diff --git a/1_to_1_multi_layer.ipynb b/1_to_1_multi_layer.ipynb index 70ef2c4..cd2c117 100644 --- a/1_to_1_multi_layer.ipynb +++ b/1_to_1_multi_layer.ipynb @@ -2,18 +2,9 @@ "cells": [ { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "c:\\users\\sa_li\\anaconda3\\envs\\rnn-tf-ker\\lib\\site-packages\\h5py\\__init__.py:36: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`.\n", - " from ._conv import register_converters as _register_converters\n" - ] - } - ], + "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np\n", @@ -33,7 +24,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -46,26 +37,14 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{'test': 1, 'a': 'b'}\n" - ] - } - ], - "source": [ - "dic = {\"test\": 1, \"a\": \"b\"}\n", - "pkl.dump( dic, open( \"save.pkl\", \"wb\" ) )\n", - "print(pkl.load( open( \"save.pkl\", \"rb\" ) ))" - ] + "outputs": [], + "source": [] }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -81,7 +60,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -112,7 +91,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -145,7 +124,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -157,7 +136,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -224,7 +203,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -291,7 +270,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -305,7 +284,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -341,7 +320,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -362,7 +341,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -407,7 +386,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -422,7 +401,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -458,7 +437,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -639,12 +618,12 @@ }, { "cell_type": "code", - "execution_count": 37, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ "def full_save(rnn):\n", - " folder = \"./rnn_model_\" + str(rnn._)+ \"_\" + rnn.__ + \"_\" + str(len(rnn.ncells)) + \"l_\" + str(rnn.ncells).replace(\" \",\"\") + \"c/rnn_basic\"\n", + " folder = \"./rnn_model_\" + str(rnn._)+ \"_\" + rnn.__ + \"_\" + str(rnn.ncells).replace(\" \",\"\") + \"c/rnn_basic\"\n", " rnn.save(folder)\n", " pkl_name = folder[2:-10] + \".pkl\"\n", " \n", @@ -694,13 +673,13 @@ " return rnn\n", "\n", "def get_rnn_folder(ncells, cell_type, activation):\n", - " folder = \"./rnn_model_\" + cell_type + \"_\" + activation + \"_\" + str(len(ncells)) + \"l_\" + str(ncells).replace(\" \",\"\") + \"c/rnn_basic\"\n", + " folder = \"./rnn_model_\" + cell_type + \"_\" + activation + \"_\" + str(ncells).replace(\" \",\"\") + \"c/rnn_basic\"\n", " return folder" ] }, { "cell_type": "code", - "execution_count": 38, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -744,26 +723,11 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": null, "metadata": { "scrolled": true }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch number 5\n", - "Cost: 138389.9095210623 e-6\n", - "Patience: 0 / 200\n", - "Last checkpoint at: Epoch 5 \n", - "\n", - "\n", - "\n", - "Model saved in at: ./rnn_model_lstm_leaky_relu_[50,40,30,20,10]c/rnn_basic\n" - ] - } - ], + "outputs": [], "source": [ "rnn.fit(minibatches, epochs = 5, print_step=5)\n", "full_save(rnn)" @@ -771,29 +735,20 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": null, "metadata": { "scrolled": false }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEKCAYAAADjDHn2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3Xd81eX5//HXlcHekLDDDEtkhshQcaCCSqBOcGGrUgdqtbbV1l+ttrbWfrVaxYGjilVxt9FarQuUoRC2TCGMxIAEUKaEjOv3Rw40YiBBcvicnPN+Ph7nwfmskytHk3fuz33u+zZ3R0RE5FDigi5AREQin8JCREQqpLAQEZEKKSxERKRCCgsREamQwkJERCqksBARkQopLEREpEIKCxERqVBC0AVUlWbNmnn79u2DLkNEpFqZO3fuZndPqui8qAmL9u3bk5WVFXQZIiLVipmtq8x5ug0lIiIVUliIiEiFFBYiIlIhhYWIiFRIYSEiIhVSWIiISIUUFiIiUqGYD4uSEuePby9j/ZbdQZciIhKxYj4s1m7ZxZTZ6znzb5/wrwVfBl2OiEhEivmw6JhUj7dvPIGuLepz45QF/PLVhezeWxR0WSIiESXmwwKgTeM6vDR+IBNO7swrc3MZ+dB0luZtD7osEZGIobAISYiP45YzuvL8FcexY08Rox+ZwbMz1+LuQZcmIhI4hcUBBnduxn9uPIEhnZpyR+YSxj83l2927w26LBGRQCksytG0Xk2evnwAt5/VnakrNjHiwU+YvWZr0GWJiARGYXEQZsaVJ3Tk9WuGUDMhjjGTZvHA+yspLtFtKRGJPQqLChzbpiFv3XACo/u05oH3v+CiJz5lw7Zvgy5LROSoUlhUQr2aCdx/YR/uO783i7/cxogHP+G9pV8FXZaIyFGjsDgM5/Zvw1vXH0/rRrW5anIWv8tcwp7C4qDLEhEJO4XFYeqYVI/Xrx3MT4Z04JmZaznnkZmszt8ZdFkiImGlsPgBaibE89uRPXhqXBobtn3LyIem80pWjsZkiEjUUlgcgVO7N+c/N55IrzYN+cWri/jZSwvYsacw6LJERKpcWMPCzIab2QozW2Vmt5Zz/GozW2xmC8xsupn1CO1vb2bfhvYvMLPHwlnnkWjRsBbPXzmQn5/WhTcX5nH2Q9NZlPtN0GWJiFSpsIWFmcUDE4ERQA9g7L4wKOMFdz/W3fsA9wL3lzm22t37hB5Xh6vOqhAfZ1x/aiov/XQQhUUlnPvoTJ74OJsSjckQkSgRzpZFOrDK3bPdfS8wBRhV9gR3LztbX12gWv92HdC+CW/feAKndEvm7reX8eNn5rB5Z0HQZYmIHLFwhkVrIKfMdm5o33eY2XVmtprSlsUNZQ51MLP5ZjbNzE4IY51VqlGdGjx2SX9+P7ons7K3MOLBT5ixanPQZYmIHJFwhoWVs+97LQd3n+junYBfAbeHdm8AUty9L3Az8IKZNfjeFzAbb2ZZZpaVn59fhaUfGTPj0oHt+Nd1Q2hYO5FLnvqMe99ZTmFxSdCliYj8IOEMi1ygbZntNkDeIc6fAowGcPcCd98Sej4XWA10OfACd5/k7mnunpaUlFRlhVeV7i0bkDlhCBemteWRqau54PFZ5GzV8q0iUv2EMyzmAKlm1sHMagBjgMyyJ5hZapnNs4AvQvuTQh3kmFlHIBXIDmOtYVOnRgL3nNuLh8b2ZdVXOznzb5/w70Ubgi5LROSwhC0s3L0ImAC8CywDXnb3JWZ2l5llhE6bYGZLzGwBpbebxoX2nwgsMrOFwKvA1e5erecIH9m7FW/feAKdkupx3QvzuO31xXy7V1OFiEj1YNEy6jgtLc2zsrKCLqNChcUl3PfflTw2bTVdmtfjobH96NqiftBliUiMMrO57p5W0XkawX2UJcbHceuIbjx3RTpbdxWS8fB0nv9snaYKEZGIprAIyAmpSfznxhNI79CE37zxOdc+P49tuzVViIhEJoVFgJLq1+TZH6dz24huvLf0K8782yes27Ir6LJERL5HYRGwuDjjp0M78eo1g9m1t4grn83SZIQiEnEUFhGiT9tGPHJRP7I37+KmlxZoXikRiSgKiwgyuHMz7hjZg/eXbeK+91YEXY6IyH4JQRcg33XpwHYs27CDiR+tpkvz+ozq873ptEREjjq1LCKMmXFnxjGkt2/CL19dxOLcbUGXJCKisIhENRLiePSSfjSrV5OrJmexaceeoEsSkRinsIhQTevV5InL0tj2bSE/fW4uBUWaGkREgqOwiGA9WjXg/gt6M3/9N/zmjc81yltEAqOwiHAjjm3Jz4al8urcXJ6avibockQkRiksqoEbTkllRM8W/PHtZUxbGTmLPIlI7FBYVANxccZ9F/Sma4sGTHhhHtn5O4MuSURijMKimqhTI4EnLutPjfg4rpycxbZvNSWIiBw9CotqpE3jOjx6SX/Wb9nNDS/Op1hTgojIUaKwqGbSOzTh96N7Mm1lPn9+Z3nQ5YhIjNB0H9XQ2PQUlm/YzqSPs+nSvD7n9W8TdEkiEuXUsqimbj+7B4M7NeXXry9m3vqvgy5HRKKcwqKaSoyPY+JF/WjRsBY/fW4uG7Z9G3RJIhLFFBbVWOO6NXhyXBq7C4oYP3kuewo1JYiIhIfCoprr0rw+D47py+d52/jlq4s0JYiIhIXCIgoM69GcW07vSubCPB6dtjrockQkCoU1LMxsuJmtMLNVZnZrOcevNrPFZrbAzKabWY8yx24LXbfCzM4IZ53R4NqTOjGydyv+8u4K3l/6VdDliEiUCVtYmFk8MBEYAfQAxpYNg5AX3P1Yd+8D3AvcH7q2BzAGOAYYDjwSej05CDPj3nN70bNVQ26cMp+VX+0IuiQRiSLhbFmkA6vcPdvd9wJTgFFlT3D37WU26wL7briPAqa4e4G7rwFWhV5PDqF2jXgmXdaf2jUSuPLZLL7etTfokkQkSoQzLFoDOWW2c0P7vsPMrjOz1ZS2LG44zGvHm1mWmWXl52s2VoCWDWvz+KX92bhtD9e9MI/C4pKgSxKRKBDOsLBy9n3vozruPtHdOwG/Am4/zGsnuXuau6clJSUdUbHRpH+7xvzxnGOZuXoLd/97WdDliEgUCOd0H7lA2zLbbYC8Q5w/BXj0B14rBzivfxuWb9jOk9PX0LVFfcampwRdkohUY+FsWcwBUs2sg5nVoLTDOrPsCWaWWmbzLOCL0PNMYIyZ1TSzDkAqMDuMtUalW0d048QuSfz2X58ze83WoMsRkWosbGHh7kXABOBdYBnwsrsvMbO7zCwjdNoEM1tiZguAm4FxoWuXAC8DS4F3gOvcXcOTD1NCfBwPje1L28Z1uOYfc8n9enfQJYlINWXRMuI3LS3Ns7Kygi4jIq3O38noiTNo07gOr10ziDo1NNmwiJQys7nunlbReRrBHQM6JdXj4Yv6sWLjdn7+8kJKtGiSiBwmhUWMGNoliV+f2Z3/fL6Rhz5cFXQ5IlLN6H5EDLni+A4s27CDv76/kq4t6jG8Z8ugSxKRakItixhiZtz9o570TWnETS8tZGne9oovEhFBYRFzaiXG8/gl/WlYO5GrJmexZWdB0CWJSDWgsIhByQ1qMemy/mzeWcA1z89jb5GmBBGRQ1NYxKhebRpx73m9mL1mK3dkLtGiSSJySOrgjmGj+rRmxcYdPDJ1Nd1b1ueyQe2DLklEIpRaFjHultO7Mqx7Mne+uZSZqzYHXY6IRCiFRYyLizP+emEfOjary7UvzGPdll1BlyQiEUhhIdSvlciT49JwhyufzWLHnsKgSxKRCKOwEADaNa3LIxf3I3vzLm56aQFFWjRJRMpQWMh+Qzo343cje/D+sk3c/PJCBYaI7KdPQ8l3XDqoPTsLivnzO8sxg/vO701CvP6mEIl1Cgv5nmtO6oTj3PvOCgDuv6AP8XHlrXQrIrFCYSHluvakzrjDX95dgQH3KTBEYprCQg7qupM7A6HAMOP/zu+twBCJUQoLOaTrTu6Mu/N//12JAX9RYIjEJIWFVGjCKam4w33vrQSDv5ynwBCJNQoLqZTrT03FgfvfW4lh3HteLwWGSAxRWEil3XBqaQvjr++vxAz+fK4CQyRWKCzksNw4LBXHeeD9LzBKAyNOgSES9cI62srMhpvZCjNbZWa3lnP8ZjNbamaLzOwDM2tX5lixmS0IPTLDWaccnp8N68KNp6byytxcfvXaIkpKtBaGSLQLW8vCzOKBicBpQC4wx8wy3X1pmdPmA2nuvtvMrgHuBS4MHfvW3fuEqz45Mjed1gUH/vbBF5jBPeeohSESzcJ5GyodWOXu2QBmNgUYBewPC3f/qMz5nwKXhLEeqWI3DUsFd/724SoM40/nHKvAEIlS4QyL1kBOme1c4LhDnH8F8J8y27XMLAsoAu5x938eeIGZjQfGA6SkpBxxwXJ4zGx/C+OhD1dhBn/8kQJDJBqFMyzK+41R7s1tM7sESAOGltmd4u55ZtYR+NDMFrv76u+8mPskYBJAWlqabpwHwMy4+bQuuMPDH5UGxt2jFRgi0SacYZELtC2z3QbIO/AkMxsG/AYY6u4F+/a7e17o32wzmwr0BVYfeL0Ez8z4+eldcJyJH60GjLtH91RgiESRcIbFHCDVzDoAXwJjgIvKnmBmfYHHgeHuvqnM/sbAbncvMLNmwBBKO78lQpkZt5zeFXd4ZOpqzOAPoxQYItEibGHh7kVmNgF4F4gHnnb3JWZ2F5Dl7pnAX4B6wCtmBrDe3TOA7sDjZlZC6cd77zngU1QSgcyMX5zRFQcenboaA36vwBCJCmEdlOfubwNvH7Dvt2WeDzvIdTOBY8NZm4SHmfHLM0pbGI9NK21h/H5UT0J/DIhINaUR3FLlzIxfDe+K4zw+LRtQYIhUdwoLCQsz49bh3cDh8Y+zMYy7Rh2jwBCpphQWEjZmxq0juuHApI+ziTP4XYYCQ6Q6UlhIWJkZt43ohrvzxCdrMDPuGNlDgSFSzSgsJOzMjF+f2R13eHL6GgAFhkg1U6lZZ83sucrsEzkYM+M3Z3XniuM78MzMtdz11lLcNehepLqobMvimLIboRll+1d9ORLNzIzbz+pOiTt/n7EWw/h/Z3dXC0OkGjhkWJjZbcCvgdpmtn3fbmAvoTmZRA6HmfHbs3sA8PSMNZjB7WcpMEQi3SHDwt3/BPzJzP7k7rcdpZokyu0LDHd4avoaDPiNAkMkolX2NtRbZlbX3XeFZojtBzzo7uvCWJtEsX2fioLSTm8z+PWZCgyRSFXZsHgU6G1mvYFfAk8Bk/nulOIih2VfYJT9WO1tI7opMEQiUGXDosjd3cxGUdqieMrMxoWzMIkNZsbvMo7ZP3DPgFsVGCIRp7JhsSPU2X0pcELo01CJ4StLYomZcWfGMXhoahAMbh2uwBCJJJUNiwspXYviJ+6+0cxSKJ1eXKRKmJXOHbVv8kGjdDJCBYZIZKhUWIQC4nlggJmdDcx298nhLU1ijZlxV0bP/dObl7hz6/BuWg9DJAJUdgT3BcBs4HzgAuAzMzsvnIVJbIqLM34/qieXDmzHpI+zufofc9lZUBR0WSIxr1JhQeka2QPcfZy7XwakA/8vfGVJLIuLK70ldcfIHnywfBPnPDKDdVt2BV2WSEyrbFjElV0jG9hyGNeKHDYz48dDOjD5J+l8tb2AjIdnMP2LzUGXJRKzKvsL/x0ze9fMLjezy4F/c8ByqSLhMKRzMzInDKF5g5qM+/tsnp6+RhMQigTgkGFhZp3NbIi7/wJ4HOgF9AZmobmh5Chp17Qur187hFO7JXPXW0v55auLKCgqDroskZhSUcviAWAHgLu/7u43u/tNlLYqHgh3cSL71KuZwGOX9OeGU1N5ZW4uYyZ9yqbte4IuSyRmVBQW7d190YE73T0LaB+WikQOIi7OuPm0Ljx6cT9WbNzByIenszDnm6DLEokJFYVFrUMcq13Ri5vZcDNbYWarzOzWco7fbGZLzWyRmX1gZu3KHBtnZl+EHppaRPYbcWxLXrtmMInxcZz/+CzemJ8bdEkiUa+isJhjZlcduNPMrgDmHurC0JQgE4ERQA9grJn1OOC0+UCau/cCXgXuDV3bBLgDOI7Sj+neYWaNK/52JFZ0b9mAzAnH0y+lETe9tJA/vr2M4hJ1fIuES0UjuH8GvGFmF/O/cEgDagA/quDadGCVu2cDmNkUYBSwdN8J7v5RmfM/BS4JPT8DeM/dt4aufQ8YDrxY0TcksaNJ3Ro8d8Vx/OGtpUz6OJtlG7bz8Nh+NKyjactEqtohWxbu/pW7DwbuBNaGHne6+yB331jBa7cGcsps54b2HcwVwH9+4LUSoxLj47hzVE/uOedYPs3ewuhHZrBq046gyxKJOpUaZ+HuH7n7Q6HHh5V87fIm9Cn3PkFoQaU0/jc5YaWuNbPxZpZlZln5+fmVLEui0Zj0FF68aiA79hQyeuJMPlj2VdAliUSVcI7CzgXaltluA+QdeJKZDaN0OpEMdy84nGvdfZK7p7l7WlJSUpUVLtVTWvsmZE44nvbN6nDl5CwmfrRKA/hEqkg4w2IOkGpmHcysBjAGyCx7gpn1pXSwX8YB04m8C5xuZo1DHdunh/aJHFKrRrV55aeDGdmrFX95dwXXvzifb/dqAJ/IkarsehaHzd2LzGwCpb/k44Gn3X2Jmd0FZLl7JqW3neoBr4TWLVjv7hnuvtXMfk9p4ADcta+zW6QitWvE8+CYPvRo1YA/v7OcNZt3MemyNFo3qvDT3iJyEBYtzfS0tDTPysoKugyJMB8t38QNL86nRkIcj17Sn/QOTYIuSSSimNlcd0+r6DzNHCtR7eRuybxx3RAa1k7koic+5fnP1gVdkki1pLCQqNc5uR5vXDeEIZ2b8Zs3Puf2fy6msLgk6LJEqhWFhcSEhrUTefryAfx0aEf+8el6Ln7yM7bsLKj4QhEBFBYSQ+LjjNtGdOeBC/uwMOcbMh6ewZK8bUGXJVItKCwk5ozu25pXrh5EcYlz3qOz+PeiDUGXJBLxFBYSk3q1aUTm9UPo3rI+170wj/v+u4ISTUQoclAKC4lZyfVr8eL4gVyY1paHPlzF+Oey2LGnMOiyRCKSwkJiWs2EeO4591juzDiGj1bkc84jM1m7eVfQZYlEHIWFxDwzY9zg9jz3k3TydxaQ8fB0Pl6piSlFylJYiIQM7tyMzOuOp2XD2lz+99k8+Um2JiIUCVFYiJSR0rQOr187mNN6NOcP/17GLa8sYk+hJiIUUViIHKBuzQQevbg/PxuWymvzchk9cQbz1n8ddFkigVJYiJQjLs742bAuPDUujW92F3LuozO5/Z+L2a5PS0mMUliIHMKp3Zvz3s0nMm5Qe57/bD3D7pvG24s3qC9DYo7CQqQC9Wsl8ruMY/jntUNIql+Ta5+fxxXPZpGzdXfQpYkcNQoLkUrq3bYR/7puCLef1Z1Zq7dw+l8/ZtLHqynSDLYSAxQWIochIT6OK0/oyHs3n8jgTk3549vLGfnwDBbkfBN0aSJhpbAQ+QHaNK7Dk+PSeOySfmzdVcCPHpnB7zKXaLoQiVoKC5EfyMwY3rMl7988lMsGtuPZWWsZdv803vlcHeASfRQWIkeofq1E7hzVkzeuHUKTujW5+h/zuGpyFl9+823QpYlUGYWFSBXp07YRb04Ywm/O7M6MVVs47f5pPPlJtjrAJSooLESqUEJ8HFed2JH/3nQix3Vowh/+vYzRj8xgca5W5JPqLaxhYWbDzWyFma0ys1vLOX6imc0zsyIzO++AY8VmtiD0yAxnnSJVrW2TOjx9+QAmXtSPr7YXMGridO58cwk7C4qCLk3kB0kI1wubWTwwETgNyAXmmFmmuy8tc9p64HLglnJe4lt37xOu+kTCzcw4q1dLTujSjL+8s4JnZq7lnc83cmfGMZx+TIugyxM5LOFsWaQDq9w92933AlOAUWVPcPe17r4I0E1diVoNaiXy+9E9ee2awTSsncj45+YyfnIWeeoAl2oknGHRGsgps50b2ldZtcwsy8w+NbPRVVuayNHXL6Uxb15/PLeO6MbHX+Rz2v3TeHr6Goq19rdUA+EMCytn3+H8VKS4expwEfCAmXX63hcwGx8KlKz8fK1sJpEvMT6Oq4d24r2bhpLWvgl3vbWU0RNn8PmX6gCXyBbOsMgF2pbZbgPkVfZid88L/ZsNTAX6lnPOJHdPc/e0pKSkI6tW5Chq26QOz/x4AA+N7cuGbXvIeHg6f3hrKbvUAS4RKpxhMQdINbMOZlYDGANU6lNNZtbYzGqGnjcDhgBLD32VSPViZozs3YoPfj6UsekpPDl9DafdP433l34VdGki3xO2sHD3ImAC8C6wDHjZ3ZeY2V1mlgFgZgPMLBc4H3jczJaELu8OZJnZQuAj4J4DPkUlEjUa1k7k7h8dy2vXDKJ+rUSunJzF1c/NZeO2PUGXJrKfRcscNmlpaZ6VlRV0GSJHpLC4hCc+yebB978gMT6OX5zRlUsGtiM+rrwuQJEjZ2ZzQ/3Dh6QR3CIRJDE+jmtP6sx/bzqRvimNuCNzCec8OpMleeoAl2ApLEQiULumdZn8k3QeHNOHL7/eTcbDM/j5ywtZlKt1MyQYYRvBLSJHxswY1ac1J3VJ5q/vr+TlrBxem5dLn7aNGDe4HWce25KaCfFBlykxQn0WItXE9j2FvD43l8mz1pG9eRdN69ZgbHoKFw9MoWXD2kGXJ9VUZfssFBYi1UxJiTNj9WaenbmOD5Z/RZwZZxzTnMsGtee4Dk0wU2e4VF5lw0K3oUSqmbg444TUJE5ITSJn627+8dk6XpqTw9uLN9K1eX0uG9yO0X1aU7emfryl6qhlIRIF9hQWk7kwj2dnrmVJ3nbq10rg/P5tuXRQOzo0qxt0eRLBdBtKJAa5O/PWf8OzM9fy9uINFJU4Q7skMW5wO4Z2SdZ4DfkehYVIjNu0fQ8vzs7h+c/WsWlHASlN6nDpwHacn9aGRnVqBF2eRAiFhYgApaPC312ykckz1zF77VZqJcYxuk9rLhvUnh6tGgRdngRMYSEi37M0bzvPfbqWN+Z/yZ7CEga0b8xlg9ozvGcLEuM1RjcWKSxE5KC27S7klbk5TJ61jvVbd5NcvyYXHZfCRekpJDeoFXR5chQpLESkQiUlzrSV+Tw7ay1TV+STEGeMOLYl4wa1o3+7xhqzEQM0zkJEKhQXZ5zcLZmTuyWzdvMunvt0HS9n5fDmwjx6tGzAuMHtyOjdmto1NK1IrFPLQkS+Y/feIv45P4/Js9ayfOMOGtZO5MIBbbnkuHakNK0TdHlSxXQbSkSOiLsze81WJs9axztLNlLizildk7l4YIrGbEQR3YYSkSNiZhzXsSnHdWzKxm17eOGzdbwwO4cPnsmiVcNaXDCgLRektaVVI01iGAvUshCRSttbVMIHy77ixTk5fPJFPgac3DWZsekpnNQ1iQR9/Lba0W0oEQmrnK27eWlODi9l5ZC/o4DmDWpyYVpbLhjQljaN1bdRXSgsROSoKCwu4cPlm3hx9nqmrcwHYGiXJMamp3BKt2QN9otwCgsROepyv97Ny1m5vDwnh43b95Bcvybnp7VhzIAU2jZRayMSKSxEJDBFxSVMXZHPi7PX89GKTThwfOdmXJSewrAezdXaiCCVDYuw/hczs+FmtsLMVpnZreUcP9HM5plZkZmdd8CxcWb2RegxLpx1ikjVSoiPY1iP5jx1+QCm/+oUbjw1ldWbdnLN8/MY9KcPuec/y1m7eVfQZcphCFvLwszigZXAaUAuMAcY6+5Ly5zTHmgA3AJkuvurof1NgCwgDXBgLtDf3b8+2NdTy0IkshWXOB+vzOeF2ev5cPkmikucIZ2bMjY9hdN7tKBGglobQYiEcRbpwCp3zw4VNAUYBewPC3dfGzpWcsC1ZwDvufvW0PH3gOHAi2GsV0TCKL7M1CIbt+3hlawcpszJYcIL82latwbn9W/DhQPa0jGpXtClSjnCGRatgZwy27nAcUdwbesqqktEAtaiYS2uPzWVa0/uzPRVm3nxs/U8OX0Nj3+czcCOTRibnsLwni2omaA5qSJFOMOivLkAKnvPq1LXmtl4YDxASkpK5SsTkYgQH2cM7ZLE0C5JbNq+h1fm5jJlznpunLKAxnUSObdfG8akp9A5Wa2NoIXzJmEu0LbMdhsgryqvdfdJ7p7m7mlJSUk/uFARCV5yg1pcd3Jnpt1yMv+44jgGd2rGMzPXMuz+aVzw2CzemJ/LnsLioMuMWeHs4E6gtIP7VOBLSju4L3L3JeWc+wzw1gEd3HOBfqFT5lHawb31YF9PHdwi0Sd/RwGvzctlyuz1rN2ym4a1EzmnX2vGpqfQpXn9oMuLChExzsLMzgQeAOKBp939bjO7C8hy90wzGwC8ATQG9gAb3f2Y0LU/AX4deqm73f3vh/paCguR6FVS4nyavYUXZq/n3SUbKSx2urdsQEbvVpzdq6UG/B2BiAiLo0lhIRIbtuws4F8L8nhzUR7z138DQL+URozs3YqzerUkub6WhT0cCgsRiXo5W3fz5qI8MhfksXzjDuIMBnZsSkbvVozo2ZKGdRKDLjHiKSxEJKZ88dUO3lyYR+bCPNZu2U1ivHFiahIZfVoxrHtz6tbU8j3lUViISExydz7/cjuZC7/krUUb2LBtD7US4zi1e3MyerdiaJckaiVq/MY+CgsRiXklJU7Wuq/JXPglby/eyNZde6lfM4EzerZgZO9WDOnUNOYXbFJYiIiUUVRcwozVW3hzYR7vfr6RHQVFNK1bgxHHtiCjd2vS2jUmLgbXFVdYiIgcxJ7CYqatzCdzYR4fLPuKPYUltGxYi7N7tSSjd2t6tm6AWWwEh8JCRKQSdhUU8f6yr8hckMfHX+RTWOx0aFaXkb1aMrJ3K1KjfPCfwkJE5DB9s3sv73y+kTcX5TFr9RZKHLq1qE9Gn1aM7NUqKgf/KSxERI7Aph17+PeiDby5MI95ocF/fVMaMbJX6ajx5AbRMfhPYSEiUkVytu7mrUUbyFyYx7IN2zGDgR2acnbvlpzcNZlWjWoHXeIPprAQEQmDVZt2kLmwtMWxJrQ0bGpyPU7qmsRJXZNJa9+4Wq3DobAQEQkjd2fVpp1+ZNhkAAAHQ0lEQVRMXZHP1JWbmL1mK4XFTp0a8Qzu1JShXZM5qUtSxPdzRMKyqiIiUcvMSG1en9Tm9bnqxI7sKihi1uotTF25iakr8nl/2SYAOiXVZWiXZE7qmkR6hybVdvS4WhYiIlXM3Vmdv4tpK/OZumITn63Zyt6iEmonxjOoU1NO6lq6OmC7pnWDLlUtCxGRoJgZnZPr0Tm5Hlcc34Hde4v4NHtL6S2rFfl8uLy01dGhWV2GdknipK5JDOzYNKJbHWpZiIgcZWs272LqitLbVZ9mb6GgqISaCXEM7Nh0f0d5h2ZHp9WhDm4RkWpgT2Hx/lbHtJX5+z9h1a5pnf2tjkEdm1G7RnhaHQoLEZFqaN2WfX0d+cxcvZk9hSXUSIjjuA5NQuGRTKekulU2d5XCQkSkmttTWMzsNVv3d5Svzi9tdbRpXDvUSZ7M4E5Nj2hhJ4WFiEiUydm6m6kr85kWanXs3ltMjfg4Tj+mOQ9f1O8HvaY+DSUiEmXaNqnDpQPbcenAdhQUFZO19mumrthEjYTwL+CksBARqYZqJsQzpHMzhnRudlS+XljjyMyGm9kKM1tlZreWc7ymmb0UOv6ZmbUP7W9vZt+a2YLQ47Fw1ikiIocWtpaFmcUDE4HTgFxgjplluvvSMqddAXzt7p3NbAzwZ+DC0LHV7t4nXPWJiEjlhbNlkQ6scvdsd98LTAFGHXDOKODZ0PNXgVMtVtYyFBGpRsIZFq2BnDLbuaF95Z7j7kXANqBp6FgHM5tvZtPM7IQw1ikiIhUIZwd3eS2EAz+ne7BzNgAp7r7FzPoD/zSzY9x9+3cuNhsPjAdISUmpgpJFRKQ84WxZ5AJty2y3AfIOdo6ZJQANga3uXuDuWwDcfS6wGuhy4Bdw90nunubuaUlJSWH4FkREBMIbFnOAVDPrYGY1gDFA5gHnZALjQs/PAz50dzezpFAHOWbWEUgFssNYq4iIHELYbkO5e5GZTQDeBeKBp919iZndBWS5eybwFPCcma0CtlIaKAAnAneZWRFQDFzt7lvDVauIiBxa1Ez3YWb5wLojeIlmwOYqKqe603vxXXo/vkvvx/9Ew3vRzt0rvI8fNWFxpMwsqzLzo8QCvRffpffju/R+/E8svRfhn1BERESqPYWFiIhUSGHxP5OCLiCC6L34Lr0f36X3439i5r1Qn4WIiFRILQsREalQzIdFRdOoxxIza2tmH5nZMjNbYmY3Bl1T0MwsPjRH2VtB1xI0M2tkZq+a2fLQ/yODgq4pSGZ2U+jn5HMze9HMagVdUzjFdFiUmUZ9BNADGGtmPYKtKlBFwM/dvTswELguxt8PgBuBZUEXESEeBN5x925Ab2L4fTGz1sANQJq796R04PGYQ19VvcV0WFC5adRjhrtvcPd5oec7KP1lcOBMwTHDzNoAZwFPBl1L0MysAaUzKzwF4O573f2bYKsKXAJQOzSvXR2+P/ddVIn1sKjMNOoxKbRqYV/gs2ArCdQDwC+BkqALiQAdgXzg76Hbck+aWd2giwqKu38J/B+wntJZsre5+3+DrSq8Yj0sKjONeswxs3rAa8DPDpwWPlaY2dnAptCsx1L6V3Q/4FF37wvsAmK2j8/MGlN6F6ID0Aqoa2aXBFtVeMV6WFRmGvWYYmaJlAbF8+7+etD1BGgIkGFmaym9PXmKmf0j2JIClQvkuvu+luarlIZHrBoGrHH3fHcvBF4HBgdcU1jFelhUZhr1mBFa0vYpYJm73x90PUFy99vcvY27t6f0/4sP3T2q/3I8FHffCOSYWdfQrlOBpQGWFLT1wEAzqxP6uTmVKO/wD+dKeRHvYNOoB1xWkIYAlwKLzWxBaN+v3f3tAGuSyHE98HzoD6ts4McB1xMYd//MzF4F5lH6KcL5RPlobo3gFhGRCsX6bSgREakEhYWIiFRIYSEiIhVSWIiISIUUFiIiUiGFhchhMLNiM1tQ5lFlo5jNrL2ZfV5VrydSlWJ6nIXID/Ctu/cJugiRo00tC5EqYGZrzezPZjY79Ogc2t/OzD4ws0Whf1NC+5ub2RtmtjD02DdVRLyZPRFaJ+G/ZlY7sG9KpAyFhcjhqX3AbagLyxzb7u7pwMOUzlhL6Plkd+8FPA/8LbT/b8A0d+9N6RxL+2YOSAUmuvsxwDfAuWH+fkQqRSO4RQ6Dme1093rl7F8LnOLu2aHJGDe6e1Mz2wy0dPfC0P4N7t7MzPKBNu5eUOY12gPvuXtqaPtXQKK7/yH835nIoallIVJ1/CDPD3ZOeQrKPC9G/YoSIRQWIlXnwjL/zgo9n8n/ltu8GJgeev4BcA3sX+e7wdEqUuSH0F8tIoendpkZeaF0Tep9H5+taWafUfpH2NjQvhuAp83sF5SuNLdvptYbgUlmdgWlLYhrKF1xTSQiqc9CpAqE+izS3H1z0LWIhINuQ4mISIXUshARkQqpZSEiIhVSWIiISIUUFiIiUiGFhYiIVEhhISIiFVJYiIhIhf4/SfYvlkTM4lUAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "#Plot the loss\n", + "def plot_loss_list(loss_list= rnn.loss_list):\n", + " plt.plot(rnn.loss_list)\n", + " plt.xlabel(\"Epoch\")\n", + " plt.ylabel(\"Cost\")\n", + " plt.show()\n", "\n", - "plt.plot(rnn.loss_list)\n", - "plt.xlabel(\"Epoch\")\n", - "plt.ylabel(\"Cost\")\n", - "plt.show()" + "plot_loss_list()" ] }, { @@ -802,25 +757,17 @@ "metadata": {}, "outputs": [], "source": [ - "#full_save(rnn)" + "full_save(rnn)" ] }, { "cell_type": "code", - "execution_count": 41, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "INFO:tensorflow:Restoring parameters from ./rnn_model_lstm_leaky_relu_5l_[50,40,30,20,10]c/rnn_basic\n" - ] - } - ], + "outputs": [], "source": [ - "folder = get_rnn_folder(ncells = [50, 40, 30, 20, 10], cell_type = \"lstm\", activation = \"leaky_relu\")\n", - "rnn = full_load(folder)" + "#folder = get_rnn_folder(ncells = [50, 40, 30, 20, 10], cell_type = \"lstm\", activation = \"leaky_relu\")\n", + "#rnn = full_load(folder)" ] }, {