
July 3, 2019

zfit: scalable model fitting in Python
using TensorFlow

Master thesis of

Jonas Eschle

Supervised by

Prof. Nicola Serra

Dr. Albert Puig Navarro

Abstract

Fitting a model to data is an essential part in most High Energy Physics analyses.
Several frameworks to perform this action exist in C++, but no powerful enough
counterpart exists in Python, a language recently becoming more and more popular
for analyses. With the recent success of deep learning, frameworks in Python such
as TensorFlow came up, offering a high level interface for efficient, parallelised
computing on modern architectures. In this thesis, zfit, a library for model fitting
in HEP implemented in pure Python and based on top of TensorFlow, is presented.
It offers a well structured model fitting workflow allowing to build composite models
from a variety of shapes. A high level of customisation is possible due to well
specified interfaces and convenient base classes allowing to easily replace any part
in the workflow with a custom implementation. Together with the flexibility and
scalability of TensorFlow, zfit extends its functionality well beyond what current
model fitting libraries offer. An overview over the current status of model fitting
libraries and the HEP requirements will be discussed followed by the structure of
zfit and its implementation. Finally, examples which quantify the performance
and demonstrate the feasibility of zfit for a whole range of real world applications
are shown and an additional library for phasespace generation, phasespace, is
introduced.

ii

Contents

1 Introduction 1

2 Model fitting 5
2.1 Maximum Likelihood . 5
2.2 Requirements . 6
2.3 Existing libraries . 7

2.3.1 General fitting . 7
2.3.2 HEP specific . 8

3 zfit introduction 10
3.1 TensorFlow backend . 12

4 zfit implementation 17
4.1 Spaces and Dimensions . 18

4.1.1 Limits . 18
4.2 Data handling . 19
4.3 Model . 20

4.3.1 Parametrization . 21
4.3.2 Implementing a custom PDF . 22
4.3.3 Sampling . 25
4.3.4 Extended PDFs . 26

4.4 Loss . 26
4.5 Minimisation . 28

4.5.1 Different optimisations . 28
4.6 Results and uncertainties . 29

4.6.1 Parameter uncertainties . 30

5 Performance 31
5.1 Gaussian models . 31
5.2 Angular analysis . 34

6 Beyond standard fitting 36
6.1 Amplitude fits . 37
6.2 phasespace . 38
6.3 Dalitz implementation . 39

7 Conclusion and outlook 44

A Likelihood 47

B Backend 50
B.1 HPC and paradigms . 50
B.2 Working with TensorFlow . 52

B.2.1 Caching . 53

iii

C Implementation 54
C.1 Spaces definition . 54
C.2 General limits . 55
C.3 Data formats . 56
C.4 Data batching . 57
C.5 Dependency management . 57
C.6 Base Model . 58

C.6.1 Public methods . 58
C.6.2 Hooks . 59
C.6.3 Norm range handling . 59
C.6.4 Multiple limits handling . 60
C.6.5 Most efficient method . 60
C.6.6 Functors . 61

C.7 Sampling techniques . 61
C.8 Loss defined . 63

D Performance studies 63
D.1 Hardware specification . 63
D.2 Profiling TensorFlow . 64
D.3 Additional profiling . 65

References 65

iv

1 Introduction1

The Standard Model (SM) of Particle Physics describes the most fundamental particles in2

the universe and their interactions. According to it, all matter is made up of fermions:3

quarks and leptons. They appear in different flavours and generations as depicted in Fig.4

1. There are additionally four gauge bosons that allow the particles to interact via their5

exchange: the photon is the electromagnetic force carrier and couples to particles with an6

electric charge, such as the electron and the quarks. W and Z bosons are the carrier of7

the weak force and couple to all fermions. Unlike other forces, the strength of the strung8

interaction increases with the distance of two particles. As a consequence, quarks do not9

appear alone in nature. Instead, they form composite particles existing of multiple quarks,10

the hadrons. While there are hundreds of hadrons, nearly all of them have lifetimes under11

nano seconds and decay to lighter particles. The only stable particles are the well known12

neutron, proton, electron and neutrino, which together make up the visible matter in our13

universe. Finally, all particles in the SM (except neutrinos) acquire mass through their14

interaction with the Higgs Field by the exchange of Higgs Bosons.15

With the recent discovery of the Higgs boson, the last missing piece of the SM has16

been found. It provides a complete description of nearly all observations. And yet it does17

not seem to be the final answer since there are phenomena that remain unexplained, such18

as the existence of dark matter that interacts gravitationally and significantly determines19

the dynamics of galaxies does not appear in the SM, and the fact that neutrinos have20

mass since they oscillate does not coincide with the predictions of the SM. With larger21

amounts of data collected, more precise measurements need to be made in order to look22

for further inconsistencies of the SM that can guide us to a new theory.23

In the scientific context, what is called an observations is in fact an answer extracted24

from nature by asking the right question and using statistics to analyse the response of25

the data. A question in this sense is an experimental setup and a scientific hypothesis is a26

proposed explanation for an observed phenomena which can be tested. Different methods27

can be used to verify a hypothesis, but all of them make use of a test statistic that needs28

a single value to quantify their agreement with the observations. Given strong enough29

evidence, the null hypothesis may be rejected in favour of an alternate hypothesis. As an30

example, this can be used for the discovery of a new particle where the background only31

hypothesis acts as the null and the alternate is the background and signal combined.32

Figure 1: The particles of the SM.

1

As already mentioned, observations from experiments are needed. To study the33

fundamental particles of the SM, high enough energies are required to produce them.34

High Energy Physics (HEP) experiments all over the world accelerate light particles35

such as electrons or protons and let them collide. The Large Hadron Collider (LHC) at36

CERN accelerates protons to energies up to 6.5 TeV1, which is currently the frontier in37

high energies. Around the collider, there are four large experiments: the general purpose38

detectors ATLAS and CMS, ALICE, an experiment specialized on lead interactions and39

LHCb, a detector focused on the study of heavy flavour decays. These experiments are40

situated at collision points around the LHC where 40 million collisions occur per second.41

Due to the high concentration of energy on collision, heavier particles are created and42

decay immediately to lighter particles. The experiments measure the tracks and properties43

of the decay products that pass through the different detectors. The raw readout of those44

is forwarded to a computer farm, where events of interest are marked and kept whereby45

the rest of the events are not recorded. This reduces the stream of data to a frequency46

that allows it to be stored on persistent storage. From there it can be retrieved and used47

for further, offline analysis.48

Performing a full analysis to measure physics observables from the data involves several49

steps. This includes among others cleaning the samples by applying selection criteria,50

reweighting to correct for systematic effects or creating new features that better describe51

the event. The sample can then be used to directly infer unknown parameters by using52

physically motivated models and performing a fit to the data. All of these analysis steps53

require convenient, reliable and fast libraries together with enough computing resources.54

To accomplish this, a lot of code is being written and stacked upon each other. To cope55

with the ever increasing amounts of data, both in real-time event filtering as well as offline56

analysis, it is mandatory to keep the computing level all in all at the state of the art.57

Computing is still a comparably young, fast moving field. Hundreds of general58

programming languages exist, most of them do not stay for a long time or only exist59

in a specialist community. Even longer lived languages have both advantages as well as60

shortcomings. This leads to different fields adopting a few, or even one, main languages61

that specifically well serve their purpose. The field of scientific computing mainly involves62

either simulation of systems or data analysis. In both cases languages that are fast63

to do number crunching are required. Among the most popular languages for heavy64

computations are Fortran and C/C++. The former is over six decades old and still used65

up to these days. It was designed for numerical processing and contains optimizations that66

still outperform other languages. C and its superset C++, the most popular language in67

HEP, date back about four decades and are built for more general usage than Fortran68

is. Although being fast and a powerful general programming language, it does not offer69

the convenient abstractions that scripting languages offer. It allows but also requires to70

manually handle certain resources, such as memory allocation, and is limited in terms of71

flexibility because it is a statically compiled language. While the latter feature allows for72

high performant execution, interpreted scripting languages such as Python offer additional73

comfort and flexibility. While the execution of actual Python code can be significantly74

slower than comparable static compiled languages when it comes to pure number crunching,75

the huge Python package ecosystem offers a lot of libraries that implement time consuming76

mathematical operations in a more efficient language, such as Fortran or C++. This77

1Natural units with ~ = c = 1 are used throughout.

2

makes Python a higher level library that abstracts away the handling of computation78

demanding operations through external function calls. Together with an especially clean79

syntax style, Python code is expressive and natural to read, giving in only a small penalty80

for the performance from the overhead of the external calls.81

This combination and a fast growing open source-community has established Python82

as the most popular language for data analysis. With the recent advances in Machine83

Learning and the rising popularity of Big Data analysis among industry leaders, the size and84

quality of the scientific Python ecosystem has made a huge leap forward. Topics like deep85

learning, which require highly optimised code due to the abundance of vectorised matrix86

multiplications, have lead to the appearance of frameworks designed for this kind of massive,87

parallel computations and supported by large companies such as Google’s TensorFlow [1]88

(TF) or Facebook’s PyTorch [2]. With large economical interests coming into play, these89

frameworks also focus on the efficient use of specialized hardware, such as Graphical90

Processing Units (GPU) which are by design optimized for vectorized computations and91

therefore fit the need of the Deep Learning community. These frameworks are optimized92

both in terms of performance as well as in ease of use, dealing with the burden of93

incorporating the parallelization.94

Next to all these developments there is also a trend inside the HEP community to move95

towards a more Python-oriented software stack. In recent surveys [3], its usage surpasses96

C++ in collaborations such as CMS. The existence of the scientific Python ecosystem97

offers the possibility of sharing some of the effort with the data analysis industry and98

open-source community, allowing to perform a significant number of the analysis steps in99

HEP within Python out of the box. This leaves to the HEP community only the burden100

of developing the field-specific tools required to fit into the ecosystem. While some of the101

existing frameworks in C++ offer Python bindings, they are usually not well integrated102

with the Python language and the whole ecosystem. Several model fitting libraries in pure103

Python have already been developed in order to fill parts of this gap, though none of them104

offers the complete feature set that would be desired for HEP analysis and are hard to105

extend. Therefore, while large advances have been made on this front, a viable alternative106

to the existing, mature model fitting libraries in C++ is still missing. Nonetheless, some of107

these libraries have proved the feasibility of using deep learning frameworks as computing108

backends for model fitting.109

Summarizing, HEP has110

• the need for scalable, flexible model fitting;111

• a strong movement towards Python with its huge data analysis ecosystem;112

• the lack of a sufficiently strong model fitting library in pure Python.113

Furthermore, modern high performance computing frameworks from deep learning114

arose and their feasibility for computational backends in model fitting was demonstrated115

in several projects.116

With these ideas in mind, the zfit package has been developed with the goal to provide117

this need by creating a pure Python based library built on a deep learning framework.118

This requires the formalisation of the fitting procedure, the establishment of a stable API119

and the usage of current knowledge from similar libraries. The following Section 2 will120

3

expand on model fitting in HEP incensing a discussion on already existing libraries. With121

this knowledge, the usage of zfit and its basic concepts, the formalisation of the model122

fitting workflow, and the choice of the backend and its capabilities are outlined in Sec. 3.123

The individual components of zfit will be discussed in more detail in Sec. 4. Afterwards,124

the performance and scalability is evaluated with examples in Sec. 5. The extension of125

zfit to more than the default model fitting is discussed in Sec. 6 by using its capabilities126

to implement an amplitude fit. Lastly a brief overview of the future plans of the zfit127

library and its ecosystem are given in Sec. 7.128

4

2 Model fitting129

In HEP, observations can be quantified by mathematical models which originate from130

hypotheses or theories and make assumptions about the underlying behaviour of nature.131

Often, these models have free parameters that we want to measure. A single model may132

describes only parts of the observations and combinations and compositions of models may133

be needed to build a model that describes the full data sample. Creating these models in134

a convenient and correct way and finding the values of the parameters to maximise the135

agreement with respect to the data is what “model fitting” refers to.136

2.1 Maximum Likelihood137

At the very heart of model fitting is the need to quantify the agreement, or rather the138

disagreement, of a model with the data. This function of the parameters and data is139

known as the loss. It is the very definition of the problem and mathematically fully defines140

the solution. In HEP analysis losses are mostly based on the likelihood of the model under141

the data, whereby the model typically depends on free parameters. In the following, an142

introduction to the method of maximum likelihood is given. A more detailed explanation143

and derivation can be found in Appendix A.144

A likelihood can be defined by the following: given a model parametrised by θ and a145

dataset x, the likelihood describes the odds that an event happened under θ146

L(θ) = P (x|θ). (1)

The likelihood as shown in Eq. 1 is the quantity to be maximised in order to achieve147

the maximal P (θ|x). To build this likelihood, we need the model fθ(x) to be a probability148

density function (PDF), i.e. it’s normalised to 1. Especially in HEP, it is often the case149

that the PDF is zero outside of certain boundaries, for example because points outside a150

specified domain are removed, in which case151 ∫ u

l

fθ(x)dx = 1, (2)

where l and u define the lower and upper boundaries of the domain, respectively. This152

also extends to higher dimensions. It follows directly that any function gθ(x)2 can be153

normalised and therefore used as a PDF fθ(x)154

fθ(x) =
gθ(x)∫ u

l
gθ(x)dx

. (3)

A likelihood can be a product of likelihoods of independent events155

L =
∏
i

Li, (4)

and therefore the likelihood of dataset x can be written as the joint probability of each156

event157

L(x|θ) =
∏
i

fθ(xi),

2This is about the small subset of modelling functions in physics without pretending mathematical
correctness in a general way. This includes functions f : Rn � R that are positive, l1 and (piecewise) C1.

5

with xi a single event from the dataset x.158

The calculation of L(x|θ) involves the product of many small numbers, which is not159

possible to perform using a normal computer given its limited precision. To solve this issue,160

a log transformation can be applied. In addition, the log-likelihood is usually negated,161

thus changing the target of finding the maximum to finding a minimum and ending up162

with a negative log likelihood (NLL).163

A maximum likelihood estimate using the transformation above is therefore given by164

finding the minimum of the NLL165

NLL = −
∑
i

ln(f(θ|xi)) (5)

This maximises therefore the agreement between data and model, i.e. the probability166

of the model given the data.167

As seen in Eq. 4, the combination of likelihoods is quite versatile and not only limited168

to a model shape matching the data shape. Often, a combination of several of the following169

likelihoods is built170

Simultaneous Multiple models can share parameters. To fit them simultaneously to171

different datasets, their likelihoods can be combined (summed).172

Extended While a PDF is normalised, we can add an absolute scale as an additional173

term to the likelihood to reflect the number of events contained in this model. Given174

the data, we know the number of events and can add a Poisson term to account for175

them.176

Prior For some parameters, a prior distribution is known. This describes the knowledge177

obtained from other measurements and influences the likelihood if the parameters178

spread is in the same order of magnitude as the sensitivity of the fit to the parameter.179

A prior, or constraint, is a probability depending directly on the parameter value180

and can also be added to the likelihood.181

Regardless of the complexity of the model, we end up with a single number, the loss, that182

can be used to compare the agreement between different models or parametrizations and183

the data. When fitting a model, the loss is minimised by adjusting the parameters. While184

the absolute value of the loss is usually not important, the ratio of losses from different185

models can often be useful in further statistic tests.186

2.2 Requirements187

Some features are crucial in order to implement a model fitting library. An important part188

of model fitting is the model building itself, but a library should also offer a convenient,189

transparent creation of the loss and the minimisation. Especially in HEP, the following190

features are essential:191

• PDFs are by definition normalised over a certain range. In most other libraries and192

fields, the domain is assumed to be (−∞,∞). In HEP, this is basically never the193

case and a finite normalisation range is used.194

6

• Fits in HEP are often more than one-dimensional. The framework should therefore195

naturally extend to higher dimensions.196

• Building and combining models from basic shapes like Gaussian or exponential197

functions only suffices for simpler cases, but this is often not enough to build more198

complicated or specific models.Therefore, a convenient way to implement custom199

models has to be provided.200

• Reasonable scaling with the data size and the model complexity is a key criteria. This201

is often especially hard to achieve in combination with the ability of specifying custom202

models, since the latter usually requires to have the parallelization implemented by203

the user.204

• While the minimisation of the loss yields an optimal value for each parameter, it is205

crucial in HEP to also know the uncertainty of the value. This requires the library206

to have a transparent way of handling the parameters and their uncertainties as207

well as to provide the flexibility to perform an advanced statistics treatment.208

2.3 Existing libraries209

Model fitting itself is nothing new. In fact there are already a lot of model fitting libraries210

available. Some of these libraries are also written in Python and cover a similar scope211

as zfit. Building a new fitting library from scratch sounds therefore like reinventing212

the wheel and should be avoided if not necessary. But as already discussed in Sec. 1,213

fundamental changes in the computing architecture are leading to vectorized paradigms.214

Additionally, the needs in HEP for larger and more complicated while still flexible fits215

require to keep up with the state-of-the-art in computing. And this sometimes requires a216

re-invention.217

However, it is an imperative to make sure that no existing library already fulfils the218

needs or can be extended to. And even if concluding that a new library is the way to go,219

as much as possible should be learned and taken from any existing library in order to220

reinvent as few as necessary. In the following an overview of already existing libraries is221

given.222

2.3.1 General fitting223

Fitting models to data is a task that is performed in a variety of fields independent of HEP.224

Different general fitting libraries exist in Python, but they often contain functionality225

not actually needed in HEP, such as mean, variance, survival function, and lack central226

features like a custom normalisation range or the extension to more than one dimension.227

• Scipy [4] is the go-to library for scientific calculations in Python and provides an228

extensive toolbox for statistical and numerical methods. There is a module with229

distributions that have proven to be stable and work well. Downsides of the package230

include a non-optimized implementation in terms of parallelisation and lack of231

support for composite models.232

• lmfit [5] shares a lot of its design in terms of naming and concept to zfit. It is233

built for model fitting, has parameters, minimisers, fit results and more. It lacks234

7

more advanced features like the possibility of normalisation ranges for PDFs or good235

scalability, since it is built on top of numpy, a fast numerical library in Python, and236

scipy, which strongly limits the ability for massive parallelisation.237

• TensorFlow Probability [6] provides a library for statistical reasoning. Its focus238

is on analytical functions and only marginally extends to numerical and Monte239

Carlo methods, which limits its application to analytically integrable functions.240

Interestingly, it contains a lot of of features that can be used inside or together with241

zfit, such as Bayesian inference with MCMC sampler and analytic functions with242

integrals already implemented in TF.243

2.3.2 HEP specific244

A wide range of specialised fitters exist in HEP. The overview here is limited to general245

purpose fitters which can be used from Python.246

RooFit [7] is the de-facto standard tool for fitting in HEP. Models are built using247

classes and provide automatic normalisation and integration. There is support for248

binned as well as unbinned fits. RooFit itself extends beyond that and offers also249

an extensive plotting and statistics module. While the library has proven itself in250

numerous analyses over the years, and the model building part of zfit is actually251

inspired by the core of RooFit, there are several shortcomings which are meant to252

be addressed with zfit:253

• RooFit is not a native Python library but can only be accessed through the254

Python bindings to Root. Since RooFit manages its own memory in C++255

and Python uses a garbage collection as well, this can lead to memory leaks256

and completely undefined behaviour.257

• Since the Python interface is barely a wrapper around the C++ classes, it does258

not integrate well to the scientific Python stack.259

• In terms of flexibility, RooFit offers the possibility to be extended up to a260

certain degree with custom classes in pure C++. But especially when used261

from Python, it does not provide a convenient way to define custom PDFs.262

• While there are improvements in the pipeline, it is not natively optimized to263

run vectorized on multiple cores or even accelerators like GPUs.264

• Since the usage requires Root, the installation and setup is typically not265

lightweight.266

probfit [8] is a fitting library written in pure Python that mainly uses Cython to perform267

the heavy computations. This is a limitation in terms of performance and custom268

PDF implementations that makes a possible extension hard. Since it does provide269

limited features only, a large extension would be needed together with a major270

conceptual overhaul to be able to include new features.271

pyhf [9] is a re-implementation of HistFactory from ROOT in Python. It makes use of272

TensorFlow and other libraries including PyTorch and Numpy as a backend. It is273

purely designed to do binned template fits and does not extend its functionality274

beyond that point.275

8

The CMS Combine Tool [10] contains a subpart that implements template fits in TF. It276

does not extend its functionality further and is currently not available as a stand-277

alone package. Several useful parts like likelihood profiling or a minimiser in pure278

TF have been implemented there.279

TensorFlow Analysis [11] is a library with a simple, functional approach to built the loss280

with TF and use Minuit [12] directly inside3 to find the minimum. It offers a lot of281

physics content to create a model. While the lightweight approach comes with a282

lot of flexibility, the library also leaves quite some work to the user. For example it283

does not offer anything close to model composition with automatic normalisation.284

Notably, in its current state, the library lacks Python 3 support. However, its285

importance has to be stressed since it demonstrated the feasibility of using TF for286

unbinned likelihood fits with complex models and was a major inspiration for the287

development of zfit.288

TensorProb is a model fitting library in Python that uses TF as the backend. In general289

it was built with a similar goal in mind as zfit, providing a model fitting library in290

Python using TF, but using more an experimental approach. It offers models that291

can also integrate and sample. The content is based on older TF versions and the292

library is strongly limited in functionality. Most importantly though, the project293

never grew out of its experimental status and has been discontinued. It recommends294

now to use zfit instead.295

While the discussed model fitting libraries have different strengths and weaknesses,296

no single one fully fulfil the needs of HEP. However it is worth pointing out that their297

demonstration of concepts, designs and even certain functionality that can be used directly298

with zfit are essential pieces in the development of zfit.299

3This also requires to have the Root package installed.

9

3 zfit introduction300

zfit was created in order to fill the gap of a model fitting library in pure Python for301

HEP. We will now have a look at it, how it is structured and supposed to fill this gap.302

Model fitting as implemented in zfit is split into five essential parts. To introduce them303

and zfit itself, an example with a sum of a Gaussian and an exponential PDF will be304

implemented. This example can be thought of as a fit to an invariant mass distribution of305

a signal and a background component.306

Let’s assume we are interested in an observable x within a range from 5 to 10. In zfit307

this is expressed with a Space defining our domain308

limits = zfit.Space(obs="x", limits=(5, 10))
309

zfit can handle data from a variety of different sources. In this case, we load the310

data data_np from a numpy array311

data = zfit.Data.from_numpy(array=data_np , obs=limits)
312

Since the data was specified with the limits as its observables, it will be cut automat-313

ically to be only within the limits range. In this context, we can think of the observable314

x as of the column of the data frame.315

Next the model needs to be built. We create the Gaussian PDF with two free316

parameters, mu and sigma. Using 7 and 1.5 as initial values, respectively, this is done as317

mu = zfit.Parameter("mu", 7)

sigma = zfit.Parameter("sigma", 1.5)318

Creating the Gaussian in the observable x and using the parameters from before as319

gauss = zfit.pdf.Gauss(obs=limits , mu=mu, sigma=sigma)
320

Equivalently the exponential PDF is created. A fixed value of −0.1 is used for the321

exponential parameter λ as in eλx and can directly be given to the PDF4
322

exponential = zfit.pdf.Exponential(obs=limits , lambda_=-0.1)
323

To build the sum, an additional free parameter is used to describe the fraction of the324

first PDF. It is initialised with 0.5 and limited between 0 and 1325

frac = zfit.Parameter("fraction", 0.5, 0, 1)

model = zfit.pdf.SumPDF(pdfs=[gauss , exponential], fracs=frac)326

Now that the model is built, we can define the loss by combining it with the data.327

Here an unbinned NLL will be used328

4Alternatively, a Parameter with the argument floating set to False can be created.

10

nll = zfit.loss.UnbinnedNLL(model=model , data=data)
329

which needs to be minimised in order to find the optimal parameters. To achieve this goal,330

a minimiser such as Minuit is needed. Once it is created, we use its minimize method in331

order to minimise the previously built loss332

minimizer = zfit.minimize.MinuitMinimizer ()

result = minimizer.minimize(nll)333

The outcome of this minimisation is stored in a FitResult object. Whether the334

convergence was successful can be checked with335

has_converged = result.converged
336

The free parameters of the model are updated in-place with the values obtained from337

the minimisation. This implies that the shape of the model has changed now, since it338

depends on the parameters. While a parameter can change again, the result stores the339

values from the minimisation as immutable numbers. They can be accessed like5340

mu_value = result.params[mu]["value"]
341

The value of the parameter is incomplete without an estimate of its uncertainty. For342

an accurate estimation, we can use error, an advanced method that takes all correlations343

among the parameters into account344

errors = result.error()
345

This simple yet complete example demonstrates how model fitting in zfit works. All346

parts contain a lot more functionality than just seen, but the structure of the workflow as347

shown in Fig. 2 into five independent parts remains the same, no matter how complicated348

a fit may be.349

Model building The construction of models is the core of zfit and involves Functions350

and PDFs. The difference between them is that the latter is normalised to one351

over a certain domain. Building the model includes a set of convenient base classes352

that allow to easily create a custom model as explained in Sec. 4.3. Furthermore,353

composed models involving sum, products and more are available.354

Data Any kind of data needs to be loaded and transferred into a well defined zfit format.355

The Data class takes care of this and offers several formats to load from, which then356

can be used by models. The aim here is to provide a simple way of loading data357

from different formats into zfit and applying some cuts.358

5Notice that mu, the parameter itself, and not "mu", the name of it, is used as the key.

11

Figure 2: Fitting workflow in zfit. Model building is the largest part. Models combined with
data can be used to create a loss. A minimiser finds the optimal values and returns them as a
result. Estimations on the parameters uncertainties can then be made.

Loss This is the core definition of the problem. It uses the model and data objects to359

calculate a single number that quantifies the discrepancy from the model and the360

data. Typically, a binned or unbinned NLL or a χ2 is used, but zfit offers the361

freedom to implement any desired loss that is not available in a straightforward way.362

From this step onward, it is irrelevant what data or models are actually used. Only363

the number and the gradients with respect to the models parameters matter.364

Minimisation Given a loss, the minimiser minimises its value with respect to the free365

parameters of the models. In zfit, several algorithms are implemented by wrapping366

existing minimisation libraries.367

Result and Errors After each minimisation, a FitResult object is created. It stores368

all the information about the minimisation process and allows ,amongst other things,369

to check if the convergence was successful. The result also includes the parameters370

and their values at the minimum. Furthermore, the loss and the minimiser itself are371

also stored in the result. Using both of them, an estimation on the uncertainty of372

the parameters can be made. For this purpose, some simple algorithms are provided373

by zfit, but any more sophisticated uncertainty estimation can be made by using374

the objects made available by the FitResult.375

This formalisation is a powerful approach: the separation of the model fitting into376

these fine building blocks allows to improve and maintain the individual parts almost377

independently. Most importantly, it reveals a surprising similarity to the field of deep378

learning: apart from the last step, the workflow is exactly the same. Using a deep learning379

framework as the backend for a model fitting library therefore seems like an obvious choice380

to consider.381

3.1 TensorFlow backend382

Deep learning has recently gained a lot of attention as it has been quite successful as a tool383

in big data analysis and predictive statistics. In its core, the idea is to extract correlations384

12

Figure 3: A schematic view of a DNN function. Input takes the data and has the dimension of
an event. Each end-point of a line is multiplied by a weight, a free parameter, and added with
the other lines. At a node, a non-linear function is then applied.

from data by training a neural network on them in order to make accurate predictions on385

unknown samples. This can be the classification of images, the prediction of stock markets386

etc. More interestingly, the typical deep learning workflow can be summarised also by387

Fig. 2 by replacing “model” with “neural network”, 6 “minimisation” with “training”388

and removing the last block “Result & Error”. Moreover, deep learning and HEP model389

fitting both use large data samples and build complex models. This similarity inspired390

the implementation of zfit with a deep learning framework as the backend.391

While we have just shown how the two workflows look incredibly similar at first392

glance, there are some hidden, crucial differences. Knowing them is essential in order to393

understand the advantages but also limitations of this approach. In the following we will394

have a simplified at the core of deep learning and compare then to model fitting.395

• A Deep Neural Network (DNN) is simply a function f : Rn → Rm. The input space396

is the number of observables of a single event. The output of the function, the397

prediction, is notably m dimensional. Contrary to this, a model with PDFs outputs398

into the one dimensional space of a normalised probability. DNN outputs, if used399

for classification, correspond to pseudo-probabilities. While they are not normalised,400

there exists a monotonic transformation to a probability.401

Consequence: normalisation over a certain range is specific to model fitting and no402

explicit tool, e.g. for numerical integration, exists in the deep learning frameworks.403

• In model fitting, the composition of shapes is motivated by previous knowledge404

and an underlying theory is built. There is often a meaning behind each part and405

the shape of the model is restricted to a specific problem. This specific shape,406

coming from assumptions and previous knowledge, is what keeps the number of407

parameters low: typically, no more than a dozen for simple fits and a maximum of a408

few hundreds for the most complicated fits are used. Contrary to that, the structure409

of a DNN is basically agnostic to the problem and depends mostly on its complexity.410

It therefore incorporates a minimum of pre-knowledge and assumptions about the411

correlations in the data. This huge versatility is what makes deep learning such a412

6Neural networks in deep learning are also called models. The term “model” will here solely be used
for “classical” model fitting as in zfit.

13

successful field but comes at a price: a great number of free parameters is needed,413

starting at thousands for really simple DNNs, typically being around hundreds of414

thousands and going to tens of millions. DNNs are a structure consisting of layers415

with nodes as shown in Fig. 3. Each of the nodes adds an additional parameter for416

every incoming connection, resulting in a large number of parameters.417

Consequence: While dozens of DNN building libraries like Keras7, PyTorch and418

more offer great capabilities in building DNNs, their abstractions into layers are of419

no use to model fitting.420

• A DNN is essentially matrix multiplications scaled by the free parameters, with421

an additional simple, non-linear activation function applied. In model fitting, the422

shape can have an arbitrary complexity and contain a whole range of elementary423

functions. Furthermore control flow elements and complex number are often used424

as well. Not only is the function itself more complicated, also the dependency of425

parameters can be highly non-trivial.426

There is an additional difference in the precision of the floating point operations. In427

model fitting, the precision required is higher, because the values of likelihoods and428

the changes are larger compared with neural networks often having values varying429

between −1 and 1. Also the Quasi-Newton methods as described below build an430

approximate second order derivatives which needs a high enough precision.431

Consequence: While both fields do heavy computations, the focus of the optimizations432

in a fitting library is slightly different and requires for example to always explicitly433

specify float64 as data type.434

• Minimising a loss is a non-trivial task. Algorithms usually start at a certain point435

and use local information to make forward steps. The gradient and sometimes436

higher order derivatives, usually up to the second order, are used to help finding437

the minimum. In particular, which order is usable strongly depends on the number438

of parameters: the Hessian matrix of n parameters has n2 entries rendering its439

calculation unfeasible for more than a few hundred of parameters; this restricts the440

minimisation of DNNs to only use the first order derivatives at the cost of more441

required steps.442

Consequence: On one side, minimisers designed for DNNs and optimised to work443

with the framework are not suitable for model fitting. On the other side the analytic444

gradients that are provided by th frameworks for their minimisers can be easily445

extended to higher orders and come in very handy for model fitting minimisers.446

• Fitting a model has the goal to find the parameters for which the model matches447

the data best. In terms of a loss function, this is equivalent to finding its global448

minimum. Being stuck in a local minimum is a problem and requires careful449

treatment. Contrary in DNNs the global minimum is not found but also not desired.450

The DNN has to approximate an arbitrary data sample good enough and a local451

minimum is usually found, it is in fact preferred over the global minimum since, due452

to the high degrees of freedom of a DNN, this typically entails a huge over-fit8 and453

a bad generalization.454

7Keras is an API specification only, a reference implementation exists.
8Basically remembering every noise in the data.

14

Figure 4: Example of a graph representing result = (5 + 3) ∗ (7 + 2).

Consequence: While finding the global minimum is crucial in model fitting, deep455

learning is interested to find a local minimum.456

• Finding the global minimum in the model fitting case involves the evaluation of the457

loss over the whole data sample at every step. For the training of a DNN, variations458

of a technique called stochastic gradient descent (SGD) are used: they work by only459

evaluating a small mini-batch of the data, typically around 32 events, and then460

taking a step towards the negative gradient direction.461

Consequence: Both fields are pushing the limits of handling big data and samples462

too large for the memory are common. Deep learning is optimized to loop through463

a data set with very small batch sizes to take a minimisation step but to do that464

millions of times. Model fitting needs to loop through the whole data sample once465

for a single step but no more then a few thousand times.466

As seen, while there are differences, the core of the problem is still the same: build a467

complicated model, use data to get a value from it and tune parameters to optimize the468

loss.469

To accomplish this task efficiently, deep learning frameworks use a declarative paradigm470

by building a computation graph as seen in Fig. 4. This allows to perform optimisations471

and define the parallelisation before the actual execution of the computation. Furthermore,472

it also allows to get an analytic expression for the gradient by consecutively applying the473

chain rule within the graph.474

To implement model fitting in zfit, the TensorFlow library was chosen, restricting475

the implementation to static graphs as explained in more detail in Appendix B.2. The476

main motivation for this decision comes from the fact that models in model fitting usually477

don’t change their logic but are rather built once and then minimised. While the same is478

true for most DNNs, more advanced fields in deep learning like reinforcement learning can479

heavily rely on dynamic models. The main advantages of a static graph are the additional,480

potential speedup and the immutability, which leads to less unexpected behaviour. The481

restriction that anything built will remain like that and not change allows for obviously482

more efficient optimizations compared to a graph where any part could change anytime483

and a re-analysis of the graph is required.484

15

Working with graphs leads to difficulties and unexpected behaviours in comparison485

with more traditional, non-graph based code, such as the one used in RooFit. In zfit,486

most of these complications are hidden from the user and the library offers a similar user487

experience as the one found in other model fitting libraries. This requires some extra care488

taking behind the scenes, as explained in Appendix B.2.489

16

4 zfit implementation490

Things should not be easy or hard. But consistent.491

In Sec. 3 an example of a complete fit with zfit was shown. While this was a rather492

simple example, zfit generalizes to more complicated, custom model or higher dimensional493

fits in a consistent manner. The guiding principles that facilitate this generalization are494

One thing The library is meant to do one thing: model fitting. Additional capabilities495

like advanced plotting, statistics etc. are intentionally left to other libraries.496

Simplicity As often stated, easy cases should be easy or at least straightforward and not497

hard. For simple, one dimensional models and fits, no extended knowledge about498

advanced concepts or pitfalls should be necessary. Making mistakes can only happen499

when clearly leaving the known grounds.500

Consistency When going from the simple to the more complex case, it should not be501

necessary to learn a whole new set of rules and behaviour. Instead, enough generality502

should be contained also in the simple case, even if it means to slightly heighten503

the knowledge required for it. The overall difficulty should gradually increase, and504

expert knowledge should only be required for expert problems.505

Flexibility No library can ever cover everything, so special cases will need to be imple-506

mented specially, but most elements of the library should nonetheless be usable and507

only the special part has to be implemented specially.508

These requirements can be conflicting. Especially flexibility and simplicity are hard to509

reconcile. A conflict arises with the potential of creating bugs: since not every case is the510

most complicated one, not every user will know about all peculiarities of the library and511

may uses the freedom in the wrong way. To avoid mistakes due to the lack of knowledge512

of the library but also incorporate the flexibility, zfit follows the pythonic way, a term513

used to describe the philosophy behind Python and its usage.514

While the Python language itself, as any other language, consist of syntax specifications,515

a non-neglectable part of Python consists of its philosophy, the Zen of Python. A commonly516

used phrase in this context is the expression “We’re all adults here”. It refers for example517

to the absence of enforced private class attributes in Python. In its essence it means that518

anyone should be able to change anything, which offers a great flexibility.519

A complementary strong guidance is given by “There should be one – and preferably520

only one – obvious way to do it”. This encourages to discuss problems appearing in the521

Python community and finding one “best” way to solve a specific problem. And even if522

there is no “best” solution, at least a convention should be agreed on. Combining these523

two ideas, zfit provides a lot of freedom and allows to implement any part of the fit flow.524

To counter unintentional mistakes, clear guidelines and examples on how to accomplish525

something specific are provided. This is especially important for the simpler cases, in526

which one clear way is shown.527

In the following, we will go through a few essential pieces of the library that allow to528

extend the workflow naturally to more complex fits and discuss them in more detail.529

17

4.1 Spaces and Dimensions530

The extension to more than one dimension when fitting a model contains some ambiguities.531

The data, limits and the models all have corresponding axes or columns that should532

match. To deal with that in a simple, yet consistent manner, zfit has a Space. The533

responsibility of this class is to define and handle the axes or dimensions and limits. To534

understand the concept and the Space itself, three definitions need to be made:535

Observables The observables are the named axes of a coordinate system. A single536

observable is a string and a list of strings acts as several observables describing a537

higher dimensional system. In the context of data this is equivalent to columns538

in a data frame. Observables allow a named, inter-object identification of axes.539

Therefore, working with observables allows to work independently of the underlying540

data ordering.541

Axes Axes are integers and are used to enumerate the axes of a coordinate system. This542

corresponds to indices of an array and provides the fully order-based mapping543

necessary for intra-object manipulations. For example, a Data with three columns544

has three axes, 0, 1, and 2, which can though be reordered so that the corresponding545

observables match the order of some other observables.546

Limits A description of boundaries that can be used to define any kind of limits of the547

axes. Currently only rectangular limits are supported but arbitrary shaped limits548

will be provided in the future.549

A Space can be initialized with observables and limits to define a domain. When it’s550

assigned to an object, it automatically connects the axes of the object with the observables551

from the Space. More details on the implementation and use cases as well as additional552

functionality for dimensional handling can be found in Appendix C.1.553

4.1.1 Limits554

Limits are used in many instances, be it in sampling limits, integration or data limits. A555

Space not only defines the observables but typically also has limits associated with it. In556

one-dimensional fits, limits as seen in the example in Sec. 3 are needed. Simple limits557

consist of a tuple for each observable with lower and upper limits. For example a Space558

in one observable x from −5 to 3 can be created like559

limits = zfit.Space(obs="x", limits=(-5, 3))
560

This is the simplest way of specifying limits and rather a special case. For anything561

more sophisticated, such as multiple limits or multiple observables, either a composition562

of Spaces or the more general format as explained in Appendix C.2 has to be used. For563

example when blinding a region, a Space with multiple limits can be used.564

While the general format is fully specified independent of a Space and can therefore565

be useful programmatically, a Space with multiple limits can be built unambiguously566

from Spaces with simple limits by adding them, either through a dedicated zfit function567

or using the addition operator in Python. In this way, multiple limits can be created568

through simple composition and without the need of using the more general format.569

18

As an example, let’s assume a Space should be created with the observables x, y in570

the two domains l01 and l23571

l01 = {(x, y)|x0 < x < x1, y0 < y < y1}
l23 = {(x, y)|x2 < x < x3, y2 < y < y3}.

We start out creating the domains by specifying the limits in the x observable572

limit_x_01 = zfit.Space(obs="x", limits=(x0, x1))

limit_x_23 = zfit.Space(obs="x", limits=(x2, x3))

limits_x = limit_x_01 + limit_x_23
573

Equivalently limits_y can be composed. Since going to higher dimensions is unam-574

biguous with two limits in each space, this can be done using the multiplication operator575

in Python or the function combine.9576

limits_xy = limits_x * limits_y

limits_yx = limits_y * limits_x577

The difference between limits_xy and limits_yx is the order of the observables. In578

the first case, it’s ["x", "y"] while for the latter it’s ["y", "x"]. In order to ensure579

consistency, if the two Spaces already have observables in common, the limits in this580

observables have to be the same. 10 Reordering the Space is possible as well as extracting581

a subspace, a Space only defined in subset of the dimensions. More details can be found582

in Appendix C.1.583

4.2 Data handling584

Data to fit can come from different sources but it should be handled uniformly inside zfit.585

To ease this, the Data object is responsible for loading, ordering and simple preprocessing586

of data, which can have weights assigned to it. Furthermore, this abstraction layer587

with Data potentially allows for more advanced use cases such as batched, out-of-core588

computations of the likelihood.589

The Data class supports a variety of data files and structures. While adding additional590

loading capabilities is not difficult, the focus is on the following formats: the default HEP591

format Root11, Numpy arrays and Pandas DataFrames, and pure Tensors. More details592

can be found in Appendix C.3593

Each Data has a Space with observables it is defined in. This assigns an observable594

to each column of the data, so the observables here act like columns from spreadsheets595

or DataFrames. This allows to retrieve a subset or different ordering of the Data by596

specifying the observables explicitly in the method that returns the data as a Tensor.597

Once instantiated, a Data object appears like a lightweight wrap of the Tensor class598

and can be directly used as such. It is possible therefore to simply operate on a Data599

9If a different number of limits were defined, an error would be thrown.
10This exact behaviour of the multiplication and observables is the same if models are multiplied.
11Even though Root files are supported, the Root library is not needed thanks to the uproot package

as explained in Appendix C.3.

19

object with any operation that would also accept a pure Tensor. While this is convenient600

for certain contexts where the correct ordering of the data is guaranteed such as inside a601

model, the preferred way of using the Data is to access the columns by names using the602

unstack_x method. The Data class can also handle data generated on the fly and not603

fitting into memory, see C.4.604

Data objects can be ordered in-place as opposed to Space, the reordering of which605

returns a new instance. This is heavily used together with a context manager inside606

models if a Data is given as an argument in order to match the order of its observables607

with the order of the models observables.608

4.3 Model609

Building models is the core competence of zfit. As seen in the example in Sec. 3, this can610

be done in a simple manner by using already implemented models and possibly combining611

them, but the models can also be completely custom built. Within zfit, there are two612

basic types of models to cover most cases: Functions and Probability Density Functions613

(PDF).614

The basic features of a model include615

• Each model is defined inside a Space. Its dimension are “observables”, simple string616

identifiers as previously discussed.617

• A model implements a function that returns its value depending on some data. This618

is either pdf for a PDF or func for a Func.619

• Full as well as partial integration over a model is possible. This includes numerical620

as well as analytical integration, if available.621

• Generating a sample following the models shape using numerical or analytical622

methods, the latter only if available.623

The value function as well as the integration and sampling are implemented to return624

pure Tensors. Depending on the task, higher-level methods providing either a more625

intuitive, imperative behaviour or a significantly more performant execution for certain626

cases such as repetitive pseudo-experiments are also implemented.627

The main differences between a PDF and a Function concern the normalisation and628

the output dimensionality. This leads to a few subtle differences.629

PDF A PDF f(x) is only well-defined with a given normalisation range. This defines the630

normalisation constant so that, with the limits from lower to upper, the integral631

over the PDF equals to one as632

∑
i

∫ ui

li

f(x)dx = 1 (6)

with i indexing all the limits that make up the domain, li and ui are the lower633

respectively upper limit.634

A PDF object has three special attributes, which are635

20

• the probability density function pdf. It returns always a rank one Tensor, i.e.636

a simple vector, with the length number of data points.637

• the probability density function without the normalisation constant,638

unnormalised_pdf. In cases where only the shape is needed, using this function639

is less expensive, especially if the normalisation has to be computed numerically.640

• the limits that define the normalisation constant of Eq. 6. They can be set641

using the set_norm_range method.642

Function A Function is in a way more simple and general than a PDF. It takes the same643

values as a PDF but returns something with dimensionality Rm. It can be used to644

transform values or to use it as a building block for more complex expressions.645

It has the method func to evaluate its value and no other special attributes.646

4.3.1 Parametrization647

Models can be parametrized by Parameter objects which can be used in the implementation648

of the shape function like any other Tensor-like object when building the model. In the649

following we will first have a look at the Parameter itself. Afterwards we will see how650

they are exactly used with a model.651

There is a distinction between dependent and independent parameters as only the latter652

can be changed directly and have limits while the former are any arbitrary combination653

of them. An independent Parameter654

• has a name with purely descriptive purpose;655

• has an initial value;656

• maybe has lower and upper limits;657

• is either floating or not, independent of whether limits were specified;658

• has a step size indicating the order of magnitude of the parameter which can be659

given. Otherwise, it is automatically inferred. A well chosen step size improves the660

minimization process and can be critical, mostly in the absence of limits and with a661

weak dependence on the model, so that large steps will be required to change the662

model.663

Currently, the shape of parameters is implicitly restricted to a scalar.12 As a conse-664

quence, a parameter cannot simply be treated like data as it is possible in RooFit. A665

function Parameter which depends on the data itself will most likely be available in the666

future.667

The name of a parameter, as any other name for a single object in zfit, has purely668

descriptive character. There is purposely13 no direct way provided to access parameters669

12This comes from the fact that the PDF will have different sized data as input which is not controlled
by the user, such as when doing numerical integration. Any parameter therefore has to be able to
broadcast seamlessly.

13Contrary to the Root framework. If the need ever arises, adding this as an additional feature is
relatively simple.

21

by name: instead of using names the actual parameter object is passed around. This has670

the advantage of avoiding double bookkeeping the parameters, since then a reference on671

an object as well as on a string would be needed. The name is mandatory for parameters,672

as opposed to other objects in zfit, since matching the value of a parameter to the right673

name is a critical task during and after a minimization, when reading off the right value.674

Composed parameters are dependent parameters. In general they can be any Tensor,675

that is a result of any kind of operation. They can depend on zero, one or more676

independent parameters, as composed parameters are arbitrary functions; therefore,677

operations such as shifting and scaling are included as a trivial subset. For more details on678

the actual implementation and the dependency management see Appendix C.5. Composed679

parameters can neither be floating nor have limits currently, since the independent680

parameters a composed parameter may depends on can have arbitrary relations and have681

to be restricted themselves. In order to restrict a parameter, arbitrary constraints can be682

given to the loss instead.683

Every model can depend on multiple parameters, both dependent and independent.684

Each parameter that parametrises the model has a name specific to the model and is685

given on instantiation. For example a Gauss has parameters named mu and sigma as in686

the example in Sec. 3. They are stored in a mapping attribute named params.687

mu_param = gauss.params["mu"]

sigma_param = gauss.params["sigma"]688

Notice that this is not contradictory to the statement above that single objects cannot689

be accessed by their name. Each object has a unique identifier, the name, but objects690

can have names for their constituents that are not unique, like mu. This simply describes691

a part of the PDF and any Gauss will have a parameter mu.692

4.3.2 Implementing a custom PDF693

An essential feature of zfit is the ability to simply create custom models. There is a large694

freedom in building models from the BaseModel class, since it takes care of most boilerplate695

and has well defined entry points than can be customized. The full implementation details696

and possibilities for customizations are described in Appendix C.6.697

For the most common use cases though, there exists a simple way of creating a custom698

model. The ZPDF, basically a more user friendly wrapper around BasePDF, can be be used699

as a base class in these simple cases. The following function will be used as the PDF700

shape701

f(x, y) = a · x2 + b · y4. (7)

To implement this function, _unnormalized_pdf has to be overwritten. For the vast702

majority of custom models, this is the only method to be overwritten. Changing other703

methods, especially _pdf, is an advanced feature and only needed in special cases. For704

more details on the customization and the possibility of hooking into the calls see Appendix705

C.6.706

This is a two dimensional PDF with two parameters. To implement it in zfit, a new707

class is created708

22

class EvenPolyPDF(zfit.pdf.ZPDF):

""" Implementation of f(x, y) = a*x^2 + b*y^4"""

_PARAMS = [’a’, ’b’]

_N_OBS = 2 # since two dimensional

def _unnormalized_pdf(x):

xdata , ydata = x.unstack_x ()

a = self.params[’a’]

b = self.params[’b’]

return a * xdata ** 2 + b * ydata ** 4

709

Note that we only need the shape of the function but do not need to take care of the710

normalisation, as numerical methods are already implemented in the base class.711

We can see the advantage of the preprocessing that is done by the base class, especially712

the reordering of the data x. It is a Data object and calling the unstack_x method returns713

a list14 containing a Tensor for each column sorted according to the models observables.714

The length of the list has to coincide with the specified _N_OBS, the number of observables.715

It is not mandatory to specify this field in a Model and is sometimes not possible to know716

previously, in which case it can simply be left away.717

The naming of the parametrization of the function is defined with _PARAMS. These718

exact names have to be used when creating an instance of the model. The parameters are719

then stored in the params dictionary and extracting them is usually the first step inside720

_unnormalized_pdf.721

Documentation plays an important role here: it defines the name of the parameters722

that have to be used and what they represent in the function, but it is also crucial to723

communicate the ordering of the data. In this case, a user can see that the first observable724

and the corresponding column in the data will be used as x in the function.725

This PDF is already complete and works out of the box. We can create an instance726

and use its methods. As an example, the observables of the instance will be called ”xobs”727

and ”yobs” with the normalisation range going from 0 to 10 and from 0 to 5, respectively.728

param_a = zfit.Parameter("a", 1.)

param_b = zfit.Parameter("b", 2.)

x_obs = zfit.Space("xobs", limits=(0, 10))

y_obs = zfit.Space("yobs", limits=(0, 5))

obs = x_obs * y_obs

poly_model = EvenPolyPDF(a=param_a , b=param_b , obs=obs)

prob = poly_model.pdf (...) # some data needed

x_limits = zfit.Space("xobs", limits=(3, 5))

y_limits = zfit.Space("yobs", limits=(1, 3))

integral_limits = x_limits * y_limits

integral = poly_model.integrate(integral_limits)

sample = poly_model.sample(n=1000)

729

14Or a single Tensor fo the one dimensional case if not specified differently in the arguments.

23

Using the integrate method, we obtain the integral i of our normalized PDF fnorm730

i =

∫ 5

3

dx

∫ 3

1

dy fnormed(x, y) (8)

(3)
=

∫ 5

3
dx
∫ 3

1
dy f(x, y)∫ 10

0
dx
∫ 5

0
dy f(x, y)

(9)

with x and y corresponding to the observables x and y, respectively, and f(x, y) is the731

unnormalised PDF as defined in Eq. 7. Using Eq. 3 we end up with a precise formulation732

of what is actually executed in zfit. In other words, the integral was calculated over733

the limits 3 to 5 and 1 to 3 respectively and normalised over the normalisation range734

obs. The latter is defined on initialisation and taken as the default normalisation range.735

As mentioned before, the limits could also be multiplied in a different order resulting736

in limits having the order (“yobs”, “xobs”). The model takes care internally (see also737

Appendix C.6.1) that the right limits are at the right place.738

The sample method is used to generate 1000 points from the model. With the instance739

created, also probability densities prob for points can be calculated by calling the method740

with some Data object called data as follows741

probs = poly_model.pdf(data)
742

It is worth noting that none of the operations are executed yet and what is returned743

by the methods are Tensors, as described in Sec. 3.1. To run the actual computations, it744

is necessary to call zfit.run(...) on any Tensor. Running745

probs_np = zfit.run(probs_np)

integral_np = zfit.run(integral)746

returns an actual numpy array for probs_np and a Python float for integral_np.747

For further, advanced customization of the PDF, methods can be overridden as748

described in Appendix C.6.1. However, in most use cases there exist better ways: for749

example, to add an analytic integral to the model, overwriting _analytic_integrate750

should be the last resort. Instead, integrals defined over a specific range only or the whole751

range and over all dimensions or just partially can be registered with a model. A priority752

attribute allows to specify preferences on one over other methods.753

A typical use case for this feature is a special integral that is known exactly, for754

example the value of the integral over the full space of a Gaussian shaped model15 An755

integral over both dimensions is registered but partial integrals could be added as well756 ∫ x1

x0

∫ y1

y0

f(x, y)dxdy = (1/3 · a · x3 + 1/5 · b · y5)
∣∣∣x1
x0

∣∣∣y1
y0
. (10)

In case a full integral is requested but no analytic integral over all dimensions is757

available, the fallback of integrate looks for partial integrals. If available, it uses them758

to numerically integrate over the remaining dimensions instead of using the unnormalised759

PDF.760

The implementation of the integral with zfit is done by registering it to the PDF761

15As already hinted in Eq. 8, it is important to note that the integral to be implemented is over the
unnormalised PDF as implemented in the _unnormalized_pdf method.

24

def integral_full(x, limits , norm_range , params , model):

lower , upper = limits.limit1d

a = params[’a’]

b = params[’b’]

lower = ztf.convert_to_tensor(lower)

upper = ztf.convert_to_tensor(upper)

def indef_integral(limit):

return 1 / 3 * a ** 3 + 1 / 5 * b * y ** 5

return indef_integral(upper) - indef_integral(lower)

lower = ((zfit.Space.ANY_LOWER , zfit.Space.ANY_LOWER) ,)

upper = ((zfit.Space.ANY_UPPER , zfit.Space.ANY_UPPER) ,)

limits = zfit.Space.from_axes(axes=(0, 1), limits=(lower , upper))

EvenPolyPDF.register_analytic_integral(func=integral_full ,

limits=limits)

762

Since the observables that will be assigned to each axis are unknown, the Space has763

to be defined with axes, not with observables. This follows the principle of using axes764

inside the model as explained in 4.1. Instead of ANY_LOWER and ANY_UPPER, it could765

also be defined over a specific domain by using plain Python floats. The PDF will now766

automatically use this integral if possible. Otherwise, as for example when creating a767

partial integral, it will silently fall back to numerical integration.768

This example demonstrates how to implement a shape that does only depend on the769

data and parameters. Models, that also depend on other models, such as the SumPDF770

from Sec. 3, require to be built from a Functor. This implies as a minor change only771

an additional argument to the base class, the depending models, in order to track the772

dependencies correctly. This is described in more details in Appendix C.6.6.773

4.3.3 Sampling774

Sampling from a model can be done in two different ways to cover two distinct use775

cases. On one hand, the method sample returns a pure Tensor, which behaves as any776

other sampling algorithm in TF, for example tf.random.uniform. This can be useful777

for specific and mostly advanced cases, but he overall behaviour can be unintuitive for778

inexperienced users, as discussed in Appendix B.2.779

On the other hand, sampling from a model is typically used to perform toy studies,780

which consists of the generation of events according to the model and afterwards a fit of the781

model with randomly initialized parameters to the sampled data. With create_sampler,782

a Data-like object which handles the correct storage and the sampling from the model is783

created. As any other Data, it can be used to build a loss. The actual data is sampled by784

invoking resample and stays unchanged until it is invoked again. This sampler keeps a785

dependency on the original model and uses it to sample, keeping the original parameter786

values it was created with. If desired, any parameter that has changed in between will be787

at that new value when resample is called, effectively changing the sampling shape. 16
788

16Just to be clear: the default behaviour is that the sampler samples from the exact distribution that
it was created with in terms of parameter values.

25

To illustrate the use of the toy sampler, let’s look at a toy study example. Note that789

the actual (large) objects needed such as the model, minimiser, loss etc. are created790

outside of the loop and only the necessary methods are called inside. In general, this791

removes boilerplate code from the additional object creation but is especially important792

when working with a graph based backend. We assume to have previously built a model793

already and a minimizer as for example shown in Sec. 3, and we generate 1000 events794

according to our model.795

sampler = model.create_sampler(n=1000)

nll = zfit.loss.UnbinnedNLL(model , sampler)

for _ in range(n_toys):

sampler.resample () # now the sampling happens

for param in model.get_dependents(only_floating=True):

param.set_value(np.random.normal ()) # any initial value

result = minimizer.minimize(nll)

if result.converged: # check if the fit was successful

... # safe results in a list or similar

796

The sampling is implemented with the accept-reject method that works with arbitrary797

shapes. If an analytic inverse integral is registered, this will be used, providing a more798

efficient way of sampling. More details about the different techniques and the use of799

importance sampling are described in Appendix C.7.800

4.3.4 Extended PDFs801

In addition to the shape, a PDF can carry more information, namely a yield, in which802

case we refer to it as an Extended PDF. The yield is a scale that describes the magnitude803

of the PDF, typically reflecting the number of events in the data sample. It can be used804

to multiply the output of pdf, the normal probability density function, which results in a805

number probability. This implies that when multiplying the integral with the yield, the806

number of events is retrieved instead of the probability over a certain range.17. To count807

for example how many signal particles are in the sample, a composite PDF existing of808

a background and a signal component, both extended, can be fitted to the data. The809

SumPDF used to build this composition does not need a fraction if the PDFs are already810

extended, but uses the yields, normalised to one, as fractions. In this case, integrating the811

PDF that represents the signal shape over the whole range returns the number of signal812

events.813

To create an extended PDF, create_extended can be used. This method returns a814

copy of the PDF and adds a yield to it.815

4.4 Loss816

As discussed in Sec. 2, the loss is the core of the problem specification, since it describes817

the disagreement between a model and the corresponding data. Additionally, it can818

contain constraints which help further specify the problem.819

17Currently, the integral of an extended PDF is multiplied by the yield by default but this behaviour is
meant to change in a future version

26

Having the loss as an independent part of the whole workflow is a crucial design feature820

in zfit: it is the connection between the model, data, and their relation on one side and821

the minimisation process on the other side. Having the loss as an extra step accomplishes822

decoupling the former from the latter: a minimiser can take a loss and minimise it without823

knowing anything about the underlying models, data or the actual definition of the loss.824

Therefore, it is important that the loss knows everything that is needed for a minimisation,825

as listed in detail in Appendix C.8.826

Basic loss implementations like the UnbinnedNLL use a PDF and data to calculate the827

loss according to Eq. 5. With extended PDFs, an additional term is taken into account828

if using ExtendedUnbinnedNLL instead, as derived in Eq. 26. Furthermore, additional829

terms can be added to express prior knowledge about parameters as in Eq. 29. To keep830

the flexibility, any Tensor can be added as a constraint to the loss with the method831

add_constraint. Alternatively, a custom constraint can be implemented by using the832

base class BaseConstraint. zfit implements the most often used constraints to improve833

usability: in the example from Sec. 3 a Gaussian constraint for the parameter µ could be834

applied by adding the following line after the creation of the nll.835

mu = ... # parameter

nll = zfit.loss.UnbinnedNLL(gauss , data)

mu_constr = zfit.constraint.nll_gaussian(params=mu, mu=6.8, sigma=0.4)

nll.add_constraint(mu_constr)

836

Typically, some parameters are shared between different fits to different data samples.837

These can be obtained through a simultaneous fit of all the datasets by creating multiple838

PDFs with some of the Parameter objects being the same. Since this corresponds to839

a simple addition of the losses as seen in Eq. 25, zfit allows to perform precisely this840

operation. As an example we create two Gaussians and assume to already have their data.841

Here the µ is shared while the σ is not. Limits and the data are created as in the example842

of Sec. 3:843

mu = zfit.Parameter("mu", 7)

sigma1 = zfit.Parameter("sigma", 1.1)

sigma2 = zfit.Parameter("sigma", 1.5)

gauss1 = zfit.pdf.Gauss(mu=mu , sigma=sigma1 , obs=limits)

gauss2 = zfit.pdf.Gauss(mu=mu , sigma=sigma2 , obs=limits)

nll1 = zfit.loss.UnbinnedNLL(gauss1 , data1)

nll2 = zfit.loss.UnbinnedNLL(gauss2 , data2)

simul_nll = nll1 + nll2

844

Alternatively, a list of models and their corresponding data can be given to create the845

loss846

simul_nll = zfit.loss.UnbinnedNLL([gauss1 , gauss2], [data1 , data2])
847

There is a special loss available in zfit that gives a flexibility rarely found in other848

fitting packages: the SimpleLoss. This object lightly wraps any Tensor, which allows849

to build any kind of loss. No dependency on the data structure or the model layout is850

27

required and it is completely up to the user. This allows to create not yet implemented851

losses, such as binned ones, and allows other libraries which build loss functions with852

TF to simply hook in with this mechanism. Because the SimpleLoss can then be used853

with the next steps such as the minimisation and error estimation, an other library can854

therefore use the whole available tools in zfit as well as any library that builds on top of855

it.856

4.5 Minimisation857

The optimisation of functions is a large topic by itself and a lot of implementations of858

different algorithms exist. They usually need a function that returns a value, such as859

the loss, which depends on the parameter values that they use as arguments. Since the860

computation of the loss is efficiently implemented in zfit thanks to TF and this usually861

is the heavy part of the minimisation, in practice any minimiser can be wrapped easily.862

In zfit several minimiser algorithms are implemented by wrapping existing libraries and863

giving them a common API. An important part of the design is that the creation of a864

minimiser object does neither execute any minimiser function nor tie itself to a specific loss,865

it’s simply the configuration of the minimiser. This implies that the minimiser is stateless,866

and to actually invoke it, the minimise method needs to be called. The information about867

the minimisation procedure and the parameter values are collected in a FitResult and868

returned by the minimiser.869

4.5.1 Different optimisations870

While a whole variety of algorithms exists, not all are equally feasible to be used for871

model fitting as done in zfit. There are various distinctions that influence the choice of872

a certain minimiser.873

Derivative Some optimisers use the derivatives and others don’t. In general, using the874

derivative provides a huge advantage since it tells about the local shape of the875

function. This requires though that the function to minimise be continuous, which876

is not always the case. For model fitting, functions are continuous and, thanks to877

TF, zfit uses an analytic expression for them.878

Global/Local Some optimisers are better in finding a global minimum by doing a879

variation of a large grid search. Others focus on a local minimum by using a starting880

point and going along a path to the next minimum. The latter is more accurate and881

faster if a good initial parameter estimation is given, so that the minimiser does882

not start far from the true minimum. In model fitting, a reasonable estimate can883

often be made.884

Dimensionality The number of parameters that have to be tweaked in order to minimise885

the loss has an impact on the strategy. While the Hessian matrix can help greatly886

with the minimisation, it has n2
params entries. This renders its usage impossible for887

hundreds of thousands of parameters as used in deep learning. For model fitting888

with a maximum of a few hundreds and typically around a dozen of parameters,889

using the Hessian is feasible.890

28

In HEP model fitting, mostly local, second order derivative minimisers are used. An891

important algorithm is the Newton method of minimisation: leaving the mathematical892

details away, the algorithm performs a second order Taylor approximation of the function893

using the exact Hessian. Assuming that the target is a saddle point with the derivate894

equal to zero, the equation is solved and the algorithm jumps to the estimated minimum.895

Since this solution is only the true minimum if the second order approximation were exact,896

this step is repeated until some convergence criteria are fulfilled.897

Newton’s method is often not directly used since the computation of the Hessian and898

its inverse can be computationally expensive. Instead an approximation of the inverse899

Hessian is calculated and updated on every minimisation step, giving rise to a family900

of methods called Quasi-Newton methods. Since these updates bring some ambiguity901

in higher dimensions, different methods use different assumptions on the updates. A902

prominent example is the BFGS algorithm and its low memory variant L-BFGS, which903

only stores the most recent steps. L-BFGS is also the method implemented in Minuit, the904

most common used minimiser in frameworks like RooFit or Root.905

Another important point is the stopping criteria. While Minuit has its own stopping906

criteria and in general good criteria have to be found with experience, this tuning for907

other minimisers is still ongoing work in zfit. It is though simply possible to define and908

change this criteria for a minimiser.909

A special mention has to be made about TF optimisers. As discussed above, for910

deep learning first order algorithms are used relying on the so called “gradient descent”911

technique. This algorithm simply follows the negative gradient iteratively. Advanced912

variations alter the step size based on heuristics but are still largely inferior for low913

dimensional problems in comparison with Quasi-Newton methods. A wrapper for any TF914

optimiser is available in zfit, an example is provided using the implementation of the915

Adam [13] optimiser. Simple benchmarks though yield an order of magnitude increase916

in the number of minimization steps compared to Quasi-Newton methods, they are not917

competitive. to the918

4.6 Results and uncertainties919

After every minimisation, the information about the process as well as the results are920

returned as a FitResult. This object does not only store information but is also capable921

of performing uncertainty estimations of the parameters.922

The most important information that it collects is:923

• Information about the parameters, including the values at the function minimum,924

information about their limits and uncertainties calculated using different methods.925

• General information about the minimisation itself, including926

– A flag that indicates whether the minimisation was successful or not.927

– The minimum of the loss function that was determined by the minimiser.928

– An estimation made by the minimiser of how far away the minimum value is929

from the actual true minimum.930

– All the additional information produced by a minimiser. This can highly vary931

depending on which minimiser was used.932

29

• The instance of the minimiser that was used to perform minimisation. Since933

minimisers are stateless, no information is stored in it.18934

• The instance of the loss that was minimised. Since a loss keeps references to the935

model and data it was built with, it is possible to thereby retrieve all information936

regarding this minimisation.937

As the last of five steps in the minimisation workflow, the FitResult serves again938

as an additional abstraction layer. A lot of different statistical quantities such as limits,939

confidence intervals and more can be calculated using the result, loss and minimiser. Since940

they are all bundled together in the FitResult, no other object is required for advanced941

statistical treatment of fit results.942

4.6.1 Parameter uncertainties943

The values of the parameters at the minimum are important, but they are meaning-944

less without an uncertainty estimate. Therefore, the FitResult provides two ways of945

calculating it:946

• For a fast, approximative and symmetric estimate, the hesse method can be invoked.947

It provides an estimation based on the Hessian matrix, assuming a second order948

approximation of the loss around the minimum value of the parameter.949

• If there are high non-linearities in the loss and the parameter correlations, the950

actual uncertainties differ strongly from what hesse returns. Good estimates can951

be retrieved by creating a profile: fixing the parameter at a certain value and run952

a complete minimisation. The calculation is invoked by using the error method.953

If the Minuit minimiser was used to perform the minimisation, the minos method954

can be invoked in this way. Currently, no other error estimation is implemented,955

but any custom statistical method can be easily applied thanks to the information956

contained in the fit result.957

To only calculate the uncertainties with respect to specific parameters, the desired958

parameters can be given as arguments to hesse and error. The results for each parameter959

are cached and won’t be recomputed on an additional call.960

18Ideally. Some minimisers like iminuit have a state and can be accessed like this. A copy of the actual
minimiser is stored in the FitResult

30

5 Performance961

In the previous Sections, the structure and logic of model fitting in zfit was elaborated.962

Apart from the functionality, model fitting involves a lot of number crunching and thus963

state-of-the-art performance is a hard requirement.964

The performance of code depends on several factors and can often be divided into a965

serial and a parallel part. The efficient implementation of parallelised parts of code are966

as important as deciding when to actually run in parallel, as discussed in Appendix D.2.967

While this part is mostly left to TF, the fact that some pieces of code simply are not968

parallelisable, and therefore cause a bottleneck, depends on the nature of the problem969

itself. In real code, the two are not clearly separated and a mixture of both influence the970

actual performance.971

In this Section we will focus on quantifying the performance of zfit by measuring the972

execution time of the whole process, mixing together the performance of TF and zfit973

with the bottlenecks coming inherently from model fitting. While this limits the ability to974

draw conclusions about bottlenecks and remove them, it reflects the performance of the975

library as experienced in real life usage.976

In the following, two studies are presented: on one hand, a more artificial but well977

scalable example consisting of Gaussian models, and on the other hand, a more realistic978

case, namely a fit to an angular distribution is performed. In both cases the performance979

of toy studies is measured and compared. The hardware specifications can be found in980

Appendix D.1.981

5.1 Gaussian models982

There are three quantities of interest to describe the scaling of the library: the complexity983

of the model, the number of free parameters and the size of the data sample used to fit.984

In this study, a sum of Gaussian PDFs is used as the model. The fractions are constant985

and the mean and width are parameters, each shifted by a different constant, and either986

all depending on only two parameters or scaling with the number of Gaussians.987

This model is used to perform toy studies. First a sample from the model is created988

using a fixed, initial parameter setup. Then the parameters are randomized and a fit to989

the sampled data is performed. The implementation of sampling and the minimisation990

are two distinct steps and for fits to data, only the latter is actually invoked. Since this991

combines two execution time measurements making reasoning even harder and there992

is a known, temporary19 bottleneck in zfit sampling, only the execution time of the993

minimisation is measured. A approximate comparison of the current performance with994

sampling can be found in Appendix D.3.995

For each setup, twenty toys are run ranging from 2 up to 20 Gaussians with sample996

sizes from 128 to 8 million events (except for GPU, where it goes only up to 4 million20).997

A comparison with an implementation in RooFit is performed, although only ranging998

from 2 to 9 Gaussians.21 To have a fair comparison, both use the Minuit algorithm for999

19This problem is resolved now, though in this thesis the old measurements are still used since the
conclusions are the same.

20The GPU used has a comparably small memory. Performing larger-then-memory computations and
multi-GPU is still work in progress.

21Due to technical problems using a sum of more than 9 pdfs with RooFit that were overcame only

31

(a) 2 free parameters (b) 18 free parameters

Figure 5: A sum of 9 Gaussian PDFs with shared (left) or individual (right) mu and sigma. On
the y axes, the time for a single fit is shown, averaged over 20 fits. It is plotted against the
number of events that have been drawn per toy.

minimisation.1000

In the following, 4 cases are considered:1001

• an implementation in zfit, labelled as “zfit CPU”, using the analytic gradient1002

provided by TF. In this case, an initial run is done to remove the graph compile1003

time. While not significant, this provides a more realistic estimation.1004

• The same implementation as above is used but the analytic gradients provided by1005

TF are disabled, denoted by the addition “nograd”. Instead, the Minuit minimiser1006

calculates a numerical approximation of the gradients internally.1007

• The same as “zfit CPU” but run on a GPU and labelled as “zfit GPU”.1008

• An implementation in RooFit using the Python bindings with PyROOT. The1009

parallelisation is done when invoking the fitTo method and equals the number of1010

cores available.1011

In Fig. 5, the time per toy is measured and plotted against the number of events1012

used in the toy. While zfit on CPU outperforms RooFit in the left plot with only two1013

free parameters, in the right plot with 18 free parameters, RooFit performs significantly1014

faster with a low number of events. This comes from the fact that while the Minuit1015

minimiser is used in both measurements, their are tweaked differently: the version used by1016

RooFit is configured to better cope with a bumpy likelihood as given with a high number1017

of parameters and a low number of events, which results in a vastly superior performance1018

for complicated, low statistics cases while reducing the performance in simpler cases. It is1019

to note that tweaking the minimiser is still ongoing effort in zfit and the performance1020

behaviour is likely to change in the future. Different tuning cannot simply be quantified1021

and compared, since not only the number of evaluations of the loss function, but also the1022

after the measurements were done.

32

gradient and the (very expensive) Hessian computation is part of the strategy. This limits1023

the conclusions that can be drawn from the comparison of the performance with a low1024

number of events. Furthermore, the minimiser for 18 free parameters using zfit was not1025

able to converge for more than a million of events without the automatic gradient from1026

TF, therefore no data points are available there.221027

The comparison in Fig. 5 still reveals a few important things that agree very well with1028

the expectations.1029

• As the number of events increase, the execution time of RooFit monotonically1030

increases.1031

• There is no advantage using parallelisation for very few calculations since the1032

overhead of splitting and collecting the results is dominant. With increasing number1033

of events this gets negligible and as an effect the execution time of zfit increases1034

way slower than for RooFit. This also comes from the fact that more events mean1035

a more stable loss shape, so the minimiser used in zfit performs better.1036

• The GPU is highly efficient in computing thousands of events in parallel. For only1037

a few data points though, the overhead of moving data back and forth dominates1038

strongly, making it unfeasible for only a small number of events. A continuous1039

decrease of the time up to 10’000 in the left plot of Fig. 5 events confirms that and1040

even shows a drop in the computation time.1041

As a conclusion, the speed for very small examples around 100 events of zfit is1042

marginally slower than the corresponding RooFit example. For larger fits, the speedup1043

of zfit is up to a factor of ten at around a million events. For more complicated fits and1044

a small number of events, RooFit is an order of magnitude faster because of its currently1045

better tuned minimiser, though there is ongoing work in zfit. The GPU delivers in1046

larger examples a similar performance as the multicore setup. Finally, not using the TF1047

gradient yields only a minor penalty for large fits and can even be faster for small ones,1048

experiments have shown that the effect of an increased time can be larger for complicated,1049

real use cases and helps reducing the number of steps required to take by the minimiser.1050

In Fig.6, a comparison of what can be achieved within a certain time frame is shown.1051

The fits scale with the number of events for different number of added Gaussians, having1052

only two free parameters in total. The observation matches the intuitive behaviour of1053

scaling with complexity and size of the sample. Compared to RooFit, the fitting time of1054

zfit increases an order of magnitude less; note that both time scales end at 100 seconds.1055

In this time, zfit fits 8 millions of events with 16 Gaussians, RooFit does half a million1056

with 9 Gaussians. For this setup, 8 CPUs on a shared cluster were used, leaving slight1057

ambiguity about the results due to the unknown configuration and actual workload on1058

the machine. However, the order of magnitude matches with the results in Fig. 5, which1059

were performed in a clean environment.1060

Scaling the number of free parameters with the number of Gaussians added is shown1061

in Fig.7. We see clearly that for a large number of parameters having a higher number1062

of events can actually be more performant on an absolute scale, at least up to a certain1063

threshold, since this reduces the number of steps to be taken for the minimisation.1064

22This indicates numerical instabilities due to limited precision and there are ways to circumvent them
which are planned to be implemented in zfit.

33

(a) RooFit (b) zfit CPU

Figure 6: Measurement of the computation time with a sum of n gauss Gaussians and in total
two free parameters. Notice that the y-scale is the same for both plots but the x-axis for zfit
goes an order of magnitude higher. Also, zfit sums up to 16 Gaussians whereas RooFit only
goes to 9.

Figure 7: Time of a single toy in dependence of the number of events used. Plotted for a sum of
n gauss Gaussians and two free parameters per Gaussian.

5.2 Angular analysis1065

In order to study the scalability of zfit in a challenging, realistic setting, a toy study from1066

an ongoing analysis involving zfit is used. The example, which consists in the angular1067

analysis of B0→ K∗(→ K+π−)`+`− with ` being either e or µ, is an important legacy1068

analysis and the fact that it was implementable in zfit is itself already an achievement.1069

The model is from the folded angular analysis. The folding to measure the P5’ parameter1070

34

Figure 8: Schematic view of the angles of the B0→ K∗(→ K+π−)`+`− decay. The image was
taken from [15]

as defined in [14] is implemented. The resulting model is given by1071

fangular(θK , θ`, φ;FL, A
(2)
T , P ′5) =

3

4
(1− FL) sin2 θK + FL cos2 θK

+
1

4
(1− FL) sin2 θK cos 2θ`

− FL cos2 θK cos 2θ` (11)

+ S3 sin2 θK sin2 θ` cos 2φ

+ S5 sin 2θK sin θ` cosφ

with1072

S3 =
1

2
A

(2)
T (1− FL)(1− FL)

S5 = P ′5
√
FL(1− FL).

The model is depends on three angles, shown in Fig. 8, where1073

• φ is the angle between the plane spanned by the flight direction of the two leptons
with the plane spanned by the kaon and pion,

• θK is the angle between the kaon and the negative flight direction of the B0 and

• θ` is the angle between the `+ (`−) and the negative flight direction of the B0.

1074

1075

The model is extended to four dimensions by adding a description of the B invariant1076

mass distribution by building the product with the angular part as defined in Eq. 11. The1077

model used for the mass shape is a combination of two Gaussians, each with a powerlaw1078

tail.1079

The implementation of the angular part is straight forward and follows the example in1080

Sec. 3. Using the implemented DoubleCB for the mass, the four dimensional model can1081

be built as1082

35

(a) Double log scale (b) Linear scale

Figure 9: The figures show the time needed per toy for the four dimensional P5’ folded angular
distribution. 25 toys are produced for each number of events.

limit_thetak = zfit.Space(’thetak ’, limits=...)

limit_thetal = zfit.Space(’thetal ’, limits=...)

limit_phi = zfit.Space(’phi’, limits=...)

limit_bmass = zfit.Space(’bmass ’, limits=...)

angular_obs = limit_thetak * limit_thetal * limit_phi

angular = AngularPDF(obs=angular_obs , ...)

mass = zfit.pdf.DoubleCB(obs=limit_bmass , ...)

model = angular * mass

1083

With this model a set of toy studies is performed, varying in each of them the number1084

of events while keeping the number of free parameters fixed to nine.1085

Fig. 9 shows the performance of the toys on a shared cluster with 8 CPUs requested1086

and we can see that the time per toy increases slightly sublinearly with the number of1087

events. An interesting number is the average time for toys with around 1000 events,1088

the expected number of events to be seen in the data and therefore actually used in the1089

real toy studies, which is around one second per toy. Both go well together with the1090

expectations of a model fitting library. The whole example demonstrates the suitability of1091

zfit to be used in non-trivial, real world analyses.1092

6 Beyond standard fitting1093

In the previous Sections, we have seen the capabilities of zfit for fitting a model to data.1094

The inherent flexibility and the powerful functionality of the core parts allow for the1095

library to be extended beyond the usual feature set of general model fitting libraries in1096

HEP. To perform more specialized fits, the components of zfit can be used as building1097

blocks of a higher level fitter. In order to keep the size and features of zfit at a reasonable1098

level, the whole project is split into multiple packages that are tightly coupled to each1099

36

other. In this Section, we will have a closer look at the different packages that extend1100

zfit beyond the simple model fitting we have seen so far.1101

The main package is the core library zfit, as described in the thesis up to now, that1102

provides all the fundamental building blocks and is in itself a self-contained fitting library.1103

Content-wise, zfit offers a more field agnostic selection and does not contain models and1104

tools too specific for HEP. The focus is on a stable and solid implementation together1105

with the API and format definitions.1106

More field specific content can be added in other libraries such as zfit-physics. This1107

repository is meant to be the place for community contributions focusing on HEP-specific1108

content. Guidelines, examples and automated tests are planned to be in place in order to1109

lower the threshold for contributions. Furthermore, it will also contain functions dealing1110

with physical quantities such as kinematics, which can serve as building blocks for models.1111

Higher level interfaces that use zfit to build specific models are also intended to be1112

placed in this repositories, for example a whole amplitude analysis framework currently1113

under development which will be explained in the following Section.1114

Additionally, the project also contains libraries that zfit depends on but which1115

themselves are self-contained and which are factored out of the core- and extension1116

libraries to standalone packages. This allows other projects than zfit to make use of them1117

as well. An example is the implementation of phasespace, which generates four momenta1118

of particles from a decay taking into account the correct kinematics. The package will be1119

explained in more detail in Sec. 6.2.1120

6.1 Amplitude fits1121

zfit-amplitude is a higher level fitting library, which is currently under active develop-1122

ment and in its early stage, built with elements from zfit in order to perform amplitude1123

analyses, including Dalitz. In the following, the extension within the scope of the zfit1124

project is discussed by showing an implementation example of the decay D0→ K+π−π0.1125

As part of this, an additional library will be introduced, phasespace, which covers an1126

essential part of being able to generate amplitude fits.1127

In order to perform amplitude fits, zfit-amplitude contains1128

• shapes such as the Breit-Wigner distribution that can be used to model resonances;1129

• helper classes to build PDFs such as some that efficiently cache intermediate results1130

specific to amplitude fits, and1131

• a higher level interface to build amplitude fits in a transparent manner, similar1132

to other specialised amplitude fitters in HEP. This removes the need of low level1133

handling but keeps the flexibility to replace any part of it by a custom object.1134

In order to perform toy studies as described in 5, an efficient way of sampling from a1135

model is needed. While accept-reject is an universal and good working way, the efficiency1136

can be very low in higher dimensional spaces and/or with peaky model shapes. To avoid1137

inefficiencies, samples can be produced by using importance sampling as described in1138

Appendix C.7, which requires a distribution approximately resembling the shape of the1139

model. In zfit-amplitude the approach is to use the kinematic constituents of the decay1140

particles. They are then transformed to the desired variables that are used in the model.1141

37

This is a very general approach that allows all sorts of variables to be constructed from the1142

kinematics. On the downside, in order to produce the particles with realistic kinematics,1143

a phasespace generator is needed. While there is an implementation in Root called the1144

TGenPhasespace class, no equivalent is available in pure Python. Therefore, a library1145

porting the above with an extension to real world experiment kinematics and implemented1146

using TF has been created.1147

More details on the zfit-amplitude library, especially on the higher level interface,1148

will be provided in a future paper and goes beyond the scope of this thesis.1149

6.2 phasespace1150

The kinematics of a particle are a four-dimensional tuple representing its four-momentum.1151

In a decay of a parent particle to lighter children particles, their kinematics are constrained1152

by the fundamental physical laws of momentum and energy conservation. With1153

p0,1,2 = px,y,z p3 =
√
p2 +m2c2

this reads as1154

pµparent =
∑
i

pµi (12)

with pi being the four-momenta of all children particles. For a two-body decay A→ BC,1155

there are six free variables from the momenta of the two children. Using Eq. 12 there are1156

two degrees of freedom left in the decay kinematics that lead to a distribution. Furthermore,1157

the mass is only fixed for stable particles but is a distribution for resonances. To sample1158

from the phasespace within the zfit project a package named phasespace was created.1159

The purpose of it is to generate arbitrary decays obeying the physical constraints discussed1160

before and expressed in Eq. 12. Since it uses TF as the backend, it integrates seamlessly1161

into zfit.1162

The algorithm used in phasespace is the Raubold and Lynch method for n-body1163

events as described in [16]. In principle, the algorithm builds a tree where every node has1164

two leaves representing a two-body decay. It calculates the available kinematic energy1165

that will be assigned to the particles from the difference of the parent rest mass and the1166

sum of all the children rest masses. The latter are either fixed or drawn from the mass1167

distribution in case of short-lived particles1168

Ekin = mparent −
∑
i

fmassi (mmin
i ,mmax

i)

with fmassi being the mass distribution of the particle i, mmin
i the minimum mass recursively1169

determined from the children masses of particle i and mmax
i the available energy from the1170

top particle minus the other parent particles of particle i. The remaining Ekin is randomly1171

split into fractions along all the decaying particles in the tree where each fraction is the1172

kinetic energy for the boost of this particle.1173

Given the mass of each particle in the tree and its kinetic energy, particles are recursively1174

generated starting from the top of the tree, i.e., with the lightest particles. Each parent1175

particle randomly generates the two childrens in the available phasespace. Then the whole1176

decay tree is boosted to the parent momentum. This continues until the top particle1177

is reached, which is not boosted by default. However, an additional argument to the1178

38

generation method allows to also boost it. This can be used to reproduce the physics1179

happening in actual colliders.1180

Usage1181

The library has a main class GenParticle that describes the particles mass, either fixed1182

or as a distribution, and has a method to set the children particle it decays to. This allows1183

to build an arbitrary decay chain in an object-oriented way. As an example, the decay of1184

D0→ K∗(892)(→ K+π−)π0, which will be implemented as an amplitude fit in the next1185

Section, would be implemented as following1186

import phasespace as phsp

kplus = phsp.GenParticle("K+", mass=KPLUS_MASS)

piplus = phsp.GenParticle("Pi+", mass=PIPLUS_MASS)

piminus = phsp.GenParticle("Pi -", mass=PIMINUS_MASS)

kstar = phsp.GenParticle("K*", mass=kstar_mass_func)

dzero = phsp.GenParticle("D0", mass=DZERO_MASS)

kstar.set_children(kplus , piminus)

dzero.set_children(kstar , piplus)

1187

Here, kstar_mass_func is a function sampling from the mass distribution of a K∗.1188

This is a custom function that can be implemented by the user.1189

Having specified the decay chain, two methods can be used to generate the actual1190

particles: Either generate_tensor which returns the four momenta as a Tensor and can1191

be used directly inside zfit, or alternatively, generate returns the same information but1192

as a numpy ndarray. Internally, a TF session is called and the computation is run.1193

weights , particles = dzero.generate(1000) # generate 1000 particles
1194

The weights correspond to every single event and quantify the probability of the1195

generated event. The returned particles is a dictionary containing the momentum of1196

each particle. For example1197

kstar_kinematics = particles[’K*’]

kstar_x = kstar_kinematics[:, 0]

kstar_mass = kstar_kinematics[:, 3]
1198

and the format of the kinematic is (number of events, components).1199

As a shortcut for simple decays, a high level function generate_decay is available1200

which allows to describe a decay with stacked lists of masses.1201

6.3 Dalitz implementation1202

As an example of an amplitude fit, a Dalitz analysis of the decay D0→ K+π−π0 is1203

implemented using some parts of zfit-amplitude together with zfit and phasespace.1204

This implementation of the resonances and their shapes is done following the analysis in1205

Ref. [17]. The amplitude is built using the isobar approach, which calculates the coherent1206

39

sum of the individual contributions, the intermediate resonances. The implemented1207

resonances are ρ(770), ρ(1700), K∗0(892), K∗+(892), K∗0(1430), K∗+(1430) and K∗2 (1430)1208

For amplitude analyses, dedicated fitting libraries exist and using a general purpose1209

fitter like zfit for this case is rather special. In the following, we will go through the1210

elements that are needed from a top-down approach and see how the problem can be1211

separated into smaller pieces using the functionality of zfit. Although unimportant1212

technicalities are left away and the example is a sketch only of the actual implementation,1213

it is going to be rather advanced and involves functionality only explained in Appendices.1214

The observables in this case are the invariant masses of pairs of the different children1215

particles, which are mK+π− , mK+π0 and mπ−π0 . The whole PDF ftot is of the form1216

ftot(mK+π− ,mK+π0 ,mπ−π0) =

∥∥∥∥∥
namp∑
i

ciAi(mK+π− ,mK+π0 ,mπ−π0)

∥∥∥∥∥
2

(13)

with ci being the complex coefficient of each amplitude Ai. Expanding this term contains1217

cross (i 6= j) and square (i = j) terms bij of the form1218

bij = cic
∗
jAiA

∗
j

To implement this in zfit, a custom class is created that takes the coefficients,1219

amplitudes and a Func called AmplitudeProduct which calculates the above products bij .1220

Before we will look at these three components, we can build the global PDF as defined in1221

Eq. 131222

class SumAmplitudeSquaredPDF(zfit.pdf.BaseFunctor):

def __init__(self , obs , coefs , amps ,...)

self._cross_terms = [AmplitudeProduct(c1 , c2 , a1 , a2)

for (c1 , a1), (c2 , a2)

in combinations(coefs , amps)]

self._square_terms = [AmplitudeProduct(coef , coef , amp , amp)

for coef , amp in zip(coefs , amps)]

...

def _unnormalized_pdf(self , x):

value = tf.reduce_sum([2. * amp.func(x=x) for amp in self.

_cross_terms]

+[amp.func(x=x) for amp in self._squared_terms],

axis=0) # over which axis to sum

return tf.real(value) # convert it to a real number

1223

As the next piece, we need to have the amplitude product. Since this is complex in1224

general, it is again split into smaller parts that represent the real and imaginary parts by1225

a class AmplitudeProductProjection.1226

40

class AmplitudeProduct(zfit.func.BaseFunctorFunc):

def __init__(self , coef1 , coef2 , amp1 , amp2 ,...):

prod_real = AmplitudeProductProjection(amp1 , amp2 , proj=tf.math.

real)

prod_img = AmplitudeProductProjection(amp1 , amp2 , proj=tf.math.imag

)

super().__init__(funcs=[prod_real , prod_imag],

params={’coef1 ’: coef1 , ’coef2’, coef2}, ...)

...

def _func(self , x)

coef1 = self.params[’coef1’]

coef2 = self.params[’coef2’]

prod_real , prod_imag = self.funcs

coeffs = coef1 * tf.conj(coef2)

return coeffs * tf.complex(prod_real.func(x), prod_imag.func(x))

1227

Splitting the real and imaginary parts has the advantage of keeping both of them real1228

and therefore also their integrals. This allows to make full usage of the zfit integration.1229

Since these parts are independent of any coefficient, this allows to cache the integral value.1230

class AmplitudeProductProjection(zfit.func.BaseFunctorFunc):

def __init__(self , amp1: ZfitFunc , amp2: ZfitFunc , proj , ...):

self.projector = proj

super().__init__(funcs=[amp1 , amp2], ...)

self._cache_integral = None

def _func(self , x):

amp1 , amp2 = self.funcs

return self.projector(amp1.func(x) * tf.conj(amp2.func(x)))

def _single_hook_integrate(self , limits , norm_range , name):

integral = self._cache_integral

if integral is None:

integral = super ()._single_hook_integrate(limits=limits ,

norm_range=norm_range ,

name=name)

integral = zfit.run(integral) # simplified

self._cache_integral = integral

return integral

1231

where we used the hook for the integration as described in Appendix C.6.1232

All that is left now are the coefficients, which are just parameters, and the resonances.1233

Using the Breit-Wigner function from zfit-physics,23 we can build them1234

resonances = [

’rho(770)’: RelativisticBreitWigner(rho_770_plus_mass ,

obs=zfit.Space(’m2pipi ’, limits ...))

...

]

coeffs = [

zfit.ComplexParameter.from_polar(’c_rho770 ’, 1.0, 0.0),

...

]

1235

23The Breit-Wigner is currently an open merge request.

41

Figure 10: Dalitz plot of the invariant mass K+π− and K+π0. The left histogram is taken from
the paper while the one on the right was sampled from a distribution built with zfit and using
phasespace as sampler.

and combining all of the above we can finally create the whole model1236

obs = zfit.Space([’m2kpim ’, ’m2kpi0 ’, ’m2pipi ’, limits=...])

pdf = SumAmplitudeSquaredPDF(obs=obs , coeffs=coeffs , amps=resonances ,

...)
1237

This PDF is quite an accomplishment: while the implementation compared to all1238

previous examples is more extensive, none of the above parts is really complicated to1239

implement and uses basic zfit functionalities. Nonetheless, with this few lines of code,1240

zfit extends its functionality into the world of amplitude fitters, where usually only1241

dedicated tools exist.1242

A missing part is the sampling: since the kinematics of the particles is not encoded into1243

the PDF, it is needed inside the sampling. For that, we can create a decay as shown in1244

examples above in Sec. 6.2 with the phasespace package. For simplicity, the Breit-Wigner1245

distribution is used to model the mass shape. Building the decay and sample from it can1246

be registered with the PDF as importance sampling.241247

In order to compare the zfit implementation with the measured data, a sample is1248

drawn from the PDF. It is to note that the right plot in Fig. ??, drawn with zfit, is1249

currently not representative, since an instability in the sampling can vary the samples1250

strongly depending on a single proposed event.25. While the two distributions do not agree,1251

it is notable that resonances are taken into account and that the phasespace is sampled1252

with correct borders. This unveils another current limitation in zfit, that currently only1253

rectangular limits are possible. As a future extension, arbitrary limits for Space will be1254

implemented.1255

What was shown in this example are the low level components to build an amplitude1256

analysis using zfit. Most of the work above is straight forward but cumbersome and1257

24Since this feature is not yet fully public in zfit, no explicit example is shown. The mechanism will
be similar to the registration of an integral.

25As described in C.7, weights going to zero as occurring in the phasespace can cause large problems.

42

can be hidden behind a higher level interface that takes care of the right assignment of1258

observables, resonances and compositions. Furthermore, and adding an additional layer1259

around the resonances, the phasespace decays can be kept with the actual resonances1260

which allows the phasespace to be an integral part of the amplitude. A higher level1261

interface, which leaves the user with the specification of the resonances and coefficients1262

but still offers the possibility to replace any part that was shown above, is currently under1263

work in zfit-amplitude.1264

43

7 Conclusion and outlook1265

zfit is a versatile library that fills the gap of model fitting in Python for HEP. Built on1266

top of the deep learning framework TensorFlow, it has shown great advantages including1267

a remarkable speedup for parallelisation. The formalisation into five loosely coupled parts1268

and an extensive base class for custom models extend its scope far beyond the usual1269

feature set of HEP fitting libraries.1270

The project has been successful so far, and is being used in several high-impact analyses.1271

In addition, it has been shown how the zfit design allows to build extremely complex1272

analyses, namely amplitude analyses, in a reasonably simple way, unlike most general1273

fitting libraries. However, a lot of work remains to be done on the way to establish a1274

stable, reliable fitting library. The main features to be improved on in the near future are:1275

Binned fits Fits are sometimes performed in bins of data, mostly to speed up the1276

computation. Furthermore, the shape of a model can be too complicated to be1277

described analytically and has to be deduced from simulation or data samples by1278

creating a template PDF. Currently, there is no native support yet for binned fits or1279

template PDFs. This is right now under active development and will be added to1280

zfit in the future.1281

Optimisation Model fitting can be a numbers game: in order to estimate uncertainties1282

of parameters or to study the sensitivity of a fit with toys, a large number of repeated1283

fits have to be performed. To keep this feasible in terms of time and computing1284

resources, performance matters. There are currently still various places where the1285

computation can be optimised. This includes the caching of computations and more1286

efficient numerical integration by using advanced Monte Carlo techniques or other1287

numerical methods.1288

Serialisation Models are currently built within a script. Often, a model needs to be1289

stored and used again later on or in a modified version, which is not well achieved1290

by just dumping the code. To actually define a model, for most cases no code is1291

actually needed but a configuration file with the model description is sufficient. This1292

allows to change certain parts of a model and rather inexperienced users to safely1293

build a model. Therefore, a complete serialisation of a model into a human readable1294

format is planned for zfit.1295

Content In HEP, there are quite a few different shapes and possibilities of combinations1296

that models are built with in order to describe the observables correctly. This1297

includes angles, masses, incorporating smearing effects and more. zfit and its1298

extensions currently don’t contain a lot of different models or losses. The essential1299

parts are contained but more are planed to come in the future. It is expected1300

for them to be continuously added, also depending on the needs that may arise.1301

Furthermore, with zfit-physics a repository especially created for content and1302

simple community contributions is available.1303

Large scale Fits in HEP can be large, both in terms of data as well as in the complexity1304

of the fitting model. With future experiment upgrades an increased amount of data1305

is expected and a fitting library has to cope with that. Complex models and more1306

precise measurements also increase the need for a reliable normalisation, achieved1307

44

by a higher number of random samples drawn for the integration. While scalability1308

to medium scales is already available with zfit, the software should not be the1309

limit in terms of scaling, the computing infrastructure should be. This requires that1310

on-the-fly normalisation computation can be performed. The extension to huge data1311

samples with out-of-core computations and to use multiple nodes as well as GPUs1312

is also a requirement. TF supports this quite well, it was designed for that, but the1313

explicit implementation inside zfit is not yet there.1314

Most of these current shortcomings have been foreseen and make it into the idea of1315

zfit to become a stable library; a clean implementation with a minimal maintenance1316

effort is preferred over quantitative content. Additionally, the flexibility and available1317

base classes allow the user to add these features on top of zfit as they are required.1318

Another future challenge is provided by a significant change of the backend. TensorFlow1319

2.0 is currently in beta stage and expected to appear somewhere during Summer/Fall1320

of 2019. A complete restructuring of the library is expected, including a lot of clean up.1321

While a lot will remain the same, some work will be needed to adjust zfit to it.1322

In summary, zfit started not only filling an open gap in the HEP Python ecosystem1323

but also extends its functionality through the formalisation and flexibility far beyond of1324

what traditional fitting frameworks are able to do. While still under heavy development,1325

the current library is already well suitable for a diversity of simple to advanced analysis.1326

45

Acknowledgements1327

I would like to first express my gratitude to Professor Nicola Serra for letting me do this1328

thesis in his group and being very supportive and trusting overall.1329

A huge thanks goes to Dr. Albert Puig Navarro, who was not only a great supervisor1330

but also a core member of the zfit project, a co-author, code reviewer, advertiser as well1331

as main author of phasespace and zfit-amplitude, both libraries that are very closely1332

interconnected with zfit. Without all the discussions about the large and small details1333

of the library and use cases, the pure coding and reviewing contributions, this project1334

would not be on a comparable level and may never grew over a small collection of scripts.1335

I would like to greatly thank Dr. Rafael Silva Coutinho who is also part of the zfit1336

core team and part of bringing the project to life. His contributions in discussions with a1337

more user sided view as well as extensive usage with real use cases is, next to code and1338

documentation contributions, a great support in designing and creating the library.1339

There are a lot of members in my group that I would like to thank as well for a variety1340

of things. Be it for discussions about the development of zfit and code snippets I like to1341

specially thank Dr. Abhijit Mathad, Dr. Julian Garcias and Dr. Oliver Lantwin. For1342

the usage and trial of the library including new features where I like to thank Davide1343

Lancierini, Sascha Liechti and Martina Ferrillo. And last but not least for the idea of the1344

library, the technical and user sided experience with an already existing tool and helpful1345

advices I would like to thank Dr. Andrea Mauri and Michele Atzeni.1346

A specially thank goes to Prof. Anton Poluektov for several discussions and whose1347

library TensorFlow Analysis was a major inspiration to build zfit.1348

Furthermore, I would also like to thank the scikit-hep community for various design1349

discussions, especially Dr. Eduardo Rodrigues and Chris Burr.1350

A great thanks goes to the University of Zurich and CERN for offering the opportunities1351

to do this kind of research by providing the adequate resources.1352

Many thanks also go to Google and the TensorFlow development team for open-sourcing1353

the library and thereby allow libraries like zfit to be built.1354

Last but not least I’d like to thank two persons not only professionally for their support1355

but also privately for various things, too many as they could even remotely be summarised1356

here: Simone Steinbrüchel and Patrik Eschle1357

46

Appendices1358

A Likelihood1359

A reasonable loss is to have a quantity that expresses the probability of the model given1360

the data, which can then be maximised. A form of Bayes theorem about probability can1361

be used in the setting of a model parametrised under θ and data x to express the above1362

P (θ|x) =
P (x|θ)P (θ)

P (x)
(14)

It states that the probability of θ under our observed data equals to the likelihood of1363

finding our data given θ times the prior of θ over the prior of our data. While P (data|θ)1364

is a probability, fixing the data and varying θ is called the likelihood of θ and denoted as1365

L(θ). If there is no previous knowledge about θ, we can assume a uniform prior, this is1366

usually the case. The same is done for the data, whose marginal probability acts as a1367

normalising constant. This means they both introduce constants into our term since they1368

do not depend on our parametrization θ.1369

Note that the following derivations rely on a discrete probability distribution as opposed1370

to a continuous one. This simplifies the argumentation. It can be shown that the results1371

are equivalently valid for the latter, therefore no strict distinction is made. We start out1372

with a form of Bayes theorem, which states that the combined probability of two events1373

are independent of their order.1374

P (A ∩B) = P (B ∩ A) (15)

The probability of two events to happen can be rewritten in terms of the conditional1375

P (A|B), read as the probability of A given B, and the marginal probability P (B) as1376

P (A ∩B) = P (A|B)P (B) (16)

Combining 15 with 16 and rearranging we get1377

P (A|B) =
P (B|A)P (A)

P (B)
(17)

that is usually in this form famously known as Bayes theorem. It states that the1378

probability of A under B equals the likelihood of B given A times the prior of A over the1379

prior of B. While P (B|A) is a probability, fixing B and varying A is called the likelihood1380

of A and denoted as L(A). If there is no previous knowledge about A, we can assume1381

a uniform prior. The same is done for B, whose marginal probability usually acts as a1382

normalizing constant. This means they both introduce constants into our term and are1383

therefore not of interest later on. They will be left away from now on1384

L(B) = P (A|B) (18)

Given a hypothesis H0 and a dataset x, the likelihood is the probability that an event1385

happened under a certain hypothesis1386

L(H0) = P (x|H0). (19)

47

While the probability itself is normalized over x, a likelihood is not. Notice that1387

the likelihood of H0 is a function in H0, namely the probability of x under H0 with H01388

changing. So the difference between likelihood and probability is the distinction of what1389

is the free parameter and what is the parametrization. We assume now our hypothesis is1390

described by a model parametrised with θ, a PDF as defined in 2.1391

There is actually a distinction between parameters of interest (POI) and nuisance1392

parameters when speaking of parametrisation. The latter describe parts of the models1393

shape but are not of direct interest in the sense that they do not appear in the hypothesis1394

but rather describe well known effects like the width of some smearing. Since they also1395

have to be inferred in the same way, we restrict ourselves in the derivation of the likelihood1396

to models with exclusively POI. The distinction becomes apparent later in the hypothesis1397

testing, which goes beyond the scope of this thesis.1398

While the likelihood denotes the odds of the model parametrised with θ under the1399

observations x, it is, as seen above, equal to the probability density of finding x given the1400

parametrisation θ1401

L(θ|x) = fθ(x) (20)

Since the likelihood under data x is the product of likelihoods under each independent1402

data point, we can write the likelihood as a product of probability densities as in 41403

Using this expression, we can get a maximum likelihood estimate of our parametrisation1404

θ1405

θ̂ = argmax(L(θ|x)) (21)

In practice, finding the maximum is done using numerical methods. Eq. 4 involves the1406

product of many small numbers <1, not feasible for most computers given their limited1407

precision on numbers. The monotony of the logarithm can be used to transform the1408

probability densities to log densities whereby the multiplication becomes an addition1409

argmax(f(θ|x)) = argmax(ln(f(θ|x))) (22)

It is often more convenient to find a minimum instead of a maximum, so that our1410

likelihood takes the form as in 51411

which is our NLL. Therefore, our likelihood estimation becomes1412

θ̂ = argmin(−
n∑
i

ln(f(θ|xi))) (23)

This estimation is valid for n measured data points with weight one. We can generalize1413

this expression, including event weights. They introduce a power factor but can be taken1414

out of the logarithm to have a simple multiplication1415

θ̂ = argmin(−
n∑
i

wi · ln(f(θ|xi))) (24)

with wi being the weight of the ith event. This generalization is not only useful when1416

using data points directly to build an unbinned NLL but allows straightforward to bin1417

48

the data in the first place and use the bin height as the event weights by choosing an1418

appropriate xi for each bin. Binning can speed up the computation significantly but looses1419

slight precision26.1420

We considered now the likelihood of a model fit to a dataset. The same parameters1421

often occur in more than one model, for example the invariant mass of a mother particle.1422

To take this into account, a simultaneous fit can be performed, which is simply the1423

multiplication of several likelihoods.1424

Lf(x)(θ|data0, data1, ..., datan) =
∏
i

L(θi, datai) (25)

where θi is a subset of parameters of θ used for the model fit to datai.1425

The likelihood can be multiplied by constraint terms, most notably an extended1426

likelihood estimator (EML) and parameter constraints.1427

If a parameter changes both shape and the overall normalization of the pdf, an EML1428

fit is superior. This situation typically arises if there is a sum of several shapes as1429

when adding the background and the signal shape. So for example, taking the model1430

Nsig ∗ PDFsig + Nbkg ∗ PDFbkg and assuming a Poisson distribution of the number of1431

events in the data, we can multiply the likelihood by a term1432

Lextended = poiss(Ntot, Ndata) (26)

= NNtot
data

e−Ndata

Ntot!
(27)

where Ntot = Nsig +Nbkg. Therefore the EML looks like1433

θ̂ = argmin(−
∑
i

·ln(fi(θ|datai))−
∑
i

ln(poiss(Ni, Ndatai)) (28)

where datai are, as before, different datasets. The weights are inside datai and taken1434

into account as described above. The total number of events is, in general, the sum of the1435

weights of all the events.1436

For certain parameters, prior knowledge is available. If the order of magnitude of the1437

knowledges uncertainty is within the expected fitting sensitivity, a constraint term can be1438

used to incorporate this. This is nothing else than an additional term the likelihood is1439

multiplied with1440

L(θ) = Lunconstrained
∏
i

fconstri(θ) (29)

= LunconstrainedLconstr (30)

as an example, a parameter θi that is Gaussian constraint with µconstr and σconstr1441

looks like this1442

26Currently, only unbinned losses are implemented in zfit but the extension to binned is already tested
and will be there in the future.

49

constri = Gauss(θi;µconstr, σconstr) (31)

Combining equations 25, 26 and 29 yields for the likelihood in general1443

L = Lf(x) · Lextended · Lconstr (32)

The absolute magnitude of the likelihood itself does not have any specific meaning,1444

but ratios and scanning over the parameter space of θ allow for statistical interpretation.1445

This however goes beyond the scope of zfit and is intentionally left to other packages1446

like lauztat [18].1447

As mentioned in the beginning, a likelihood as described in 32 is not the only possibility1448

to define a loss, though the most common used one. A prominent example is the χ2 loss,1449

which is equivalent to a likelihood in the limiting case if each point is normally distributed.1450

B Backend1451

Choosing the right computational backend for model fitting is crucial. In the following1452

Sections, the different paradigms and backend designs are introduced. Furthermore, the1453

TF library and how it is wrapped inside zfit is explained.1454

B.1 HPC and paradigms1455

High performance computing (HPC) solves an entirely different problem than high level1456

programming languages do. While the flexibility offered by Python is nearly unlimited1457

and an incredible strong and comfortable feature, it is only possible due to the dynamic1458

nature of the language. For the interpreter of the language that actually translates and1459

executes the code to machine level, nearly no assumptions can be made about any object.1460

Neither about their size or type nor about their future in the code. This means that no1461

previous optimization is possible. For HPC this is the crucial key to success: the more is1462

known previously of the actual computation, the better the performance will be. The less1463

flexibility is available, the more assumptions can be made. This way the layout of arrays,1464

parallelisation of computation, caching and more can be efficiently achieved. Since less1465

flexibility is not an overall desired characteristics, a good compromise has to be found.1466

The distinction between two fundamental paradigm are of importance1467

Imperative Most code is run imperatively: a statement is executed when the line is1468

hit. Python, C++ and many more work that way. The advantage is that the1469

state changes as the code runs. An addition of two numbers for example will be1470

executed right when the command appears. The disadvantage is that it’s impossible1471

to optimize over more than one step, since the next line of code is not known yet.1472

Declarative/Graph When a statement is supposed to be executed, it is actually not1473

yet run but somehow remembered. It runs either explicitly when asked for it or1474

implicitly if it is needed as a dependency. The latter could also be described as1475

“lazy evaluation”. The disadvantage is that the state of the code may looks quite1476

undetermined since for example an addition of two numbers is not yet actually1477

50

executed when the line is hit. Instead, an object that actually calculates the1478

computation is usually returned. The paradigm can also be described as a “graph”1479

based approach, since an execution graph is built. In the special case of HPC, this1480

can be a computational graph displaying data input, operations and outputs. While1481

a declarative paradigm is better in terms of raw performance and optimizations in1482

general, it is also more limited in functionality and cannot offer the flexibility that1483

the imperative paradigm offers. The workflow is divided into compilation or graph1484

construction time and run time.1485

In reality, a mixture of this approaches is usually applied on different levels which1486

some languages and frameworks tending strongly toward one or the other. For example,1487

any ahead-of-time compilation as used in a C/C++ compiler is kind of a declarative step.1488

But the language C/C++ itself is imperative. For deep learning frameworks, there is a1489

strong tendency towards a declarative paradigm, more specific a graph is built. To ease1490

the difficulty of debugging and making experimentation simpler, an immediate execution1491

of a graph can make a graph based approach behave imperatively. Some frameworks1492

therefore offer a mix with this immediate execution. For the maximal performance, a1493

graph based approach will though be superior for decent complex problems. There are1494

three major advantages of using a graph.1495

Distributed computing Moore’s law states since over 40 years that the processing1496

power, which originally equals to the clock speed, of CPUs will double approximately1497

every 1.5 years. While there is no theoretical foundation for this statement, reality1498

holds up to it. Since the beginning of the 2000’s, CPUs have reached a clock speed1499

around gigahertz and started hitting a limit: the thermal dissipation of a CPU goes1500

with the third power of the clock speed. As a consequence most CPUs today don’t1501

have a higher clock rate in order to stay efficient. Nonetheless, CPU power keeps1502

increasing at a similar rate by using more than one CPU unit in parallel. Multicore1503

systems became common on almost every machine. It is an imperative therefore1504

that any numerical intensive library makes a good use of distributed computing.1505

This includes shared memory machines to large scale clusters with multiple nodes.1506

Moreover, with the recent success of ever growing DNNs and frameworks built to1507

make easy use of them, vectorial computing devices like GPUs can be used easily as1508

an alternative to CPUs.1509

Mathematical optimization Since there is not only one step for each computation1510

available but the whole computation at once, the possibility for mathematical1511

optimization arise. Most notable, an analytic expression for the derivative is1512

available through automatic differentiation. This subsequently applies the chain1513

rule to any operation.1514

Caching A throughout analysis of the computation graph allows for various computa-1515

tional optimizations. Common sub-expression elimination identifies if the same1516

operation is executed in several places and substitutes the nodes for a single compu-1517

tation.1518

The disadvantage of building a graph first is the overhead to build, analyse and store1519

the graph. And the additional indirectness, since the main principle is to build the1520

51

computation graph once and run it several times. This implies a non-intuitive behaviour1521

for users coming from an imperative background.1522

While the graph based approach seems very feasible, there are two fundamental1523

different assumptions that need be made with graphs.1524

Static A static graph is built once and cannot be altered. So if we have for example1525

a complicated function taking as input a uniform value generator, we build the1526

graph once and execute it several times. In order to change the input to a normal1527

distributed random generator, this requires to build the whole graph again with one1528

operation, the random input generator, changed.1529

Dynamic Dynamic graphs are mutable and can be used if there are a lot of actual1530

modifications to the graph. Any part can be changed, its not restricted to append-1531

only.1532

As an example, TensorFlow offers a static graph while PyTorch uses a dynamic graph.1533

B.2 Working with TensorFlow1534

Graph based approaches imply another level of indirectness and need some wrapping in1535

order to avoid unexpected or inefficient behaviour. In zfit this is mostly hidden, exposing1536

some of it but also removing the obstacles for most use cases.1537

As an example, we’ll look at a task of several random number generations in a row. In1538

the imperative style this would look like this, where numpy is used to generate a uniform1539

distribution1540

for _ in range(n_samples):

sample = np.random.uniform (...)

do something with the sample
1541

In a declarative approach as with TF, the same is achieved by first building the actual1542

operation of the graph and then executing the computation1543

sample_op = tf.random.uniform (...)

for _ in range(n_samples):

sample = zfit.run(sample_op)

do something with the sample

1544

where zfit.run(...) is just the command to execute a certain part of the graph.1545

The object sample is in both cases a numpy array. Note that in the declarative approach,1546

we created the operation only once but execute it multiple times. This indirection can be1547

surprising for the unaware and a typical mistake is to implement it this way1548

BAD EXAMPLE

for _ in range(n_samples):

sample_op = tf.random.uniform (...)

sample = zfit.run(sample_op)

do something with the sample

1549

52

which just fills up the graph with additional operations that actually all do the same1550

thing. In order to hide this inconvenience to the user, a caching system is in place in1551

zfit to prevent an accidental re-creation of the operation. In the above example, we can1552

think of wrapping a function uniform (fictive example), create the operation on the first1553

call and use the cached operation afterwards. In pseudo code, this would look like the1554

following1555

cached_op = None

def uniform (...):

global cache_op # make "cache_op" assignable

if cached_op is None:

cached_op = tf.random.uniform (...) # create op

return cache_op

1556

This function can then be used a mixed stile1557

for _ in range(n_samples):

sample_op = uniform (...) # as created above

sample = zfit.run(sample_op)

do something with the sample

1558

This hides some of the difficulties. While this example of just random number1559

generation may seems artificial, a prominent example is the loss that is typically built1560

using models and data. Calling value builds the operation, adds it to the graph and1561

stores it, so that in subsequent calls, the stored operation is returned instead of a new1562

one created. While this is very convenient for the user combining the good of two worlds,1563

it comes with an additional burden for zfit of having to cache the operations efficiently.1564

B.2.1 Caching1565

In HPC, sometimes certain parts of a computation do not need to be recomputed and1566

storing the results in a cache for later reuse can improve the performance significantly.1567

Since zfit uses a declarative graph based approach, there are two different caches: For1568

the operations built on construction time as discussed above and only appearing due1569

to the graph based approach. Furthermore, intermediate calculations can be cached in1570

general, which corresponds to the objects built on run time. The latter is commonly used1571

also in imperative approaches.1572

As seen before, creating operations with a declarative approach adds each of them1573

to a global graph, a collection of operations. And since these are only instructions and1574

not actual computations, there is no need to rebuild the operations and stitching them1575

together again but rather re-use the previously built instruction.1576

Therefore zfit has a possibility to cache Tensors after they have been built for the1577

first time inside the object that the Tensor was created in. Since the graph is static and1578

cannot change, an even small modification to a part of it requires a complete rebuild27.1579

This can be as less as removing an single, additional term in the model. Any object that1580

may needs to perform such a modification is therefore registered within the caching object1581

and can notify the cacher in order to invalidate its cache and rebuild any Tensor.1582

27There are ways of changing the value but not the logic, the computation flow.

53

Numerical results of computations inside the graph can remain the same during several1583

executions of an operation which can therefore be cached. Opposed to the construction1584

time caching, numerical caches do also invalidate if a number inside the graph changes,1585

not only its structure. Caching in a declarative approach is not straightforward since this1586

implies to replace a node, which can be a large subgraph by itself, with a single value.1587

Since the graph cannot be changed, this would require a complete rebuild of the graph,1588

rendering the caching way less efficient. There are two ways to circumvent this problem1589

feed dict The TF sessions run method offers the possibility to overwrite specific nodes1590

with a value using a feed dict. This means that cached values can simply be stored1591

and overriden on runtime. At the current stage, zfit is not designed to always1592

control the execution but leaves the freedom to the user to invoke the Session.run1593

method themselves.1594

Variable Since all TF object so far are just operations but not numbers, storing a value1595

between the runtimes requires a special object. A TF Variable can be used for1596

this case. Its purpose is to store a value but also act as a node in the graph with a1597

read operation that return the current value. Its value can be changed between the1598

runtimes in case it has to be updated. This though can have side effects on other1599

object that still use this cache. The disadvantage here is that the initialization of1600

the Variable can be tricky if it is created inside a control flow such as tf.while or1601

tf.cond.1602

In zfit currently a feed dict independent implementation is being tested, but that is1603

likely to change in the future. One main problem with this kind of caching is the gradient.1604

If a value is not supposed to change, then its simple since there is no gradient. But if1605

there is a value that can change, the gradients value also needs to be cached. A likely1606

solution is to wrap the ordinary Tensor class from TF and provide a caching Tensor, that1607

automatically takes care of gradient caching as well. Also the feed dict seems like an1608

efficient solutions, at least for cases without a gradient.1609

C Implementation1610

C.1 Spaces definition1611

A Space is either initialized through observables or axes and maybe also has limits. It can1612

have both, observables and axes, which means there is an order-based, bijective mapping1613

defined between the two. In general, a Space is immutable and adding or changing1614

anything will always return a copy.1615

When a user creates a Space, observables are used and define with that the coordinate1616

system. Once a dimensional object, as a model or data, is created with a Space, the1617

order of the observables matters. Since the Space at this point only has observables and1618

does not yet have any axes, when the dimensional object is instantiated, the axis are1619

created by filling up from zero to nobs − 1. This step is crucial and defines the mapping1620

of internal axes of this dimensional object to the externally used observables. In other1621

words, every dimensional object has implicitly defined axes by counting up to nobs − 1,1622

assigning observables creates a mapping by basically enumerating the observables.1623

54

For example we assume a model was instantiated with a Space consisting of some1624

observables and data with the same observables but in a different order. Now the1625

assignment of observables to the model and the data columns are fixed, therefore it is1626

well defined how the data has to be reordered if it is passed to the model.1627

While we used data and a model in the example above, the same is true for limits that1628

can be used to specify the bounds of integration and more. Since limits can be part of1629

a Space, the reordering is done automatically if the order of the observables or axes is1630

changed, not in-place but in the returned copy of it.1631

To help with the accounting of dimensions, Space can return a copy of itself with1632

differently ordered observables. Internally of the Space, the axes, if given, and the limits,1633

if given, are reordered as well. This is crucial in input preprocessing for any dimensional1634

object since with that each Space is ordered in the same way as the observables of that1635

object.1636

A subspace can be created from a Space. This is a subset of the dimensions of the1637

Space. It can be used for example if a model is composed of lower dimensional models.1638

This is often the case for functors such as a product PDF as described in Sec. C.6.6.1639

C.2 General limits1640

Simple limits are just tuples. But a more general format is needed to express multiple1641

limits and higher dimensions in a straight forward way. Multiple limits are technically1642

done with multiple tuples of lower and upper limits for each observable. The Space is1643

handled as one domain. So the area of a Space is the sum of all the areas of each simple1644

limit, the integral over a Space is the sum of integrals over each simple limit and so on.1645

Multiple limits are defined separately and are not built from the projections of all limits.1646

The format is therefore to specify the lower limits and the upper limits in each dimension1647

as a tuple. Multiple limits contain multiple lower limit tuples and multiple upper limit1648

tuples.1649

As an example, a Space is created with the observables x, y and the two limits l11650

and l21651

l1 = (x0, y0) to (x1, y1)

l2 = (x2, y2) to (x3, y3)

to write the limits in the right order, the upper and lower limits have to be separated1652

and concatenated, so that the lower and upper limits look like this1653

lower = ((x0, y0), (x2, y2))

upper = ((x1, y1), (x3, y3))

By definition of the format, lower and upper have to have the same length. The1654

limits for the Space is the tuple (lower, upper). Creating this Space with zfit is done as1655

follows1656

1657

55

lower = ((x0 , y0), (x2, y2))

upper = ((x1 , y1), (x3, y3))

limits = (lower , upper)

multiple_limits = zfit.Space(obs=["x", "y"], limits=limits)

1658

The same format is returned by the property Space.limits. This is a quite general1659

format that covers the needs for rectangular shaped limits. However, more advanced1660

shapes may be necessary, see also 6.1, which will most probably be provided in the future.1661

Since the order of observable matters and limits_xy and limits_yx as used in Sec.1662

4.1 define the same domain (apart from the order of the axis), they can be converted into1663

each other using the Space.with_obs method1664

limits_xy_resorted = limits_yx.with_obs(limits_xy.obs)

limits_xy == limits_xy_resorted # -> True1665

Notice that this created a new Space and left limits_yx untouched. This method1666

can also be used to only select a subspace1667

limits_x == limits_xy.with_obs("x") # -> True
1668

and therefore go to lower dimensions again.1669

C.3 Data formats1670

Currently, the following formats can be read by Data.1671

ROOT The standard file format used in HEP analysis. It efficiently stores data samples1672

and is the native format of the Root library. Due to the recent development of1673

uproot [19], it is possible to load these files in Python without an installation of1674

Root.1675

Pandas DataFrame Pandas [20] is the most extensive data container in Python used1676

for data analysis. It provides DataFrames that offer an extensive set of data analysis1677

tools going from plotting to feature creation and selections. It is the de-facto1678

standard in Python and has the ability to load from a variety of data formats1679

including hdf5, csv and more. The possibility to load them directly into zfit is1680

therefore a powerful feature because it allows to do any preprocessing in DataFrames.1681

Data can also be converted to DataFrames, which allows to load for example from1682

ROOT files into Data, convert to a DataFrame, apply some preprocessing steps and1683

then load again into Data.1684

Numpy Numpy [21] is the standard computing library in Python that has been around1685

since a long time. Several libraries, including TF, are inspired by its API and1686

behaviour design. The numpy arrays are the default way to handle any vectorized1687

data and are also returned by TF as a result of computations.1688

56

Tensors Data can also take a pure Tensor as input. While this may seem at first glance1689

the obvious thing to do, it is trickier: a Tensor is, compared to the other data types1690

not fixed per se, since it is only an instruction to compute a certain quantity. While1691

constants for example behave straight forward and will always return the same, a1692

Data initialized with a random Tensor will produce different data every time it is1693

called. Therefore, special care has to be taken for this case, from the developer as1694

well as from the user site.1695

C.4 Data batching1696

Small datasets are internally simply converted to a Tensor and attached to the graph.1697

Large datasets though, which either exceed the memory limit of the computing device1698

or the limit of the graph size (which is 2 GB), need to make use of batched out-of-core1699

computation. TF has a data handling class Dataset, which provides a performant way to1700

do batched computations. It incorporates the loading of the batches from disk into the1701

whole graph as several operations. This allows the runtime to split the execution in order1702

to asynchronously load a batch of the data and run the graph of an already loaded data1703

batch.1704

Another way of on-the-fly computation can be more generally be done with Tensors,1705

since they can be used to instantiate Data. For example, Data has a subclass Sampler,1706

which is specialised on this. It allows to evaluate the Tensor and store its value. This1707

way, the Tensor is only re-evaluated when requested. The Sampler acts for example as1708

the returned Data when sampling from a model. This data depends on the model but can1709

be used like a normal data for example to construct a loss.1710

C.5 Dependency management1711

The graph built by TF can be fully accessed, the parent operations of any operation is1712

available. This enables to detect any dependency by walking along the graph. Or as1713

TF does internally, to create the gradient. Using this in general can be risky though1714

since for example caching with a Variable changes how the actual graph looks like.1715

Furthermore, it is also time consuming on a larger scale. Inside zfit, it is used as an1716

additional feature to figure out dependencies automatically of certain subgraphs. There1717

is one type of independents that can change as also described in 4.3.1, Parameter, that1718

other objects can depend on, directly or indirectly. To have a dependency structure that1719

is independent of the graph, zfit has a BaseDependentsMixin. A subclass implements1720

a method of returning the dependents for itself. This can then be done recurrently up1721

to the independent parameters (see also 4.3.1) that return themselves. Any major base1722

class implements the appropriate functions but requires for example to have a distinction1723

between a model that depends only on parameters or also on other models. Both of them1724

are Dependents but the model has to be aware to not only extract dependents from the1725

parameters but also from the models.1726

To get the dependents from any object, get_dependents can be used, which returns1727

a set of independent Parameters. This is fundamentally different from the params that1728

each model has. The former will return all the independent parameters that the model1729

depends on. This can be any number of independent parameters. The latter returns1730

the exact parameters that are used in the function defining the shape of the model. For1731

57

fitting, when tuning the parameters, the get_dependents should be used, since the actual1732

changeable parameters matter. When reading off a value from a model, like the mean1733

by accessing mu, the params has to be used. Using the latter for fitting can easily result1734

in an error if not all of the parameters are independents, since the value of dependents1735

(including constant) parameters cannot be set.1736

C.6 Base Model1737

From all the classes, the BaseModel and therefore also its subclasses, BaseFunc and1738

BasePDF, contain the most logic. The implementation has a few peculiarities that will1739

be highlighted. It is meant to be used as a base to implement custom models providing1740

flexibility but ease of use at the same time, as discussed in Sec. 4. Therefore in this class1741

a structure is provided where everything can be directly controlled but does not have1742

to be. The class takes care of anything that is unambiguous but maybe cumbersome to1743

do while leaving the full control to the user. The intended usage as a base class leaves1744

it to the user to implement himself any method he wants to control directly. Namely1745

the class provides the guarantee that any of the main methods can be overriden by1746

changing the implementation of method, the same method name but with a leading1747

underscore. Furthermore, any direct control can always be given back to the class by1748

simply raising a NotImplementedError. The class acts as if the overriden method was1749

never called. Furthermore, the base class takes care of some unambiguous handling of1750

arguments (see below e.g. C.6.3, C.6.4). It is mandatory to decorate each method1751

with the supports() decorator. This allows to specify if the method can handle certain1752

things, like normalization ranges. By default, this filters the more advanced arguments1753

and handles them automatically. It is meant to provide a way to still allow specific1754

implementations and workarounds.1755

C.6.1 Public methods1756

The internal logic of the methods pdf (and to some extend func and unnormalized_pdf),1757

sample and all the integrate have a very similar layout. Their logic is split into a public1758

part and more internal methods. We’ll start with the outermost method, the public1759

methods, and follow the subsequent method calls. There is a strict order on what will be1760

called after which method, we follow the same order here.1761

A public method is a method starting without an underscore. It serves as the entry1762

point to a model, asking it to do something. It is supposed to provide a clean API to the1763

user as well as appropriate documentation of the method. The functional responsibility1764

of the method is to clean the input which mostly means to take care of the ordering1765

of dimensions and automatically convert certain input to a more general format. The1766

following cleaning is done to the input1767

limits Limits for norm range or for sampling and integration can be given as arguments1768

to certain methods. First, the limits are automatically converted to a Space if it’s1769

save to do so. Namely a simple limit consisting of a tuple in a one dimensional case1770

is converted, anything else raises an error. Second, the method takes care of sorting1771

the space in the right way. Since each model has a Space with observables assigned1772

to it with a given order, the given or auto converted Space is sorted accordingly.1773

This assures that the limits are internally in the right order.1774

58

data As for limits, the data is first converted to the right format, a Data if possible. This1775

will convert any input data that coincides with the dimensionality of the model.1776

While this is convenient since it allows to directly feed numpy arrays and Tensors to a1777

model, it relies on the correct order of both the data as well as the model observables.1778

Since this can silently lead to mistakes by using the wrong order, probably in the1779

future this won’t be possible anymore, given that a simple conversion to Data can1780

always be made.1781

As a second step, the Data is sorted according to the observables of the model,1782

just like the limits. This ordering is done using context managers that revert the1783

reordering once the data exits the method.1784

The ordering is a crucial element to allow the direct usage of any object inside a model1785

while having the matching ordering guaranteed.1786

C.6.2 Hooks1787

After the public method, two hooks follow. Assuming we have a public method named1788

method, the first hook is named single hook method. Its purpose is to be directly1789

called from the public method or if the model itself needs to call one of it’s own methods.1790

The second hook called by the first is hook method and is used for repeated calls by1791

the very same method that was called. This is useful if for example a scaling factor is1792

supposed to be applied at the end of the calculations. If a method calls itself recursively,1793

the scaling is supposed to be applied just once at the very end. The general idea of hooks1794

is to provide a convenient way to change the behaviour of a method without altering1795

the public method and its input cleaning. It provides the user the possibility to directly1796

change any input before it is passed further down or any output right before it is returned.1797

So any kind of advanced, model specific pre- or post-processing or setting of internal flags1798

can be handled here. Some implementations inside zfit make use of this. For example1799

the implementation of the exponential shape uses the exponential-shift trick28. This1800

requires to determine the shift before the actual computation method is called. Whatever1801

modification is applied in a hook, it is important that any hook always calls it’s parent1802

method to allow stacking hooks.1803

C.6.3 Norm range handling1804

Following the hooks, norm method is invoked. It only exists if a normalization range is1805

used inside the function. This methods responsibility is to automatically take care1806

of the normalization logic if the underlying function does not handle it itself. A1807

NormRangeNotImplementedError can be raised by any deeper nested function which1808

is caught here. For example in the case of an integral, the method first calls the subse-1809

quent method and if it catches an error, it splits into two calls: it calculates two integrals,1810

each one without a normalization range, one over the limits to be integrated over and one1811

over the normalization range. The first is then divided be the second, which is the very1812

definition of a normalized integral.1813

28A normalized exponential shape is invariant under translation. This can be used to increase the
numerical stability by avoiding large number calculations and keep it around zero.

59

To illustrate this behaviour in pseudo code, a function integrate that takes the limits1814

and the normalization range as arguments is assumed to exist. False as argument to the1815

normalization range means the calculated integral is unnormalized.1816

try:

integral = integrate(limits , norm_range) # pseudo method that

integrates

except NormRangeNotImplementedError:

integral_unnormalized = integrate(limits , False)

normalization = integrate(norm_range , False) # integrate over

norm_range

integral = integral_unnormalized / normalization

1817

This allows for a user to implement only a simple integral when overwritting or1818

registering without the need to worry about its normalization. For most integrals this1819

would anyway end in two times calling the integration function itself, basically what was1820

done above. The default behaviour is that the normalization range will be automatically1821

handled, as described in Appendix C.6. But it still leaves room for the possibility to1822

implement a method that handles the integral as well as the normalization of it. There are1823

special cases where this can be achieved with less computations than two times calculating1824

the integral, such as in the case where the normalization range equals the limits.1825

C.6.4 Multiple limits handling1826

Next in the call sequence the method _limits_method is invoked. It has the responsibility1827

of handling multiple limits which are described in 4.1.1. Equivalently to the way norm range1828

is handled in C.6.3, multiple limits are caught here as well. Consecutive methods are called1829

inside a try-except block in order to catch any MultipleLimitsNotImpementedError.1830

If handling multiple limits is well defined, _limits_method is supposed to take care of it.1831

As an example, the implementation of integration with a limit of n limits is to split them1832

into n independent Spaces, each with only one limit, and call the following methods with1833

this new Space. It is in then a simple matter of summing the results.1834

Given some multiple limits as a Space to be integrated over by invoking the pseudo1835

integrate function, the implementation looks like this1836

try:

integral = integrate(limits)

except MultipleLimitsNotImpementedError:

integral = 0

for limit in limits.iter_limits ():

integral += integrate(limit)

1837

C.6.5 Most efficient method1838

In _call_method, the actual functions are invoked. There are usually several choices for1839

which function to invoke depending on availability and efficiency. The order chosen there-1840

fore starts with the most efficient implementation. If that raises a NotImplementedError,1841

the next method is called.1842

60

• First the _method is called and returned if successful. This is a method that by1843

default raises a NotImplementedError but can be overwritten by the user. It is1844

guaranteed to be executed in this case making the public method call seem like a1845

call to _method, module input cleaning and limit handling. This asserts the full1846

level of flexibility in a model: any major function can completely be overwritten by1847

this procedure.1848

• If no explicit method is implemented, closely related alternatives are invoked. For1849

example, if log_pdf was called and _log_pdf is not overwritten, _pdf is invoked1850

and if implemented, its logarithm is returned. As an other example, if integrate1851

was called and _integrate is not implemented, an analytic integral calculation1852

is performed. If that is not available and also raises an error, more expensive1853

alternatives are called.1854

• The freedom of _call_method is to try simple, but maybe failing alternatives to1855

return the desired. When all of the above fails, the _fallback_method is invoked.1856

This is the last resort and may be quite a complex function. The calculations that1857

it returns may be expensive but the method is guaranteed to work. It must not fail1858

if the Model is implemented correctly.1859

C.6.6 Functors1860

To implement a function just depending on data, the normal base class as described1861

above is sufficient. But a model can also depend on other models. Creating compositions,1862

as for example the SumPDF from Sec. 3, requires an additional tweak regarding the1863

dependencies: a functor does not only depend on its own parameters but also on the sub1864

models parameters associated with it. This is automatically taken care of by having a1865

functor base class. Compared to normal models, they often don’t need to define their1866

observables but are inferred from the sub models.1867

C.7 Sampling techniques1868

Implementing a sampling from an arbitrary distribution is not a straight forward task.1869

The generation of uniformly distributed numbers is comparably simple and is used as1870

a basis for any more advanced sampling technique. Two major ways are often used to1871

sample from a distribution. If the inverse analytic integral function is known, then this1872

can be used to transform a uniform distribution to the desired distribution by treating it1873

as the sample on y. The inverse returns values proportional to the target distribution.1874

This method is very fast and efficient since every drawn event is used. The downside1875

is that it requires the inverse analytic integral, which is not available for most shapes,1876

especially custom ones.1877

For a model where only the shape and no integral is known, the accept-reject method1878

can be used. Thereby, samples are randomly generated in the model domain and evaluated.1879

A random number is drawn between 0 and the maximum of the target shape for each1880

event. If the value returned by the model is larger than the random number, the event is1881

accepted. Otherwise it is rejected. The technique is illustrated in Fig. 11.1882

This can be very inefficient though for peaky distributions since all red values are lost.1883

An increase in efficiency can be achieved by sampling from a distribution that follows1884

61

(a) (b)

Figure 11: Visualization of the accept reject method. Proposed events are randomly sampled
in the valid range. In a) a uniformly sampled y value and in b) a Gaussian shaped y is used
to either accept or reject them. The black like is the true shape of the model. The orange line
represents the distribution the y were drawn from. Blue values are accepted, red are rejected.

better the target shape, so called “importance sampling”, as shown in 11 on the right. It1885

needs to take a little bit more into account, namely1886

target This is the distribution we want to approximate.1887

probability The target probability is the function value of the target shape at a given x.1888

While called probability, this does not have to be normalized to anything but be1889

proportional to a real probability.1890

proposal The proposed sample is the events that will be either accepted or rejected.1891

They are drawn from the proposal distribution.1892

weights This is the probability (or proportional to it) of an event from the proposal1893

being drawn from the proposal distribution.1894

rnd A random number drawn uniformly between 0 and 1 to decide whether to accept or1895

reject an event.1896

To approximate the target, a sample is drawn. To accept or reject samples, the1897

following is checked1898

accept = probi < weighti · rnd (33)

This is only unbiased if all(probi < weighti). Otherwise the distribution will be1899

misshaped as shown in Fig. 121900

Therefore to be unbiased, the weights have to be scaled enough. This can though lead1901

to problems if the weight is significantly lower (even if only in a single point) than the1902

target probability. Since this requires a large rescaling, the sampling of the rest of the1903

target gets rendered inefficient. Therefore it is important that the proposal distribution1904

matches the target reasonably well. Most importantly the maximum and minimum of the1905

ratios of the two distributions should be as close as possible.1906

62

Figure 12: Importance sampling with a wrong scaled weight. The sampled Gaussian distribution
(blue) is cut on the top and does not resemble the correct shape.

C.8 Loss defined1907

The following parts are provided by a loss to enable minimisation1908

value The actual value of a loss is needed since it is the desired object to be minimised.1909

The method value returns the Tensor that can be run with zfit.run(...). This1910

Tensor contains typically the heavy computations.1911

parameters The loss depends on one or more parameter that is floating. They are1912

associated with models and change the shape thereof. As for a model, all dependents1913

can be retrieved by using get_dependents. Changing their values affects the value1914

of the loss.1915

gradients Calling gradients returns the gradients of the loss with respect to the pa-1916

rameters. Gradients provide a helpful tool for the minimisation algorithm.1917

D Performance studies1918

D.1 Hardware specification1919

The measurements are either performed on CPUs only or on an additional GPU. The1920

following hardware and software stack has been used for Fig. 5.1921

CPU 12 core Intel i7 8850H with 2.60 GHz, 6 cores are virtual using hyper-threading.1922

The available shared memory is 32 GB RAM, which was never even half-way filled.1923

While hyper-threading can be very useful for applications where the bottleneck is1924

not the actual computation by the CPU, for HPC this is often not the case. As1925

the experiments have shown, there is only a minor difference between using 6 or 121926

cores. Therefore, only 6 cores, the physical ones, are used in order to quantify the1927

speedup correctly.1928

63

GPU Mobile Nvidia P1000 with 4GB RAM. It contains the same processing unit as the1929

consumer GTX 1050 series but is for professional usage and performs more efficient1930

float64 computations.1931

It is notable that the price of the GPU and the CPUs are roughly the same, which1932

allows for some kind of comparison between them.1933

For Fig. 6, a cluster server with varying hardware was used. Eight cores were requested1934

for the studies, though the workload of other jobs and the CPU type may have an impact1935

on the results.1936

The tests were performed with the TensorFlow version 1.13. It was pre-built by1937

anaconda and uses the MKL library. There is also a version with the Eigen library1938

available, tests revealed differing performances for different tasks, around a factor of two1939

in time. For the GPU version, CUDA 10.0 with cudnn was used.1940

D.2 Profiling TensorFlow1941

Code consists of parallelised and serialised parts. While the speed of the former scales291942

with the number of cores, the latter does not. The total execution time t is given by1943

t =
ns∑
i

t(i)s +

np∑
i

(t(i)p /ncpu + t(i)o). (34)

where ns and np are the number of serial and parallel parts, respectively. t
(i)
s refers to the1944

execution time of the ith serial part, the t
(i)
p for the parallel parts if executed serial and1945

t
(i)
o denotes the overhead that is needed for each parallel execution.1946

The serial part consists of1947

• Reading in data from disk.1948

• Setup code such as building a model in zfit.1949

• Global operations such as reductions on all values. For example determining whether1950

a stopping criteria such as the sum of all gradients has gone below threshold is a1951

serial operation.1952

while the parallel time tparallel contains usually the heavy computations: evaluating a1953

function on data whereby the data can be split amongst the cores. The overhead for the1954

parallel execution time includes1955

• the overhead of creating a new thread for the parallel execution.1956

• the time to move data between the CPUs or even to the GPU.1957

The serial time tserial consists of1958

• Bottlenecks in I/O or moving data1959

In order to achieve maximum performance and minimize t1960

29Ideally. In reality, cores

64

1 CPU 6 CPU GPU
1 x problem 1.0 sec 0.27 sec 0.093 sec
12 x problem 13.4 sec 3.3 sec 1.0 sec

Table 1: Execution time measurement of a loss-like function execution. The complexity of the
problem is scaled by n times adding the same loss again to the reduce function.

• there should be as few serial code execution time as possible. This is though heavily1961

limited by the logic and a certain amount will always be there.1962

• a minimum of splitting into serial and parallel parts should occur, since each add a1963

constant to term.1964

This two points are often heavily conflicting and end up with the simple equation to1965

describe when to parallelise1966

t(i)s − t(i)o > t(i)p /ncpu

which reveals that even for large ncpu, the overhead can be the decisive term. Furthermore,1967

whether it is suitable to execute a piece of code serial or parallel depends on the ncpu.1968

Together with the difficulty of predicting the overhead time, this leaves just the decision1969

of whether a perfectly parallelisable piece of code actually should be run in parallel as a1970

heuristic problem. TF uses as a strategy to find the optimal parallelisation to run a small1971

simulation of the graph, thereby determining the overhead and the number of cores.1972

Since TF actually executes the computations, any execution time measurement highly1973

reflects the performance of TF for this task. As TF itself is under active development, the1974

performance in general is expected to improve in the future.1975

To get a reasonable estimate of what TF is capable of and somewhat avoid potential1976

bottlenecks from zfit, a dummy test function similar to a loss was written in pure TF.1977

The function creates three times one million of random numbers and does a few operations1978

on them before adding and reducing them to a single number. This is added to the1979

previous calculation in a loop 100 times. There are no I/O bottlenecks and, while not as1980

an optimal example for TF, it seems reasonable to what can be expected in model fitting.1981

1982

We can see that the speedup is roughly a factor of 2/3 per core compared to the ideal1983

case of 1. For example, the time from 1 CPU to 6 CPUs could be expected to decrease by1984

a factor of 1/6 but does by 1/4 instead. While there are ways of building more efficient1985

code, the example was chosen to reflect an arbitrarily, non-optimized implementation as1986

expected to be found in zfit, mostly with custom models.1987

D.3 Additional profiling1988

Performance studies have been conducted, not shown in Sec. 5. They are displayed here.1989

References1990

[1] M. Abadi et al., TensorFlow: Large-scale machine learning on heterogeneous systems,1991

2015. Software available from tensorflow.org.1992

65

Figure 13: Full toy study with sum of 9 Gaussians and 2 free parameters. We can see that zfit
s temporary bottleneck in sampling causes an extraordinary increase in execution time mostly
for low number of events, but the conclusions and the overall scaling behaviour is still the same
as described in Sec. 5.1.

[2] A. Paszke et al., Automatic differentiation in pytorch, .1993

[3] J. Pivarski, Non-fork repositories of github users who forked cmssw/aliphysics,1994

https://github.com/jpivarski/2019-06-10-usatlas-argonne-python/blob/1995

master/01-why-python-in-hep.ipynb, 2019.1996

[4] T. E. Oliphant, Python for scientific computing, Computing in Science Engineering1997

9 (2007) 10.1998

[5] M. Newville et al., lmfit/lmfit-py 0.9.13, 2019. doi: 10.5281/zenodo.2620617.1999

[6] J. V. Dillon et al., Tensorflow distributions, CoRR abs/1711.10604 (2017)2000

arXiv:1711.10604.2001

[7] W. Verkerke and D. P. Kirkby, The RooFit toolkit for data modeling, eConf C03032412002

(2003) MOLT007, arXiv:physics/0306116, [,186(2003)].2003

[8] P. Ongmongkolkul et al., scikit-hep/probfit: 1.1.0, 2018. doi: 10.5281/zenodo.1477853.2004

[9] Lukas et al., diana-hep/pyhf v0.0.15, 2018. doi: 10.5281/zenodo.1464139.2005

66

https://github.com/jpivarski/2019-06-10-usatlas-argonne-python/blob/master/01-why-python-in-hep.ipynb
https://github.com/jpivarski/2019-06-10-usatlas-argonne-python/blob/master/01-why-python-in-hep.ipynb
https://github.com/jpivarski/2019-06-10-usatlas-argonne-python/blob/master/01-why-python-in-hep.ipynb
https://doi.org/10.1109/MCSE.2007.58
https://doi.org/10.1109/MCSE.2007.58
https://doi.org/10.1109/MCSE.2007.58
https://doi.org/10.5281/zenodo.2620617
http://arxiv.org/abs/1711.10604
http://arxiv.org/abs/physics/0306116
https://doi.org/10.5281/zenodo.1477853
https://doi.org/10.5281/zenodo.1464139

[10] J. Bendavid, Higgsanalysis-combinedlimit, https://github.com/bendavid/2006

HiggsAnalysis-CombinedLimit/tree/tensorflowfit, 2016.2007

[11] A. Poluektov, Tensorflow analysis, https://gitlab.cern.ch/poluekt/2008

TensorFlowAnalysis/, 2017.2009

[12] F. James and M. Roos, Minuit: A System for Function Minimization and Analysis2010

of the Parameter Errors and Correlations, Comput. Phys. Commun. 10 (1975) 343.2011

[13] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, 2014.2012

[14] LHCb, R. Aaij et al., Angular analysis of the B0 → K∗0µ+µ− decay using 3 fb−1 of2013

integrated luminosity, JHEP 02 (2016) 104, arXiv:1512.04442.2014

[15]2015

[16] F. James, Monte-Carlo phase space, .2016

[17] BABAR Collaboration, B. Aubert et al., Measurement of D0−d0 mixing from a2017

time-dependent amplitude analysis of D0 → K+π−π0 decays, Phys. Rev. Lett. 1032018

(2009) 211801.2019

[18] M. Marinangeli, marinang/lauztat: v1.1.2, 2019. doi: 10.5281/zenodo.2648147.2020

[19] J. Pivarski et al., scikit-hep/uproot: 3.6.3, 2019. doi: 10.5281/zenodo.3239529.2021

[20] W. McKinney, Data Structures for Statistical Computing in Python, 2010.2022

[21] T. Oliphant, NumPy: A guide to NumPy, USA: Trelgol Publishing, 2006–. [Online;2023

accessed ¡today¿].2024

67

https://github.com/bendavid/HiggsAnalysis-CombinedLimit/tree/tensorflowfit
https://github.com/bendavid/HiggsAnalysis-CombinedLimit/tree/tensorflowfit
https://github.com/bendavid/HiggsAnalysis-CombinedLimit/tree/tensorflowfit
https://gitlab.cern.ch/poluekt/TensorFlowAnalysis/
https://gitlab.cern.ch/poluekt/TensorFlowAnalysis/
https://gitlab.cern.ch/poluekt/TensorFlowAnalysis/
https://doi.org/10.1016/0010-4655(75)90039-9
https://doi.org/10.1007/JHEP02(2016)104
http://arxiv.org/abs/1512.04442
https://doi.org/10.1103/PhysRevLett.103.211801
https://doi.org/10.1103/PhysRevLett.103.211801
https://doi.org/10.1103/PhysRevLett.103.211801
https://doi.org/10.5281/zenodo.2648147
https://doi.org/10.5281/zenodo.3239529

	Introduction
	Model fitting
	Maximum Likelihood
	Requirements
	Existing libraries
	General fitting
	HEP specific

	zfit introduction
	TensorFlow backend

	zfit implementation
	Spaces and Dimensions
	Limits

	Data handling
	Model
	Parametrization
	Implementing a custom PDF
	Sampling
	Extended PDFs

	Loss
	Minimisation
	Different optimisations

	Results and uncertainties
	Parameter uncertainties

	Performance
	Gaussian models
	Angular analysis

	Beyond standard fitting
	Amplitude fits
	phasespace
	Dalitz implementation

	Conclusion and outlook
	Likelihood
	Backend
	HPC and paradigms
	Working with TensorFlow
	Caching

	Implementation
	Spaces definition
	General limits
	Data formats
	Data batching
	Dependency management
	Base Model
	Public methods
	Hooks
	Norm range handling
	Multiple limits handling
	Most efficient method
	Functors

	Sampling techniques
	Loss defined

	Performance studies
	Hardware specification
	Profiling TensorFlow
	Additional profiling

	References

