Newer
Older
LFU_paper_B2Kstll / prl / suppl.tex
@Guest Account Guest Account on 10 Aug 2018 6 KB Preparing prl resubmission
% vim: set sts=4 et :
\documentclass[reprint,preprintnumbers,prd,nofootinbib]{revtex4-1}

\usepackage{amsfonts}
\usepackage{amsmath}
\usepackage{array}
\usepackage{braket}
\usepackage{epstopdf}
\usepackage{graphicx}
\usepackage{hepparticles}
\usepackage{hepnicenames}
\usepackage{hepunits}
\usepackage{hyperref}
\usepackage[%
    utf8
]{inputenc}
\usepackage{slashed}
\usepackage{subfigure}
\usepackage{placeins}
\usepackage[%
    normalem
]{ulem}
\usepackage[%
    usenames,
    svgnames,
    dvipsnames
]{xcolor}


%% Shortcuts %%
\newcommand{\ie}{\textit{i.e.}}
\newcommand{\nuvec}{\vec{\nu}}
\newcommand{\refapp}[1]{appendix~\ref{app:#1}}
\newcommand{\refeq}[1]{eq.~(\ref{eq:#1})}
\newcommand{\refeqs}[2]{eqs.~(\ref{eq:#1})--(\ref{eq:#2})}
\newcommand{\reffig}[1]{figure~\ref{fig:#1}}
\newcommand{\refsec}[1]{section~\ref{sec:#1}}
\newcommand{\reftab}[1]{table~\ref{tab:#1}}
%\let\oldtheta\theta
%\renewcommand{\theta}{\vartheta}
\newcommand{\eps}{\varepsilon}
\newcommand{\para}{\parallel}
\newcommand{\Gfermi}{G_F}
%\newcommand{\dd}[2][]{{\mathrm{d}^{#1}}#2\,}
\newcommand{\dd}{\ensuremath{\textrm{d}}}
\newcommand{\order}[1]{\ensuremath{\mathcal{O}\left(#1\right)}}
\DeclareMathOperator{\sign}{sgn}
\DeclareMathOperator{\ReNew}{Re}
\DeclareMathOperator{\ImNew}{Im}
\let\Re\ReNew
\let\Im\ImNew
\DeclareMathOperator*{\sumint}{%
\mathchoice%
  {\ooalign{$\displaystyle\sum$\cr\hidewidth$\displaystyle\int$\hidewidth\cr}}
  {\ooalign{\raisebox{.14\height}{\scalebox{.7}{$\textstyle\sum$}}\cr\hidewidth$\textstyle\int$\hidewidth\cr}}
  {\ooalign{\raisebox{.2\height}{\scalebox{.6}{$\scriptstyle\sum$}}\cr$\scriptstyle\int$\cr}}
  {\ooalign{\raisebox{.2\height}{\scalebox{.6}{$\scriptstyle\sum$}}\cr$\scriptstyle\int$\cr}}
}
\DeclareMathOperator*{\argmax}{arg\,max}
\newcommand{\wilson}[2][]{\mathcal{C}^\text{#1}_{#2}}
\newcommand{\op}[1]{\mathcal{O}_{#1}}
\newcommand{\la}{\langle}
\newcommand{\ra}{\rangle}
\newcommand{\eqa}[1]{\begin{eqnarray} #1 \end{eqnarray}}


\def\deriv {\ensuremath{\mathrm{d}}}
\def\qsq       {\ensuremath{q^2}\xspace}

\def\PB      {\ensuremath{\mathrm{B}}\xspace}    
\def\B       {{\ensuremath{\PB}}\xspace}
\def\PK      {\ensuremath{\mathrm{K}}\xspace}   
\def\kaon    {{\ensuremath{\PK}}\xspace}
\def\Kstarz  {{\ensuremath{\kaon^{*0}}}\xspace}
\def\Bd      {{\ensuremath{\B^0}}\xspace}
\def\Bz      {{\ensuremath{\B^0}}\xspace}

%% Key decay channels

\def\BdToKstmm    {\decay{\Bd}{\Kstarz\mup\mun}}
\def\BdbToKstmm   {\decay{\Bdb}{\Kstarzb\mup\mun}}

\def\BsToJPsiPhi  {\decay{\Bs}{\jpsi\phi}}
\def\BdToJPsiKst  {\decay{\Bd}{\jpsi\Kstarz}}
\def\BdbToJPsiKst {\decay{\Bdb}{\jpsi\Kstarzb}}

%% Rare decays
\def\BdKstee  {\decay{\Bd}{\Kstarz\epem}}
\def\BdbKstee {\decay{\Bdb}{\Kstarzb\epem}}
\def\bsll     {\decay{\bquark}{\squark \ell^+ \ell^-}}

\def\lepton     {{\ensuremath{\ell}}\xspace}
\def\ellm       {{\ensuremath{\ell^-}}\xspace}
\def\ellp       {{\ensuremath{\ell^+}}\xspace}
\def\ellell     {\ensuremath{\ell^+ \ell^-}\xspace}
\def\mumu       {{\ensuremath{\Pmu^+\Pmu^-}}\xspace}

\def\lhcb {\mbox{LHCb}\xspace}
\def\belle  {\mbox{Belle}\xspace}

\def\WC  {\ensuremath{\mathcal{C}}\xspace}



\begin{document}

\allowdisplaybreaks

\preprint{ZU-TH-15/18}
\title{Towards establishing Lepton Flavour Universality violation in $\bar{B}\to \bar{K}^*\ell^+\ell^-$ decays}
\author{Andrea Mauri}
\email{a.mauri@cern.ch}
\author{Nicola Serra}
\email{nicola.serra@cern.ch}
\author{Rafael Silva Coutinho}
\email{rafael.silva.coutinho@cern.ch}
\affiliation{Physik-Institut, Universit\"at Z\"urich, Winterthurer Strasse 190, 8057 Z\"urich, Switzerland}


\appendix


\section{Supplemental material}

An extension of the physics case of the proposed method
is to investigate the sensitivity to the chirality-flipped counterparts of the usual Wilson coefficients, 
\textit{i.e.} $\WC^{\prime (\mu)}_9$ and $\WC^{\prime(\mu)}_{10}$.
Following the formalism discussed in this letter, the primed WCs are examined by considering in addition to the 
\texttt{BMP}$_{\WC_{9,10}}$ three different modified NP scenarios for the muon only:
$\WC_{9,10}^{\prime(\mu)} = \WC^{\prime \rm{SM}}_{9,10} = 0$;
$\WC^{\prime (\mu)}_9 = \WC^{\prime (\mu)}_{10} = 0.3$; 
and $\WC^{\prime (\mu)}_9 = - \WC^{\prime (\mu)}_{10} =  0.3$.  
Notice that for the electron mode the $\WC_{9,10}^{\prime(e)}$ is set and fixed to the SM value $\WC^{\prime \rm{SM}}_{9,10} = 0$.

\begin{figure}[b]
\includegraphics[width=.4\textwidth]{ellipses_CpMu_Hz.pdf} 
\caption{%
    Two-dimensional sensitivity scans for the pair of Wilson coefficients $\WC'^{(\mu)}_9$ and 
	$\WC'^{(\mu)}_{10}$ for different non-local hadronic parametrisation models for a NP scenario 
	with $\WC'^{(\mu)}_9 = \WC'^{(\mu)}_{10} = 0.3$.
    The contours correspond to 99\% confidence level statistical-only uncertainty bands evaluated with
	the expected statistics after \lhcb Run II.
    \label{fig:Cp_Hz}
}
\end{figure}

Figure~\ref{fig:Cp_Hz} shows the fit results for different order of the analytic expansion for 
the non-local hadronic contribution for a NP scenario with $\WC'^{(\mu)}_9 = \WC'^{(\mu)}_{10} = 0.3$, 
and yields corresponding to the \lhcb Run II expected statistics. 
The dependency on the determination of $\WC'^{(\mu)}_9$ and $\WC'^{(\mu)}_{10}$ on the 
order of the expansion clearly saturates after $\mathcal{H}_\lambda[z^3]$ and allows a measurement
of the primed Wilson coefficients for the muon decay channel $B^{0} \to K^{*0} \mumu$ independent 
on the theoretical hadronic uncertainty.
%
Figure~\ref{fig:Cp} shows the prospects for the sensitivity to the $\WC'^{(\mu)}_9$ and 
$\WC'^{(\mu)}_{10}$ Wilson coefficients corresponding to the expected statistics at
the LHCb upgrade with $50\,$fb$^{-1}$ and $\,300\,$fb$^{-1}$.
Note that only with the full capability of the LHCb experiment it is possible 
to start disentangling the different NP hypotheses. 
%
\begin{figure}[t]
\includegraphics[width=.4\textwidth]{ellipses_CpMu.pdf} 
\caption{%
    Two-dimensional sensitivity scans for the pair of Wilson coefficients $\WC'^{(\mu)}_9$ and $\WC'^{(\mu)}_{10}$
    for three NP scenarios: (blue) $\WC'^{(\mu)}_9 = \WC'^{(\mu)}_{10} = 0$, (orange) $\WC'^{(\mu)}_9 = \WC'^{(\mu)}_{10} = 0.3$ 
    and (magenta) $\WC'^{(\mu)}_9 = - \WC'^{(\mu)}_{10} = 0.3$.
    The contours correspond to 99\% confidence level statistical-only uncertainty bands expected for the LHCb Upgrade (dotted)  
    $50\,$fb$^{-1}$ and (solid) $\,300\,$fb$^{-1}$ statistics.
    \label{fig:Cp}
}
\end{figure}

\FloatBarrier

\end{document}