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Abstract During the µ − 3e experiment we faced the challenge of recon-
structing the paths of certain low momentum particles that curled back into
the detector and cause additional hits. To face this, a recurrent neural net-
work was used which found the right track for 87% of these particles.
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1 Standard Model

1.1 Elementary particles and forces

The Standard Model(SM) describes all known elementary particles as well
as three of the four known forces1.
The elementary particles that make up matter can be split into two cate-
gories, namely quarks and leptons. There are 6 types of quarks and six types
of leptons. The type of a particle is conventionally called flavour. The six
quark flavours and the three lepton flavours are separated over 3 generations
(each with two quarks and two leptons in it). Experimental evidence suggests
that exactly three generations of particles exist [1]. Each particle of the first
generation has higher energy versions of itself with the similar properties,
besides their mass, (e.g. e− → µ− → τ−) as in other generations. For each
following generation, the particles have a higher mass than the generation
before.

Table 1: Quarks in the Standard Model

Quarks
Particle Q[e] mass

GeV

1. Gen. up u −1
3

0.003
down d 2

3
0.005

2. Gen. strange s −1
3

0.1
charm c 2

3
1.3

3. Gen. bottom b −1
3

4.5
top t 2

3
174

One category consists of quarks(q)(see Table 1). In this, we differentiate be-
tween up-type quarks, with charge −1

3
e, and down-type, quarks with charge

2
3
e. Quarks interact with all fundamental forces.

Each quark carries a property called colour-charge. The possible colour
charges are red(r), green(gr), blue(bl) in which anti-quarks carry anti-colour.
Quarks can only carry one colour, whilst every free particle has to be colour-
less2. In conclusion we cannot observe a single quark as they always appear
in pairs of two or three to achieve colourlessness.
Free particles can achieve being colourless in two ways. Either by having
all three colours present in the same amount (one quark of each colour),

1Strong, weak and electromagnetic forces
2Colour confinement
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which creates the characteristic group of baryons(qqq) and anti-baryons(q̄q̄q̄)
or by having a colour and its anticolour present, which creates the group of
mesons(qq̄).

Table 2: Leptons in the standard model

Leptons
Particle Q[e] mass

GeV

1. Gen. electron e− −1 0.005
neutrino νe 0 < 10−9

2. Gen. muon µ− −1 0.106
neutrino νµ 0 < 10−9

3. Gen. tau τ− −1 1.78
neutrino ντ 0 < 10−9

The other group consists of leptons(l)(see Table 2). They only interact
through the weak and the electromagnetic force. Each generation consists
of a lepton of charge -1 and a corresponding EM neutrally charged neutrino.
The electron has the lowest energy of all charged leptons. This makes the
electron stable while the higher generation particles decay to lower energy
particles.

The leptons of one generation, namely the charged lepton and its correspond-
ing neutrino, are called a lepton family. A lepton of a family counts as 1 to
its corresponding lepton family number whilst a anti-lepton counts as -1.

Table 3: Fundamental forces

Force Strength Boson Spin Charge mass
GeV

Strong 1 gluon g 1 0 0
Electromagnetism 10−3 photon γ 1 0 0
Weak 10−8 Z boson Z 1 0 80.4

10−8 W boson W± 1 ±1 91.2

The particles of the SM interact through the 3 fundamental forces of the SM.
In these interactions, particles called bosons are being exchanged, which are
the carriers of their respective force (see Table 3).
As mentioned above, only quarks can interact through the strong force, in
which they exchange gluons. Gluons are massless and EM neutrally charged.
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The strong force has the biggest coupling strength of 1 (though it decreases
with higher energies as a result of gluon-gluon self interaction loops, which
interfere negatively in perturbation theory)[2]. A gluon carries colour charge
and hence can change the colour of a quark but it conserves its flavour. The
strong interaction has an underlying gauge symmetry of SU(3). Therefore,
it can be derived that colour charge is conserved through the strong interac-
tion3.
The electromagnetic(EM) force is propagated through the photon. It car-
ries zero charge and no invariant mass. Only charged particles can inter-
act through the electromagnetic force. The coupling strength is α ≈ 1

137
.

Contrary to the strong force, the coupling constant increases with higher
energies[2]. This difference stems from the fact that photon-photon inter-
action loops are not allowed whereas gluon-gluon interaction loops are. In
perturbation theory this results in only positive terms being added to the
coupling strength. The underlying gauge symmetry is of SU(1). The elec-
tromagnetic force also conserves flavour.
The weak force has two types of bosons. The bosons of the weak force are
the only fundamental bosons to have an inertial mass.
First we will discuss the EM neutral Z boson. Even though the Z boson
belongs to the weak force, it also has an electromagnetic part additionally to
the weak force part4. It follows directly, that the Z boson couples weaker to
uncharged particles.
The other boson of the weak force is the W boson. In the classical SM, the
only way particles can change flavour is through the weak force by emitting
or absorbing W boson. It is important to notice, that besides of having
an invariant mass, the W boson is the only boson with a non zero charge
(QW± = ±1e). In the gauge symmetry of the weak force the W± are actually
the creation and annihilation operators of said symmetry5.
An important characteristic of the weak force is, that it exclusively couples
to lefthanded(LH) particles and righthanded(RH) antiparticles (describing
chirality states)6.
The chirality operators for left- and righthandedness are:

LH: 1
2
(1− γ5), RH: 1

2
(1 + γ5)

As a consequence, RH particles and LH anti-particles cannot couple to the W

3E.g. through Gell-Mann matrices
4Z → EMpart +W 3, [2]
5W± = W1 ± iW2
6In the ultrarelativistic limit helicity and chirality eigenstates are the same
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boson at all. This also results in charged RH particles and LH anti-particles
to couple to the Z boson only through the electromagnetic part of the Z
boson, while uncharged RH particles and LH anti particles (e.g. RH ν, LH
ν̄) don’t couple with the EM force nor the weak force.

1.2 Interaction rules

Now, we will establish the general rules for interactions in the SM.

Baryon number is conserved
As we already established before, the only interaction that can change flavour
is the weak force through the W boson. We directly see, that for all other
interactions baryon number has to be conserved. So any up-type quark can
be changed into a down-type quark and vice versa by emitting or absorbing a
W boson. In the end however, there are still 3 quarks which form a baryon7,
even though it changed its type and charge. A well known example is the
beta decay, where a down quark in a neutron decays into an up quark to form
now a proton(e.g. see Figure 1a). We easily see that the baryon number is
conserved.

(a) Feynman diagram of the β-decay
(b) Feynman diagram of a µ-decay

Figure 1: Certain diagrams of decays

Lepton family number is conserved
According to the SM lepton family number is conserved. As all interactions

7Pentaquarks(qqqqq̄) and other exotic states excluded
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beside the W conserve particle flavour, it is easy to see that lepton family
number is conserved.
Whenever a lepton interacts with a W boson, it just changes a lepton to its
corresponding lepton neutrino or the other way around (e.g. see Figure 1b).
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2 Physics beyond the SM

2.1 Neutrino Oscillation

Classically the SM considers neutrinos to be massless. While this assumption
works well for a lot of cases, we know nowadays that at least two of the three
neutrinos have to have mass8. Neutrinos are known to oscillate between all
three states of flavour, as the eigenstates of flavour are not eigenstates of
mass. As a consequence νe, νµ and ντ are not fundamental particle states
but a mixture of the mass eigenstates ν1, ν2 and ν3. They are connected
through the PMNS matrix:νeνµ

ντ

 =

Ue1 Ue2 Ue3
Uµ1 Uµ2 Uµ1
Uτ1 Uτ2 Uτ3

ν1

ν2

ν3

 (1)

As a result, neutrinos propagate as a superposition of all mass eigenstates.
Additionally, we can describe the PMNS matrix through three mixing angles
θ12, θ13 and θ23 and a complex phase δ 9. Using this, the electron superposi-
tion looks like this:

|νe〉 = Ue1 |ν1〉 e−iΦ1 + Ue2 |ν2〉 e−iΦ2 + Ue3 |ν3〉 e−iΦ3 with Φi = Ei × t

As a result lepton family number is not a conserved quantity anymore as
neutrino flavour oscillates over time.
We can calculate the probability for a neutrino to transition from flavour α
to β like this:

P (να → νβ) = 2Re
(
Uα1U

∗
β1
U∗α2

Uβ2e
−i(Φ1−Φ2)

)
+2Re

(
Uα1U

∗
β1
U∗α3

Uβ3e
−i(Φ1−Φ3)

)
+2Re

(
Uα2U

∗
β2
U∗α3

Uβ3e
−i(Φ2−Φ3)

) (2)

An important thing to note is, that if any elements of the PMNS matrix are
complex, this process is not invariant under time reversal (t→ −t)10

P (να → νβ) 6= P (νβ → να).

8The mass difference between neutrinos is non zero: mi −mj = ∆mi,j 6= 0, ∀j 6= i
9Measurements: θ12 ≈ 35◦, θ13 ≈ 10◦, θ23 ≈ 45◦ [3], [4]

10The probability does not change, if we add a complex phase to the PMNS
matrix, just if one of the elements has a phase different from the others
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Figure 2: Process that violates lepton family number conservation through
neutrino oscillation

Nowadays it’s a well accepted fact that lepton family number gets violated
through neutrino oscillation.
However, why should flavour oscillation be exclusive to neutrinos?
Maybe there are ways for the EM charged leptons as well to directly transition
to another lepton family11?

2.2 New physics

As a consequence of neutrino oscillation, lepton flavour is a broken symme-
try. The SM has to be adapted to include lepton flavour violation (LFV)
and massive neutrinos. LFV is also expected for charged neutrinos.
Although, it has yet to be determined how LFV exactly works and to which
scale it exists.

This may raise the question on why charged LFV has never been observed
yet. This is especially surprising as the mixing angles of the neutrinos have
been measured to be big.
There are two reasons why charged LFV is strongly surpressed: The first is,
that charged leptons are much heavier than neutrinos, and the other, that
the mass differences between neutrino flavour are tiny compared to the W
boson mass.

In the classical SM, charged LFV is already forbidden at tree level. Though it
can be induced indirectly through higher order loop diagrams using neutrino
oscillation. By adding new particles beyond the SM, we generate new ways

11Maybe also possible for quarks?
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for LFV in the charged sector to happen. As LFV is naturally generated in
many models beyond the SM, finding charged LFV is a strong hint for new
physics.

(a) LFV through neutrino oscillation
(b) LFV by using supersymmetric
particles

(c) LFV at tree level

Figure 3: Charged LFV

One way charged LFV can occur is through supersymmetric particles (see
Figure 3b). By observing charged LFV, supersymmetry would gain new im-
portance.
Alongside with supersymmetric models, other extensions of the SM, such as
left-right symmetric models, grand unified models, models with an extended
Higgs sector and models where electroweak symmetry is broken dynamically,
are all good candidates to explain charged LFV and most importantly, ex-
perimentally accessible in a large region of the parameter space.
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3 µ→ eee decay

3.1 Kinematics

The two most prominent charged LFV decays are µ→ eγ and µ→ eee.
Here the latter is chosen as more diagrams beyond the SM contribute. Namely
tree diagrams, Z penguin and box diagrams. This offers the possibility to
test more models.

Possible ways for the decay µ→ eee to occur are shown in Figures 3a, 3b, 3c.

Still, some simplifications are made, as it is assumed, that only the tree and
the photon diagram are relevant. [5]

This gives us a Lagrangian of:

LLFV =

[
mµ

(κ+ 1)Λ2
µRσ

µνeLFµν

]
γ−penguin

+

[
κ

(κ+ 1)Λ2
(µLγ

µeL)(eLγµeL)

]
tree

(3)
If we neglect signal and background, we can use momentum conservation as
the decay happens rather quickly. As a result, the total sum of all particle
momenta should be equal to zero:

|~ptot| =
∣∣∣∑ ~pi

∣∣∣ = 0 (4)

The particles resulting in the decay lie all in a plane. The resulting positrons
and electrons are in the energy range of (0-53)MeV.

3.2 Background events

Below is a summary of all the different types of background considered in
the experiment.

3.2.1 Internal conversions

The event µ → eeeνν results in the same particles seen by the detector as
the event we are searching for12. As a result, it proves to be quite challenging
to separate the two.
By using momentum conservation, it becomes possible to differentiate the

12Neutrinos are invisible to our detector
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µ → eee and the µ → eeeνν events. In the muon rest frame the total
momentum is zero and the energy of the resulting particles is equal to muon
rest energy.
By reconstructing the energy and momenta of the three e we can check, if
their momenta add up to zero and their energies equal the muon rest energy.
If not, we can assume that there are additional neutrinos. This differentiation
between the two events is crucial for the experiment as the µ→ eeeνν events
pose the most serious background for µ→ eee decay measurements.
As a result, our detector needs a very good energy resolution to consistently
make it possible to differentiate between the two events, as neutrino energies
and momenta are very small.

3.2.2 Michel decay

The biggest contributing background however, stems from another decay
called Michel decay, that is also allowed in the classical SM. As we use a
beam of positive muons the corresponding Michel decay looks as follows:
µ+ → e+νν̄.
Contrary to the events before, this one does not produce any EM negatively
charged particles. This makes these events easily distinguishable from our
wanted events. Therefore, they only enter our data in form of a potential
background through wrongly constructed tracks.

3.2.3 Radiative muon decay

This is the case where µ → e+γνν. If the photon produced in this event
has high enough energies and creates a matter antimatter pair in the target
region (γ → e−e+), it can create a similar signature than the searched event.
They contribute to the accidental background, as equal to the searched event,
no neutrinos are produced. To minimize these effects, the material in both
the target and detector is minimized and a vertex constraint is applied.

3.2.4 BhaBha scattering

Another way how background can get produced is, when positrons from muon
decays or the beam itself scatter with electrons in the target material. Con-
sequently, they share a common vertex and together with an ordinary muon
decay it can look similar as our searched µ→ eee event. This contributes to
the accidental background.
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3.2.5 Pion decays

Certain pion decays also lead to indistinguishable signature as our searched
event, the most prominent being the π → eeeν and π → µγν decays. The
latter only produces a similar signature, if produced photon converts through
pair production to an electron and a positron.
However, only a negligible portion will actually contribute to the background,
as there is only a small branching fraction and the momenta and energy of the
produced particles have to match up with the criteria mentioned in section
3.1.

3.2.6 Analysis of the background

The results of simulations indicate that the effect of purely accidental back-
ground contributions are small for a high enough energy resolvent detector.
[5]
The most relevant background stems from the µ→ eeeνν events. This prob-
lem can only be tackled by using a very precise total energy resolution of
σE = 1MeV at the aimed sensitivities.
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4 Mu3e experiment

4.1 Requirements

The ultimate goal of this experiment is to observe a µ → eee event. As we
strive for a sensitivity of 10−16 , we should be able to observe this process if
its branching ratio would be higher than our sensitivity. Otherwise, we want
to exclude a branching ratio > 10−16 with a 90% certainty.
To get to this sensitivity, more than 5.5 · 1016 muon decays have to be ob-
served. In order to reach this goal within one year, a muon stopping rate of
2 · 109Hz in combination with a high geometrical acceptance, as well as a
high efficiency of the experiment is required.

4.2 Phase I

Phase I of the experiment serves as an exploratory phase to gain more expe-
rience with the new technology and validate the experimental concept. At
the same time, it already strives to produce competitive measurements with
a sensitivity of 10−15. 13 This is achieved by making use of the already exist-
ing muon beams at PSI with around 1-1.5 · 108Hz of muons on target. The
lowered sensitivity also allows for some cross-checks, as the restrictions on
the system are much more relaxed than in phase II.

4.3 Phase II

Phase II strives to reach the maximum sensitivity of 10−16. To achieve this
in a reasonable timeframe, a new beamline will be used, which delivers more
than 2 · 109Hz of muons.

4.4 Experimental setup

The detector is of cylindrical shape around the beam. It has a total length
of around 2m and is situated inside a 1T solenoid magnet with 1m of inner
radius and a total length of 2.5m. This form was chosen to cover as much
phase space as possible. For an unknown decay such µ→ eee, it is crucial to
have a high order of acceptance in all regions of phase space. There are only
two kind of tracks that get lost. The first ones are up- and downstream tracks
and the second one are low transverse momenta tracks (no transversing of
enough detector planes to be reconstructed).

13Current experiments are in the 10−12 sensitivity range
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(a) Setup of the detector in the first part of phase I

(b) Tracks in the detector in the first
part of phase I

(c) Tracks in the detector in the sec-
ond part of phase I and phase II

(d) Setup of the detector in the second part of phase I

(e) Setup of the detector in phase II

Figure 4: Setup of the detector during different phases of the experiment
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As seen in figure 4e, the final version of the detector can be divided into 5
separate parts in the longitudinal direction. There is the central part with
the target, two inner silicon pixel layers, a fibre tracker and two outer silicon
layers. The front and back parts, called recurl stations, consist only of a
tile timing detector surrounded by two silicon recurl layers. A big advantage
of this layout is, that even a partially constructed detector (gradually over
phase I to phase II parts get added) can give us competitive measurements.

The target itself is a big surfaced double cone with a surface length of 10cm
and a width of 2cm. The target was chosen specifically to be of this shape
to facilitate separating tracks coming from different muons and hereby also
helping to reduce accidental background.
The two inner detector layers, also called vertex layers, span a length 12cm.
The innermost layer consists of 12 tiles while the outer vertex layer consists
of 18 tiles. The tiles are each of 1cm width, with the inner layer having an
average radius of 1.9cm, respectively 2.9cm, and a pixel size of 80 × 80µm2.
[6], [7], [8]. They are supported by two half cylinder made up of 25µm thin
Kapton foil mounted on plastic. The detector layers themselves are 50µm
thin and cooled by gaseous helium. The vertex detectors are read out at a
rate of 20MHz, giving us a time resolution of 20ns.
After the vertex layers, the particles pass through the fibre tracker (see Figure
4c, 4e). It is positioned around 6cm away from the center. Its main job is to
provide accurate timing information for the outgoing electrons and positrons.
It consists of three to five layers, each consisting of 36cm long and 250µm
thick scintillating fibres with fast silicon photomultipliers at the end. They
provide us a timing information of less than 1ns.
Next the outgoing particles encounter the outer silicon pixel detectors. They
are mounted just after the fibre detector with average radii of 7.6cm and
8.9cm. The inner layer has 24 and the outer has 28 tiles of 1cm length. The
active area itself has a length of 36cm. Similarly to the vertex detectors, they
are mounted on 25µm thin Kapton foil with plastic ends.
The stations beam up- and downwards only consist of the outer pixel detector
layers, as well as a timing detector. While the silicon detector are the same as
in the central station, the timing tracker was chosen to be much thicker than
the fibre detector in the central station. It consists of scintillating tiles with
dimensions of 7.5×7.5×5mm3. They provide an even better time resolution
than the fibre tracker in the center. Incoming particles are supposed to be
stopped here. The outer stations are mainly used to determine the momenta
of the outgoing particles and have an active length of 36cm and a radius of
around 6cm.
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4.5 The problem of low longitudinal momentum re-
curlers

As explained in section 4.4, the outgoing particles are supposed to recurl back
into the outer stations of the detector to enable a precise measurement of
the momentum. A problem arises if the particles have almost no momentum
in the beam direction. Then they can recurl back into the central station
and cause additional hits there. As the the central station is designed to let
particles easily pass through, they can recurl inside the central station many
more times without getting stopped. As we have a 20ns time window for
the readout of the pixel detectors, we need a very reliable way to identify
and reconstruct these tracks of recurling particles, as otherwise they look
exactly like newly produced particles coming from our target. As one can
imagine, this influences the precision of our measurements by a big margin.
So, finding a way to identify these low beam direction momentum particles
consistently is of great importance, as it is crucial for the experiment to re-
duce the background as much as possible.

There is already an existing software to reconstruct particle tracks. However,
it struggles to find the right tracks for a lot of the particles recurling back
into the center station.
These recurlers will typically leave eight hits or more, four (one on each
silicon pixel detector layer) when initially leaving the detector and another
four when initially falling back in. It is possible for these recurlers to produce
even more hits when leaving the detector again but for this thesis we will be
only focusing on these 8 hit tracks.
The current reconstruction algorithm works by fitting helix paths with a χ2

method onto the 8 hits.
However, experience has shown that often the fit with the lowest χ2 isn’t
necessarily the right track. If we increase the χ2 limit value to some arbitrary
limit, we get a selection of several possible tracks per particle. Without any
additional tools however, it is impossible to figure out if the right track is in
the selection14 and if yes, which one of them correct track is.

14Based on detector efficiency it is possible for a particle to leave less
than 8 tracks and therefore not be reconstructed by the algorithm
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Figure 5: Particle recurling back into the center station (highlighted)
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Figure 6: Particle recurling back into the center station (highlighted)
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5 Machine learning

5.1 Introduction

Machine learning has already proven itself to be very successful in resolving
many problems in numerous other areas of science and also in the private
sector. Based on these promising results, scientists are eager to study the
potential of machine learning in physics.

There are several sections of machine learning. In this paper, we will focus
mainly on neural networks(NN), with special attention to recurrent neural
networks(RNN) [9], [10] and XGBoost(XGB) [11] models with boosted deci-
sion trees.

5.2 Artificial neural networks

5.2.1 General concepts

The fundamental concept behind artificial neural networks is, to imitate the
architecture of the human brain. They can be used for classification prob-
lems, as well as regression problems. In its most simple form, it can be
thought of some sort of mapping from some input to some target. For this
thesis two neural networks of a special subtype of neural networks, called
recurrent neural networks, were used. All of the networks used in this thesis
were written in the python library Keras [12] with a Tensorflow [13] backend.
In this section the basic principles of neural networks will be explained.

A neural network consists of many neurons organized in layers, as seen in
figure 7a. Each neuron is connected to every neuron in the neighbouring
layers, while each of these connections has a specific weight assigned to it.
In its most basic form, each neuron calculates a weighted sum to all of its
inputs and then applies a bias to it . In addition, each neuron has an acti-
vation function, which will be applied at the end of the calculation (see also
figure 7b):

y = factivation

(
n∑
i=1

(xi · wi) + b

)
(5)

This is done to create non linearity in the system. Later, some more complex
architectures of neurons will be presented.
The first layer, also called input layer, is always defined by the number of
inputs, with one dimension for each input. The dimensions of the following
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layers (excluding the last one), which are also called hidden layers, can be
chosen to be an arbitrarily number. The number of dimensions of the last
layer, also called output layer, is determined by the dimensionality of the
prediction. The number of hidden layers and their corresponding dimension
changes the performance of the system.

(a) Architecture of a neural network

(b) Neuron

Figure 7: Neural network architecture

There is no way of knowing how many dimensions and layers will give you
the best performance, as one can only define general effects of what happens
when they are being modified. Generally, increasing the number of layers
enables the system to solve more complex problems, while more dimensions
make the system more flexible. However, even these general guidelines are
to be applied with caution. For example, adding too many layers can cause
the system to train exceedingly slow, whilst adding to many neurons with
a too small training set can result in overfitting15. Depending on the prob-

15When a system performs well on the training set but poorly on the test set
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lem and the data given, each has its own optimal configuration. By gaining
more experience with NN, people develop a better intuition of where to start.
However, in the end it always results in some sort of systematic trial and er-
ror to find the optimal configuration.

5.2.2 Activation functions

The two RNN’s used in this thesis both use selu’s [14] as well as tanh and
relu’s as their activation functions.

selu(x) = λ

{
x, if x < 0

αex − α, otherwise
(6)

relu(x) = MAX(0, x) (7)

(a) Selu, elu activation function (b) Relu activation function

(c) Tanh activation function

Figure 8: Activation functions

Where λ and α are fixed parameters16. Selu’s have the advantage of nor-

16For standard scaled inputs (mean = 0, stddev. = 1.0): α ≈ 1.6732, λ ≈ 1.0507
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malizing the output. As a rule of thumb, normalized inputs usually tend to
give better results (The output of the neurons are the input of other neu-
rons). Using a tanh was the standard approach for a long time although it
has some disadvantages over the other activation functions. This is because
its slope becomes really small for large numbers, which slows down training
noticeably.

5.2.3 Concepts of training

The neural network is trained with a sample of events. This sample consists
of a few input parameters and a training target, which is the value the neural
network will be trained to predict. Three important terms for the training
of a neural network are epochs, batch size and loss function.
An epoch refers to one training iteration, where all of the training samples get
used once and the weights and biases get modified to fit the wanted targets
better. Usually, a system is trained over many epochs until the weights and
biases stay approximately constant at their optimal values.
Batch size refers to the number of examples that are given to the system
at once during the training. Batch size should neither be chosen too small,
e.g. small batch sizes train slower, nor too big, some randomness is wanted.
Experience shows, that a reasonable batch size usually lies between 10 to 100
examples per batch. It is important to note that by decreasing batch size
we make the minimum of the mapping we want to find wider. This makes
finding the general area of the minimum easier. However, if the minimum
gets too wide, the slope gets too small to reach the minimum in a reasonable
time. On the other side, by increasing the batch size too much, the minimum
gets exceedingly narrower and it is possible for the system to continuously
keep ”jumping” over the minimum with every training step performed.

5.2.4 Loss functions

To train the system we need some way to parametrize the quality of our
predictions. To account for that, we use a loss function. A loss function
takes the predicted values of the system and the targeted values to give us
an absolute value of our performance. There are various loss functions. In
the two RNN’s ”mean squared error”(MSE, formula 8) and ”binary crossen-
tropy”(BC, formula 9) were being used. The goal of every NN is to minimize
the loss function.
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L(w, b) =
1

n

n∑
i=1

(Ŷi(wi, bi)− Yi)2 (8)

L(w, b) = − 1

n

n∑
i=1

(
Yilog(Ŷi(wi, bi)) + (1− Yi)log(1− Ŷi(wi, bi))

)
(9)

With:

• wi are the weights of the system

• bi are the biases of the system

• Ŷi(wi, bi) are the predicted values of the system

• Yi are the targets for the predictions

• L(w, b) is the loss over n events

5.2.5 Stochastic gradient descent

Several methods exist to minimize the loss. The most simple one being
stochastic gradient descent(SGD). When performing SGD, we can calculate
the gradient and just apply it to our weights and biases. By doing this
repeatedly, we will eventually end up in a minimum17.

5.2.6 Stochastic gradient descent with Momentum

Trainings algorithm working with momentum are basically an improved ver-
sion of SGD. To circumvent the problem of getting stuck in any minimum,
our gradient can build up momentum of the past gradients. This is done by
adding a momentum term to the applied changes to the weights and biases.
The momentum is an exponentially decaying average over past gradients.
This generally trains faster than SGD and has less potential to get stuck in
local minima.

5.2.7 RMSProp

Another improved version of SGD is RMSProp. The RMSProp algorithm
scales the learning rate of each individual parameter by an exponentially
decaying average of the past squared gradients. This has the effect, that the

17It is very possible to also just get stuck in a local minimum
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learning rate increases if the past gradients were small to increase step size
and vice versa. Additionally the average of the past squared gradients decays
exponentially to prevent the step size from getting too small.

5.2.8 Adam

The most commonly used algorithm however, is the Adam algorithm [15],
which stands for Adaptive Moment estimation, training algorithm (see for-
mulas 10). It is essentially a combination of Momentum and RMSProp and
takes the best of both. It is also the one used to train both RNN’s of this
thesis as it converges the quickest and most reliable to the global minimum.
The algorithm contains two momenta. The first moment is an exponentially
decaying average of past gradients, as in Momentum. On the other hand,
the second moment is an exponentially decaying average of past squared
gradients as in RMSProp.

Initial state:

VdW = 0, SdW = 0, Vdb = 0, Sdb = 0

On iteration t:

VdW = β1VdW + (1− β1)dW, Vdb = β1Vdb + (1− β1)db

SdW = β2SdW + (1− β2)dW 2, Sdb = β2Sdb + (1− β2)db2

V corrected
dW =

VdW
1− βt1

, V corrected
db =

Vdb
1− βt1

ScorrecteddW =
SdW

1− βt2
, Scorrecteddb =

Sdb
1− βt2

Wt+1 = Wt − α
V corrected
dW√

ScorrecteddW + ε

bt+1 = bt − α
V corrected
db√

Scorrecteddb + ε

(10)

With:

• VdW , Vdb correspond to the Momentum part

• SdW , Sdb correspond to the RMSProp part

• ε this constant is chosen to be very small and only there to prevent
division by 0 (usually ε = 10−8)
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• α: learning rate (needs to be tuned according to the problem)

• β1 decay constant of the Momentum part (usually β1 = 0.9)

• β2 decay constant of the RMSProp part (usually β2 = 0.999)

5.2.9 Decaying learning rate

To counteract the problem of ”jumping” over the minimum repeatedly, some
NN also use a decaying learning rate during their training. By using this, the
step size gets smaller with every consecutive step which should in principle
result in the step size converging to zero when reaching the global minimum.
Most NN’s, as well as the two RNN’s used in this thesis, usually don’t use a
decaying learning rate as the Adam algorithm on its own already performs
well enough.

5.2.10 Batch normalisation

Another important technique often used in NN is Batch Normalisation [16],
[17]. By performing Batch Normalization, we normalize and center the input
around zero in between every layer of the NN. Batch Normalization has
proven to be a potent technique to make NN train faster and even perform
better.

Figure 9: The effects of Batch Normalization on data

5.3 Recurrent Neural Networks

5.3.1 General concepts

Recurrent Neural Networks(RNN) are subclass of neural networks and are
specialised to deal with sequential data structures. There are various appli-
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cations for RNN’s, such as speech recognition, music generation, sentiment
classification, DNA sampling and so forth. Generally, normal NN don’t per-
form that well on sequential data. One of the reasons is, for example, that
it doesn’t share features learned across different positions in the data18. An-
other problem is, that the input and output don’t necessarily have to have
the same length every time.
It is important to note, that, when using RNN’s the units we called neurons
before are usually called cells.
RNN’s pose a much better representation of the data, which also helps re-
ducing the number of variables in the system and hereby make it train more
efficiently.

Figure 10: General RNN architecture

With:

• x〈t〉: Input at timestep t with Tx total steps

• ŷ〈t〉: Output at timestep t

• a〈0〉: Initial value given to the RNN in the first step

• a〈t〉: Information passed over from the last step

In figure 10 the general architecture of a RNN can be seen. Every step of the
input data (x〈t〉) gets sequentially fed into the RNN, which then generates
some output ŷ〈t〉 after every step of the input. To share already learned
information and features for future steps, a〈t〉 gets passed down as additional
input into the RNN for the next step.

18In our experiment positions of the particles with x,y,z in the detector
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5.3.2 Most common architectures

There are two concepts of how the data is fed into the system and three
structures of RNN’s depending on the input and output of the system.

Usually, the data is fed into the system step by step. For problems, where
not the entire sequence is known already at the start, this is the only way to
feed the data into the system.
If however, the entire sequence is already known at the beginning, e.g. in
sequence classification, the information is commonly read by the system for-
wards and backwards. Networks with this specific architecture are called
bidirectional RNN’s [18]. This often increases the systems performance.
However, as with the first RNN, we wanted to predict particle tracks after
leaving the detector, we could only use a one directional RNN as the whole
track wasn’t available. The second RNN is actually a classifier of the tracks.
With the whole information available from the start, it was designed to be a
bidirectional RNN.

A system has a ”many-to-one” architecture, if we have a sequential input but
we only care about the final output of the system, e.g. classification problems.
This is the architecture used for both RNN’s. With the same reasoning, if
we have sequential inputs and want care about the output generated at each
step, e.g. speech recognition, the architecture is called ”many-to-many”. A
”one-to-one” architecture is basically just a regular NN.

5.3.3 Cell types

Besides the basic RNN cell type, which shall not be discussed in detail in this
thesis, the two most influential and successful cell types are Long-Short-Term-
Memory(LSTM) [19] cells and Gated Recurrent Units(GRU) [20]. However,
in this thesis only LSTM cells will be explained in greater detail as they were
the only cells used in the RNN’s.

GRU’s were invented with the intention to create a cell type with a similar
performance to the LSTM cell, while having a simpler internal structure. By
being less complex as an LSTM cell, a GRU cell has also less parameters to
modify during training which also speeds up training.

LSTM cells (see figure 11) have many useful properties such as a forget gate,
an update gate, as well as an output gate. With this cell type, it is easy
to pass down information for the following steps without it being altered in
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a big way (Long term memory). However, there are also ways built in to
update this passed down information with new one (Short term memory).
Even though GRU’s are gaining more and more attention, LSTM-cells are
still widely considered to be the most successful type of cells.

Figure 11: Architecture of a LSTM cell

The math behind the LSTM cell looks as follows19:

c̃〈t〉 = tanh(Wc

[
a〈t〉, x〈t〉

]
+ bc)

Γu = σ(Wu

[
a〈t〉, x〈t〉

]
+ bu)

Γo = σ(Wo

[
a〈t〉, x〈t〉

]
+ bo)

c〈t〉 = Γu · c̃〈t〉 + Γo · tanh(c〈t−1〉)

a〈t〉 = Γo · tanh(c〈t〉)

(11)

5.4 XGBoost

XGBoost[11] is based on boosted decision trees (extreme gradient boosting).
In this approach, the data samples get split using a decision tree. With every
step a new tree gets created to account for the errors of prior models, which
are then added to create the final prediction. A gradient descent algorithm
is used to minimize loss when adding new trees.

19The notation used is the same as in figure 11
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It is often used as a classifier. However, it can also used in regression models.
In this thesis, an XGBoost classifier was used to determine a baseline and
have some comparison for our bidirectional RNN classifier.
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6 Data

6.1 General information

There were two sets of data used in this thesis. First, each of the datasets
were shuffled to counteract any bias given by the sequence of the data and
then split into two parts. 80% was used to train the model(training set),
while the remaining 20% were later used to test the model(test set).
The sets were created using a Geant4 [21] based simulation with the specific
configuration of the µ→ 3e-experiment configuration.

The first dataset(dataset 1) contained 46896 true 8-hit tracks of recurling
particles, and each hit consisting of 3 coordinates (x,y,z).

The second dataset(dataset 2) contained 109821 tracks. These were exclu-
sively tracks that the current track reconstruction algorithm wasn’t conclu-
sively able to assign to an event. As a result, every event contained all the
preselected tracks, computed by the already existing algorithm, that were
calculated to be a possible track. It is important to note, that only for
around 75% of the events the true track was in this preselection. This posed
an additional challenge, as one could not just simply choose the best fitting
track. To assign the tracks to their corresponding events, they all carried
an event number matching them with their event.20. Each track contained
the coordinates of the 8 hits (x,y,z), the value of the χ2-fit performed by the
reconstruction algorithm, the event number, as well as a label which told us
if the track was true or false21.

6.2 Preprocessing

6.2.1 Dataset 1

To optimize the data fed into the RNN, dataset 1 was preprocessed. In
a first step, a min-max scaler with a range of [−0.9, 0.9] from the python
library Scikit-learn [22] was used. This particular choice of range was based
on the fact that a tanh activation function was used in the output layer.
To accommodate for its properties of being asymptotically bounded by ±1,
we chose a range of [−0.9, 0.9] to make all the data easily reachable by the
system. In a second step, the data got shuffled and split into the training

20One number for all tracks of the same events
21Only used for training and testing of the system
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and test sets. The first four steps were used as an input for the RNN, while
the second four steps were our prediction target.

6.2.2 Dataset 2

Analogously to dataset 1, first the coordinates of the tracks, as well as the χ2,
were scaled with a min max scaler (separate ones) with a range of [−0.9, 0.9]
from the python library Scikit-learn. Then, the first four steps of every track
were taken and fed into our first track predicting RNN. For each of the
last four steps of a track we then had two sets of coordinates. One were the
predicted coordinates of our RNN and the other one the coordinates given by
the reconstructing algorithm. To have the information of the χ2 fit available
at each step, we created an array of shape (#tracks, steps, 4) (1 dimension
for each of the coordinates and another for the χ2 fit). However, at the spot
of the x,y,z coordinates there were neither the predicted coordinates of our
RNN nor the coordinates given by the reconstructing algorithm but instead
the difference of the two. Our target was the truth value of each track22.

221 = true, 0 = false
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7 RNN’s used

7.1 RNN for track prediction

The first RNN had the task to predict the positions of the recurled 4 hits.
As input, the 4 hits of an outgoing particle are used.

Figure 12: RNN Prediction architecture
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Figure 12 shows the architecture used for the RNN track prediction. It is a
one directional RNN with following layout for its layers:

1. Layer: 50 LSTM cells

2. Layer: 50 LSTM cells

3. Layer: Dense layer (50 cells)23

4. Layer: Dense layer (12 cells)

The optimal number of layers, cells and cell-type was found by systematically
comparing RNN’s that are equal besides one property (e.g. Using GRU’s in-
stead of LSTM cells). Also, all the activation functions were chosen to be
selu’s.
The loss and metric function used were the mean squared error(mse), as this
had the most similarity with an euclidian distance. The model itself was
trained by an Adam algorithm.
The output was a 12 dimensional vector of the shape: (x5, y5, z5, x6, y6, z6, ..., z8).
Note that the numeration starts with 5 as the 5th hit of the track is the first
one to be predicted.

7.2 RNN for classification of tracks

The second RNN was used a classifier to find the right tracks. As already
described in section 6.2.2, the input data was of shape (batchsize, 4, 4) with
(∆xi,∆yi,∆zi, χ

2)at step i.

Where:

• ∆xi = xi,preselected−xi,predicted, the difference between the by the original
tracking algorithm preselected track and the by the RNN predicted one

• ∆yi,∆zi same as for ∆xi

• Value of the χ2 fit

The output was then just a one dimensional vector, where 1 stands for a true
track and 0 stands for a false track. The RNN itself is going to predict a
number between 0 and 1, which can be interpreted as amount of confidence,
that it is a true track.

23Dense layer cells are basically just basic NN cells as explained in section 5.1
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Figure 13: RNN classifier architecture
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The RNN for the classification was chosen to be bidirectional and as in
the RNN before LSTM cells were used. Here, a tanh was used for all the
activation functions, besides the last one. The last layer uses a softmax
activation function24. As tanh doesn’t automatically do batch normalization,
between every layer of cells a batch normalization layer was added.
The layout of the layer was as follows:

1. Layer: 30 LSTM cells (bidirectional, batch normalization)

2. Layer: 30 LSTM cells (bidirectional, batch normalization)

3. Layer: 30 LSTM cells (bidirectional, batch normalization)

4. Layer: Dense layer (50 cells, batch normalization)

5. Layer: Dense layer (1 cell, softmax activation function)

The optimal number of layers, cells and cell-type was found by systematically
comparing different RNN architectures. Also, it is important to note that
the second RNN is directly dependant of the first RNN. When changing the
first RNN one would also have to retrain the second.

24Similar to a tanh but bounded between [0,1]
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8 Analysis

8.1 Best χ2

The most simple version to try to classify which one is the right path out of
the preselection would be to just take the path with the smallest χ2. Like this,
we would choose the path that agrees the most with the track reconstructing
algorithm that gives us our preselection. However, as already mentioned in
dataset 2, only around 75% of the events even have the true track among
the ones preselected by the reconstruction25. In this case, we would have
to label all the tracks as false tracks. By simply choosing the best χ2, we
don’t account for this at all. So, by default our maximum accuracy would
be around 75% if the true track would really always just be the one with the
best χ2.

It turns out, that the accuracy of this method is only at 52.01%. Therefore,
there is a need for better algorithms to classify this problem.

8.2 RNN classifier with RNN track prediction input

The RNN’s that we put in sequence (first track prediction then classification)
are a much more complex model. When trained, they were able to label all
the tracks right with an accuracy of around 87.63%. Note that the 75% limit
of always choosing one track for every event was exceeded26.

25E.g. by not having all 8 hits as a result of detector efficiency (searches for 8 hits)
26Usually the one that is considered the best by the corresponding algorithm
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(a) Number of false positives and false negatives depending cut

(b) ROC curve for the RNN model

Figure 14: XGBoost classifier figures

As shown in figure 14a, depending on where we apply the cut, we have a
changing number of false positives and false negatives. In figure 14a, the blue
bins are false positives and the orange bins are false negatives. Depending
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on what is more important for the experiment27. One can also qualitatively
judge the performance here, as in the optimal case all the false positives
would gather at the area where the cut goes to 0. Analogously, we want all
the false negatives to gather at the cut around 1. Here we see that this is
fulfilled really well. So, already by this graph we see that the system will
perform well.

Figure 14b shows the ROC curve [23] of the RNN classifier. Generally, the
more area under the ROC curve the better the classifier. In the perfect case,
where everything gets labelled 100% correctly, the area under the curve(ROC
AUC) would be 1 and random guessing would be around 0.5. Here, we have
an area of 0.93. This is already really close to the optimal case.

8.3 XGBoost

Also an XGBoost classifier28 was implemented and trained to have some more
comparison to the performance of our RNN classification. XGBoost models
train much faster than NN and are often a serious competitor to them as
often they reach similar performances. Based on that, they are often used as
baselines for RNN classifiers and a RNN classifier is considered good if they
surpass the XGBoost model. The input of XGBoost model was the same
as for the RNN classification. The accuracy of this classifier of labelling
the tracks was at 80.74% with a cut applied at 0.5. Note that here we also
exceeded the 75% even though with a smaller accuracy than the RNN.

27E.g. all positives have to be correct → increase cut
28Depth = 3 and number of estimators =3
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(a) Number of false positives and false negatives depending cut

(b) ROC curve for the XGBoost model

Figure 15: XGBoost classifier figures

In figure 15a the blue bins are false positives and the orange bins are false
negatives. Here we see that the bins are more evenly spread and gather less
around the edges. So, already qualitatively we can guess that it will perform
worse than our RNN’s.
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Figure 15b shows the ROC curve of the XGB classifier. Here we have a ROC
AUC of 0.88.

8.4 Comparison in performance of the RNN and XG-
Boost

The RNN classifier performs with around 6% better accuracy than the XG-
Boost classifier. Also, by comparing the the ROC curves in figure 16, one can
clearly see that the area under the RNN ROC curve is bigger. In numbers
we have around 0.05 > more area under the curve for the RNN model. The
RNN classifier performs significantly better in labelling the 8 hit tracks than
the XGBoost model.

Figure 16: Comparison ROC curves of RNN and XGBoost model
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9 Results

9.1 Results

The RNN models perform significantly better at labelling the 8 hit tracks
than all other classifiers and methods.

Model Accuracy with cut at 0.5 [%] ROC AUC
Best χ2 52.01% /

XGBoost 80.74 0.88
RNN 87.63% 0.93

Using this system of RNN’s proves to be a viable solution to this problem
and brings a huge gain in accuracy, while also outperforming other machine
learning solutions.

9.2 Outlook and potential

Where do we want to go from here? One way to improve the algorithm
would for example be to create a fully connected neural network [24]. By
doing this, both RNN’s would be connected and would train as a unit. This
would have the positive effect of not having to retrain the classifying RNN
as well whenever the first on gets modified.
Another goal could be to make this type of RNN appliable to more types
of problems. For example, instead of being restricted to tracks of a specific
length (here eight hits) one could make it more general to be able to deal
with an arbitrary length of the track. This would be especially useful for this
experiment, as a lot of particles don’t just recurl once but many times (in
the central station). Hereby, they are creating a lot of background, which
minimalizing is crucial to reach our desired sensitivity of 10−16.
The ultimate goal however, would be to replace the current track reconstruc-
tion algorithm altogether and put a RNN in its place. This could for example
be done by an RNN performing beam search29 [25] to find the true track of
a particle. In other areas, beam search has proven to be a powerful tool
and there is a lot of potential for this sort of algorithm in physics as well,
especially in track reconstruction

29Both inside out and outside in
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