//************************************************ // Author: Federica Lionetto // Created on: 07/05/2016 //************************************************ // Header guard. #ifndef __LANDAU_C_INCLUDED__ #define __LANDAU_C_INCLUDED__ //----------------------------------------------------------------------- // // Convoluted Landau and Gaussian Fitting Function // (using ROOT's Landau and Gauss functions) // // Based on a Fortran code by R.Fruehwirth (fruhwirth@hephy.oeaw.ac.at) // Adapted for C++/ROOT by H.Pernegger (Heinz.Pernegger@cern.ch) and // Markus Friedl (Markus.Friedl@cern.ch) // // to execute this example, do: // root > .x langaus.C // or // root > .x langaus.C++ // //----------------------------------------------------------------------- Double_t langaufun(Double_t *x, Double_t *par) { //Fit parameters: //par[0]=Width (scale) parameter of Landau density //par[1]=Most Probable (MP, location) parameter of Landau density //par[2]=Total area (integral -inf to inf, normalization constant) //par[3]=Width (sigma) of convoluted Gaussian function // //In the Landau distribution (represented by the CERNLIB approximation), //the maximum is located at x=-0.22278298 with the location parameter=0. //This shift is corrected within this function, so that the actual //maximum is identical to the MP parameter. // Numeric constants Double_t invsq2pi = 0.3989422804014; // (2 pi)^(-1/2) Double_t mpshift = -0.22278298; // Landau maximum location // Control constants Double_t np = 100.0; // number of convolution steps Double_t sc = 5.0; // convolution extends to +-sc Gaussian sigmas // Variables Double_t xx; Double_t mpc; Double_t fland; Double_t sum = 0.0; Double_t xlow,xupp; Double_t step; Double_t i; // MP shift correction mpc = par[1] - mpshift * par[0]; // Range of convolution integral xlow = x[0] - sc * par[3]; xupp = x[0] + sc * par[3]; step = (xupp-xlow) / np; // Convolution integral of Landau and Gaussian by sum for(i=1.0; i<=np/2; i++) { xx = xlow + (i-.5) * step; fland = TMath::Landau(xx,mpc,par[0]) / par[0]; sum += fland * TMath::Gaus(x[0],xx,par[3]); xx = xupp - (i-.5) * step; fland = TMath::Landau(xx,mpc,par[0]) / par[0]; sum += fland * TMath::Gaus(x[0],xx,par[3]); } return (par[2] * step * sum * invsq2pi / par[3]); } TF1 *langaufit(TH1F *his, Double_t *fitrange, Double_t *startvalues, Double_t *parlimitslo, Double_t *parlimitshi, Double_t *fitparams, Double_t *fiterrors, Double_t *ChiSqr, Int_t *NDF) { // Once again, here are the Landau * Gaussian parameters: // par[0]=Width (scale) parameter of Landau density // par[1]=Most Probable (MP, location) parameter of Landau density // par[2]=Total area (integral -inf to inf, normalization constant) // par[3]=Width (sigma) of convoluted Gaussian function // // Variables for langaufit call: // his histogram to fit // fitrange[2] lo and hi boundaries of fit range // startvalues[4] reasonable start values for the fit // parlimitslo[4] lower parameter limits // parlimitshi[4] upper parameter limits // fitparams[4] returns the final fit parameters // fiterrors[4] returns the final fit errors // ChiSqr returns the chi square // NDF returns ndf Int_t i; Char_t FunName[100]; sprintf(FunName,"Fitfcn_%s",his->GetName()); TF1 *ffitold = (TF1*)gROOT->GetListOfFunctions()->FindObject(FunName); if (ffitold) delete ffitold; TF1 *ffit = new TF1(FunName,langaufun,fitrange[0],fitrange[1],4); ffit->SetParameters(startvalues); ffit->SetParNames("Width","MP","Area","GSigma"); for (i=0; i<4; i++) { ffit->SetParLimits(i, parlimitslo[i], parlimitshi[i]); } his->Fit(FunName,"RB0"); // fit within specified range, use ParLimits, do not plot ffit->GetParameters(fitparams); // obtain fit parameters for (i=0; i<4; i++) { fiterrors[i] = ffit->GetParError(i); // obtain fit parameter errors } ChiSqr[0] = ffit->GetChisquare(); // obtain chi^2 NDF[0] = ffit->GetNDF(); // obtain ndf return (ffit); // return fit function } Int_t langaupro(Double_t *params, Double_t &maxx, Double_t &FWHM) { // Seaches for the location (x value) at the maximum of the // Landau-Gaussian convolute and its full width at half-maximum. // // The search is probably not very efficient, but it's a first try. Double_t p,x,fy,fxr,fxl; Double_t step; Double_t l,lold; Int_t i = 0; Int_t MAXCALLS = 10000; // Search for maximum p = params[1] - 0.1 * params[0]; step = 0.05 * params[0]; lold = -2.0; l = -1.0; while ( (l != lold) && (i < MAXCALLS) ) { i++; lold = l; x = p + step; l = langaufun(&x,params); if (l < lold) step = -step/10; p += step; } if (i == MAXCALLS) return (-1); maxx = x; fy = l/2; // Search for right x location of fy p = maxx + params[0]; step = params[0]; lold = -2.0; l = -1e300; i = 0; while ( (l != lold) && (i < MAXCALLS) ) { i++; lold = l; x = p + step; l = TMath::Abs(langaufun(&x,params) - fy); if (l > lold) step = -step/10; p += step; } if (i == MAXCALLS) return (-2); fxr = x; // Search for left x location of fy p = maxx - 0.5 * params[0]; step = -params[0]; lold = -2.0; l = -1e300; i = 0; while ( (l != lold) && (i < MAXCALLS) ) { i++; lold = l; x = p + step; l = TMath::Abs(langaufun(&x,params) - fy); if (l > lold) step = -step/10; p += step; } if (i == MAXCALLS) return (-3); fxl = x; FWHM = fxr - fxl; return (0); } #endif