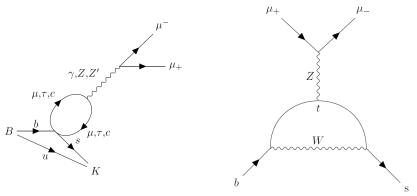
$B \rightarrow K au au$ search in $B \rightarrow K \mu \mu$ decays

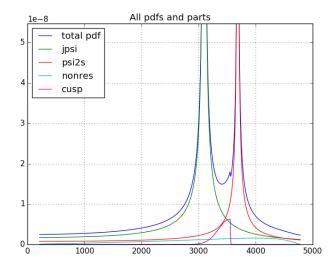
Sascha Liechti Supervisors: Nicola Serra, Patrick Owen


University of Zurich - LHCb group

Overview

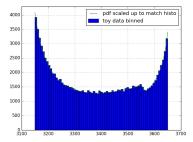
- 1. Decay
- 2. Search
 - Theory
 - Pdf and its parts
 - Where we are now
- 3. Outlook

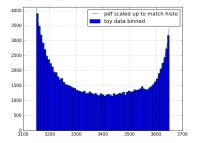
Decay


- Anomalies gave rise to new search for possible lepton flavor universality violation
 - Different couplings to leptons of different generations
 ▷ Most to τ, least to e
- ▷ How can we observe different generations at once?

Search

- According to SM the τ contribution should not be visible in the dimuon spectrum
 - Dependent on Wilson coefficients (C7), C9, C10
- $\triangleright\,$ Some SUSY models predict an amplification of the $\tau\,$ contribution:
 - Amplification due to new channel
 - Amplification factor: 10 1000
- $\Rightarrow \tau$ contribution should become visible
 - Cusp like shape in between J/Ψ and $\Psi(2S)$ resonances
 - At the moment still a bifurkated gaussian (shape will slightly change once we get the exact shape)


Search


Search

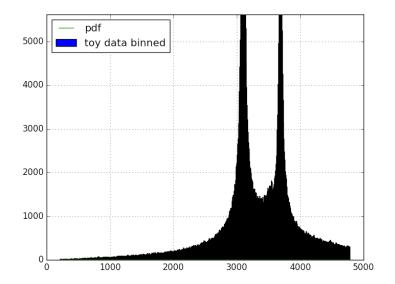
Extremely sensitive to cusp amplitude

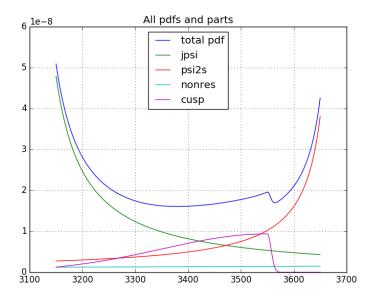
Cusp amplitude: $6 \cdot 10^{-7}$

Cusp amplitude: $4 \cdot 10^{-7}$

What can we do for now:

- Generate toys (equivalent size of data taken in run I and II)
- Running model of the dimuon spectrum and the relevant contributions for this search
 - Rare nonresonant
 - *J*/Ψ
 - Ψ(2S)
 - Cusp
 - Will be added in the future: $cc, B \rightarrow DDK, DD^*K, D^*D^*K$
- Binned fit pdf to the data and calculate likelihood


Outlook


Next steps:

- Integrate true shape of the cusp
- Add cc, B → DDK, DD*K, D*D*K
 ▷ Only B → DD*K nonresonant
- Implement additional crosschecks
- Analyze resolution
- Low energy regime fit:
 - $\triangleright~$ Improve sensitivity on c part and τ tail by including a constraint from low q^2

Backup Slides

