Newer
Older
Lecture_repo / Lectures_my / KT2_2017 / Lecture1 / mchrzasz.tex
@Marcin Chrzaszcz Marcin Chrzaszcz on 6 May 2017 18 KB lec 1 ready
\documentclass[11 pt,xcolor={dvipsnames,svgnames,x11names,table}]{beamer}

\usepackage[english]{babel} 
\usepackage{polski}         


\usetheme[
	bullet=circle,		% Other option: square
	bigpagenumber,		% circled page number on lower right
	topline=true,			% colored bar at the top of the frame 
	shadow=false,			% Shading for beamer blocks
	watermark=BG_lower,	% png file for the watermark
	]{Flip}

%\logo{\kern+1.em\includegraphics[height=1cm]{SHiP-3_LightCharcoal}}
                            

\usepackage[lf]{berenis}
\usepackage[LY1]{fontenc}
\usepackage[utf8]{inputenc}

%\usepackage{emerald}
\usefonttheme{professionalfonts}
\usepackage[no-math]{fontspec}		
\defaultfontfeatures{Mapping=tex-text}	% This seems to be important for mapping glyphs properly

\setmainfont{Gillius ADF}			% Beamer ignores "main font" in favor of sans font
\setsansfont{Gillius ADF}			% This is the font that beamer will use by default
% \setmainfont{Gill Sans Light}		% Prettier, but harder to read

\setbeamerfont{title}{family=\fontspec{Gillius ADF}}

\input t1augie.fd

%\newcommand{\handwriting}{\fontspec{augie}} % From Emerald City, free font
%\newcommand{\handwriting}{\usefont{T1}{fau}{m}{n}} % From Emerald City, free font
% \newcommand{\handwriting}{}	% If you prefer no special handwriting font or don't have augie

%% Gill Sans doesn't look very nice when boldfaced
%% This is a hack to use Helvetica instead
%% Usage: \textbf{\forbold some stuff}
%\newcommand{\forbold}{\fontspec{Arial}}

\usepackage{graphicx}
\usepackage[export]{adjustbox}

\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{bm}
\usepackage{colortbl}
\usepackage{mathrsfs} 			% For Weinberg-esque letters
\usepackage{cancel}				% For "SUSY-breaking" symbol
\usepackage{slashed}            % for slashed characters in math mode
\usepackage{bbm}                % for \mathbbm{1} (unit matrix)
\usepackage{amsthm}				% For theorem environment
\usepackage{multirow}			% For multi row cells in table
\usepackage{arydshln} 			% For dashed lines in arrays and tables
\usepackage{siunitx}
\usepackage{xhfill}
\usepackage{grffile}
\usepackage{textpos}
\usepackage{subfigure}
\usepackage{tikz}
\usepackage{hyperref}
%\usepackage{hepparticles}    
\usepackage[italic]{hepparticles}     

\usepackage{hepnicenames} 

% Drawing a line
\tikzstyle{lw} = [line width=20pt]
\newcommand{\topline}{%
  \tikz[remember picture,overlay] {%
    \draw[crimsonred] ([yshift=-23.5pt]current page.north west)
             -- ([yshift=-23.5pt,xshift=\paperwidth]current page.north west);}}



% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
\usepackage{tikzfeynman}		% For Feynman diagrams
\usetikzlibrary{arrows,shapes}
\usetikzlibrary{trees}
\usetikzlibrary{matrix,arrows} 				% For commutative diagram
% http://www.felixl.de/commu.pdf
\usetikzlibrary{positioning}				% For "above of=" commands
\usetikzlibrary{calc,through}				% For coordinates
\usetikzlibrary{decorations.pathreplacing}  % For curly braces
% http://www.math.ucla.edu/~getreuer/tikz.html
\usepackage{pgffor}							% For repeating patterns

\usetikzlibrary{decorations.pathmorphing}	% For Feynman Diagrams
\usetikzlibrary{decorations.markings}
\tikzset{
	% >=stealth', %%  Uncomment for more conventional arrows
	vector/.style={decorate, decoration={snake}, draw},
	provector/.style={decorate, decoration={snake,amplitude=2.5pt}, draw},
	antivector/.style={decorate, decoration={snake,amplitude=-2.5pt}, draw},
	fermion/.style={draw=gray, postaction={decorate},
		decoration={markings,mark=at position .55 with {\arrow[draw=gray]{>}}}},
	fermionbar/.style={draw=gray, postaction={decorate},
		decoration={markings,mark=at position .55 with {\arrow[draw=gray]{<}}}},
	fermionnoarrow/.style={draw=gray},
	gluon/.style={decorate, draw=black,
		decoration={coil,amplitude=4pt, segment length=5pt}},
	scalar/.style={dashed,draw=black, postaction={decorate},
		decoration={markings,mark=at position .55 with {\arrow[draw=black]{>}}}},
	scalarbar/.style={dashed,draw=black, postaction={decorate},
		decoration={markings,mark=at position .55 with {\arrow[draw=black]{<}}}},
	scalarnoarrow/.style={dashed,draw=black},
	electron/.style={draw=black, postaction={decorate},
		decoration={markings,mark=at position .55 with {\arrow[draw=black]{>}}}},
	bigvector/.style={decorate, decoration={snake,amplitude=4pt}, draw},
}

% TIKZ - for block diagrams, 
% from http://www.texample.net/tikz/examples/control-system-principles/
% \usetikzlibrary{shapes,arrows}
\tikzstyle{block} = [draw, rectangle, 
minimum height=3em, minimum width=6em]




\usetikzlibrary{backgrounds}
\usetikzlibrary{mindmap,trees}	% For mind map
\newcommand{\degree}{\ensuremath{^\circ}}
\newcommand{\E}{\mathrm{E}}
\newcommand{\Var}{\mathrm{Var}}
\newcommand{\Cov}{\mathrm{Cov}}
\newcommand\Ts{\rule{0pt}{2.6ex}}       % Top strut
\newcommand\Bs{\rule[-1.2ex]{0pt}{0pt}} % Bottom strut

\graphicspath{{images/}}	% Put all images in this directory. Avoids clutter.

% SOME COMMANDS THAT I FIND HANDY
% \renewcommand{\tilde}{\widetilde} % dinky tildes look silly, dosn't work with fontspec
\newcommand{\comment}[1]{\textcolor{comment}{\footnotesize{#1}\normalsize}} % comment mild
\newcommand{\Comment}[1]{\textcolor{Comment}{\footnotesize{#1}\normalsize}} % comment bold
\newcommand{\COMMENT}[1]{\textcolor{COMMENT}{\footnotesize{#1}\normalsize}} % comment crazy bold
\newcommand{\Alert}[1]{\textcolor{Alert}{#1}} % louder alert
\newcommand{\ALERT}[1]{\textcolor{ALERT}{#1}} % loudest alert
%% "\alert" is already a beamer pre-defined
\newcommand*{\Scale}[2][4]{\scalebox{#1}{$#2$}}%

\def\Put(#1,#2)#3{\leavevmode\makebox(0,0){\put(#1,#2){#3}}}

\usepackage{gmp}
\usepackage[final]{feynmp-auto}

\usepackage[backend=bibtex,style=numeric-comp,firstinits=true]{biblatex}
\bibliography{bib}
\setbeamertemplate{bibliography item}[text]

\makeatletter\let\frametextheight\beamer@frametextheight\makeatother

% suppress frame numbering for backup slides
% you always need the appendix for this!
\newcommand{\backupbegin}{
	\newcounter{framenumberappendix}
	\setcounter{framenumberappendix}{\value{framenumber}}
}
\newcommand{\backupend}{
	\addtocounter{framenumberappendix}{-\value{framenumber}}
	\addtocounter{framenumber}{\value{framenumberappendix}} 
}


\definecolor{links}{HTML}{2A1B81}
%\hypersetup{colorlinks,linkcolor=,urlcolor=links}

% For shapo's formulas:
\def\lsi{\raise0.3ex\hbox{$<$\kern-0.75em\raise-1.1ex\hbox{$\sim$}}}
\def\gsi{\raise0.3ex\hbox{$>$\kern-0.75em\raise-1.1ex\hbox{$\sim$}}}
\newcommand{\lsim}{\mathop{\lsi}}
\newcommand{\gsim}{\mathop{\gsi}}
\newcommand{\wt}{\widetilde}
%\newcommand{\ol}{\overline}
\newcommand{\Tr}{\rm{Tr}}
\newcommand{\tr}{\rm{tr}}
\newcommand{\eqn}[1]{&\hspace{-0.7em}#1\hspace{-0.7em}&}
\newcommand{\vev}[1]{\rm{$\langle #1 \rangle$}}
\newcommand{\abs}[1]{\rm{$\left| #1 \right|$}}
\newcommand{\eV}{\rm{eV}}
\newcommand{\keV}{\rm{keV}}
\newcommand{\GeV}{\rm{GeV}}
\newcommand{\im}{\rm{Im}}
\newcommand{\disp}{\displaystyle}
\def\be{\begin{equation}}
\def\ee{\end{equation}}
\def\ba{\begin{eqnarray}}
\def\ea{\end{eqnarray}}
\def\d{\partial}
\def\l{\left(}
\def\r{\right)}
\def\la{\langle}
\def\ra{\rangle}
\def\e{{\rm e}}
\def\Br{{\rm Br}}
\def\fixme{{\color{red} FIXME!}}
\def\mc{{\color{Magenta}{MC}}}
\def\pdf{{\rm p.d.f.}}
\def\ARROW{{\color{JungleGreen}{$\Rrightarrow$}}\xspace} 



\author{ {Marcin Chrzaszcz} (Universit\"{a}t Z\"{u}rich)}
\institute{UZH}
\title[B(eautiful) Physics]{B(eautiful) Physics}
\date{\fixme}


\begin{document}
\tikzstyle{every picture}+=[remember picture]

{
\setbeamertemplate{sidebar right}{\llap{\includegraphics[width=\paperwidth,height=\paperheight]{bubble2}}}
\begin{frame}[c]%{\phantom{title page}} 
\begin{center}
\begin{center}
	\begin{columns}
		\begin{column}{0.9\textwidth}
			\flushright \bfseries \Huge {B(eautiful) Physics I}
		\end{column}
		\begin{column}{0.2\textwidth}
		  %\includegraphics[width=\textwidth]{SHiP-2}
		\end{column}
	\end{columns}
\end{center}
	\quad
	\vspace{3em}
\begin{columns}
\begin{column}{0.44\textwidth}
\flushright \vspace{-1.8em} { \Large Marcin Chrzaszcz\\\vspace{-0.1em}\small \href{mailto:mchrzasz@cern.ch}{mchrzasz@cern.ch}}

\end{column}
\begin{column}{0.53\textwidth}
\includegraphics[height=1.3cm]{uzh-transp}
\end{column}
\end{columns}

\vspace{1em}
%		\footnotesize\textcolor{gray}{With N. Serra, B. Storaci\\Thanks to the theory support from M. Shaposhnikov, D. Gorbunov}\normalsize\\
\vspace{0.5em}
	\textcolor{normal text.fg!50!Comment}{Kern- und Teilchenphysik II, \\ 10 May, 2017}
\end{center}
\end{frame}
}




\begin{frame}{A lesson from history - GIM mechanism}
	\begin{minipage}{\textwidth}

\begin{center}
\includegraphics[width=0.62\textwidth]{images/GIM2.png}
\end{center}
\begin{columns}
\column{0.7\textwidth}
\begin{itemize}
\begin{footnotesize}


\item Cabibbo angle was successful in explaining dozens of decay rates in the 1960s.
\item There was, however, one that was not observed by experiments: $\PKzero \to \Pmuon \APmuon$.
\item Glashow, Iliopoulos, Maiani (GIM) mechanism was proposed in the 1970 to fix this problem. The mechanism required the existence of a $4^{th}$ quark.
\item At that point most of the people were skeptical about that. Fortunately in 1974 the discovery of the $\PJpsi$ meson silenced the skeptics.
\end{footnotesize}
\end{itemize}
\column{0.3\textwidth}
\begin{center}
\includegraphics[width=0.95\textwidth]{images/GIM3.png}\\
\includegraphics[width=0.7\textwidth]{images/604.jpg}\\{~}\\{~}
\end{center}
\end{columns}



\end{minipage}

		\vspace*{2.1cm}
\end{frame}

\begin{frame}{A lesson from history - CKM matrix}
	\begin{minipage}{\textwidth}

\begin{center}
{~}\\{~}\\
\includegraphics[width=0.5\textwidth]{images/CKMmatrix.png}

\end{center}
\begin{columns}
\column{0.6\textwidth}
\begin{itemize}
\begin{small}




\item Similarly, CP violation was discovered in 1960s in the neutral kaons decays.
\item $2 \times 2$ Cabbibo matrix could not allow for any CP violation.
\item For CP violation to be possible one needs at least a $3 \times 3$ unitary matrix \\ $\looparrowright$ Cabibbo-Kobayashi-Maskawa matrix (1973).
\item It predicts existence of $\Pbottom$ (1977) and $\Ptop$ (1995) quarks.
\end{small}

\end{itemize}
\column{0.4\textwidth}
\begin{center}
{~}
%\includegraphics[height=2cm]{images/CP.png}\\
\includegraphics[width=0.96\textwidth]{bottom.jpg}

\end{center}
\end{columns}



\end{minipage}

		\vspace*{2.1cm}
\end{frame}


\begin{frame}{A lesson from history - Weak neutral current}
	\begin{minipage}{\textwidth}

\begin{center}
\includegraphics[height=3cm]{images/weakcurr.png}{~}
\includegraphics[height=3cm]{images/weakcurr2.png}
\end{center}

\begin{columns}
\column{0.6\textwidth}
\begin{itemize}
\begin{small}


\item Weak neutral currents were first introduced in 1958 by Buldman.
\item Later on they were naturally incorporated into unification of weak and electromagnetic interactions.
\item 't Hooft proved that the GWS models was renormalizable.
\item Everything was there on theory side, only missing piece was the experiment, till 1973.
\end{small}

\end{itemize}
\column{0.4\textwidth}
\begin{center}
{~}
%\includegraphics[height=2cm]{images/CP.png}\\
\includegraphics[width=0.85\textwidth]{images/bubblecern.png}
\end{center}
\end{columns}



\end{minipage}

		\vspace*{2.1cm}
\end{frame}





\begin{frame}{$\PB$-factories}
	\begin{minipage}{\textwidth}
\ARROW There were many $\PB$ factories: HERA-B, CLEO, ARGUS.\\
\ARROW How ever in present when people talk about $\PB$-factories they mean BaBar and Belle experiments.\\
\begin{columns}

\column{0.4\textwidth}
\ARROW Both of them were asymmetric $\PB$-factories:
\includegraphics[width=0.95\textwidth]{images/tag.png}

\column{0.6\textwidth}
\includegraphics[width=0.95\textwidth]{{images/lumi_updated}.png}


\end{columns}



\end{minipage}

		\vspace*{2.1cm}
\end{frame}






\begin{frame}{$\PB$-factories}
	\begin{minipage}{\textwidth}

\begin{center}
\includegraphics[width=0.75\textwidth]{images/acc.png}\\
\includegraphics[width=0.75\textwidth]{images/table.png}

\end{center}



\end{minipage}

		\vspace*{2.1cm}
\end{frame}

\begin{frame}{$\PB$-factories}
	\begin{minipage}{\textwidth}

\begin{center}
\includegraphics[width=0.75\textwidth]{images/acc.png}\\
\includegraphics[width=0.75\textwidth]{images/table.png}

\end{center}



\end{minipage}

		\vspace*{2.1cm}
\end{frame}


\begin{frame}{$\PB$-factories, detectors}
	\begin{minipage}{\textwidth}

\begin{center}
\includegraphics[width=0.95\textwidth]{images/babar.png}
\end{center}



\end{minipage}

		\vspace*{2.1cm}
\end{frame}



\begin{frame}{$\PB$-factories, detectors}
	\begin{minipage}{\textwidth}

\begin{center}
\includegraphics[width=0.95\textwidth]{images/belle.png}
\end{center}



\end{minipage}

		\vspace*{2.1cm}
\end{frame}




\begin{frame}{$\PB$-factories, Physics}
	\begin{minipage}{\textwidth}
\ARROW The $\PB$-factories had enormous physics program:
\begin{itemize}
\item CKM matrix:
\begin{itemize}
\item $V_{ub}$ and $V_{cb}$ from semi-leptonic be decays.
\item $V_{td}$ and $V_{ts}$ from $\PB_{s,d}$ mixing.
\item Charmless $\PB$ decays.
\item $\PB$ mixing.
\item Electro-weak penguin decays.
\end{itemize}
\item Quarkonium physics
\item Charm physics
\item $\tau$ physics
\end{itemize}



\end{minipage}

		\vspace*{2.1cm}
\end{frame}




\begin{frame}{$\PB$-factories, $V_{ub}$, $V_{cb}$ }
	\begin{minipage}{\textwidth}
\ARROW The decays of $\PBzero$ and $\PBplus$ that process via leading order tree decay involving a lepton in the final state $\ell=e,\mu$ are free from non SM contributions.\\
\ARROW They can be used to probe the CKM-matrix elements:  $V_{cb}$ and $V_{ub}$. \\
\ARROW In addition the measurement of $\frac{\vert V_{ub} \vert}{\vert V_{cb} \vert}$ determines the angle $\phi_1$.
\begin{columns}

\column{0.4\textwidth}
\begin{align*}
\frac{d\Gamma}{dq^2}=\frac{G_F^2 |V_{qb}^2|}{192\pi^3m_B^3}{\cal K}(m^2_B, m^2_M, q^2)\\ \times {\cal F}^{(2)}(q^2)
\end{align*}
\ARROW From theory point of view the only thing that is not well known are the from factors: ${\cal F}^{(2)}(q^2)$. There are now many theoretical ideas to calculate them and reduce the errors.

\column{0.6\textwidth}
\includegraphics[width=0.95\textwidth]{images/diag.png}

\end{columns}
\end{minipage}

		\vspace*{2.1cm}
\end{frame}



\begin{frame}{$\PB$-factories, $V_{ub}$, $V_{cb}$ }
	\begin{minipage}{\textwidth}
\only<1>{
\ARROW Measurement of semi-leptonic decays are very challenging, because of missing neutrino!\\
\ARROW We start from calculating the missing 4-momentum:
\begin{align*}
(E_{miss}, p_{miss}) = (E_0, p_0) - \sum_i (E_i, p_i)
\end{align*}
\ARROW In case that the only missing particle in the detector is a neutrino the missing mass should be close to zero!\\
\ARROW We also use the:
\begin{align*}
\Delta E =E^{\ast}_B-E^{\ast}_{beam},~~~~~M_{ES}=\sqrt{(E^{\ast}_{beam})^2 - (p^{\ast}_B)^2}
\end{align*}

\includegraphics[width=0.95\textwidth]{images/mes.png}

}
\only<2>{

\includegraphics[width=0.95\textwidth]{images/dE.png}

}
\only<3>
{
\ARROW Also the $q^2=\left [ (E_{\ell}, p_{\ell})+ (E_{miss}, p_{miss}) \right]^2$ distribution was measured.\\
\begin{center}
\includegraphics[width=0.45\textwidth]{images/q2.png}
\end{center}
\begin{center}
\includegraphics[width=0.8\textwidth]{images/q21.png}
\end{center}

}
\end{minipage}

		\vspace*{2.1cm}
\end{frame}



\begin{frame}{$\PB$-factories, $V_{ts}$, $V_{tb}$ }
	\begin{minipage}{\textwidth}
\ARROW The CKM elements $V_{ts}$, $V_{tb}$ are problematic to determine. One can use:
\begin{columns}
\column{0.4\textwidth}

\begin{itemize}
\item Rare radiative $\PK$ and $\PB$ decays
\item $\PBzero$ and $\PBs$ oscilations:
\end{itemize}
\begin{align*}
\Delta m_d = \frac{G^2_F}{6\pi^2} f^2_B m_B m^2_W \eta_B S_0 \vert V^{\ast}_{tb} V_{td} \vert^2 \hat{B}_B
\end{align*}
\ARROW Unfortunately the theory precision is limited by the QCD.


\column{0.6\textwidth}
\includegraphics[width=0.9\textwidth]{images/oscilation.png}\\
\includegraphics[width=0.9\textwidth]{images/bsgamma.png}

\end{columns}

\end{minipage}

		\vspace*{2.1cm}
\end{frame}



\begin{frame}{$\PB$-factories, $V_{ts}$, $V_{tb}$ }
	\begin{minipage}{\textwidth}
\ARROW The CKM elements $V_{ts}$, $V_{tb}$ are problematic to determine. One can use:
\begin{columns}
\column{0.4\textwidth}

\begin{itemize}
\item Rare radiative $\PK$ and $\PB$ decays
\item $\PBzero$ and $\PBs$ oscilations:
\end{itemize}
\begin{align*}
\Delta m_d = \frac{G^2_F}{6\pi^2} f^2_B m_B m^2_W \eta_B S_0 \vert V^{\ast}_{tb} V_{td} \vert^2 \hat{B}_B
\end{align*}
\ARROW Unfortunately the theory precision is limited by the QCD.


\column{0.6\textwidth}
\includegraphics[width=0.9\textwidth]{images/oscilation.png}\\
\includegraphics[width=0.9\textwidth]{images/bsgamma.png}

\end{columns}

\end{minipage}

		\vspace*{2.1cm}
\end{frame}


\begin{frame}{Electroweak penguins}
	\begin{minipage}{\textwidth}
	\begin{columns}
\column{0.4\textwidth}

\begin{itemize}
\item Rare EWP decays are THE most sensitive probes of NP in flavour physics.
\item They are described by the effective Hamiltonian (see next lecture for more details):
\end{itemize}
\includegraphics[width=0.95\textwidth]{images/ham.png}

\column{0.6\textwidth}
\includegraphics[width=0.9\textwidth]{images/EWP.png}\\
\end{columns}

\end{minipage}

		\vspace*{2.1cm}
\end{frame}


\begin{frame}{Inclusive/Exclusive $b \to s \gamma$}
	\begin{minipage}{\textwidth}
	\begin{columns}
\column{0.5\textwidth}
\ARROW Measurement of inclusive modes is difficult. First attempt was done using sum of exclusive modes.\\
\ARROW Latter one used the leptonic tag.
\includegraphics[width=0.95\textwidth]{images/EWP3.png}

\column{0.5\textwidth}
\includegraphics[width=0.75\textwidth]{images/EWP1.png}\\
\includegraphics[width=0.75\textwidth]{images/EWP2.png}
\end{columns}

\end{minipage}

		\vspace*{2.1cm}
\end{frame}

\begin{frame}{$\tau$ Physics}
	\begin{minipage}{\textwidth}
	\begin{columns}
\column{0.5\textwidth}
\ARROW $\PB$-factories are also $\tau$ factories!
\ARROW $\tau$ leptons are very nice objects. And allow 2 main things:
\begin{itemize}
\item Test of QCD in the harmonic decays.
\item Search for NP ex. LFV.
\end{itemize}

\column{0.5\textwidth}
\includegraphics[width=0.75\textwidth]{images/vus.png}\\
\includegraphics[width=0.75\textwidth]{images/vus1.png}
\end{columns}

\includegraphics[width=0.75\textwidth]{images/LFVUL.png}



\end{minipage}

		\vspace*{2.1cm}
\end{frame}



\begin{frame}{Warp up}
	\begin{minipage}{\textwidth}
\ARROW The Physics reach of $\PB$-factories was enormous.\\
\ARROW They robustness of their measurements because a text-book procedures when analysing the data.\\
\ARROW  Fief anomalies remain (next lecture), which are beeing tackled by current $\PB$-factories.\\
\ARROW If you want to know more please read the ''Legacy'' book:
\href{https://arxiv.org/pdf/1406.6311.pdf}{arxiv::1406.6311}



\end{minipage}

		\vspace*{2.1cm}
\end{frame}








\backupbegin   



\backupend			

\end{document}