9/az3UsSdIYW1LgJPk48CLw+ZnSiGa1iPpijjXq/HYlmUwyefjw4VFNJEmdLDpwkuwE3gO8v6pm/sKfBs4carYJeHqe+k+AdUnWzqq/7Fht+xsZPNqb61i/pqpurKqJqprYsGHDYi5TkrRMFhU4SbYBHwPeW1U/G9q0D9jRZphtAbYC3wTuB7a2GWknMPjSf18LqnuAy9r+O4Hbh461sy1fBny1tZ+rD0nSGFu7UIMkXwDeBZyWZBq4hsGstBOBA4Pv8bm3qv5FVT2S5FbgewwetV1VVb9sx/kQsB9YA+ypqkdaFx8Dbknyn4BvAze1+k3A/0gyxeDOZgfAfH1IksZXXnoadnybmJioycnJlT4N6ZizefcdPHHtJSt9GlohSR6oqonlOJa/NCBJ6sLAkSR1YeBIkrowcCRJXRg4kqQuDBxJUhcGjiSpCwNHktSFgSNJ6sLAkSR1YeBIkrowcCRJXRg4kqQuDBxJUhcGjiSpCwNHktSFgSNJ6sLAkSR1YeBIkrowcCRJXRg4kqQuFgycJHuSHEry8FDtlCQHkhxs7+tbPUmuTzKV5MEk5wzts7O1P5hk51D97UkeavtcnySL7UOSNL5eyR3O54Bts2q7gburaitwd1sHuAjY2l67gBtgEB7ANcA7gHOBa2YCpLXZNbTftsX0IUkabwsGTlV9HTgyq7wd2NuW9wKXDtVvroF7gXVJzgAuBA5U1ZGqehY4AGxr206uqm9UVQE3zzrW0fQhSRpji/0O501V9QxAez+91TcCTw21m261+erTI+qL6ePXJNmVZDLJ5OHDh4/qAiVJy2u5Jw1kRK0WUV9MH79erLqxqiaqamLDhg0LHFaS9GpabOD8eOYxVns/1OrTwJlD7TYBTy9Q3zSivpg+JEljbLGBsw+YmWm2E7h9qH5Fm0l2HvB8exy2H7ggyfo2WeACYH/b9kKS89rstCtmHeto+pAkjbG1CzVI8gXgXcBpSaYZzDa7Frg1yZXAk8D7WvM7gYuBKeBnwAcAqupIkk8C97d2n6iqmYkIH2QwE+4k4K724mj7kCSNtwUDp6oun2PT+SPaFnDVHMfZA+wZUZ8Ezh5R/+nR9iFJGl/+0oAkqQsDR5LUhYEjSerCwJEkdWHgSJK6MHAkSV0YOJKkLgwcSVIXBo4kqQsDR5LUhYEjSerCwJEkdWHgSJK6MHAkSV0YOJKkLgwcSVIXBo4kqQsDR5LUhYEjSerCwJEkdbGkwEnyb5I8kuThJF9I8tokW5Lcl+Rgki8mOaG1PbGtT7Xtm4eOc3WrP5bkwqH6tlabSrJ7qD6yD0nS+Fp04CTZCPxrYKKqzgbWADuATwHXVdVW4FngyrbLlcCzVfUW4LrWjiRntf3eCmwDPpNkTZI1wKeBi4CzgMtbW+bpQ5I0ppb6SG0tcFKStcDrgGeAdwO3te17gUvb8va2Ttt+fpK0+i1V9fOq+hEwBZzbXlNV9XhV/QK4Bdje9pmrD0nSmFp04FTVnwP/FXiSQdA8DzwAPFdVL7Zm08DGtrwReKrt+2Jrf+pwfdY+c9VPnacPSdKYWsojtfUM7k62AH8HeD2Dx1+z1cwuc2xbrvqoc9yVZDLJ5OHDh0c1kSR1spRHar8L/KiqDlfVXwNfAv4JsK49YgPYBDzdlqeBMwHa9jcCR4brs/aZq/6Tefp4maq6saomqmpiw4YNS7hUSdJSLSVwngTOS/K69r3K+cD3gHuAy1qbncDtbXlfW6dt/2pVVavvaLPYtgBbgW8C9wNb24y0ExhMLNjX9pmrD0nSmFrKdzj3Mfji/lvAQ+1YNwIfAz6SZIrB9y03tV1uAk5t9Y8Au9txHgFuZRBWXwGuqqpftu9oPgTsBx4Fbm1tmacPSdKYyuCG4fg3MTFRk5OTK30a0jFn8+47eOLaS1b6NLRCkjxQVRPLcSx/aUCS1IWBI0nqwsCRJHVh4EiSujBwJEldGDiSpC4MHElSFwaOJKkLA0eS1IWBI0nqwsCRJHVh4Eg6Zm3efcdKn4KOgoEjSerCwJEkdWHgSJK6MHAkSV0YOJKkLgwcSVIXBo4kqQsDR5LUxZICJ8m6JLcl+X6SR5P84ySnJDmQ5GB7X9/aJsn1SaaSPJjknKHj7GztDybZOVR/e5KH2j7XJ0mrj+xDkjS+lnqH89+Ar1TVPwD+IfAosBu4u6q2Ane3dYCLgK3ttQu4AQbhAVwDvAM4F7hmKEBuaG1n9tvW6nP1IUkaU4sOnCQnA78D3ARQVb+oqueA7cDe1mwvcGlb3g7cXAP3AuuSnAFcCByoqiNV9SxwANjWtp1cVd+oqgJunnWsUX1IksbUUu5w3gwcBv57km8n+WyS1wNvqqpnANr76a39RuCpof2nW22++vSIOvP0IUkaU0sJnLXAOcANVfU24P8y/6OtjKjVIuqvWJJdSSaTTB4+fPhodpUkLbOlBM40MF1V97X12xgE0I/b4zDa+6Gh9mcO7b8JeHqB+qYRdebp42Wq6saqmqiqiQ0bNizqIiVJy2PRgVNVfwE8leTvt9L5wPeAfcDMTLOdwO1teR9wRZutdh7wfHscth+4IMn6NlngAmB/2/ZCkvPa7LQrZh1rVB+SpDG1don7/yvg80lOAB4HPsAgxG5NciXwJPC+1vZO4GJgCvhZa0tVHUnySeD+1u4TVXWkLX8Q+BxwEnBXewFcO0cfkqQxtaTAqarvABMjNp0/om0BV81xnD3AnhH1SeDsEfWfjupDkjS+/KUBSVIXBo4kqQsDR5LUhYEjSerCwJEkdWHgSJK6MHAkSV0YOJKkLgwcSVIXBo4kqQsDR5LUhYEjSerCwJEkdWHgSJK6MHAkSV0YOJKkLgwcSVIXBo4kqQsDR5LUhYEjSerCwJEkdbHkwEmyJsm3k3y5rW9Jcl+Sg0m+mOSEVj+xrU+17ZuHjnF1qz+W5MKh+rZWm0qye6g+sg9J0vhajjucDwOPDq1/CriuqrYCzwJXtvqVwLNV9RbgutaOJGcBO4C3AtuAz7QQWwN8GrgIOAu4vLWdrw9J0phaUuAk2QRcAny2rQd4N3Bba7IXuLQtb2/rtO3nt/bbgVuq6udV9SNgCji3vaaq6vGq+gVwC7B9gT4kSWNqqXc4fwR8FPibtn4q8FxVvdjWp4GNbXkj8BRA2/58a/+r+qx95qrP18fLJNmVZDLJ5OHDhxd7jZKkZbDowEnyHuBQVT0wXB7RtBbYtlz1Xy9W3VhVE1U1sWHDhlFNJEmdrF3Cvu8E3pvkYuC1wMkM7njWJVnb7kA2AU+39tPAmcB0krXAG4EjQ/UZw/uMqv9knj4kSWNq0Xc4VXV1VW2qqs0MvvT/alW9H7gHuKw12wnc3pb3tXXa9q9WVbX6jjaLbQuwFfgmcD+wtc1IO6H1sa/tM1cfkqQx9Wr8dzgfAz6SZIrB9y03tfpNwKmt/hFgN0BVPQLcCnwP+ApwVVX9st29fAjYz2AW3K2t7Xx9SJLG1FIeqf1KVX0N+FpbfpzBDLPZbf4f8L459v8D4A9G1O8E7hxRH9mHJGl8+UsDkqQuDBxJUhcGjiSpCwNHktSFgSNJ6sLAkSR1YeBIkrowcCRJXRg4kqQuDBxJUhcGjiSpCwNHktSFgSNJ6sLAkSR1YeBIkrowcCRJXRg4kqQuDBxJUhcGjiSpCwNHktTFogMnyZlJ7knyaJJHkny41U9JciDJwfa+vtWT5PokU0keTHLO0LF2tvYHk+wcqr89yUNtn+uTZL4+JEnjayl3OC8C/7aqfgs4D7gqyVnAbuDuqtoK3N3WAS4CtrbXLuAGGIQHcA3wDuBc4JqhALmhtZ3Zb1urz9WHJGlMLTpwquqZqvpWW34BeBTYCGwH9rZme4FL2/J24OYauBdYl+QM4ELgQFUdqapngQPAtrbt5Kr6RlUVcPOsY43qQ5I0ppblO5wkm4G3AfcBb6qqZ2AQSsDprdlG4Kmh3aZbbb769Ig68/Qx+7x2JZlMMnn48OHFXp4kaRksOXCSvAH4E+D3q+ov52s6olaLqL9iVXVjVU1U1cSGDRuOZldJ0jJbUuAkeQ2DsPl8VX2plX/cHofR3g+1+jRw5tDum4CnF6hvGlGfrw9J0phayiy1ADcBj1bVHw5t2gfMzDTbCdw+VL+izVY7D3i+PQ7bD1yQZH2bLHABsL9teyHJea2vK2Yda1QfkqQxtXYJ+74T+OfAQ0m+02r/HrgWuDXJlcCTwPvatjuBi4Ep4GfABwCq6kiSTwL3t3afqKojbfmDwOeAk4C72ot5+pAkjalFB05V/W9Gf88CcP6I9gVcNcex9gB7RtQngbNH1H86qg9J0vjylwYkSV0YOJKkLgwcSVIXBo4kqQsDR5LUhYEjSerCwJEkdWHgSJK6MHAkSV0YOJKkLgwcSVIXBo4kqQsDR5LUhYEjSerCwJEkdWHgSJK6MHAkSV0YOJKkLgwcSVIXBo4kqYtjOnCSbEvyWJKpJLtX+nwkSXM7ZgMnyRrg08BFwFnA5UnOWtmzkiTNZe1Kn8ASnAtMVdXjAEluAbYD31vRs5K0JJt338ET117C5t13vOL24+6Jay9Z6VMYC8dy4GwEnhpanwbesULncsw6Fj6sWnm9/5wcb38ue17POIfbsRw4GVGrlzVIdgG72upfJfkp8JNX+8SOEafhWMxwLAYch5ccs2ORTy3r4U4D/u5yHexYDpxp4Myh9U3A08MNqupG4MaZ9SSTVTXR5/TGm2PxEsdiwHF4iWMx0MZh83Id75idNADcD2xNsiXJCcAOYN8Kn5MkaQ7H7B1OVb2Y5EPAfmANsKeqHlnh05IkzeGYDRyAqroTuPModrlx4SarhmPxEsdiwHF4iWMxsKzjkKpauJUkSUt0LH+HI0k6hqyawDnefwYnyZ4kh5I8PFQ7JcmBJAfb+/pWT5Lr21g8mOScoX12tvYHk+xciWtZqiRnJrknyaNJHkny4VZfVeOR5LVJvpnku20c/mOrb0lyX7umL7ZJNyQ5sa1Pte2bh451das/luTClbmipUuyJsm3k3y5ra/KsUjyRJKHknwnyWSrvfqfj6o67l8MJhX8EHgzcALwXeCslT6vZb7G3wHOAR4eqv1nYHdb3g18qi1fDNzF4L9lOg+4r9VPAR5v7+vb8vqVvrZFjMUZwDlt+TeAHzD4+aNVNR7tet7Qll8D3Neu71ZgR6v/MfDBtvwvgT9uyzuAL7bls9pn5kRgS/ssrVnp61vkmHwE+J/Al9v6qhwL4AngtFm1V/3zsVrucH71MzhV9Qtg5mdwjhtV9XXgyKzydmBvW94LXDpUv7kG7gXWJTkDuBA4UFVHqupZ4ACw7dU/++VVVc9U1bfa8gvAowx+mWJVjUe7nr9qq69prwLeDdzW6rPHYWZ8bgPOT5JWv6Wqfl5VPwKmGHymjilJNgGXAJ9t62GVjsUcXvXPx2oJnFE/g7Nxhc6lpzdV1TMw+EsYOL3V5xqP426c2qOQtzH41/2qG4/2COk7wCEGfyH8EHiuql5sTYav6VfX27Y/D5zKcTAOzR8BHwX+pq2fyuodiwL+LMkDGfwiC3T4fBzT06KPwoI/g7PKzDUex9U4JXkD8CfA71fVXw7+gTq66YjacTEeVfVL4B8lWQf8KfBbo5q19+N2HJK8BzhUVQ8keddMeUTT434smndW1dNJTgcOJPn+PG2XbSxWyx3Ogj+Dc5z6cbv1pb0favW5xuO4Gackr2EQNp+vqi+18qodj6p6Dvgag2fw65LM/GNz+Jp+db1t+xsZPKY9HsbhncB7kzzB4JH6uxnc8azGsaCqnm7vhxj8Q+RcOnw+VkvgrNafwdkHzMwc2QncPlS/os0+OQ94vt1C7wcuSLK+zVC5oNWOKe1Z+03Ao1X1h0ObVtV4JNnQ7mxIchLwuwy+z7oHuKw1mz0OM+NzGfDVGnw7vA/Y0WZubQG2At/scxXLo6qurqpNNfhdsB0Mru39rMKxSPL6JL8xs8zgz/XD9Ph8rPRsiV4vBjMtfsDgGfbHV/p8XoXr+wLwDPDXDP7lcSWDZ853Awfb+ymtbRj8z+t+CDwETAwd5/cYfBE6BXxgpa9rkWPxTxnc2j8IfKe9Ll5t4wH8NvDtNg4PA/+h1d/M4C/JKeB/ASe2+mvb+lTb/uahY328jc9jwEUrfW1LHJd38dIstVU3Fu2av9tej8z8fdjj8+EvDUiSulgtj9QkSSvMwJEkdWHgSJK6MHAkSV0YOJKkLgwcSVIXBo4kqQsDR5LUxf8Htmuht2g0nfcAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -721,8 +741,8 @@ "\n", "# plt.plot(sam, calcs, '.')\n", "# plt.plot(test_q, calcs_test)\n", - "plt.ylim(6000, 10000)\n", - "plt.xlim(3000, 3750)\n", + "# plt.ylim(6000, 10000)\n", + "# plt.xlim(3000, 3750)\n", "\n", "plt.savefig('test.png')" ] @@ -736,7 +756,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 20, "metadata": {}, "outputs": [], "source": [ @@ -766,7 +786,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 21, "metadata": {}, "outputs": [ { @@ -788,7 +808,7 @@ " NCALLS = 58\n", " \n", " \n", - " EDM = 1.523018659051133e-07\n", + " EDM = 1.5229666301917304e-07\n", " GOAL EDM = 5e-06\n", " \n", " UP = 0.5\n", @@ -834,7 +854,7 @@ "text/html": [ "\n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -857,9 +877,9 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -879,9 +899,9 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -889,7 +909,7 @@ " \n", " \n", "
++NameValueHesse Error
1psi2s_s74.73490.048852jpsi_s444.4950.220516
3jpsi_s444.4950.220516psi2s_s74.73490.048852No
\n", - "
\n",
+       "
\n",
        "\n",
@@ -927,80 +947,8 @@
        "\n",
        "    \n",
        "        \n",
-       "        \n",
-       "        \n",
-       "    \n",
-       "    \n",
-       "        \n",
-       "        \n",
-       "        \n",
-       "    \n",
-       "    \n",
-       "        \n",
-       "        \n",
-       "        \n",
-       "    \n",
-       "    \n",
-       "        \n",
-       "        \n",
-       "        \n",
-       "    \n",
-       "    \n",
-       "        \n",
-       "        \n",
-       "        \n",
-       "    \n",
-       "
Error-0.0065151408893557810.006517797883262716
ValidTrueTrue
At LimitFalseFalse
Max FCNFalseFalse
New MinFalseFalse
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "Minos status for psi2s_s: VALID\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Error-0.049227653881089160.0492610170079898
ValidTrueTrue
At LimitFalseFalse
Max FCNFalseFalse
New MinFalseFalse
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "Minos status for jpsi_p: VALID\n", - "\n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -1035,8 +983,80 @@ "
Error-0.006311001681890770.006310920173057535-0.0065151409160649580.006517797812598556
Valid
\n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Error-0.220659289686720880.22053487734368604-0.220659286900404150.22053488031823795
ValidTrueTrue
At LimitFalseFalse
Max FCNFalseFalse
New MinFalseFalse
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "Minos status for jpsi_p: VALID\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Error-0.0063110017718012870.006310920098439091
ValidTrueTrue
At LimitFalseFalse
Max FCNFalseFalse
New MinFalseFalse
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "Minos status for psi2s_s: VALID\n", + "\n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -1068,10 +1088,10 @@ "name": "stdout", "output_type": "stream", "text": [ - "psi2s_p: ^{+0.006517797883262716}_{-0.006515140889355781}\n", - "psi2s_s: ^{+0.0492610170079898}_{-0.04922765388108916}\n", - "jpsi_p: ^{+0.006310920173057535}_{-0.00631100168189077}\n", - "jpsi_s: ^{+0.22053487734368604}_{-0.22065928968672088}\n", + "psi2s_p: ^{+0.006517797812598556}_{-0.006515140916064958}\n", + "jpsi_s: ^{+0.22053488031823795}_{-0.22065928690040415}\n", + "jpsi_p: ^{+0.006310920098439091}_{-0.006311001771801287}\n", + "psi2s_s: ^{+0.04926101726478015}_{-0.04922765339439341}\n", "Function minimum: 19224270.58100143\n" ] } @@ -1093,7 +1113,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 22, "metadata": {}, "outputs": [ { @@ -1102,7 +1122,7 @@ "-3.1420346928204133" ] }, - "execution_count": 21, + "execution_count": 22, "metadata": {}, "output_type": "execute_result" } @@ -1120,7 +1140,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 23, "metadata": {}, "outputs": [ { @@ -1129,7 +1149,7 @@ "'5 h, 55 min'" ] }, - "execution_count": 22, + "execution_count": 23, "metadata": {}, "output_type": "execute_result" } @@ -1140,7 +1160,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 24, "metadata": {}, "outputs": [ { diff --git a/__pycache__/pdg_const.cpython-37.pyc b/__pycache__/pdg_const.cpython-37.pyc index 7366c9a..c499ac2 100644 --- a/__pycache__/pdg_const.cpython-37.pyc +++ b/__pycache__/pdg_const.cpython-37.pyc Binary files differ diff --git a/raremodel-nb.ipynb b/raremodel-nb.ipynb index e2d3820..3980d05 100644 --- a/raremodel-nb.ipynb +++ b/raremodel-nb.ipynb @@ -16,7 +16,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\util\\execution.py:53: UserWarning: Not running on Linux. Determining available cpus for thread can failand be overestimated. Workaround (only if too many cpus are used):`zfit.run.set_n_cpu(your_cpu_number)`\n", + "C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\util\\execution.py:53: UserWarning: Not running on Linux. Determining available cpus for thread can failand be overestimated. Workaround (only if too many cpus are used):`zfit.run.set_n_cpu(your_cpu_number)`\n", " warnings.warn(\"Not running on Linux. Determining available cpus for thread can fail\"\n" ] }, @@ -269,7 +269,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -287,12 +287,32 @@ "\n", "def h_S(m, q):\n", " \n", - " return tf.constant(2) - G(tf.constant(1) - 4*tf.pow(m, 2) / tf.pow(q, 2))\n", + " return ztf.to_complex(2) - G(ztf.to_complex(1) - 4*tf.pow(m, 2) / ztf.to_complex(tf.pow(q, 2)))\n", "\n", "def h_P(m,q):\n", " \n", - " return 2/3 + (1 - (tf.constant(1) - 4*tf.pow(m, 2) / tf.pow(q, 2))) * h_S(m,q)\n", - "\n" + " return ztf.to_complex(2/3) + (ztf.to_complex(1) - 4*tf.pow(m, 2) / ztf.to_complex(tf.pow(q, 2))) * h_S(m,q)\n", + "\n", + "def two_p_ccbar(mD, m_D_bar, m_D_star, q):\n", + " \n", + " \n", + " #Load constants\n", + " nu_D_bar = ztf.to_complex(pdg[\"nu_D_bar\"])\n", + " nu_D = ztf.to_complex(pdg[\"nu_D\"])\n", + " nu_D_star = ztf.to_complex(pdg[\"nu_D_star\"])\n", + " \n", + " phase_D_bar = ztf.to_complex(pdg[\"phase_D_bar\"])\n", + " phase_D = ztf.to_complex(pdg[\"phase_D\"])\n", + " phase_D_star = ztf.to_complex(pdg[\"phase_D_star\"])\n", + " \n", + " #Calculation\n", + " left_part = nu_D_bar * tf.exp(tf.complex(ztf.constant(0.0), phase_D_bar)) * h_S(m_D_bar, q) \n", + " \n", + " right_part_D = nu_D * tf.exp(tf.complex(ztf.constant(0.0), phase_D)) * h_P(m_D, q) \n", + " \n", + " right_part_D_star = nu_D_star * tf.exp(tf.complex(ztf.constant(0.0), phase_D_star)) * h_P(m_D_star, q) \n", + "\n", + " return left_part + right_part_D + right_part_D_star" ] }, { @@ -304,7 +324,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 5, "metadata": {}, "outputs": [], "source": [ @@ -348,7 +368,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ @@ -376,14 +396,14 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "WARNING:tensorflow:From c:\\users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\ops\\resource_variable_ops.py:435: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.\n", + "WARNING:tensorflow:From C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\ops\\resource_variable_ops.py:435: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.\n", "Instructions for updating:\n", "Colocations handled automatically by placer.\n" ] @@ -429,7 +449,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ @@ -449,7 +469,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 9, "metadata": {}, "outputs": [], "source": [ @@ -489,7 +509,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 10, "metadata": {}, "outputs": [ { @@ -534,7 +554,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 11, "metadata": {}, "outputs": [], "source": [ @@ -546,7 +566,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 12, "metadata": {}, "outputs": [], "source": [ @@ -558,7 +578,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 13, "metadata": {}, "outputs": [], "source": [ @@ -590,7 +610,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 14, "metadata": {}, "outputs": [ { @@ -607,7 +627,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 15, "metadata": {}, "outputs": [], "source": [ @@ -628,7 +648,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 16, "metadata": {}, "outputs": [], "source": [ @@ -659,7 +679,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 17, "metadata": {}, "outputs": [], "source": [ @@ -668,7 +688,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 18, "metadata": {}, "outputs": [ { @@ -696,12 +716,12 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 19, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAD8CAYAAACcjGjIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAGRpJREFUeJzt3X20ZXV93/H3JxBRTJUBwYUDFNRRfGgkeAOYtWJtiDyZBk3jCroqE0IcYyDGtKvN0HYFqyELWyLV1JA1hlGwBkTy4KwySkdSE1crD4MiDhrKFRAujDjJ4NgUg4Lf/nF+A4e7770znH3nnnNn3q+1zrr7fPdv7/uds86c7/k97H1TVUiSNOxHxp2AJGnyWBwkSR0WB0lSh8VBktRhcZAkdVgcJEkduywOSdYn+XaSLUOxg5NsSnJX+7mixZPkQ0mmk9ye5PihY1a39nclWT0Uf3WSr7ZjPpQki/2PlCQ9PbvTc/gYcNqs2FrghqpaBdzQngOcDqxqjzXAZTAoJsCFwInACcCFOwtKa7Nm6LjZv0uStMR2WRyq6q+B7bPCZwJXtO0rgDcOxa+sgRuBg5IcDpwKbKqq7VX1MLAJOK3te05VfbEGV+NdOXQuSdKY7D/icc+vqq0AVbU1yWEtvhK4f6jdTIstFJ+ZIz6nJGsY9DJ49rOf/epjjz12xPSXxlcf2PHE9j9Z+dwxZiJpkozrs+HWW2/926o6dHfajloc5jPXfEGNEJ9TVa0D1gFMTU3V5s2bR8lxyRy99rontjdf/IYxZiJpkozrsyHJN3e37airlR5qQ0K0n99u8RngyKF2RwAP7iJ+xBxxSdIYjVocNgA7VxytBj49FD+7rVo6CdjRhp+uB05JsqJNRJ8CXN/2/d8kJ7VVSmcPnUuSNCa7HFZKchXwOuB5SWYYrDq6GLgmybnAfcCbW/ONwBnANPAIcA5AVW1P8j7gltbuvVW1c5L7nQxWRD0L+Ex7SJLGaJfFoareMs+uk+doW8B585xnPbB+jvhm4JW7ykOStHS8QlqS1GFxkCR1WBwkSR0WB0lSh8VBktRhcZAkdVgcJEkdFgdJUofFQZLUYXGQJHVYHCRJHRYHSVKHxUGS1GFxkCR1WBwkSR0WB0lSh8VBktRhcZAkdfQqDkl+M8mWJHckeXeLvSfJA0lua48zhtpfkGQ6yZ1JTh2Kn9Zi00nW9slJktTfLv+G9HySvBJ4O3AC8H3gs0mua7svrapLZrV/OXAW8ArgBcDnkryk7f4w8HpgBrglyYaq+tqouUnScnH02uue2L734jeMMZOnGrk4AC8DbqyqRwCS/BXwpgXanwlcXVWPAvckmWZQWACmq+rudp6rW1uLgyQxngLSZ1hpC/DaJIckORA4Aziy7Ts/ye1J1idZ0WIrgfuHjp9psfnikqRFcPTa655SYHbHyMWhqr4OvB/YBHwW+ArwGHAZ8CLgOGAr8PvtkMx1mgXiHUnWJNmcZPO2bdtGTV2StAu9JqSr6vKqOr6qXgtsB+6qqoeq6vGq+iHwEZ4cOprhyZ4FwBHAgwvE5/p966pqqqqmDj300D6pS5IW0GfOgSSHVdW3kxwF/ALwmiSHV9XW1uRNDIafADYAf5LkAwwmpFcBNzPoOaxKcgzwAINJ67f2yUuS9kWLOTfRqzgAf5rkEOAHwHlV9XCSjyc5jsHQ0L3AOwCq6o4k1zCYaH6stX8cIMn5wPXAfsD6qrqjZ16StKw93TmCxdarOFTVT88Re9sC7S8CLpojvhHY2CcXSdLi8QppSVJH32ElSdIu7KkhooXO2/d32nOQJHXYc5Ckp2lPXbG8O9/2l2qi2uIgST1M6r2R+nJYSZLUYXGQJHU4rCRJi2RvGmKy5yBJ6rA4SJI6LA6SpA7nHCTt02ZfN7Dc5woWiz0HSVKHPQdJmsfetPro6bI4SNIeMO6/x9CXxUHSPmG5f1gvNeccJEkd9hwk7VXsISwOi4OkZWOcE8T7WtHpNayU5DeTbElyR5J3t9jBSTYluav9XNHiSfKhJNNJbk9y/NB5Vrf2dyVZ3e+fJEnqa+SeQ5JXAm8HTgC+D3w2yXUtdkNVXZxkLbAW+G3gdGBVe5wIXAacmORg4EJgCijg1iQbqurh0f9ZkpbafN+sl+Ib/r72rX4p9BlWehlwY1U9ApDkr4A3AWcCr2ttrgA+z6A4nAlcWVUF3JjkoCSHt7abqmp7O88m4DTgqh65SZpAuzMstC9fWzBJ+hSHLcBFSQ4BvgecAWwGnl9VWwGqamuSw1r7lcD9Q8fPtNh88Y4ka4A1AEcddVSP1CVpbvZCBkYuDlX19STvBzYBfw98BXhsgUMy12kWiM/1O9cB6wCmpqbmbCNp3+CH+J7Va7VSVV0OXA6Q5PcYfOt/KMnhrddwOPDt1nwGOHLo8COAB1v8dbPin++Tl6TJ54f7ZOu7Wumw9vMo4BcYzBNsAHauOFoNfLptbwDObquWTgJ2tOGn64FTkqxoK5tOaTFJ0pj0vc7hT9ucww+A86rq4SQXA9ckORe4D3hza7uRwbzENPAIcA5AVW1P8j7gltbuvTsnpyVJ49F3WOmn54j9HXDyHPECzpvnPOuB9X1ykSQtHq+QljQS5wz2bhYHSXtUnyJiARofi4Ok3eaH9b7DW3ZLkjosDpKkDoeVJAHe00hPZc9BktRhcZAkdTisJGlBrlDaN1kcpH2YH/yaj8VBUodFQxYHaYLsiRVDsz/oXYmk3WFxkPYSftvXYnK1kiSpw+IgSepwWElaxhxK0p5icZCWQN+JZm9toaVmcZD2MfY2tDt6FYckvwX8KlDAVxn8Xeg/Av4psKM1++Wqui1JgA8y+DvSj7T4l9p5VgP/obX/3aq6ok9e0t5gvg9xP9y1FEYuDklWAu8CXl5V30tyDXBW2/1vquraWYecDqxqjxOBy4ATkxwMXAhMMSgytybZUFUPj5qbJKmfvquV9geelWR/4EDgwQXanglcWQM3AgclORw4FdhUVdtbQdgEnNYzL0lSDyMXh6p6ALgEuA/YCuyoqv/Rdl+U5PYklyY5oMVWAvcPnWKmxeaLdyRZk2Rzks3btm0bNXVpXkevve6Jh7QvG7k4JFnBoDdwDPAC4NlJ/iVwAXAs8JPAwcBv7zxkjtPUAvFusGpdVU1V1dShhx46auqSpF3oM6z0s8A9VbWtqn4A/BnwU1W1tQ0dPQp8FDihtZ8Bjhw6/ggGw1DzxSVJY9JntdJ9wElJDgS+B5wMbE5yeFVtbauT3ghsae03AOcnuZrBhPSO1u564PdaTwTgFAa9D2lZmO8ahN0ZmnL4SpNq5OJQVTcluRb4EvAY8GVgHfCZJIcyGC66Dfi1dshGBstYpxksZT2nnWd7kvcBt7R2762q7aPmJUnqr9d1DlV1IYNlqMN+Zp62BZw3z771wPo+uUhLqc83fnsLWg688Z4kqcPiIEnqsDhIkjq88Z72akt9N1PnE7S3sOcgSeqwOEiSOhxWWiL+sZblzyEj7UssDton7U6xthhoX2Zx0LI0+4Pb3pi0uCwO2is4bCctLouD9joOB0n9uVpJktRhcZAkdTispH3GfMNNDkNJXfYcJEkd9hw0cVx5JI2fPQdJUoc9B43N0+0hODcgLZ1ePYckv5XkjiRbklyV5JlJjklyU5K7knwyyTNa2wPa8+m2/+ih81zQ4ncmObXfP0mS1NfIxSHJSuBdwFRVvRLYDzgLeD9waVWtAh4Gzm2HnAs8XFUvBi5t7Ujy8nbcK4DTgD9Mst+oeUmS+us7rLQ/8KwkPwAOBLYCPwO8te2/AngPcBlwZtsGuBb4r0nS4ldX1aPAPUmmgROAL/bMTUtoviEi74EkLU8j9xyq6gHgEuA+BkVhB3Ar8J2qeqw1mwFWtu2VwP3t2Mda+0OG43Mc8xRJ1iTZnGTztm3bRk1dkrQLI/cckqxg8K3/GOA7wKeA0+doWjsPmWfffPFusGodsA5gampqzjbas/ouM3VSWVoe+gwr/SxwT1VtA0jyZ8BPAQcl2b/1Do4AHmztZ4AjgZkk+wPPBbYPxXcaPkYTwA90ad/TpzjcB5yU5EDge8DJwGbgfwK/CFwNrAY+3dpvaM+/2Pb/ZVVVkg3AnyT5APACYBVwc4+8tAxZgKTJMnJxqKqbklwLfAl4DPgygyGf64Crk/xui13eDrkc+HibcN7OYIUSVXVHkmuAr7XznFdVj4+al8ZvMT/oLRrSePRarVRVFwIXzgrfzWC10ey2/wC8eZ7zXARc1CeXSeGHmaS9gVdIa04WOWnfZnHQEywIknayOCxD3rVU0p5mcdDI7GlIey+Lwxgs9Td/exqSni6Lw17EIiBpsVgc9lIO+Ujqw78EJ0nqsOewD7N3IWk+Focxc55A0iRyWEmS1GFxkCR1WBwkSR3OOSwT800eO6ksaU+w5yBJ6rDnsI+xpyFpd9hzkCR1WBwkSR0jDysleSnwyaHQC4HfAQ4C3g5sa/F/V1Ub2zEXAOcCjwPvqqrrW/w04IPAfsAfV9XFo+a1nHlBnKRJMXJxqKo7geMAkuwHPAD8OXAOcGlVXTLcPsnLgbOAVwAvAD6X5CVt94eB1wMzwC1JNlTV10bNTZLUz2JNSJ8MfKOqvplkvjZnAldX1aPAPUmmgRPavumquhsgydWt7diLw3yTt36rl7S3W6zicBZw1dDz85OcDWwG/nVVPQysBG4cajPTYgD3z4qfONcvSbIGWANw1FFHPe0kF+vD3hU/kvZ2vSekkzwD+HngUy10GfAiBkNOW4Hf39l0jsNrgXg3WLWuqqaqaurQQw/tlbckaX6L0XM4HfhSVT0EsPMnQJKPAP+9PZ0Bjhw67gjgwbY9X3yfZe9E0jgtRnF4C0NDSkkOr6qt7embgC1tewPwJ0k+wGBCehVwM4Oew6okxzCY1D4LeOsi5DUSP5QlqWdxSHIgg1VG7xgK/6ckxzEYGrp3576quiPJNQwmmh8Dzquqx9t5zgeuZ7CUdX1V3dEnL0lSP72KQ1U9AhwyK/a2BdpfBFw0R3wjsLFPLpKkxeO9lXAoSZJmW7a3z/jqAzs4eu11frBL0h6wV/ccLBySNJpl23OQJO05FgdJUofFQZLUYXGQJHVYHCRJHRYHSVKHxUGS1GFxkCR1WBwkSR17xRXSw1dC+yc8Jak/ew6SpA6LgySpY68YVhrmzfYkqT97DpKkDouDJKlj5OKQ5KVJbht6fDfJu5McnGRTkrvazxWtfZJ8KMl0ktuTHD90rtWt/V1JVi/GP0ySNLqRi0NV3VlVx1XVccCrgUeAPwfWAjdU1SrghvYc4HRgVXusAS4DSHIwcCFwInACcOHOgiJJGo/FGlY6GfhGVX0TOBO4osWvAN7Yts8ErqyBG4GDkhwOnApsqqrtVfUwsAk4bZHykiSNYLGKw1nAVW37+VW1FaD9PKzFVwL3Dx0z02LzxTuSrEmyOcnmxx/ZsUipS5Jm610ckjwD+HngU7tqOkesFoh3g1Xrqmqqqqb2O/C5Ty9RSdJuW4yew+nAl6rqofb8oTZcRPv57RafAY4cOu4I4MEF4pKkMVmM4vAWnhxSAtgA7FxxtBr49FD87LZq6SRgRxt2uh44JcmKNhF9SotJksak1xXSSQ4EXg+8Yyh8MXBNknOB+4A3t/hG4AxgmsHKpnMAqmp7kvcBt7R2762q7X3ykiT106s4VNUjwCGzYn/HYPXS7LYFnDfPedYD6/vkIklaPF4hLUnqsDhIkjosDpKkDouDJKnD4iBJ6rA4SJI6LA6SpA6LgySpw+IgSeqwOEiSOiwOkqQOi4MkqcPiIEnqsDhIkjosDpKkDouDJKnD4iBJ6rA4SJI6ehWHJAcluTbJ3yT5epLXJHlPkgeS3NYeZwy1vyDJdJI7k5w6FD+txaaTrO2TkySpv15/Qxr4IPDZqvrFJM8ADgROBS6tqkuGGyZ5OXAW8ArgBcDnkryk7f4w8HpgBrglyYaq+lrP3CRJIxq5OCR5DvBa4JcBqur7wPeTzHfImcDVVfUocE+SaeCEtm+6qu5u5726tbU4SNKY9BlWeiGwDfhoki8n+eMkz277zk9ye5L1SVa02Erg/qHjZ1psvrgkaUz6FIf9geOBy6rqJ4D/B6wFLgNeBBwHbAV+v7Wfq0tRC8Q7kqxJsjnJ5scf2dEjdUnSQvoUhxlgpqpuas+vBY6vqoeq6vGq+iHwEZ4cOpoBjhw6/gjgwQXiHVW1rqqmqmpqvwOf2yN1SdJCRi4OVfUt4P4kL22hk4GvJTl8qNmbgC1tewNwVpIDkhwDrAJuBm4BViU5pk1qn9XaSpLGpO9qpd8APtE+1O8GzgE+lOQ4BkND9wLvAKiqO5Jcw2Ci+THgvKp6HCDJ+cD1wH7A+qq6o2dekqQeehWHqroNmJoVftsC7S8CLpojvhHY2CcXSdLi8QppSVKHxUGS1GFxkCR1WBwkSR0WB0lSh8VBktRhcZAkdVgcJEkdFgdJUofFQZLUYXGQJHVYHCRJHRYHSVKHxUGS1GFxkCR1WBwkSR0WB0lSh8VBktRhcZAkdfQqDkkOSnJtkr9J8vUkr0lycJJNSe5qP1e0tknyoSTTSW5PcvzQeVa39nclWd33HyVJ6qdvz+GDwGer6ljgVcDXgbXADVW1CrihPQc4HVjVHmuAywCSHAxcCJwInABcuLOgSJLGY+TikOQ5wGuBywGq6vtV9R3gTOCK1uwK4I1t+0zgyhq4ETgoyeHAqcCmqtpeVQ8Dm4DTRs1LktTf/j2OfSGwDfhoklcBtwK/CTy/qrYCVNXWJIe19iuB+4eOn2mx+eIdSdYw6HUAPPrN9//clh75L7XnAX877iSepuWW83LLF8x5KSy3fGHP5fyPd7dhn+KwP3A88BtVdVOSD/LkENJcMkesFoh3g1XrgHUASTZX1dTTS3l8llu+sPxyXm75gjkvheWWL0xGzn3mHGaAmaq6qT2/lkGxeKgNF9F+fnuo/ZFDxx8BPLhAXJI0JiMXh6r6FnB/kpe20MnA14ANwM4VR6uBT7ftDcDZbdXSScCONvx0PXBKkhVtIvqUFpMkjUmfYSWA3wA+keQZwN3AOQwKzjVJzgXuA97c2m4EzgCmgUdaW6pqe5L3Abe0du+tqu278bvX9cx9qS23fGH55bzc8gVzXgrLLV+YgJxTNefwviRpH+YV0pKkDouDJKljYopDkmcmuTnJV5LckeQ/tvgxSW5qt9b4ZJvfIMkB7fl023/00LkuaPE7k5y6xPme3353JXneUPux3z5kgZw/0V6rLUnWJ/nRZZDz5S12e7uFy4+1+ES+L4b2/0GSvx96PtZ8F8o5yceS3JPktvY4rsUn+X2RJBcl+T8Z3NLnXZOQ8wL5fmHo9X0wyV9MQr4AVNVEPBhc7/BjbftHgZuAk4BrgLNa/I+Ad7btXwf+qG2fBXyybb8c+ApwAHAM8A1gvyXM9yeAo4F7gecNtT8D+Ew77iTgphY/mMFk/sHAira9Yolf4zPavgBXDb3Gk5zzc4bafABYO8nvi/Z8Cvg48PdD7cea7y5e448BvzhH+0l+X5wDXAn8SNt32CTkvND7YqjNnwJnT0K+VTU5PYca2PmN6kfbo4CfYXANBXRvx7HzNh3XAicnSYtfXVWPVtU9DFZHnbBU+VbVl6vq3jkOGfvtQxbIeWPbV8DNDK41mfScvwuDb1jAs3jywsmJfF8k2Q/4z8C/nXXIWPNdKOcFDpnY9wXwTgYrHn/Y2u28zmqsOe/qNU7yjxh81v3FJOQLEzSsBJBkvyS3MbhwbhODb0vfqarHWpPhW2s8cduNtn8HcAhP43Yci51vPXlB4Fx63z5kMSyUcwbDSW8DPrscck7yUeBbwLHAH8zOecLeF+cDG6rdWmbI2PNdIGeAi9qwxqVJDpid86zcJiHnFwG/lGRzks8kWTUpOe/i8+JNDG5Y+t1JyXeiikNVPV5VxzH45noC8LK5mrWfvW/H0dfsfJO8coHmY88XdpnzHwJ/XVVfaM8nOueqOgd4AYO7Af9Saz72nOfI97UMrvf5gzmajz1fmPc1voBB4f1JBsMYv92aT3LOBwD/UINbT3wEWN+ajz3nXfzfewuDId2dxp7vRBWHnWpwd9fPMxhrOyjJzov1hm+t8cRtN9r+5wLbGcPtOIbyXah7N1G3D5mdc5ILgUOBfzXUbKJzbrHHgU8C/6KFJvF98c+AFwPTSe4FDkwyPWn5zsr5tKra2oY1HgU+ypPDWpP8vphhMHYP8OfAj7fticl5jv97hzB4ba8bajb+fGsPTGSM8mDwwXRQ234W8AXg54BP8dQJ6V9v2+fx1Im8a9r2K3jqRN7d7JmJxznzHdp/L0+dkH4DT51gurmenGC6h8Hk0oq2ffASv8a/Cvxv4Fmz2k9qzv8ceHGLBbgEuGQ5vC9afHhCeqz57uJ9cfjQa/xfgIsn/H3xc8DFwK+0+OuAWyYh54XeF8CvAVfMaj/+13hPnHTEF+/HgS8DtwNbgN9p8RcymCSdZlAoDmjxZ7bn023/C4fO9e8ZzFfcCZy+xPm+i0F1f4xBRf/jFg/w4ZbXV4GpoXP9Svt3TAPnjOE1fqzldVt7/M4k58ygx/u/Wk5bgE/QVi9N6vtiVpvh4jDWfHfxvvjLodf4v/HkapuJfF+0+EEMvoF/Ffgi8KpJyHmh9wVP9tSG24/9Nfb2GZKkjomcc5AkjZfFQZLUYXGQJHVYHCRJHRYHSVKHxUGS1GFxkCR1/H/Hzgfuht0LLwAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAD8CAYAAABDwhLXAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAFslJREFUeJzt3X+MXeWd3/H3p3YgJFliAyalNls7jdUuQduGjAhtqlUUtmAgivmDSEZRsbJIVlPSZptWiWmkoiZdibTVskVKWKHgxlRpCGWzwgoQr0WIokqBMOQHP0KIJ4TCLGzsxMCyjZos2W//uM+Ey+TODJ4Znrn2vF/S1T3ne55znnMe+frjc+7DJVWFJEmvtr+10icgSVodDBxJUhcGjiSpCwNHktSFgSNJ6sLAkSR1YeBIkrowcCRJXRg4kqQu1q70CfRy2mmn1ebNm1f6NCTpmPLAAw/8pKo2LMexVk3gbN68mcnJyZU+DUk6piT5P8t1LB+pSZK6MHAkSV0YOJKkLgwcSVIXBo4kqQsDR5LUhYEjSepiwcBJsifJoSQPj9j275JUktPaepJcn2QqyYNJzhlquzPJwfbaOVR/e5KH2j7XJ0mrn5LkQGt/IMn6hfqQJI2vV3KH8zlg2+xikjOBfwY8OVS+CNjaXruAG1rbU4BrgHcA5wLXzARIa7NraL+ZvnYDd1fVVuDutj5nH5Kk8bZg4FTV14EjIzZdB3wUqKHaduDmGrgXWJfkDOBC4EBVHamqZ4EDwLa27eSq+kZVFXAzcOnQsfa25b2z6qP6kPQq2Lz7jpU+BR0nFvUdTpL3An9eVd+dtWkj8NTQ+nSrzVefHlEHeFNVPQPQ3k9foA9J0hg76t9SS/I64OPABaM2j6jVIurznsIr3SfJLgaP3fjN3/zNBQ4rSXo1LeYO5+8BW4DvJnkC2AR8K8nfZnC3ceZQ203A0wvUN42oA/x45lFZez/U6nMd69dU1Y1VNVFVExs2LMuPnUqSFumoA6eqHqqq06tqc1VtZhAA51TVXwD7gCvaTLLzgOfb47D9wAVJ1rfJAhcA+9u2F5Kc12anXQHc3rraB8zMZts5qz6qD0nSGFvwkVqSLwDvAk5LMg1cU1U3zdH8TuBiYAr4GfABgKo6kuSTwP2t3SeqamYiwgcZzIQ7CbirvQCuBW5NciWDmXDvm68PSdJ4WzBwquryBbZvHlou4Ko52u0B9oyoTwJnj6j/FDh/RH3OPiRJ48tfGpAkdWHgSJK6MHAkSV0YOJKkLgwcSVIXBo4kqQsDR5LUhYEjSerCwJEkdWHgSJK6MHAkSV0YOJKkLgwcSVIXBo4kqQsDR5LUhYEjSerCwJEkdWHgSJK6MHAkSV0YOJKkLhYMnCR7khxK8vBQ7b8k+X6SB5P8aZJ1Q9uuTjKV5LEkFw7Vt7XaVJLdQ/UtSe5LcjDJF5Oc0OontvWptn3zQn1IksbXK7nD+RywbVbtAHB2Vf028APgaoAkZwE7gLe2fT6TZE2SNcCngYuAs4DLW1uATwHXVdVW4Fngyla/Eni2qt4CXNfazdnHUV63JKmzBQOnqr4OHJlV+7OqerGt3gtsasvbgVuq6udV9SNgCji3vaaq6vGq+gVwC7A9SYB3A7e1/fcClw4da29bvg04v7Wfqw9J0hhbju9wfg+4qy1vBJ4a2jbdanPVTwWeGwqvmfrLjtW2P9/az3UsSdIYW1LgJPk48CLw+ZnSiGa1iPpijjXq/HYlmUwyefjw4VFNJEmdLDpwkuwE3gO8v6pm/sKfBs4carYJeHqe+k+AdUnWzqq/7Fht+xsZPNqb61i/pqpurKqJqprYsGHDYi5TkrRMFhU4SbYBHwPeW1U/G9q0D9jRZphtAbYC3wTuB7a2GWknMPjSf18LqnuAy9r+O4Hbh461sy1fBny1tZ+rD0nSGFu7UIMkXwDeBZyWZBq4hsGstBOBA4Pv8bm3qv5FVT2S5FbgewwetV1VVb9sx/kQsB9YA+ypqkdaFx8Dbknyn4BvAze1+k3A/0gyxeDOZgfAfH1IksZXXnoadnybmJioycnJlT4N6ZizefcdPHHtJSt9GlohSR6oqonlOJa/NCBJ6sLAkSR1YeBIkrowcCRJXRg4kqQuDBxJUhcGjiSpCwNHktSFgSNJ6sLAkSR1YeBIkrowcCRJXRg4kqQuDBxJUhcGjiSpCwNHktSFgSNJ6sLAkSR1YeBIkrowcCRJXRg4kqQuFgycJHuSHEry8FDtlCQHkhxs7+tbPUmuTzKV5MEk5wzts7O1P5hk51D97UkeavtcnySL7UOSNL5eyR3O54Bts2q7gburaitwd1sHuAjY2l67gBtgEB7ANcA7gHOBa2YCpLXZNbTftsX0IUkabwsGTlV9HTgyq7wd2NuW9wKXDtVvroF7gXVJzgAuBA5U1ZGqehY4AGxr206uqm9UVQE3zzrW0fQhSRpji/0O501V9QxAez+91TcCTw21m261+erTI+qL6ePXJNmVZDLJ5OHDh4/qAiVJy2u5Jw1kRK0WUV9MH79erLqxqiaqamLDhg0LHFaS9GpabOD8eOYxVns/1OrTwJlD7TYBTy9Q3zSivpg+JEljbLGBsw+YmWm2E7h9qH5Fm0l2HvB8exy2H7ggyfo2WeACYH/b9kKS89rstCtmHeto+pAkjbG1CzVI8gXgXcBpSaYZzDa7Frg1yZXAk8D7WvM7gYuBKeBnwAcAqupIkk8C97d2n6iqmYkIH2QwE+4k4K724mj7kCSNtwUDp6oun2PT+SPaFnDVHMfZA+wZUZ8Ezh5R/+nR9iFJGl/+0oAkqQsDR5LUhYEjSerCwJEkdWHgSJK6MHAkSV0YOJKkLgwcSVIXBo4kqQsDR5LUhYEjSerCwJEkdWHgSJK6MHAkSV0YOJKkLgwcSVIXBo4kqQsDR5LUhYEjSerCwJEkdbGkwEnyb5I8kuThJF9I8tokW5Lcl+Rgki8mOaG1PbGtT7Xtm4eOc3WrP5bkwqH6tlabSrJ7qD6yD0nS+Fp04CTZCPxrYKKqzgbWADuATwHXVdVW4FngyrbLlcCzVfUW4LrWjiRntf3eCmwDPpNkTZI1wKeBi4CzgMtbW+bpQ5I0ppb6SG0tcFKStcDrgGeAdwO3te17gUvb8va2Ttt+fpK0+i1V9fOq+hEwBZzbXlNV9XhV/QK4Bdje9pmrD0nSmFp04FTVnwP/FXiSQdA8DzwAPFdVL7Zm08DGtrwReKrt+2Jrf+pwfdY+c9VPnacPSdKYWsojtfUM7k62AH8HeD2Dx1+z1cwuc2xbrvqoc9yVZDLJ5OHDh0c1kSR1spRHar8L/KiqDlfVXwNfAv4JsK49YgPYBDzdlqeBMwHa9jcCR4brs/aZq/6Tefp4maq6saomqmpiw4YNS7hUSdJSLSVwngTOS/K69r3K+cD3gHuAy1qbncDtbXlfW6dt/2pVVavvaLPYtgBbgW8C9wNb24y0ExhMLNjX9pmrD0nSmFrKdzj3Mfji/lvAQ+1YNwIfAz6SZIrB9y03tV1uAk5t9Y8Au9txHgFuZRBWXwGuqqpftu9oPgTsBx4Fbm1tmacPSdKYyuCG4fg3MTFRk5OTK30a0jFn8+47eOLaS1b6NLRCkjxQVRPLcSx/aUCS1IWBI0nqwsCRJHVh4EiSujBwJEldGDiSpC4MHElSFwaOJKkLA0eS1IWBI0nqwsCRJHVh4Eg6Zm3efcdKn4KOgoEjSerCwJEkdWHgSJK6MHAkSV0YOJKkLgwcSVIXBo4kqQsDR5LUxZICJ8m6JLcl+X6SR5P84ySnJDmQ5GB7X9/aJsn1SaaSPJjknKHj7GztDybZOVR/e5KH2j7XJ0mrj+xDkjS+lnqH89+Ar1TVPwD+IfAosBu4u6q2Ane3dYCLgK3ttQu4AQbhAVwDvAM4F7hmKEBuaG1n9tvW6nP1IUkaU4sOnCQnA78D3ARQVb+oqueA7cDe1mwvcGlb3g7cXAP3AuuSnAFcCByoqiNV9SxwANjWtp1cVd+oqgJunnWsUX1IksbUUu5w3gwcBv57km8n+WyS1wNvqqpnANr76a39RuCpof2nW22++vSIOvP0IUkaU0sJnLXAOcANVfU24P8y/6OtjKjVIuqvWJJdSSaTTB4+fPhodpUkLbOlBM40MF1V97X12xgE0I/b4zDa+6Gh9mcO7b8JeHqB+qYRdebp42Wq6saqmqiqiQ0bNizqIiVJy2PRgVNVfwE8leTvt9L5wPeAfcDMTLOdwO1teR9wRZutdh7wfHscth+4IMn6NlngAmB/2/ZCkvPa7LQrZh1rVB+SpDG1don7/yvg80lOAB4HPsAgxG5NciXwJPC+1vZO4GJgCvhZa0tVHUnySeD+1u4TVXWkLX8Q+BxwEnBXewFcO0cfkqQxtaTAqarvABMjNp0/om0BV81xnD3AnhH1SeDsEfWfjupDkjS+/KUBSVIXBo4kqQsDR5LUhYEjSerCwJEkdWHgSJK6MHAkSV0YOJKkLgwcSVIXBo4kqQsDR5LUhYEjSerCwJEkdWHgSJK6MHAkSV0YOJKkLgwcSVIXBo4kqQsDR5LUhYEjSerCwJEkdbHkwEmyJsm3k3y5rW9Jcl+Sg0m+mOSEVj+xrU+17ZuHjnF1qz+W5MKh+rZWm0qye6g+sg9J0vhajjucDwOPDq1/CriuqrYCzwJXtvqVwLNV9RbgutaOJGcBO4C3AtuAz7QQWwN8GrgIOAu4vLWdrw9J0phaUuAk2QRcAny2rQd4N3Bba7IXuLQtb2/rtO3nt/bbgVuq6udV9SNgCji3vaaq6vGq+gVwC7B9gT4kSWNqqXc4fwR8FPibtn4q8FxVvdjWp4GNbXkj8BRA2/58a/+r+qx95qrP18fLJNmVZDLJ5OHDhxd7jZKkZbDowEnyHuBQVT0wXB7RtBbYtlz1Xy9W3VhVE1U1sWHDhlFNJEmdrF3Cvu8E3pvkYuC1wMkM7njWJVnb7kA2AU+39tPAmcB0krXAG4EjQ/UZw/uMqv9knj4kSWNq0Xc4VXV1VW2qqs0MvvT/alW9H7gHuKw12wnc3pb3tXXa9q9WVbX6jjaLbQuwFfgmcD+wtc1IO6H1sa/tM1cfkqQx9Wr8dzgfAz6SZIrB9y03tfpNwKmt/hFgN0BVPQLcCnwP+ApwVVX9st29fAjYz2AW3K2t7Xx9SJLG1FIeqf1KVX0N+FpbfpzBDLPZbf4f8L459v8D4A9G1O8E7hxRH9mHJGl8+UsDkqQuDBxJUhcGjiSpCwNHktSFgSNJ6sLAkSR1YeBIkrowcCRJXRg4kqQuDBxJUhcGjiSpCwNHktSFgSNJ6sLAkSR1YeBIkrowcCRJXRg4kqQuDBxJUhcGjiSpCwNHktTFogMnyZlJ7knyaJJHkny41U9JciDJwfa+vtWT5PokU0keTHLO0LF2tvYHk+wcqr89yUNtn+uTZL4+JEnjayl3OC8C/7aqfgs4D7gqyVnAbuDuqtoK3N3WAS4CtrbXLuAGGIQHcA3wDuBc4JqhALmhtZ3Zb1urz9WHJGlMLTpwquqZqvpWW34BeBTYCGwH9rZme4FL2/J24OYauBdYl+QM4ELgQFUdqapngQPAtrbt5Kr6RlUVcPOsY43qQ5I0ppblO5wkm4G3AfcBb6qqZ2AQSsDprdlG4Kmh3aZbbb769Ig68/Qx+7x2JZlMMnn48OHFXp4kaRksOXCSvAH4E+D3q+ov52s6olaLqL9iVXVjVU1U1cSGDRuOZldJ0jJbUuAkeQ2DsPl8VX2plX/cHofR3g+1+jRw5tDum4CnF6hvGlGfrw9J0phayiy1ADcBj1bVHw5t2gfMzDTbCdw+VL+izVY7D3i+PQ7bD1yQZH2bLHABsL9teyHJea2vK2Yda1QfkqQxtXYJ+74T+OfAQ0m+02r/HrgWuDXJlcCTwPvatjuBi4Ep4GfABwCq6kiSTwL3t3afqKojbfmDwOeAk4C72ot5+pAkjalFB05V/W9Gf88CcP6I9gVcNcex9gB7RtQngbNH1H86qg9J0vjylwYkSV0YOJKkLgwcSVIXBo4kqQsDR5LUhYEjSerCwJEkdWHgSJK6MHAkSV0YOJKkLgwcSVIXBo4kqQsDR5LUhYEjSerCwJEkdWHgSJK6MHAkSV0YOJKkLgwcSVIXBo4kqYtjOnCSbEvyWJKpJLtX+nwkSXM7ZgMnyRrg08BFwFnA5UnOWtmzkiTNZe1Kn8ASnAtMVdXjAEluAbYD31vRs5K0JJt338ET117C5t13vOL24+6Jay9Z6VMYC8dy4GwEnhpanwbesULncsw6Fj6sWnm9/5wcb38ue17POIfbsRw4GVGrlzVIdgG72upfJfkp8JNX+8SOEafhWMxwLAYch5ccs2ORTy3r4U4D/u5yHexYDpxp4Myh9U3A08MNqupG4MaZ9SSTVTXR5/TGm2PxEsdiwHF4iWMx0MZh83Id75idNADcD2xNsiXJCcAOYN8Kn5MkaQ7H7B1OVb2Y5EPAfmANsKeqHlnh05IkzeGYDRyAqroTuPModrlx4SarhmPxEsdiwHF4iWMxsKzjkKpauJUkSUt0LH+HI0k6hqyawDnefwYnyZ4kh5I8PFQ7JcmBJAfb+/pWT5Lr21g8mOScoX12tvYHk+xciWtZqiRnJrknyaNJHkny4VZfVeOR5LVJvpnku20c/mOrb0lyX7umL7ZJNyQ5sa1Pte2bh451das/luTClbmipUuyJsm3k3y5ra/KsUjyRJKHknwnyWSrvfqfj6o67l8MJhX8EHgzcALwXeCslT6vZb7G3wHOAR4eqv1nYHdb3g18qi1fDNzF4L9lOg+4r9VPAR5v7+vb8vqVvrZFjMUZwDlt+TeAHzD4+aNVNR7tet7Qll8D3Neu71ZgR6v/MfDBtvwvgT9uyzuAL7bls9pn5kRgS/ssrVnp61vkmHwE+J/Al9v6qhwL4AngtFm1V/3zsVrucH71MzhV9Qtg5mdwjhtV9XXgyKzydmBvW94LXDpUv7kG7gXWJTkDuBA4UFVHqupZ4ACw7dU/++VVVc9U1bfa8gvAowx+mWJVjUe7nr9qq69prwLeDdzW6rPHYWZ8bgPOT5JWv6Wqfl5VPwKmGHymjilJNgGXAJ9t62GVjsUcXvXPx2oJnFE/g7Nxhc6lpzdV1TMw+EsYOL3V5xqP426c2qOQtzH41/2qG4/2COk7wCEGfyH8EHiuql5sTYav6VfX27Y/D5zKcTAOzR8BHwX+pq2fyuodiwL+LMkDGfwiC3T4fBzT06KPwoI/g7PKzDUex9U4JXkD8CfA71fVXw7+gTq66YjacTEeVfVL4B8lWQf8KfBbo5q19+N2HJK8BzhUVQ8keddMeUTT434smndW1dNJTgcOJPn+PG2XbSxWyx3Ogj+Dc5z6cbv1pb0favW5xuO4Gackr2EQNp+vqi+18qodj6p6Dvgag2fw65LM/GNz+Jp+db1t+xsZPKY9HsbhncB7kzzB4JH6uxnc8azGsaCqnm7vhxj8Q+RcOnw+VkvgrNafwdkHzMwc2QncPlS/os0+OQ94vt1C7wcuSLK+zVC5oNWOKe1Z+03Ao1X1h0ObVtV4JNnQ7mxIchLwuwy+z7oHuKw1mz0OM+NzGfDVGnw7vA/Y0WZubQG2At/scxXLo6qurqpNNfhdsB0Mru39rMKxSPL6JL8xs8zgz/XD9Ph8rPRsiV4vBjMtfsDgGfbHV/p8XoXr+wLwDPDXDP7lcSWDZ853Awfb+ymtbRj8z+t+CDwETAwd5/cYfBE6BXxgpa9rkWPxTxnc2j8IfKe9Ll5t4wH8NvDtNg4PA/+h1d/M4C/JKeB/ASe2+mvb+lTb/uahY328jc9jwEUrfW1LHJd38dIstVU3Fu2av9tej8z8fdjj8+EvDUiSulgtj9QkSSvMwJEkdWHgSJK6MHAkSV0YOJKkLgwcSVIXBo4kqQsDR5LUxf8Htmuht2g0nfcAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -721,8 +741,8 @@ "\n", "# plt.plot(sam, calcs, '.')\n", "# plt.plot(test_q, calcs_test)\n", - "plt.ylim(6000, 10000)\n", - "plt.xlim(3000, 3750)\n", + "# plt.ylim(6000, 10000)\n", + "# plt.xlim(3000, 3750)\n", "\n", "plt.savefig('test.png')" ] @@ -736,7 +756,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 20, "metadata": {}, "outputs": [], "source": [ @@ -766,7 +786,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 21, "metadata": {}, "outputs": [ { @@ -788,7 +808,7 @@ "
\n", " \n", " \n", - " \n", + " \n", " \n", " \n", @@ -834,7 +854,7 @@ "text/html": [ "
Error-0.049227653394393410.04926101726478015
ValidNCALLS = 58
EDM = 1.523018659051133e-07EDM = 1.5229666301917304e-07GOAL EDM = 5e-06\n", " UP = 0.5
\n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -857,9 +877,9 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -879,9 +899,9 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -889,7 +909,7 @@ " \n", " \n", "
++NameValueHesse Error
1psi2s_s74.73490.048852jpsi_s444.4950.220516
3jpsi_s444.4950.220516psi2s_s74.73490.048852No
\n", - "
\n",
+       "
\n",
        "\n",
@@ -927,80 +947,8 @@
        "\n",
        "    \n",
        "        \n",
-       "        \n",
-       "        \n",
-       "    \n",
-       "    \n",
-       "        \n",
-       "        \n",
-       "        \n",
-       "    \n",
-       "    \n",
-       "        \n",
-       "        \n",
-       "        \n",
-       "    \n",
-       "    \n",
-       "        \n",
-       "        \n",
-       "        \n",
-       "    \n",
-       "    \n",
-       "        \n",
-       "        \n",
-       "        \n",
-       "    \n",
-       "
Error-0.0065151408893557810.006517797883262716
ValidTrueTrue
At LimitFalseFalse
Max FCNFalseFalse
New MinFalseFalse
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "Minos status for psi2s_s: VALID\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Error-0.049227653881089160.0492610170079898
ValidTrueTrue
At LimitFalseFalse
Max FCNFalseFalse
New MinFalseFalse
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "Minos status for jpsi_p: VALID\n", - "\n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -1035,8 +983,80 @@ "
Error-0.006311001681890770.006310920173057535-0.0065151409160649580.006517797812598556
Valid
\n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Error-0.220659289686720880.22053487734368604-0.220659286900404150.22053488031823795
ValidTrueTrue
At LimitFalseFalse
Max FCNFalseFalse
New MinFalseFalse
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "Minos status for jpsi_p: VALID\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Error-0.0063110017718012870.006310920098439091
ValidTrueTrue
At LimitFalseFalse
Max FCNFalseFalse
New MinFalseFalse
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "Minos status for psi2s_s: VALID\n", + "\n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -1068,10 +1088,10 @@ "name": "stdout", "output_type": "stream", "text": [ - "psi2s_p: ^{+0.006517797883262716}_{-0.006515140889355781}\n", - "psi2s_s: ^{+0.0492610170079898}_{-0.04922765388108916}\n", - "jpsi_p: ^{+0.006310920173057535}_{-0.00631100168189077}\n", - "jpsi_s: ^{+0.22053487734368604}_{-0.22065928968672088}\n", + "psi2s_p: ^{+0.006517797812598556}_{-0.006515140916064958}\n", + "jpsi_s: ^{+0.22053488031823795}_{-0.22065928690040415}\n", + "jpsi_p: ^{+0.006310920098439091}_{-0.006311001771801287}\n", + "psi2s_s: ^{+0.04926101726478015}_{-0.04922765339439341}\n", "Function minimum: 19224270.58100143\n" ] } @@ -1093,7 +1113,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 22, "metadata": {}, "outputs": [ { @@ -1102,7 +1122,7 @@ "-3.1420346928204133" ] }, - "execution_count": 21, + "execution_count": 22, "metadata": {}, "output_type": "execute_result" } @@ -1120,7 +1140,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 23, "metadata": {}, "outputs": [ { @@ -1129,7 +1149,7 @@ "'5 h, 55 min'" ] }, - "execution_count": 22, + "execution_count": 23, "metadata": {}, "output_type": "execute_result" } @@ -1140,7 +1160,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 24, "metadata": {}, "outputs": [ { diff --git a/test.png b/test.png index 6356b16..5829e42 100644 --- a/test.png +++ b/test.png Binary files differ
Error-0.049227653394393410.04926101726478015
Valid