#NETWORK ARCHITECTURES import numpy as np import os import math import tensorflow as tf import matplotlib.pyplot as plt from datetime import datetime from architectures.utils.NN_building_blocks import * from architectures.utils.NN_gen_building_blocks import * def lrelu(x, alpha=0.1): return tf.maximum(alpha*x,x) # some dummy constants LEARNING_RATE = None LEARNING_RATE_D = None LEARNING_RATE_G = None BETA1 = None BATCH_SIZE = None EPOCHS = None SAVE_SAMPLE_PERIOD = None PATH = None SEED = None rnd_seed=1 #tested on mnist class DAE(object): """ Builds densely connected deep autoencoder. Regularization implemented with dropout, no regularization parameter implemented yet. Minimization through AdamOptimizer (adaptive learning rate). The minimized loss function is the reduced sum of the sigmoid cross entropy with logis over all the barch samples. Constructor inputs: -Positional arguments: - dim: (int) input features - e_sizes: (dict) - d_sizes: (dict) -Keyword arguments - an_id: (int) number useful for stacked ae - lr: (float32) learning rate arg for the AdamOptimizer - beta1: (float32) beta1 arg for the AdamOptimizer - batch_size: (int) size of each batch - epochs: (int) number of times the training has to be repeated over all the batches - save_sample: (int) after how many iterations of the training algorithm performs the evaluations in fit function - path: (str) path for saving the session checkpoint Class attributes: - X: (tf placeholder) input tensor of shape (batch_size, input features) - Y: (tf placeholder) label tensor of shape (batch_size, n_classes) (one_hot encoding) - Y_hat: (tf tensor) shape=(batch_size, n_classes) predicted class (one_hot) - loss: (tf scalar) reduced mean of cost computed with softmax cross entropy with logits - train_op: gradient descent algorithm with AdamOptimizer Class methods: - get_sample: """ def __init__( self, dim, e_sizes, d_sizes, an_id=0, lr=LEARNING_RATE, beta1=BETA1, batch_size=BATCH_SIZE, epochs=EPOCHS, save_sample=SAVE_SAMPLE_PERIOD, path=PATH, seed=SEED, img_height=None, img_width=None ): self.dim = dim self.an_id = an_id self.latent_dims=e_sizes['z'] self.e_sizes=e_sizes self.d_sizes=d_sizes self.d_last_act_f = d_sizes['last_act_f'] self.seed = seed self.img_height=img_height self.img_width=img_width self.X = tf.placeholder( tf.float32, shape=(None, self.dim), name='X' ) self.batch_sz = tf.placeholder( tf.float32, shape=(), name='batch_sz' ) self.Z=self.build_encoder(self.X, self.e_sizes) logits = self.build_decoder(self.Z, self.d_sizes) self.X_hat = self.d_last_act_f(logits) cost = tf.nn.sigmoid_cross_entropy_with_logits( labels=self.X, logits=logits ) self.loss= tf.reduce_mean(cost) self.train_op = tf.train.AdamOptimizer( learning_rate=lr, beta1=beta1 ).minimize(self.loss) #test time self.X_input = tf.placeholder( tf.float32, shape = (None, self.dim), name='X_input' ) #encode at test time with tf.variable_scope('encoder') as scope: scope.reuse_variables() self.Z_input = self.encode( self.X_input, reuse=True, is_training=False ) #decode from encoded at test time with tf.variable_scope('decoder') as scope: scope.reuse_variables() X_decoded = self.decode( self.Z_input, reuse=True, is_training=False ) self.X_decoded = tf.nn.sigmoid(X_decoded) #saving for later self.lr = lr self.batch_size=batch_size self.epochs = epochs self.path = path self.save_sample = save_sample def build_encoder(self, X, e_sizes): with tf.variable_scope('encoder') as scope: #dimensions of input mi = self.dim self.e_layers = [] count=0 for mo, apply_batch_norm, keep_prob, act_f, w_init in e_sizes['dense_layers']: name = 'layer_{0}'.format(count) count +=1 layer = DenseLayer(name, mi, mo, apply_batch_norm, keep_prob, act_f, w_init ) self.e_layers.append(layer) mi = mo e_last_act_f = e_sizes['last_act_f'] e_last_w_init = e_sizes['last_w_init'] name = 'layer_{0}'.format(count) last_enc_layer = DenseLayer(name, mi, self.latent_dims, False, 1, act_f=e_last_act_f, w_init=e_last_w_init ) self.e_layers.append(last_enc_layer) return self.encode(X) def encode(self, X, reuse=None, is_training=True): Z=X for layer in self.e_layers: Z=layer.forward(Z, reuse, is_training) return Z def build_decoder(self, Z, d_sizes): with tf.variable_scope('decoder') as scope: mi = self.latent_dims self.d_layers = [] count = 0 for mo, apply_batch_norm, keep_prob, act_f, w_init in d_sizes['dense_layers']: name = 'layer_{0}'.format(count) count += 1 layer = DenseLayer(name, mi, mo, apply_batch_norm, keep_prob, act_f, w_init ) self.d_layers.append(layer) mi = mo name = 'layer_{0}'.format(count) d_last_w_init= d_sizes['last_w_init'] last_dec_layer = DenseLayer(name, mi, self.dim, False, 1, act_f=lambda x:x, w_init=d_last_w_init ) self.d_layers.append(last_dec_layer) return self.decode(Z) def decode(self, Z, reuse=None, is_training=True): X=Z for layer in self.d_layers: X = layer.forward(X, reuse, is_training) return X # def get_logits(self, X): def set_session(self, session): self.session = session for layer in self.d_layers: layer.set_session(self.session) for layer in self.e_layers: layer.set_session(self.session) def fit(self, X): """ Function is called if the flag is_training is set on TRAIN. If a model already is present continues training the one already present, otherwise initialises all params from scratch. Performs the training over all the epochs, at when the number of epochs of training is a multiple of save_sample, prints the cost at that epoch. When training has gone through all the epochs, plots a plot of the cost versus epoch. Positional arguments: - X_train: (ndarray) size=(train set size, input features) training sample set """ seed = self.seed costs = [] N = len(X) n_batches = N // self.batch_size total_iters=0 print('\n ****** \n') print('Training deep AE with a total of ' +str(N)+' samples distributed in batches of size '+str(self.batch_size)+'\n') print('The learning rate set is '+str(self.lr)+', and every ' +str(self.save_sample)+ ' epochs the training cost will be printed') print('\n ****** \n') for epoch in range(self.epochs): # print('Epoch: {0}'.format(epoch)) seed += 1 batches = unsupervised_random_mini_batches(X, self.batch_size, seed) for X_batch in batches: feed_dict = { self.X: X_batch, self.batch_sz: self.batch_size } _, c = self.session.run( (self.train_op, self.loss), feed_dict=feed_dict ) c /= self.batch_size costs.append(c) if epoch % self.save_sample == 0: print('At epoch %d, cost: %f' %(epoch, c)) plt.plot(costs) plt.ylabel('cost') plt.xlabel('iteration') plt.title('learning rate=' + str(self.lr)) plt.show() print('Parameters trained') def get_sample(self, X): """ Input X takes an X, encodes and then decodes it reproducing a X_hat Outputs X_hat """ return self.session.run( self.X_decoded, feed_dict={self.X_input:X, self.batch_sz:1} )