\section{Correlation matrices for the \boldmath{\CP}-asymmetric observables from the method of moments} \label{sec:appendix:bootstrap:correlation:asymmetries} Correlation matrices between the \CP asymmetries in the different \qsq bins are provided in Tables~\ref{appendix:moments:correlation:asymmetry:1}--\ref{appendix:moments:correlation:asymmetry:15} for the moment analysis. The correlations are determined by a bootstrapping technique. \begin{table}[!htb] \caption{ Correlation matrix for the \CP-asymmetric observables obtained for the method of moments in the bin $0.10<q^2<0.98\gevgevcccc$. \label{appendix:moments:correlation:asymmetry:1} } \centering \begin{tabular}{l|rrrrrrr} & $A_{3}$ & $A_{4}$ & $A_{5}$ & $A_{6s}$ & $A_{7}$ & $A_{8}$ & $A_{9}$ \\ \hline $A_{3}$ & $1.00 $ & $0.04 $ & $0.09 $ & $-0.02 $ & $0.01 $ & $-0.04 $ & $0.05 $ \\ $A_{4}$ & & $1.00 $ & $-0.24 $ & $-0.07 $ & $-0.08 $ & $0.07 $ & $0.02 $ \\ $A_{5}$ & & & $1.00 $ & $0.07 $ & $0.00$ & $-0.07 $ & $-0.01 $ \\ $A_{6s}$ & & & & $1.00 $ & $0.08 $ & $-0.11 $ & $0.00 $ \\ $A_{7}$ & & & & & $1.00 $ & $-0.09 $ & $0.12 $ \\ $A_{8}$ & & & & & & $1.00 $ & $0.01 $ \\ $A_{9}$ & & & & & & & $1.00 $ \\ \end{tabular} \end{table} \begin{table}[!htb] \caption{ Correlation matrix for the \CP-asymmetric observables obtained for the method of moments in the bin $1.1<q^2<2.0\gevgevcccc$. \label{appendix:moments:correlation:asymmetry:2} } \centering \begin{tabular}{l|rrrrrrr} & $A_{3}$ & $A_{4}$ & $A_{5}$ & $A_{6s}$ & $A_{7}$ & $A_{8}$ & $A_{9}$ \\ \hline $A_{3}$ & $1.00 $ & $-0.01 $ & $0.04 $ & $0.06 $ & $0.12 $ & $-0.05 $ & $0.08 $ \\ $A_{4}$ & & $1.00 $ & $-0.06 $ & $0.04 $ & $-0.16 $ & $0.04 $ & $-0.10$ \\ $A_{5}$ & & & $1.00 $ & $-0.05 $ & $0.01 $ & $-0.11 $ & $-0.07 $ \\ $A_{6s}$ & & & & $1.00$ & $-0.06 $ & $-0.07 $ & $-0.09 $ \\ $A_{7}$ & & & & & $1.00$ & $-0.12 $ & $0.10 $ \\ $A_{8}$ & & & & & & $1.00$ & $-0.04 $ \\ $A_{9}$ & & & & & & & $1.00$ \\ \end{tabular} \end{table} \begin{table}[!htb] \caption{ Correlation matrix for the \CP-asymmetric observables obtained for the method of moments in the bin $2.0<q^2<3.0\gevgevcccc$. \label{appendix:moments:correlation:asymmetry:3} } \centering \begin{tabular}{l|rrrrrrr} & $A_{3}$ & $A_{4}$ & $A_{5}$ & $A_{6s}$ & $A_{7}$ & $A_{8}$ & $A_{9}$ \\ \hline $A_{3}$ & $1.00 $ & $-0.10$ & $0.06 $ & $0.03$ & $0.07 $ & $-0.04$ & $-0.02$ \\ $A_{4}$ & & $1.00 $ & $-0.07 $ & $0.07$ & $0.06 $ & $-0.06$ & $-0.05$ \\ $A_{5}$ & & & $1.00 $ & $-0.10$ & $-0.07 $ & $0.04$ & $-0.07$ \\ $A_{6s}$ & & & & $1.00 $ & $-0.03 $ & $-0.11$ & $0.04$ \\ $A_{7}$ & & & & & $1.00$ & $-0.15$ & $0.02$ \\ $A_{8}$ & & & & & & $1.00$ & $-0.07$ \\ $A_{9}$ & & & & & & & $1.00$ \\ \end{tabular} \end{table} \begin{table}[!htb] \caption{ Correlation matrix for the \CP-asymmetric observables obtained for the method of moments in the bin $3.0<q^2<4.0\gevgevcccc$. \label{appendix:moments:correlation:asymmetry:4} } \centering \begin{tabular}{l|rrrrrrr} & $A_{3}$ & $A_{4}$ & $A_{5}$ & $A_{6s}$ & $A_{7}$ & $A_{8}$ & $A_{9}$ \\ \hline $A_{3}$ & $1.00$ & $0.00$ & $-0.04 $ & $0.03 $ & $-0.12 $ & $-0.05 $ & $-0.06 $ \\ $A_{4}$ & & $1.00$ & $0.18 $ & $0.06 $ & $0.01 $ & $-0.05 $ & $-0.01 $ \\ $A_{5}$ & & & $1.00$ & $0.01 $ & $-0.01 $ & $0.01 $ & $-0.01 $ \\ $A_{6s}$ & & & & $1.00$ & $0.03 $ & $-0.05 $ & $0.00 $ \\ $A_{7}$ & & & & & $1.00$ & $0.18 $ & $-0.05 $ \\ $A_{8}$ & & & & & & $1.00$ & $-0.03 $ \\ $A_{9}$ & & & & & & & $1.00$ \\ \end{tabular} \end{table} \begin{table}[!htb] \caption{ Correlation matrix for the \CP-asymmetric observables obtained for the method of moments in the bin $4.0<q^2<5.0\gevgevcccc$. \label{appendix:moments:correlation:asymmetry:5} } \centering \begin{tabular}{l|rrrrrrr} & $A_{3}$ & $A_{4}$ & $A_{5}$ & $A_{6s}$ & $A_{7}$ & $A_{8}$ & $A_{9}$ \\ \hline $A_{3}$ & $1.00$ & $-0.12 $ & $-0.11 $ & $0.02 $ & $0.06 $ & $-0.12 $ & $0.06 $ \\ $A_{4}$ & & $1.00$ & $0.17 $ & $-0.03 $ & $-0.06 $ & $0.19 $ & $0.03 $ \\ $A_{5}$ & & & $1.00$ & $-0.04 $ & $0.14 $ & $-0.06 $ & $-0.09 $ \\ $A_{6s}$ & & & & $1.00$ & $0.10$ & $-0.14 $ & $0.00 $ \\ $A_{7}$ & & & & & $1.00$ & $0.04 $ & $-0.08 $ \\ $A_{8}$ & & & & & & $1.00$ & $0.02 $ \\ $A_{9}$ & & & & & & & $1.00$ \\ \end{tabular} \end{table} \begin{table}[!htb] \caption{ Correlation matrix for the \CP-asymmetric observables obtained for the method of moments in the bin $5.0<q^2<6.0\gevgevcccc$. \label{appendix:moments:correlation:asymmetry:6} } \centering \begin{tabular}{l|rrrrrrr} & $A_{3}$ & $A_{4}$ & $A_{5}$ & $A_{6s}$ & $A_{7}$ & $A_{8}$ & $A_{9}$ \\ \hline $A_{3}$ & $1.00 $ & $-0.03 $ & $-0.07 $ & $-0.09 $ & $-0.04 $ & $0.03 $ & $0.11 $ \\ $A_{4}$ & & $1.00$ & $0.10$ & $-0.03 $ & $0.08 $ & $0.07 $ & $0.03 $ \\ $A_{5}$ & & & $1.00$ & $-0.08 $ & $-0.04 $ & $0.07 $ & $0.07 $ \\ $A_{6s}$ & & & & $1.00$ & $0.01 $ & $-0.01 $ & $-0.01 $ \\ $A_{7}$ & & & & & $1.00$ & $0.07 $ & $-0.09 $ \\ $A_{8}$ & & & & & & $1.00$ & $-0.12 $ \\ $A_{9}$ & & & & & & & $1.00$ \\ \end{tabular} \end{table} \begin{table}[!htb] \caption{ Correlation matrix for the \CP-asymmetric observables obtained for the method of moments in the bin $6.0<q^2<7.0\gevgevcccc$. \label{appendix:moments:correlation:asymmetry:7} } \centering \begin{tabular}{l|rrrrrrr} & $A_{3}$ & $A_{4}$ & $A_{5}$ & $A_{6s}$ & $A_{7}$ & $A_{8}$ & $A_{9}$ \\ \hline $A_{3}$ & $1.00$ & $-0.08 $ & $-0.15 $ & $-0.09 $ & $0.02 $ & $-0.05 $ & $-0.02 $ \\ $A_{4}$ & & $1.00$ & $0.21 $ & $-0.15 $ & $-0.03 $ & $-0.04 $ & $-0.04 $ \\ $A_{5}$ & & & $1.00$ & $-0.10$ & $-0.02 $ & $-0.03 $ & $-0.05 $ \\ $A_{6s}$ & & & & $1.00 $ & $0.03 $ & $0.00$ & $-0.05 $ \\ $A_{7}$ & & & & & $1.00 $ & $0.22 $ & $-0.11 $ \\ $A_{8}$ & & & & & & $1.00$ & $-0.05 $ \\ $A_{9}$ & & & & & & & $1.00$ \\ \end{tabular} \end{table} \begin{table}[!htb] \caption{ Correlation matrix for the \CP-asymmetric observables obtained for the method of moments in the bin $7.0<q^2<8.0\gevgevcccc$. \label{appendix:moments:correlation:asymmetry:8} } \centering \begin{tabular}{l|rrrrrrr} & $A_{3}$ & $A_{4}$ & $A_{5}$ & $A_{6s} $ & $A_{7}$ & $A_{8}$ & $A_{9}$ \\ \hline $A_{3}$ & $1.00$ & $-0.07 $ & $-0.11 $ & $0.04 $ & $0.06 $ & $0.04 $ & $-0.01 $ \\ $A_{4}$ & & $1.00$ & $0.18 $ & $-0.07 $ & $-0.02 $ & $0.05 $ & $0.01 $ \\ $A_{5}$ & & & $1.00$ & $-0.11 $ & $0.14 $ & $-0.02 $ & $0.02 $ \\ $A_{6s}$ & & & & $1.00$ & $-0.03 $ & $-0.14 $ & $0.07 $ \\ $A_{7}$ & & & & & $1.00$ & $0.07 $ & $-0.11 $ \\ $A_{8}$ & & & & & & $1.00$ & $-0.08 $ \\ $A_{9}$ & & & & & & & $1.00 $ \\ \end{tabular} \end{table} \begin{table}[!htb] \caption{ Correlation matrix for the \CP-asymmetric observables obtained for the method of moments in the bin $11.00 <q^2<11.75\gevgevcccc$. \label{appendix:moments:correlation:asymmetry:9} } \centering \begin{tabular}{l|rrrrrrr} & $A_{3}$ & $A_{4}$ & $A_{5}$ & $A_{6s}$ & $A_{7}$ & $A_{8}$ & $A_{9}$ \\ \hline $A_{3}$ & $1.00$ & $-0.08 $ & $-0.20$ & $-0.10$ & $0.06 $ & $0.03 $ & $-0.02 $ \\ $A_{4}$ & & $1.00$ & $0.16 $ & $-0.14 $ & $-0.10$ & $-0.15 $ & $-0.04 $ \\ $A_{5}$ & & & $1.00$ & $-0.09 $ & $-0.11 $ & $-0.09 $ & $-0.10$ \\ $A_{6s}$ & & & & $1.00$ & $-0.02 $ & $-0.07 $ & $-0.05 $ \\ $A_{7}$ & & & & & $1.00$ & $0.25 $ & $-0.02 $ \\ $A_{8}$ & & & & & & $1.00$ & $-0.09 $ \\ $A_{9}$ & & & & & & & $1.00$ \\ \end{tabular} \end{table} \begin{table}[!htb] \caption{ Correlation matrix for the \CP-asymmetric observables obtained for the method of moments in the bin $11.75 <q^2<12.50\gevgevcccc$. \label{appendix:moments:correlation:asymmetry:10} } \centering \begin{tabular}{l|rrrrrrr} & $A_{3}$ & $A_{4}$ & $A_{5}$ & $A_{6s}$ & $A_{7}$ & $A_{8}$ & $A_{9}$ \\ \hline $A_{3}$ & $1.00$ & $-0.12 $ & $-0.16 $ & $0.01 $ & $0.01 $ & $0.03 $ & $0.06 $ \\ $A_{4}$ & & $1.00$ & $0.17 $ & $-0.21 $ & $0.08 $ & $0.15 $ & $-0.05 $ \\ $A_{5}$ & & & $1.00$ & $-0.17 $ & $0.14 $ & $0.12 $ & $-0.09 $ \\ $A_{6s}$ & & & & $1.00$ & $-0.07 $ & $-0.17 $ & $0.05 $ \\ $A_{7}$ & & & & & $1.00 $ & $0.19 $ & $-0.15 $ \\ $A_{8}$ & & & & & & $1.00 $ & $-0.08 $ \\ $A_{9}$ & & & & & & & $1.00 $ \\ \end{tabular} \end{table} \begin{table}[!htb] \caption{ Correlation matrix for the \CP-asymmetric observables obtained for the method of moments in the bin $15.0 <q^2<16.0\gevgevcccc$. \label{appendix:moments:correlation:asymmetry:11} } \centering \begin{tabular}{l|rrrrrrr} & $A_{3}$ & $A_{4}$ & $A_{5}$ & $A_{6s}$ & $A_{7}$ & $A_{8}$ & $A_{9}$ \\ \hline $A_{3}$ & $1.00$ & $-0.14 $ & $-0.26 $ & $0.05 $ & $-0.02 $ & $0.02 $ & $-0.10 $ \\ $A_{4}$ & & $1.00$ & $0.36 $ & $-0.12 $ & $-0.02 $ & $-0.17 $ & $0.00$ \\ $A_{5}$ & & & $1.00$ & $-0.16 $ & $-0.12 $ & $-0.02 $ & $-0.04 $ \\ $A_{6s}$ & & & & $1.00 $ & $-0.02 $ & $-0.03 $ & $-0.05 $ \\ $A_{7}$ & & & & & $1.00$ & $0.13 $ & $-0.09 $ \\ $A_{8}$ & & & & & & $1.00$ & $-0.12 $ \\ $A_{9}$ & & & & & & & $1.00$ \\ \end{tabular} \end{table} \begin{table}[!htb] \caption{ Correlation matrix for the \CP-asymmetric observables obtained for the method of moments in the bin $16.0 <q^2<17.0\gevgevcccc$. \label{appendix:moments:correlation:asymmetry:12} } \centering \begin{tabular}{l|rrrrrrr} & $A_{3}$ & $A_{4}$ & $A_{5}$ & $A_{6s}$ & $A_{7}$ & $A_{8}$ & $A_{9}$ \\ \hline $A_{3}$ & $1.00 $ & $-0.08 $ & $-0.09 $ & $0.00$ & $0.01 $ & $-0.03 $ & $-0.04 $ \\ $A_{4}$ & & $1.00 $ & $0.21 $ & $-0.22 $ & $0.05 $ & $-0.02 $ & $0.06 $ \\ $A_{5}$ & & & $1.00 $ & $-0.14 $ & $-0.01 $ & $0.05 $ & $0.19 $ \\ $A_{6s}$ & & & & $1.00 $ & $0.02 $ & $0.02 $ & $-0.01 $ \\ $A_{7}$ & & & & & $1.00 $ & $0.15 $ & $-0.13 $ \\ $A_{8}$ & & & & & & $1.00 $ & $-0.08 $ \\ $A_{9}$ & & & & & & & $1.00 $ \\ \end{tabular} \end{table} \begin{table}[!htb] \caption{ Correlation matrix for the \CP-asymmetric observables obtained for the method of moments in the bin $17.0 <q^2<18.0\gevgevcccc$. \label{appendix:moments:correlation:asymmetry:13} } \centering \begin{tabular}{l|rrrrrrr} & $A_{3}$ & $A_{4}$ & $A_{5}$ & $A_{6s}$ & $A_{7}$ & $A_{8}$ & $A_{9}$ \\ \hline $A_{3}$ & $1.00 $ & $-0.10$ & $-0.16 $ & $-0.01 $ & $0.00$ & $0.00 $ & $-0.06 $ \\ $A_{4}$ & & $1.00 $ & $0.18 $ & $-0.10$ & $0.07 $ & $-0.14 $ & $0.03 $ \\ $A_{5}$ & & & $1.00$ & $-0.10$ & $-0.16 $ & $0.05 $ & $0.09 $ \\ $A_{6s}$ & & & & $1.00 $ & $0.00$ & $0.05 $ & $0.01 $ \\ $A_{7}$ & & & & & $1.00$ & $0.09 $ & $-0.20$ \\ $A_{8}$ & & & & & & $1.00$ & $-0.06 $ \\ $A_{9}$ & & & & & & & $1.00 $ \\ \end{tabular} \end{table} \begin{table}[!htb] \caption{ Correlation matrix for the \CP-asymmetric observables obtained for the method of moments in the bin $18.0 <q^2<19.0\gevgevcccc$. \label{appendix:moments:correlation:asymmetry:14} } \centering \begin{tabular}{l|rrrrrrr} & $A_{3}$ & $A_{4}$ & $A_{5}$ & $A_{6s}$ & $A_{7}$ & $A_{8}$ & $A_{9}$ \\ \hline $A_{3}$ & $1.00 $ & $-0.18 $ & $-0.20$ & $-0.06 $ & $-0.01 $ & $0.04 $ & $-0.03 $ \\ $A_{4}$ & & $1.00 $ & $0.28 $ & $-0.10$ & $-0.02 $ & $0.01 $ & $0.07 $ \\ $A_{5}$ & & & $1.00$ & $-0.15 $ & $-0.05 $ & $0.00$ & $0.04 $ \\ $A_{6s}$ & & & & $1.00 $ & $-0.01 $ & $-0.01 $ & $0.03 $ \\ $A_{7}$ & & & & & $1.00 $ & $0.21 $ & $-0.19 $ \\ $A_{8}$ & & & & & & $1.00 $ & $-0.03 $ \\ $A_{9}$ & & & & & & & $1.00$ \\ \end{tabular} \end{table} \begin{table}[!htb] \caption{ Correlation matrix for the \CP-asymmetric observables obtained for the method of moments in the bin $15.0 <q^2<19.0\gevgevcccc$. \label{appendix:moments:correlation:asymmetry:15} } \centering \begin{tabular}{l|rrrrrrr} & $A_{3}$ & $A_{4}$ & $A_{5}$ & $A_{6s}$ & $A_{7}$ & $A_{8}$ & $A_{9}$ \\ \hline $A_{3}$ & $1.00 $ & $-0.12 $ & $-0.18 $ & $0.00 $ & $0.01 $ & $0.01 $ & $-0.05 $ \\ $A_{4}$ & & $1.00 $ & $0.26 $ & $-0.14 $ & $0.02 $ & $-0.08 $ & $0.03 $ \\ $A_{5}$ & & & $1.00 $ & $-0.13 $ & $-0.09 $ & $0.02 $ & $0.07 $ \\ $A_{6s}$ & & & & $1.00 $ & $0.0 $ & $0.01 $ & $-0.01 $ \\ $A_{7}$ & & & & & $1.00 $ & $0.14 $ & $-0.15 $ \\ $A_{8}$ & & & & & & $1.00 $ & $-0.07 $ \\ $A_{9}$ & & & & & & & $1.00 $ \\ \end{tabular} \end{table} \clearpage