Newer
Older
HepData / KstarMuMu / appendix_bootstrap_correlations_asymmetries.tex
@mchrzasz mchrzasz on 1 Nov 2016 13 KB added K* mumu
\section{Correlation matrices for the \boldmath{\CP}-asymmetric observables from the method of moments}
\label{sec:appendix:bootstrap:correlation:asymmetries}

Correlation matrices between the \CP asymmetries  in the different \qsq bins are provided in Tables~\ref{appendix:moments:correlation:asymmetry:1}--\ref{appendix:moments:correlation:asymmetry:15}  for the moment analysis. The correlations are determined by a bootstrapping technique.


\begin{table}[!htb]
\caption{
Correlation matrix for the \CP-asymmetric observables obtained for the method of moments in the bin $0.10<q^2<0.98\gevgevcccc$. 
\label{appendix:moments:correlation:asymmetry:1}
}
\centering   
\begin{tabular}{l|rrrrrrr}
 & $A_{3}$ & $A_{4}$ & $A_{5}$ & $A_{6s}$ & $A_{7}$ & $A_{8}$ & $A_{9}$ \\
\hline
$A_{3}$ & $1.00 $ & $0.04 $ & $0.09 $ & $-0.02 $ &  $0.01 $ & $-0.04 $ & $0.05 $  \\
$A_{4}$ & & $1.00 $ &  $-0.24 $ & $-0.07 $ & $-0.08 $ & $0.07 $ & $0.02 $  \\
$A_{5}$ & & & $1.00 $ & $0.07 $ & $0.00$ &  $-0.07 $ & $-0.01 $  \\
$A_{6s}$ & & & & $1.00 $ & $0.08 $ & $-0.11 $ & $0.00 $   \\
$A_{7}$ & & &  & & $1.00 $ & $-0.09 $ & $0.12 $  \\
$A_{8}$ & & & & & &  $1.00 $ & $0.01 $  \\
$A_{9}$ & & & & & & &  $1.00 $   \\
\end{tabular}
\end{table}



\begin{table}[!htb]
\caption{
Correlation matrix for the \CP-asymmetric observables obtained for the method of moments in the bin $1.1<q^2<2.0\gevgevcccc$. 
\label{appendix:moments:correlation:asymmetry:2}
}
\centering   
\begin{tabular}{l|rrrrrrr}
& $A_{3}$ & $A_{4}$ & $A_{5}$ & $A_{6s}$ & $A_{7}$ & $A_{8}$ & $A_{9}$ \\
\hline
$A_{3}$ & $1.00 $ &  $-0.01 $ &  $0.04 $ &  $0.06 $ &   $0.12 $ &  $-0.05 $ & $0.08 $  \\
$A_{4}$ & & $1.00 $ &   $-0.06 $ &   $0.04 $ &   $-0.16 $ &  $0.04 $ & $-0.10$  \\
$A_{5}$ & &  &  $1.00 $ &  $-0.05 $ &  $0.01 $ &   $-0.11 $ &  $-0.07 $  \\
$A_{6s}$ & &  &  & $1.00$ &  $-0.06 $ &   $-0.07 $ & $-0.09 $ \\
$A_{7}$ & &  &  &  &  $1.00$ &  $-0.12 $ & $0.10 $  \\
$A_{8}$ & &  &  &  &  &  $1.00$ &  $-0.04 $  \\
$A_{9}$ & &  &  &  &  &  & $1.00$ \\
\end{tabular}
\end{table}



\begin{table}[!htb]
\caption{
Correlation matrix for the \CP-asymmetric observables obtained for the method of moments in the bin $2.0<q^2<3.0\gevgevcccc$. 
\label{appendix:moments:correlation:asymmetry:3}
}
\centering
\begin{tabular}{l|rrrrrrr}
 & $A_{3}$ & $A_{4}$ & $A_{5}$ & $A_{6s}$ & $A_{7}$ & $A_{8}$ & $A_{9}$ \\
\hline
$A_{3}$ & $1.00 $ &  $-0.10$ &  $0.06 $ &  $0.03$ &  $0.07 $ &  $-0.04$ &  $-0.02$  \\
$A_{4}$ & &  $1.00 $ &  $-0.07 $ &  $0.07$ &  $0.06 $ & $-0.06$ & $-0.05$  \\
$A_{5}$ & &  & $1.00 $ &  $-0.10$ &  $-0.07 $ & $0.04$ & $-0.07$  \\
$A_{6s}$ & &  &  &   $1.00 $ &  $-0.03 $ & $-0.11$ & $0.04$  \\
$A_{7}$ & &  &  &  & $1.00$ &  $-0.15$ &   $0.02$  \\
$A_{8}$ & &  &  &  &  &  $1.00$ & $-0.07$  \\
$A_{9}$ & &  &  &  &  &   &  $1.00$ \\
\end{tabular}
\end{table}



\begin{table}[!htb]
\caption{
Correlation matrix for the \CP-asymmetric observables obtained for the method of moments in the bin $3.0<q^2<4.0\gevgevcccc$. 
\label{appendix:moments:correlation:asymmetry:4}
}
\centering
\begin{tabular}{l|rrrrrrr}
&  $A_{3}$ & $A_{4}$ & $A_{5}$ & $A_{6s}$ & $A_{7}$ & $A_{8}$ & $A_{9}$ \\
\hline
$A_{3}$ & $1.00$ &  $0.00$ & $-0.04 $ & $0.03 $ & $-0.12 $ & $-0.05 $ & $-0.06 $  \\
$A_{4}$ & &  $1.00$ & $0.18 $ & $0.06 $ & $0.01 $ & $-0.05 $ & $-0.01 $  \\
$A_{5}$ & &  &  $1.00$ & $0.01 $ & $-0.01 $ & $0.01 $ & $-0.01 $  \\
$A_{6s}$ & &  &  &  $1.00$ &  $0.03 $ &  $-0.05 $ &  $0.00 $  \\
$A_{7}$ & &  &  &  &  $1.00$ &  $0.18 $ &  $-0.05 $ \\
$A_{8}$ & &  &  &  &  &  $1.00$ &  $-0.03 $  \\
$A_{9}$ & &  &  &  &  &   &  $1.00$  \\
\end{tabular}
\end{table}




\begin{table}[!htb]
\caption{
Correlation matrix for the \CP-asymmetric observables obtained for the method of moments in the bin $4.0<q^2<5.0\gevgevcccc$. 
\label{appendix:moments:correlation:asymmetry:5}
}
\centering
\begin{tabular}{l|rrrrrrr}
 & $A_{3}$ & $A_{4}$ & $A_{5}$ & $A_{6s}$ & $A_{7}$ & $A_{8}$ & $A_{9}$ \\
\hline
$A_{3}$ & $1.00$ & $-0.12 $ &   $-0.11 $ &   $0.02 $ & $0.06 $ & $-0.12 $ & $0.06 $ \\
$A_{4}$ & &  $1.00$ &  $0.17 $ &  $-0.03 $ &  $-0.06 $ & $0.19 $ & $0.03 $  \\
$A_{5}$ & &  & $1.00$ &  $-0.04 $ & $0.14 $ &   $-0.06 $ &  $-0.09 $ \\
$A_{6s}$ & &  &  &  $1.00$ &  $0.10$ & $-0.14 $ &   $0.00 $  \\
$A_{7}$ & &  &  &  &  $1.00$ &   $0.04 $ &  $-0.08 $  \\
$A_{8}$ & &  &  &  &   &  $1.00$ &  $0.02 $  \\
$A_{9}$ & &  &  &  &   &   &  $1.00$ \\
\end{tabular}
\end{table}



\begin{table}[!htb]
\caption{
Correlation matrix for the \CP-asymmetric observables obtained for the method of moments in the bin $5.0<q^2<6.0\gevgevcccc$. 
\label{appendix:moments:correlation:asymmetry:6}
}
\centering
\begin{tabular}{l|rrrrrrr}
& $A_{3}$ & $A_{4}$ & $A_{5}$ & $A_{6s}$ & $A_{7}$ & $A_{8}$ & $A_{9}$ \\
\hline
$A_{3}$ & $1.00 $ &         $-0.03 $ &      $-0.07 $ &      $-0.09 $ &      $-0.04 $ &      $0.03 $ &       $0.11 $  \\
$A_{4}$ & &  $1.00$ &        $0.10$ &        $-0.03 $ &      $0.08 $ &       $0.07 $ &       $0.03 $ \\
$A_{5}$ & &  &  $1.00$ &        $-0.08 $ &      $-0.04 $ &      $0.07 $ &       $0.07 $  \\
$A_{6s}$ & &  &  &  $1.00$ &        $0.01 $ &       $-0.01 $ &      $-0.01 $  \\
$A_{7}$ & &  &  &  &  $1.00$ &        $0.07 $ &       $-0.09 $  \\
$A_{8}$ & &  &  &  &  &  $1.00$ &   $-0.12 $ \\
$A_{9}$ & &  &  &  &  &  &  $1.00$ \\
\end{tabular}
\end{table}



\begin{table}[!htb]
\caption{
Correlation matrix for the \CP-asymmetric observables obtained for the method of moments in the bin $6.0<q^2<7.0\gevgevcccc$. 
\label{appendix:moments:correlation:asymmetry:7}
}
\centering
\begin{tabular}{l|rrrrrrr}
& $A_{3}$ & $A_{4}$ & $A_{5}$ & $A_{6s}$ & $A_{7}$ & $A_{8}$ & $A_{9}$ \\
\hline
$A_{3}$ & $1.00$ &         $-0.08 $ &      $-0.15 $ &      $-0.09 $ &      $0.02 $ &       $-0.05 $ &      $-0.02 $  \\
$A_{4}$ &  & $1.00$ &        $0.21 $ &       $-0.15 $ &      $-0.03 $ &      $-0.04 $ &      $-0.04 $  \\
$A_{5}$ &  & &   $1.00$ &        $-0.10$ &       $-0.02 $ &      $-0.03 $ &      $-0.05 $  \\
$A_{6s}$ &  &  &  &  $1.00 $ &        $0.03 $ &       $0.00$ &        $-0.05 $  \\
$A_{7}$ &  &  &  &  &  $1.00 $ &        $0.22 $ &       $-0.11 $  \\
$A_{8}$ &  &  &  &  &  &  $1.00$ &        $-0.05 $  \\
$A_{9}$ &  &  &  &   &  &  &  $1.00$  \\
\end{tabular}
\end{table}




\begin{table}[!htb]
\caption{
Correlation matrix for the \CP-asymmetric observables obtained for the method of moments in the bin $7.0<q^2<8.0\gevgevcccc$. 
\label{appendix:moments:correlation:asymmetry:8}
}
\centering
\begin{tabular}{l|rrrrrrr}
& $A_{3}$ & $A_{4}$ & $A_{5}$ & $A_{6s} $ & $A_{7}$ & $A_{8}$ & $A_{9}$ \\
\hline
$A_{3}$ & $1.00$ &         $-0.07 $ &      $-0.11 $ &      $0.04 $ &       $0.06 $ &       $0.04 $ &       $-0.01 $  \\
$A_{4}$ &  &       $1.00$ &        $0.18 $ &       $-0.07 $ &      $-0.02 $ &      $0.05 $ &       $0.01 $ \\
$A_{5}$ &  &  &       $1.00$ &        $-0.11 $ &      $0.14 $ &       $-0.02 $ &      $0.02 $  \\
$A_{6s}$ &  &  &  &      $1.00$ &        $-0.03 $ &      $-0.14 $ &      $0.07 $ \\
$A_{7}$ &  &  &  &  &      $1.00$ &        $0.07 $ &       $-0.11 $ \\
$A_{8}$ &  &  &  &  &   &       $1.00$ &        $-0.08 $  \\
$A_{9}$ &  &  &   &  &  &  &    $1.00 $  \\
\end{tabular}
\end{table}




\begin{table}[!htb]
\caption{
Correlation matrix for the \CP-asymmetric observables obtained for the method of moments in the bin $11.00 <q^2<11.75\gevgevcccc$. 
\label{appendix:moments:correlation:asymmetry:9}
}
\centering
\begin{tabular}{l|rrrrrrr}
 & $A_{3}$ & $A_{4}$ & $A_{5}$ & $A_{6s}$ & $A_{7}$ & $A_{8}$ & $A_{9}$ \\
\hline
$A_{3}$ & $1.00$ &         $-0.08 $ &      $-0.20$ &       $-0.10$ &       $0.06 $ &       $0.03 $ &       $-0.02 $  \\
$A_{4}$ & &       $1.00$ &        $0.16 $ &       $-0.14 $ &      $-0.10$ &       $-0.15 $ &      $-0.04 $  \\
$A_{5}$ & &  &    $1.00$ &        $-0.09 $ &      $-0.11 $ &      $-0.09 $ &      $-0.10$  \\
$A_{6s}$ & &  &   &    $1.00$ &        $-0.02 $ &      $-0.07 $ &      $-0.05 $  \\
$A_{7}$ & &  &   &   &      $1.00$ &        $0.25 $ &       $-0.02 $  \\
$A_{8}$ & &  &   &   &   &   $1.00$ &        $-0.09 $  \\
$A_{9}$ & &  &   &   &   &   &   $1.00$ \\
\end{tabular}
\end{table}



\begin{table}[!htb]
\caption{
Correlation matrix for the \CP-asymmetric observables obtained for the method of moments in the bin $11.75 <q^2<12.50\gevgevcccc$. 
\label{appendix:moments:correlation:asymmetry:10}
}
\centering
\begin{tabular}{l|rrrrrrr}
& $A_{3}$ & $A_{4}$ & $A_{5}$ & $A_{6s}$ & $A_{7}$ & $A_{8}$ & $A_{9}$ \\
\hline
$A_{3}$ & $1.00$ &   $-0.12 $ &      $-0.16 $ &      $0.01 $ &       $0.01 $ &       $0.03 $ &       $0.06 $ \\
$A_{4}$ &  &   $1.00$ & $0.17 $ &       $-0.21 $ &      $0.08 $ &       $0.15 $ &       $-0.05 $ \\
$A_{5}$ &  &  &  $1.00$ &  $-0.17 $ &      $0.14 $ &       $0.12 $ &       $-0.09 $ \\
$A_{6s}$ &  &  &  &    $1.00$ &  $-0.07 $ &      $-0.17 $ &      $0.05 $ \\
$A_{7}$ &  &  &  &   & $1.00 $ &  $0.19 $ & $-0.15 $ \\
$A_{8}$ &  &  &  &   & & $1.00 $ & $-0.08 $ \\
$A_{9}$ &  &  &  &   &   & &  $1.00 $ \\
\end{tabular}
\end{table}





\begin{table}[!htb]
\caption{
Correlation matrix for the \CP-asymmetric observables obtained for the method of moments in the bin $15.0 <q^2<16.0\gevgevcccc$. 
\label{appendix:moments:correlation:asymmetry:11}
}
\centering
\begin{tabular}{l|rrrrrrr}
& $A_{3}$ & $A_{4}$ & $A_{5}$ & $A_{6s}$ & $A_{7}$ & $A_{8}$ & $A_{9}$ \\
\hline
$A_{3}$ & $1.00$ &         $-0.14 $ &      $-0.26 $ &      $0.05 $ &       $-0.02 $ &      $0.02 $ &       $-0.10 $  \\
$A_{4}$ &  &     $1.00$ &        $0.36 $ &       $-0.12 $ &      $-0.02 $ &      $-0.17 $ &      $0.00$  \\
$A_{5}$ & &  &       $1.00$ &        $-0.16 $ &      $-0.12 $ &      $-0.02 $ &      $-0.04 $  \\
$A_{6s}$ & &  &   &      $1.00 $ &        $-0.02 $ &      $-0.03 $ &      $-0.05 $  \\
$A_{7}$ & &  &   &    &      $1.00$ &        $0.13 $ &       $-0.09 $ \\
$A_{8}$ & &  &    &   &   &  $1.00$ &        $-0.12 $ \\
$A_{9}$ & &  &    &   &   &    &  $1.00$  \\
\end{tabular}
\end{table}




\begin{table}[!htb]
\caption{
Correlation matrix for the \CP-asymmetric observables obtained for the method of moments in the bin $16.0 <q^2<17.0\gevgevcccc$. 
\label{appendix:moments:correlation:asymmetry:12}
}
\centering
\begin{tabular}{l|rrrrrrr}
 & $A_{3}$ & $A_{4}$ & $A_{5}$ & $A_{6s}$ & $A_{7}$ & $A_{8}$ & $A_{9}$ \\
\hline
$A_{3}$ & $1.00 $ &         $-0.08 $ &      $-0.09 $ &      $0.00$ &       $0.01 $ &       $-0.03 $ &      $-0.04 $  \\
$A_{4}$ &  &     $1.00 $ &        $0.21 $ &       $-0.22 $ &      $0.05 $ &       $-0.02 $ &      $0.06 $  \\
$A_{5}$ &  &    &       $1.00 $ &        $-0.14 $ &      $-0.01 $ &      $0.05 $ &       $0.19 $ \\
$A_{6s}$ &  &    &    &      $1.00 $ &        $0.02 $ &       $0.02 $ &       $-0.01 $  \\
$A_{7}$ &  &    &    &    &   $1.00 $ &        $0.15 $ &       $-0.13 $ \\
$A_{8}$ &  &    &    &    &   &   $1.00 $ &        $-0.08 $ \\
$A_{9}$ &  &    &    &    &   &   &   $1.00 $  \\
\end{tabular}
\end{table}



\begin{table}[!htb]
\caption{
Correlation matrix for the \CP-asymmetric observables obtained for the method of moments in the bin $17.0 <q^2<18.0\gevgevcccc$. 
\label{appendix:moments:correlation:asymmetry:13}
}
\centering
\begin{tabular}{l|rrrrrrr}
 & $A_{3}$ & $A_{4}$ & $A_{5}$ & $A_{6s}$ & $A_{7}$ & $A_{8}$ & $A_{9}$ \\
\hline
$A_{3}$ & $1.00 $ &         $-0.10$ &       $-0.16 $ &      $-0.01 $ &      $0.00$ &        $0.00 $ &        $-0.06 $ \\
$A_{4}$ & &        $1.00 $ &        $0.18 $ &       $-0.10$ &       $0.07 $ &       $-0.14 $ &      $0.03 $ \\
$A_{5}$ & &  &       $1.00$ &        $-0.10$ &       $-0.16 $ &      $0.05 $ &       $0.09 $  \\
$A_{6s}$ & &  &  &       $1.00 $ &        $0.00$ &        $0.05 $ &       $0.01 $ \\
$A_{7}$ & &  &  &  &   $1.00$ &        $0.09 $ &       $-0.20$  \\
$A_{8}$ & &  &  &  &  &  $1.00$ &        $-0.06 $  \\
$A_{9}$ & &  &  &  &  &  &  $1.00 $ \\
\end{tabular}
\end{table}



\begin{table}[!htb]
\caption{
Correlation matrix for the \CP-asymmetric observables obtained for the method of moments in the bin $18.0 <q^2<19.0\gevgevcccc$. 
\label{appendix:moments:correlation:asymmetry:14}
}
\centering
\begin{tabular}{l|rrrrrrr}
 &  $A_{3}$ & $A_{4}$ & $A_{5}$ & $A_{6s}$ & $A_{7}$ & $A_{8}$ & $A_{9}$ \\
\hline
$A_{3}$ & $1.00 $ &         $-0.18 $ &      $-0.20$ &       $-0.06 $ &      $-0.01 $ &      $0.04 $ &       $-0.03 $  \\
$A_{4}$ &  &       $1.00 $ &        $0.28 $ &       $-0.10$ &       $-0.02 $ &      $0.01 $ &       $0.07 $  \\
$A_{5}$ &  &  &       $1.00$ &        $-0.15 $ &      $-0.05 $ &      $0.00$ &       $0.04 $  \\
$A_{6s}$ &  &  &   &   $1.00 $ &        $-0.01 $ &      $-0.01 $ &      $0.03 $  \\
$A_{7}$ &  &  &  &  &   $1.00 $ &        $0.21 $ &       $-0.19 $  \\
$A_{8}$ &  &  &  &  &   &  $1.00 $ & $-0.03 $  \\
$A_{9}$ &  &  &  &  &  &  & $1.00$  \\
\end{tabular}
\end{table}



\begin{table}[!htb]
\caption{
Correlation matrix for the \CP-asymmetric observables obtained for the method of moments in the bin $15.0 <q^2<19.0\gevgevcccc$. 
\label{appendix:moments:correlation:asymmetry:15}
}
\centering
\begin{tabular}{l|rrrrrrr}
 &  $A_{3}$ & $A_{4}$ & $A_{5}$ & $A_{6s}$ & $A_{7}$ & $A_{8}$ & $A_{9}$ \\
\hline
$A_{3}$ &  $1.00 $ &   $-0.12 $ &   $-0.18 $ &   $0.00 $ &   $0.01 $ &   $0.01 $ &   $-0.05 $  \\
$A_{4}$ &  &   $1.00 $ &   $0.26 $ &   $-0.14 $ &   $0.02 $ &   $-0.08 $ &   $0.03 $ \\
$A_{5}$ &  &  &  $1.00 $ &   $-0.13 $ &   $-0.09 $ &   $0.02 $ &   $0.07 $ \\
$A_{6s}$ &  &  &   &  $1.00 $ &   $0.0 $ &   $0.01 $ &   $-0.01 $ \\
$A_{7}$ &  &  &  &  &   $1.00 $ &   $0.14 $ &   $-0.15 $  \\
$A_{8}$ &  &  &  &  &   &  $1.00 $ &   $-0.07 $  \\
$A_{9}$ &  &  &  &  &  &  &  $1.00 $ \\
\end{tabular}
\end{table}

\clearpage