Newer
Older
Lecture_repo / Lectures_my / KT2_2017 / Lecture2 / mchrzasz.tex
@Marcin Chrzaszcz Marcin Chrzaszcz on 11 May 2017 49 KB lec 2 done
\documentclass[11 pt,xcolor={dvipsnames,svgnames,x11names,table}]{beamer}

\usepackage[english]{babel} 
\usepackage{polski}         


\usetheme[
	bullet=circle,		% Other option: square
	bigpagenumber,		% circled page number on lower right
	topline=true,			% colored bar at the top of the frame 
	shadow=false,			% Shading for beamer blocks
	watermark=BG_lower,	% png file for the watermark
	]{Flip}

%\logo{\kern+1.em\includegraphics[height=1cm]{SHiP-3_LightCharcoal}}
                            

\usepackage[lf]{berenis}
\usepackage[LY1]{fontenc}
\usepackage[utf8]{inputenc}

%\usepackage{emerald}
\usefonttheme{professionalfonts}
\usepackage[no-math]{fontspec}		
\defaultfontfeatures{Mapping=tex-text}	% This seems to be important for mapping glyphs properly

\setmainfont{Gillius ADF}			% Beamer ignores "main font" in favor of sans font
\setsansfont{Gillius ADF}			% This is the font that beamer will use by default
% \setmainfont{Gill Sans Light}		% Prettier, but harder to read

\setbeamerfont{title}{family=\fontspec{Gillius ADF}}

\input t1augie.fd

%\newcommand{\handwriting}{\fontspec{augie}} % From Emerald City, free font
%\newcommand{\handwriting}{\usefont{T1}{fau}{m}{n}} % From Emerald City, free font
% \newcommand{\handwriting}{}	% If you prefer no special handwriting font or don't have augie

%% Gill Sans doesn't look very nice when boldfaced
%% This is a hack to use Helvetica instead
%% Usage: \textbf{\forbold some stuff}
%\newcommand{\forbold}{\fontspec{Arial}}

\usepackage{graphicx}
\usepackage[export]{adjustbox}

\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{bm}
\usepackage{colortbl}
\usepackage{mathrsfs} 			% For Weinberg-esque letters
\usepackage{cancel}				% For "SUSY-breaking" symbol
\usepackage{slashed}            % for slashed characters in math mode
\usepackage{bbm}                % for \mathbbm{1} (unit matrix)
\usepackage{amsthm}				% For theorem environment
\usepackage{multirow}			% For multi row cells in table
\usepackage{arydshln} 			% For dashed lines in arrays and tables
\usepackage{siunitx}
\usepackage{xhfill}
\usepackage{grffile}
\usepackage{textpos}
\usepackage{subfigure}
\usepackage{tikz}
\usepackage{hyperref}
%\usepackage{hepparticles}    
\usepackage[italic]{hepparticles}     

\usepackage{hepnicenames} 

% Drawing a line
\tikzstyle{lw} = [line width=20pt]
\newcommand{\topline}{%
  \tikz[remember picture,overlay] {%
    \draw[crimsonred] ([yshift=-23.5pt]current page.north west)
             -- ([yshift=-23.5pt,xshift=\paperwidth]current page.north west);}}



% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
\usepackage{tikzfeynman}		% For Feynman diagrams
\usetikzlibrary{arrows,shapes}
\usetikzlibrary{trees}
\usetikzlibrary{matrix,arrows} 				% For commutative diagram
% http://www.felixl.de/commu.pdf
\usetikzlibrary{positioning}				% For "above of=" commands
\usetikzlibrary{calc,through}				% For coordinates
\usetikzlibrary{decorations.pathreplacing}  % For curly braces
% http://www.math.ucla.edu/~getreuer/tikz.html
\usepackage{pgffor}							% For repeating patterns

\usetikzlibrary{decorations.pathmorphing}	% For Feynman Diagrams
\usetikzlibrary{decorations.markings}
\tikzset{
	% >=stealth', %%  Uncomment for more conventional arrows
	vector/.style={decorate, decoration={snake}, draw},
	provector/.style={decorate, decoration={snake,amplitude=2.5pt}, draw},
	antivector/.style={decorate, decoration={snake,amplitude=-2.5pt}, draw},
	fermion/.style={draw=gray, postaction={decorate},
		decoration={markings,mark=at position .55 with {\arrow[draw=gray]{>}}}},
	fermionbar/.style={draw=gray, postaction={decorate},
		decoration={markings,mark=at position .55 with {\arrow[draw=gray]{<}}}},
	fermionnoarrow/.style={draw=gray},
	gluon/.style={decorate, draw=black,
		decoration={coil,amplitude=4pt, segment length=5pt}},
	scalar/.style={dashed,draw=black, postaction={decorate},
		decoration={markings,mark=at position .55 with {\arrow[draw=black]{>}}}},
	scalarbar/.style={dashed,draw=black, postaction={decorate},
		decoration={markings,mark=at position .55 with {\arrow[draw=black]{<}}}},
	scalarnoarrow/.style={dashed,draw=black},
	electron/.style={draw=black, postaction={decorate},
		decoration={markings,mark=at position .55 with {\arrow[draw=black]{>}}}},
	bigvector/.style={decorate, decoration={snake,amplitude=4pt}, draw},
}

% TIKZ - for block diagrams, 
% from http://www.texample.net/tikz/examples/control-system-principles/
% \usetikzlibrary{shapes,arrows}
\tikzstyle{block} = [draw, rectangle, 
minimum height=3em, minimum width=6em]




\usetikzlibrary{backgrounds}
\usetikzlibrary{mindmap,trees}	% For mind map
\newcommand{\degree}{\ensuremath{^\circ}}
\newcommand{\E}{\mathrm{E}}
\newcommand{\Var}{\mathrm{Var}}
\newcommand{\Cov}{\mathrm{Cov}}
\newcommand\Ts{\rule{0pt}{2.6ex}}       % Top strut
\newcommand\Bs{\rule[-1.2ex]{0pt}{0pt}} % Bottom strut

\graphicspath{{images/}}	% Put all images in this directory. Avoids clutter.

% SOME COMMANDS THAT I FIND HANDY
% \renewcommand{\tilde}{\widetilde} % dinky tildes look silly, dosn't work with fontspec
\newcommand{\comment}[1]{\textcolor{comment}{\footnotesize{#1}\normalsize}} % comment mild
\newcommand{\Comment}[1]{\textcolor{Comment}{\footnotesize{#1}\normalsize}} % comment bold
\newcommand{\COMMENT}[1]{\textcolor{COMMENT}{\footnotesize{#1}\normalsize}} % comment crazy bold
\newcommand{\Alert}[1]{\textcolor{Alert}{#1}} % louder alert
\newcommand{\ALERT}[1]{\textcolor{ALERT}{#1}} % loudest alert
%% "\alert" is already a beamer pre-defined
\newcommand*{\Scale}[2][4]{\scalebox{#1}{$#2$}}%

\def\Put(#1,#2)#3{\leavevmode\makebox(0,0){\put(#1,#2){#3}}}

\usepackage{gmp}
\usepackage[final]{feynmp-auto}

\usepackage[backend=bibtex,style=numeric-comp,firstinits=true]{biblatex}
\bibliography{bib}
\setbeamertemplate{bibliography item}[text]

\makeatletter\let\frametextheight\beamer@frametextheight\makeatother

% suppress frame numbering for backup slides
% you always need the appendix for this!
\newcommand{\backupbegin}{
	\newcounter{framenumberappendix}
	\setcounter{framenumberappendix}{\value{framenumber}}
}
\newcommand{\backupend}{
	\addtocounter{framenumberappendix}{-\value{framenumber}}
	\addtocounter{framenumber}{\value{framenumberappendix}} 
}


\definecolor{links}{HTML}{2A1B81}
%\hypersetup{colorlinks,linkcolor=,urlcolor=links}

% For shapo's formulas:
\def\lsi{\raise0.3ex\hbox{$<$\kern-0.75em\raise-1.1ex\hbox{$\sim$}}}
\def\gsi{\raise0.3ex\hbox{$>$\kern-0.75em\raise-1.1ex\hbox{$\sim$}}}
\newcommand{\lsim}{\mathop{\lsi}}
\newcommand{\gsim}{\mathop{\gsi}}
\newcommand{\wt}{\widetilde}
%\newcommand{\ol}{\overline}
\newcommand{\Tr}{\rm{Tr}}
\newcommand{\tr}{\rm{tr}}
\newcommand{\eqn}[1]{&\hspace{-0.7em}#1\hspace{-0.7em}&}
\newcommand{\vev}[1]{\rm{$\langle #1 \rangle$}}
\newcommand{\abs}[1]{\rm{$\left| #1 \right|$}}
\newcommand{\eV}{\rm{eV}}
\newcommand{\keV}{\rm{keV}}
\newcommand{\GeV}{\rm{GeV}}
\newcommand{\im}{\rm{Im}}
\newcommand{\disp}{\displaystyle}
\def\be{\begin{equation}}
\def\ee{\end{equation}}
\def\ba{\begin{eqnarray}}
\def\ea{\end{eqnarray}}
\def\d{\partial}
\def\l{\left(}
\def\r{\right)}
\def\la{\langle}
\def\ra{\rangle}
\def\e{{\rm e}}
\def\Br{{\rm Br}}
\def\fixme{{\color{red} FIXME!}}
\def\mc{{\color{Magenta}{MC}}}
\def\pdf{{\rm p.d.f.}}
\def\ARROW{{\color{JungleGreen}{$\Rrightarrow$}}\xspace} 


\def\be{\begin{equation}}
\def\ee{\end{equation}}
\def\ba{\begin{eqnarray}}
\def\ea{\end{eqnarray}}
\def\d{\partial}
\def\l{\left(}
\def\r{\right)}
\def\la{\langle}
\def\ra{\rangle}
\def\e{{\rm e}}
\def\Br{{\rm Br}}

\newcommand{\av}[1]{\langle #1 \rangle}
% particles                                                               
\def\LstFTTT      {\ensuremath{\PLambda^{*}(1520)^{0}}\xspace}            
\def\dll       {\ensuremath{\mathrm{DLL}}\xspace}                         
                                                                          \def\Lb          {\ensuremath{\PLambda_b}}


% useful decays                                                            
\def\BdToKpimm    {\decay{\Bd}{\Kp\pim\mumu}}                              
\def\BuToKmm    {\decay{\Bu}{\Kp\mumu}}                                    
\def\BsToJPsiKst  {\decay{\Bs}{\jpsi\Kstarz}}                              
\def\BdTopsitwosKst  {\decay{\Bd}{\psitwos\Kstarz}}                        
\def\LstFTTTT  {\decay{\LstFTTT}{p\Km}}                                 
%\def\LbToLstmm    {\decay{\Lb}{\PLambda^{*}(1520)^{0}  \mumu}}                             
\def\LbTopKmm     {\decay{\Lb}{p\Km\mumu}}                                 
\def\BuToKmm      {\decay{\Bu}{\Kp\mumu}}                                  
\def\BsTophimm    {\decay{\Bs}{\Pphi\mumu}}                                
                                                                           
% interesting variables                                                    
\def\mkpi  {\ensuremath{m_{K\pi}}\xspace}                                  
\def\mkpimm{\ensuremath{m_{K\pi\mu\mu}}\xspace}                            
                                                                           
%% peaking background mass hypotheses                                      
\def\mkmm  {\ensuremath{m_{K\mu\mu}}\xspace}                               
\def\mSwappKmm {\ensuremath{m_{(\pi\to p)K\mu\mu}}\xspace}                 
\def\mSwappiK {\ensuremath{m_{(\pi\to K)K}}\xspace}                        
\def\mSwappiKmm {\ensuremath{m_{(\pi\to K)K\mu\mu}}\xspace}                
\def\mSwappK   {\ensuremath{m_{(\pi\to p)K}}\xspace}                       
\def\mDoubleSwappKmm {\ensuremath{m_{(K\to p)(\pi\to K)\mu\mu}}\xspace}    
\def\mDoubleSwappK {\ensuremath{m_{(K\to p)(\pi\to K)}}\xspace}            
\def\mSwapKst {\ensuremath{m_{K\leftrightarrow\pi}}\xspace}                
                                                                           
%% some other decays                                                       
\def\BsToPhimm    {\decay{\Bs}{\phi\mumu}}                                 
\def\BsToPhimmFULL {\decay{\Bs}{\phi(\to\!K^{+}K^{-})\mumu}}               
\def\BsToKKmm {\decay{\Bs}{\Kp\Km\mumu}}                                   


% For shapo's formulas:
\def\lsi{\raise0.3ex\hbox{$<$\kern-0.75em\raise-1.1ex\hbox{$\sim$}}}
\def\gsi{\raise0.3ex\hbox{$>$\kern-0.75em\raise-1.1ex\hbox{$\sim$}}}

%\newcommand{\ol}{\overline}

\newcommand{\re}{{\rm Re}}
\newcommand{\invfb}{\rm{fb^{-1}}}
\newcommand{\thetal}{\theta_l}
\newcommand{\thetak}{\theta_k}
\newcommand{\nn}{\nonumber}
\newcommand{\eq}[1]{\begin{equation} #1 \end{equation}}
%\newcommand{\eqn}[1]{\begin{displaymath} #1 \end{displaymath}}
\newcommand{\eqa}[1]{\begin{eqnarray} #1 \end{eqnarray}}
\newcommand{\apeL}{{A_\perp^L}}
\newcommand{\apeR}{{A_\perp^R}}
\newcommand{\apeLR}{{A_\perp^{L,R}}}
\newcommand{\apaL}{{A_\|^L}}
\newcommand{\apaR}{{A_\|^R}}
\newcommand{\apaLR}{{A_\|^{L,R}}}
\newcommand{\azeL}{{A_0^L}}
\newcommand{\azeR}{{A_0^R}}
\newcommand{\azeLR}{{A_0^{L,R}}}
\newcommand{\Real}{\ensuremath{\mathcal{R}e}\xspace}
\newcommand{\Imag}{\ensuremath{\mathcal{I}m}\xspace}




\newcommand{\delC}[1]{\delta {\cal C}_{#1}}
\newcommand{\dC}[1]{{\cal C}_{#1}^{\rm NP}}
\newcommand{\dCp}[1]{{\cal C}_{#1^\prime}^{\rm NP}}




\renewcommand{\C}[1]{{\cal C}_{#1}}
\newcommand{\Ceff}[1]{{\cal C}^{\rm eff}_{#1}}
\newcommand{\Cpeff}[1]{{\cal C}^{\rm eff\prime}_{#1}}
\newcommand{\Cp}[1]{{\cal C}^{\prime}_{#1}}
\def\FL       {\ensuremath{F_{\mathrm{L}}}\xspace}
\def\ATDPH    {\ensuremath{A_{\mathrm{T,PR}}^{(2)}}\xspace}
\def\ATImPH     {\ensuremath{A_{\mathrm{T,PR}}^{\mathrm{Im}}}\xspace}
\def\ATRePH     {\ensuremath{A_{\mathrm{T,PR}}^{\mathrm{Re}}}\xspace}
\def\FLPH      {\ensuremath{F_{\mathrm{L,PR}}}\xspace}
\def\ATDKG    {\ensuremath{A_{\mathrm{T,\Kstarz \gamma}}^{(2)}}\xspace}
\def\ATImKG     {\ensuremath{A_{\mathrm{T,\Kstarz \gamma}}^{\mathrm{Im}}}\xspace}
\def\ATReKG     {\ensuremath{A_{\mathrm{T,\Kstarz \gamma}}^{\mathrm{Re}}}\xspace}
\def\FLKG       {\ensuremath{F_{\mathrm{L,\Kstarz \gamma}}}\xspace}
\def\ATD     {\ensuremath{A_{\mathrm{T}}^{(2)}}\xspace}
\def\ATIm     {\ensuremath{A_{\mathrm{T}}^{\mathrm{Im}}}\xspace}
\def\ATRe     {\ensuremath{A_{\mathrm{T}}^{\mathrm{Re}}}\xspace}
\def\ARROW{{\color{JungleGreen}{$\Rrightarrow$}}\xspace} 
\def\ARROWR{{\color{WildStrawberry}{$\Rrightarrow$}}\xspace}



\definecolor{green}{rgb}{0.2,0.6,0.2}
\definecolor{lightgreen}{rgb}{0.4,1,0.4}
\definecolor{verylightgreen}{rgb}{0.7,1,0.7}
\def\cgreen{\color{green}}
\definecolor{brown}{rgb}{0.4,0.2,0.0}
\def\cbrown{\color{brown}}
\def\cred{\color{red}}
\definecolor{darkblue}{rgb}{0.0,0.0,1.0}
\def\cdarkblue{\color{darkblue}}
\definecolor{darkgrey}{rgb}{0.4,0.4,0.4}
\definecolor{lightgrey}{rgb}{0.7,0.7,0.7}
\definecolor{verylightblue}{rgb}{0.8,0.8,1.0}
\definecolor{lightblue}{rgb}{0.6,0.6,1.0}
\definecolor{verylightyellow}{rgb}{1.0,1.0,0.5}
\definecolor{lightyellow}{rgb}{1.0,0.7,0.3}
\definecolor{darkred}{rgb}{0.6,0.0,0.0}

\definecolor{green}{rgb}{0.3,0.6,0.2}
\definecolor{green}{rgb}{0.3,0.7,0.4}

















\author{ {Marcin Chrzaszcz} (Universit\"{a}t Z\"{u}rich)}
\institute{UZH}
\title[B(eautiful) Physics]{B(eautiful) Physics}
\date{\fixme}


\begin{document}
\tikzstyle{every picture}+=[remember picture]

{
\setbeamertemplate{sidebar right}{\llap{\includegraphics[width=\paperwidth,height=\paperheight]{bubble2}}}
\begin{frame}[c]%{\phantom{title page}} 
\begin{center}
\begin{center}
	\begin{columns}
		\begin{column}{0.9\textwidth}
			\flushright \bfseries \Huge {B(eautiful) Physics II}
		\end{column}
		\begin{column}{0.2\textwidth}
		  %\includegraphics[width=\textwidth]{SHiP-2}
		\end{column}
	\end{columns}
\end{center}
	\quad
	\vspace{3em}
\begin{columns}
\begin{column}{0.44\textwidth}
\flushright \vspace{-1.8em} { \Large Marcin Chrzaszcz\\\vspace{-0.1em}\small \href{mailto:mchrzasz@cern.ch}{mchrzasz@cern.ch}}

\end{column}
\begin{column}{0.53\textwidth}
\includegraphics[height=1.3cm]{uzh-transp}
\end{column}
\end{columns}

\vspace{1em}
%		\footnotesize\textcolor{gray}{With N. Serra, B. Storaci\\Thanks to the theory support from M. Shaposhnikov, D. Gorbunov}\normalsize\\
\vspace{0.5em}
	\textcolor{normal text.fg!50!Comment}{Kern- und Teilchenphysik II, \\ 12 May, 2017}
\end{center}
\end{frame}
}

\begin{frame}
\only<1>{\frametitle{LHCb detector - tracking}
\begin{columns}
\column{3in}
\includegraphics[width=0.9\textwidth]{images/1050px-Lhcbview.jpg}

\column{2in}
\includegraphics[width=0.95\textwidth]{images/sketch.png}
\end{columns}
\begin{itemize}
\item Excellent Impact Parameter (IP) resolution ($20~\rm \mu m$).\\
$\Rightarrow$ Identify secondary vertices from heavy flavour decays
\item Proper time resolution $\sim~40~\rm fs$.\\
$\Rightarrow$ Good separation of primary and secondary vertices.
\item Excellent momentum ($\delta p/p \sim 0.4 - 0.6\%$) and inv. mass resolution.\\
$\Rightarrow$ Low combinatorial background.

\end{itemize}


}

\only<2>{\frametitle{LHCb detector - particle identification}
\begin{columns}
\column{3in}
\includegraphics[width=0.9\textwidth]{images/1050px-Lhcbview.jpg}

\column{2in}
\includegraphics[width=0.95\textwidth]{images/cher.png}
\end{columns}
\begin{itemize}
\item Excellent Muon identification $\epsilon_{\mu \to \mu} \sim 97\%$, $\epsilon_{\pi \to \mu} \sim 1-3\%$
\item Good $\PK-\Ppi$ separation via RICH detectors, $\epsilon_{\PK \to \PK} \sim 95\%$,  $\epsilon_{\Ppi \to \PK} \sim 5\%$.\\
$\Rightarrow$ Reject peaking backgrounds.
\item High trigger efficiencies, low momentum thresholds.
Muons: $p_T > 1.76 \GeV$ at L0, $p_T > 1.0 \GeV$ at HLT1,\\
$B \to \PJpsi X $: Trigger $\sim 90\%$.

\end{itemize}


}


\end{frame}
\begin{frame}{Legacy of B-factories}
\begin{center}
\includegraphics[width=0.99\textwidth]{images/legacy.png}
\end{center}


\end{frame}


\begin{frame}{CP violation in $\PBzero$ system from B factories}
\begin{center}
\includegraphics[width=0.99\textwidth]{images/sinbeta.png}
\end{center}


\end{frame}


\begin{frame}
\begin{center}
\includegraphics[width=0.99\textwidth]{images/gamma.png}
\end{center}


\end{frame}


\begin{frame}{$\gamma$ from $\PB \to \PD \PK$}
\begin{center}
\includegraphics[width=0.99\textwidth]{images/gamma2.png}
\end{center}


\end{frame}


\begin{frame}{$\gamma$ from $\PB \to \PD \PK$}
\begin{center}
\includegraphics[width=0.99\textwidth]{images/gamma3.png}
\end{center}


\end{frame}


\begin{frame}{$\vert V_{ub}$ from $\Lambda_b$}
\begin{center}
\includegraphics[width=0.99\textwidth]{images/vub.png}
\end{center}


\end{frame}


\begin{frame}{$\vert V_{ub}\vert $ from $\Lambda_b$}
\begin{center}
\includegraphics[width=0.99\textwidth]{images/vub.png}
\end{center}


\end{frame}


\begin{frame}{$\vert V_{ub}\vert$ from $\Lambda_b$}
\begin{center}
\includegraphics[width=0.99\textwidth]{images/vub2.png}
\end{center}


\end{frame}


\begin{frame}{$\vert V_{ub}\vert$ Puzzle}
\begin{center}
\includegraphics[width=0.99\textwidth]{images/vub3.png}
\end{center}


\end{frame}



\begin{frame}{$\Delta m_s$ and $\Delta m_d$}
\begin{center}
\includegraphics[width=0.99\textwidth]{images/dms.png}
\end{center}


\end{frame}


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}{$\PB_{s/d} \to \mu \mu$}
{~}
\begin{minipage}{\textwidth}


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{center}

\begin{columns}
\column{0.60\textwidth}

\ARROW Golden channel for LHCb.\\
\ARROW Normalized to the $\PB \to \PK \Ppi$ and $\PB \to \PK \PJpsi$.\\
\ARROW The selection is achived by BDT trained on MC and calibrated on data. \\
%\ARROW $\Br(\PBs \to \mu \mu) = 3.0 \pm 0.6^{+0.3}_{-0.2}$,\\
\begin{exampleblock}{\begin{small}\ARROWR $\Br(\PBs \to \mu \mu) =( 3.0 \pm 0.6^{+0.3}_{-0.2})10^{-9}$\end{small}
}
$7.8~\sigma$ significant! 
\end{exampleblock}
\begin{alertblock}{}
\begin{small}\ARROWR $\Br(\PBd \to \mu \mu) < 3.4 \times 10^{-10}$, $90\%\rm CL$\end{small}
\end{alertblock}

\begin{exampleblock}{Effective lifetime}
\ARROWR Sensitivity to non-scalar NP.\\
\ARROWR $\tau(\PBs \to \mu\mu)=2.04\pm0.44\pm0.05 \rm ps$
\end{exampleblock}


\column{0.40\textwidth}

\includegraphics[width=0.90\textwidth]{images/hidef_Fig1.png}\\
\only<1>{
\includegraphics[width=0.90\textwidth]{images/hidef_Fig22.png}\\
\includegraphics[width=0.90\textwidth]{images/hidef_Fig20.png}
}
\only<2>{
\includegraphics[width=0.9\textwidth]{images/life.png}\\

\includegraphics[width=0.9\textwidth]{images/hidef_Fig2bot.png}\\
}

\end{columns}
\end{center}

\end{minipage}
\vspace*{2.1cm}
\end{frame}



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}{$\PB_{s/d} \to \tau \tau$}
{~}
\begin{minipage}{\textwidth}


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{center}

\begin{columns}
\column{0.50\textwidth}

\ARROW NP sensitivity enhanced due to the high $\tau$ mass.\\
\ARROW More challenging: at least 2$\nu$ are escaping.\\
\ARROW Selecting $\tau \to 3\pi \nu$, $\rightarrow~9.31~\%$\\
\ARROW Normalization channel: $\PB \to \PD(\PK \pi \pi) \PDs(\PK \PK \pi)$.\\
\ARROW No peak in the $\PB$ mass window $\rightarrow$ fit the NN output.


\includegraphics[width=0.85\textwidth]{images/hidef_Fig7.png}



\column{0.50\textwidth}

\includegraphics[width=0.85\textwidth]{images/hidef_Fig11.png}\\
\includegraphics[width=0.85\textwidth]{images/hidef_Fig2a.png}\\
\end{columns}
\end{center}

\end{minipage}
%\textref{arXiv:1703.02508}
\vspace*{2.1cm}
\end{frame}





%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}{$\Lambda_b \to p \pi \mu \mu$}
{~}
\begin{minipage}{\textwidth}


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{center}

\begin{columns}
\column{0.60\textwidth}

\ARROW First observation of $b \to d$ in baryon system!\\
\ARROW BDT selection trained on MC\\
\ARROW Normalized to $\Lambda_b \to  p \pi \PJpsi$\\
\ARROW With futher QCD improvements we will be able to to measure $\frac{\vert V_{ts}\vert }{\vert V_{td}\vert}$.

\begin{exampleblock}{\begin{small}\ARROWR $\frac{\Br(\Lambda_b \to p \pi \mu \mu)}{\Br(\Lambda_b \to  p \pi \PJpsi)} =0.044 \pm 0.012 \pm 0.007$\end{small}
}
\ARROWR $5.5~\sigma$ significance! \ARROWR First observation.\\
\end{exampleblock}


\includegraphics[width=0.71\textwidth]{images/hidef_Fig3.png}


\column{0.50\textwidth}

\includegraphics[width=0.95\textwidth]{images/dupa.png}\\
\includegraphics[width=0.95\textwidth]{images/hidef_Fig2.png}\\
\begin{alertblock}{}\begin{small}
$\Br(\Lambda_b \to p \pi \mu \mu) = (6.9 \pm 1.9 \pm 1.1^{+1.3}_{-1.0} ) \times 10^{-8}$
\end{small}
\end{alertblock}
\end{columns}
\end{center}

\end{minipage}
%\textref{J. High Energy Phys. 04 (2017) 029}
\vspace*{2.1cm}
\end{frame}


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}{Search for light scalars}
{~}
\begin{minipage}{\textwidth}


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{center}

\begin{columns}
\column{0.55\textwidth}
\ARROW Hidden sector models are gathering more and more attention.\\
\ARROW Inflaton model: new scalar then mixes with the Higgs.\\
\ARROW $\PB$ decays are sensitive as the inflaton might be light.\\
\ARROW Searched for long living particle $\chi$ produced in: $\PB \to \chi(\mu\mu) \PK$.\\
\ARROW Analysis performed blindly as a peak search.\\
\ARROW Light inflaton essentially ruled out:\\

\includegraphics[width=0.75\textwidth]{{images/hidef_Inflaton_parameter_space_log_PAPER}.png}\\




\column{0.45\textwidth}

\includegraphics[width=0.95\textwidth]{images/hidef_diagram.png}\\
\includegraphics[width=0.95\textwidth]{images/hidef_excluded_limit2D.png}



\end{columns}
\end{center}

\end{minipage}
%\textref{Phys. Rev. D 95, 071101 (2017)}
\vspace*{2.1cm}
\end{frame}



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}{$\PKshort \to \mu \mu$}
{~}
\begin{minipage}{\textwidth}


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{center}

\begin{columns}
\column{0.60\textwidth}
\ARROW $\Pproton \Pproton$ collisions create enormous amount of strange mesons.\\
\ARROW Can be used to search for $\PKshort \to \mu \mu$.\\
\ARROW SM prediction: $\Br(\PKshort \to \mu \mu)= (5.0 \pm 1.5) \times 10^{-12}$\\
\ARROW Dominated by the long distance effects.\\
\ARROW We used two types of triggers: TIS and TOS.\\
\ARROW Bkg dominated by $\PKshort \to \pi \pi$.

\includegraphics[width=0.75\textwidth]{{images/hidef_Fig222}.png}\\




\column{0.4\textwidth}

\includegraphics[width=0.95\textwidth]{images/hidef_Fig6.png}\\
\ARROWR No significant enhanced of signal has been observed and UL was set:
\begin{alertblock}{}\begin{small}
$\Br(\PKshort \to \mu \mu) <6.9 (5.8) \times 10^{-9}$ at $95 (90)\%$ CL 
\end{small}
\end{alertblock}


\end{columns}
\end{center}

\end{minipage}
%\textref{CONF-2016-013}
\vspace*{2.1cm}
\end{frame}








%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}{$\PBzero \to \PKstar \Pmuon \APmuon$ decay }
{~}
\begin{minipage}{\textwidth}
\begin{columns}

\column{0.55\textwidth}

\ARROW $\PBzero \to \PKstar \Pmuon \APmuon$ is a smoking gun for NP hunting!\\
\ARROW Reach angular observables makes is sensitive to different NP models\\
\ARROW In addition one can construct less form factor dependent observables:
\begin{equation}
P_5^{\prime}=\frac{S_5}{\sqrt{F_L(1-F_L)}}\nonumber
\end{equation}
\ARROW In single analysis observed $3.4~\sigma$ discrepancy in the $C_9$ WC.



\column{0.45\textwidth}
\includegraphics[angle=-90,width=0.9\textwidth]{images/P5p.pdf}  \\
\includegraphics[angle=-90,width=0.9\textwidth]{images/AFBPad.pdf}


\end{columns}



\end{minipage}
%	\textref{JHEP 02 (2016) 104, CMS-PAS-BPH-15-008,\\ ATLAS-CONF-2017-023, Phys. Rev. Lett. 118 (2017)}

\vspace*{2.1cm}
\end{frame}



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}{Branching fraction measurements of $\PBs \to \Pphi \Pmu \Pmu$}
{~}
\begin{minipage}{\textwidth}
  \begin{center}
    \includegraphics[height=4cm]{images/bs2phipi.png}
    \includegraphics[height=4cm]{images/BsSel.png}
    \end{center}

\begin{itemize}
\item Recent LHCb measurement, \href{https://cds.cern.ch/record/2029820/files/JHEP09-179.pdf}{{\color{blue}{JHEP09 (2015) 179}}}.
\item Suppressed by $\frac{f_s}{f_d}$.
\item Cleaner because of narrow $\Pphi$ resonance.
\item $3.3~\sigma$ deviation in SM in the $1-6\GeV^2$ bin.
\item Angular part in agreement with SM ($S_5$ is not accessible).
\end{itemize}


\end{minipage}
\vspace*{2.1cm}
\end{frame}



\begin{frame}{Theory implications of $b \to s \ell \ell$}                                                                           
{~}                                                                                                          
\begin{minipage}{\textwidth}                                                                                 
                                                                                                             
\begin{itemize}                                                                                              
\item A fit prepared by \texttt{S. Descotes-Genon, L. Hofer, J. Matias, J. Virto}.                           
\item The data can be explained by modifying the $C_9$ Wilson coefficient.                                   
\item Overall there is $>4~\sigma$ discrepancy wrt. the SM prediction.                                       
\end{itemize}                                                                                                
\includegraphics[width=0.9\textwidth]{images/FIT.png}                                                         
                                                                                                             
                                                                                                             
                                                                                                             
                                                                                                             
\end{minipage}                                                                                               
%\textref{JHEP 06 (2016) 092}                                                                                 
\vspace*{2.1cm}                                                                                              
\end{frame}                                                                                                  
                                                                                                             
\begin{frame}{Summary}
{~}                                                                                                          
\begin{minipage}{\textwidth}                                                                                 
                                                                                                             
\ARROW LHCb is the new $\PB$-factory.\\
\ARROW A lot of consistent anomalies have been observed!\\
\ARROW Until Belle2 starts to produce results LHCb will dominate the heavy flavour physics.
                                                                                                             
                                                                                                             
\end{minipage}                                                                                               
%\textref{JHEP 06 (2016) 092}                                                                                 
\vspace*{2.1cm}                                                                                              
\end{frame}                                                                                                  
                                                                                                             









%%%%%%%%%%%%%%%%



\backupbegin   


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%                                                           


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%                                                           
\begin{frame}{Theory implications of $b \to s \ell \ell$}                                                                           
{~}                                                                                                          
\begin{minipage}{\textwidth}                                                                                 
                                                                                                             
\begin{itemize}                                                                                              
\item A fit prepared by \texttt{S. Descotes-Genon, L. Hofer, J. Matias, J. Virto}.                           
\item The data can be explained by modifying the $C_9$ Wilson coefficient.                                   
\item Overall there is $>4~\sigma$ discrepancy wrt. the SM prediction.                                       
\end{itemize}                                                                                                
\includegraphics[width=0.9\textwidth]{images/FIT.png}                                                         
                                                                                                             
                                                                                                             
                                                                                                             
                                                                                                             
\end{minipage}                                                                                               
%\textref{JHEP 06 (2016) 092}                                                                                 
\vspace*{2.1cm}                                                                                              
\end{frame}                                                                                                  
                                                                                                             







%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}{Reminder}
{~}
	\begin{minipage}{\textwidth}

\begin{itemize}
\item \textbf{Operator Product Expansion and Effective Field Theory}
\end{itemize}
\begin{columns}
\column{0.1in}{~}
\column{3.2in}
\begin{footnotesize}


\begin{align*}
H_{eff} = - \dfrac{4G_f}{\sqrt{2}} V V^{\prime \ast}\ \sum_i \left[\underbrace{C_i(\mu)O_i(\mu)}_\text{left-handed} +\
\underbrace{C'_i(\mu)O'_i(\mu)}_\text{right-handed}\right],
\end{align*}
                                                                                                                      \end{footnotesize}
\column{2in}
\begin{tiny}
\begin{description}
                \item[i=1,2] Tree
                \item[i=3-6,8] Gluon penguin
                \item[i=7] Photon penguin
                                \item[i=9.10] EW penguin
                                \item[i=S] Scalar penguin
                                \item[i=P] Pseudoscalar penguin
              \end{description}

\end{tiny}
\end{columns}
where $C_i$ are the Wilson coefficients and $O_i$ are the corresponding effective operators.
\begin{center}
\includegraphics[width=0.85\textwidth,height=3cm]{images/all.png}

\end{center}





\end{minipage}
		\vspace*{2.1cm}
\end{frame}



\begin{frame}{Analysis of Rare decays}
\begin{footnotesize}

%{\Large Since a long time ago...} \\ \medskip 
%\hspace*{1.4cm}$\Rightarrow$ $b \to s \gamma$ and $b \to s \ell\ell $ {\bf Flavour Changing Neutral Currents} have been used as {\bf \cred Our  Portal} \\ to explore the fundamental theory beyond SM. \\ 
%\medskip
%\medskip
%\hfill....... with not much success till 2013.\hspace*{1cm}
%\bigskip

Analysis of FCNC in a model-independent approach, effective Hamiltonian:
\vspace*{-0.1cm}
\begin{columns}
\begin{column}{1cm}
~
\end{column}
\begin{column}{8cm}
\begin{equation*}
b\to s\gamma(^*): {\mathcal H}^{SM}_{\Delta F=1} \propto
  \sum_{i=1}^{10} V_{ts}^* V_{tb} {\cgreen \C{i}} \alert{  {\cal O}_i} + \ldots
\end{equation*}

\vspace{-0.2cm}

\begin{itemize}
\item $\alert{ {\cal O}_7} = \frac{e}{16 \pi^2}m_b\, 
        (\bar s\sigma^{\mu\nu} P_R b) F_{\mu\nu}\,$ %\quad [real or soft photon]
\item $\alert{ {\cal O}_9}=\frac{e^2}{16 \pi^2}(\bar{s}\gamma_\mu P_L b)\  (\bar\ell\gamma_\mu\ell)$
 %\quad [$b\to s\mu\mu$ via $Z$/hard $\gamma$]
\item $\alert{ {\cal O}_{10}}=\frac{e^2}{16 \pi^2}(\bar{s}\gamma_\mu P_L b) \  (\bar\ell\gamma_\mu\gamma_5\ell)$, ...
%\quad [$b\to s\mu\mu$ via $Z$]
\end{itemize}
\end{column}
\begin{column}{5.5cm}
\includegraphics[width=3.5cm]{images/qum1.png} 
%\includegraphics[width=3cm]{bsll.pdf}
\end{column}
\end{columns}

%\hspace*{5cm} with no clear success yet...
%\bigskip


%\centerline{{\bf Goal}: \underline{Decode the short distance physics to find a smoking gun of BSM}\hspace*{2cm}}


\bigskip
\hspace*{0.0cm} $\bullet$ {\bf SM} Wilson coefficients up to NNLO + e.m. corrections at $\mu_{ref}=4.8$ GeV [{\cgreen Misiak et al.}]: $${\cal C}_7^{\rm SM}=-0.29,\, {\cal C}_9^{\rm SM}=4.1,\, {\cal C}_{10}^{\rm SM}=-4.3$$
%BUT, like in the film there is always the good, the bad and the ugly.
\bigskip
$\bullet$ {\bf NP} changes short distance ${\cal C}_i-{\cal C}_i^{\rm SM}={\cal C}_i^{\rm NP}$ and induce new operators, like ${\cal O}^\prime_{7,9,10}={\cal O}_{7,9,10}\,\, (P_L \leftrightarrow P_R)$ ... also scalars, pseudoescalar, tensor operators...%\bigskip


\end{footnotesize}

\end{frame}


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}{$\PBzero \to \PKstar \Pmuon \APmuon$ kinematics}
{~}
	\begin{minipage}{\textwidth}

$\color{JungleGreen}{\Rrightarrow}$ The kinematics of $\PBzero \to \PKstar \Pmuon \APmuon$ decay is described by three angles $\thetal$, $\thetak$, $\phi$ and invariant mass of the dimuon system ($q^2)$.

	\only<1>{
\begin{columns}
\column{0.5\textwidth}

$\color{JungleGreen}{\Rrightarrow}$ $\cos \thetak$: the angle between the direction of the kaon in the $\PKstar$ ($\overline{\PKstar}$) rest frame and the direction of the $\PKstar$ ($\overline{\PKstar}$) in the $\PBzero$ ($\APBzero$) rest frame.\\
$\color{JungleGreen}{\Rrightarrow}$ $\cos \thetal$: the angle between the direction of the $\Pmuon$ ($\APmuon$) in the dimuon rest frame and the direction of the dimuon in the $\PBzero$ ($\APBzero$) rest frame.\\
$\color{JungleGreen}{\Rrightarrow}$ $\phi$: the angle between the plane containing the $\Pmuon$ and $\APmuon$ and the plane containing the kaon and pion from the $\PKstar$.



\column{0.5\textwidth}
\includegraphics[width=0.95\textwidth]{images/angles.png}

\end{columns}
	}
	\only<2>{
{\tiny{
\eqa{\label{dist}
\frac{d^4\Gamma}{dq^2\,d\!\cos\theta_K\,d\!\cos\theta_l\,d\phi}&=&\frac9{32\pi} \bigg[
J_{1s} \sin^2\theta_K + J_{1c} \cos^2\theta_K + (J_{2s} \sin^2\theta_K + J_{2c} \cos^2\theta_K) \cos 2\theta_l\nn\\[1.5mm]
&&\hspace{-2.7cm}+ J_3 \sin^2\theta_K \sin^2\theta_l \cos 2\phi + J_4 \sin 2\theta_K \sin 2\theta_l \cos\phi  + J_5 \sin 2\theta_K \sin\theta_l \cos\phi \nn\\[1.5mm]
&&\hspace{-2.7cm}+ (J_{6s} \sin^2\theta_K +  {J_{6c} \cos^2\theta_K})  \cos\theta_l
+ J_7 \sin 2\theta_K \sin\theta_l \sin\phi  + J_8 \sin 2\theta_K \sin 2\theta_l \sin\phi \nn\\[1.5mm]
&&\hspace{-2.7cm}+ J_9 \sin^2\theta_K \sin^2\theta_l \sin 2\phi \bigg]\,,
\nonumber}
}}
$\color{JungleGreen}{\Rrightarrow}$ This is the most general expression of this kind of decay.

}

\end{minipage}
		\vspace*{2.1cm}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}{Transversity amplitudes }
{~}
	\begin{minipage}{\textwidth}

$\color{JungleGreen}{\Rrightarrow}$ One can link the angular observables to transversity amplitudes
{\tiny{
\eqa{
J_{1s}  & = & \frac{(2+\beta_\ell^2)}{4} \left[|\apeL|^2 + |\apaL|^2 +|\apeR|^2 + |\apaR|^2 \right]
    + \frac{4 m_\ell^2}{q^2} \re\left(\apeL\apeR^* + \apaL\apaR^*\right)\,,\nn\\[1mm]
%
J_{1c}  & = &  |\azeL|^2 +|\azeR|^2  + \frac{4m_\ell^2}{q^2} \left[|A_t|^2 + 2\re(\azeL^{}\azeR^*) \right] + \beta_\ell^2\, |A_S|^2 \,,\nn\\[1mm]
%
J_{2s} & = & \frac{ \beta_\ell^2}{4}\left[ |\apeL|^2+ |\apaL|^2 + |\apeR|^2+ |\apaR|^2\right],
\hspace{0.92cm}    J_{2c}  = - \beta_\ell^2\left[|\azeL|^2 + |\azeR|^2 \right]\,,\nn\\[1mm]
%
J_3 & = & \frac{1}{2}\beta_\ell^2\left[ |\apeL|^2 - |\apaL|^2  + |\apeR|^2 - |\apaR|^2\right],
\qquad   J_4  = \frac{1}{\sqrt{2}}\beta_\ell^2\left[\re (\azeL\apaL^* + \azeR\apaR^* )\right],\nn \\[1mm]
%
J_5 & = & \sqrt{2}\beta_\ell\,\Big[\re(\azeL\apeL^* - \azeR\apeR^* ) - \frac{m_\ell}{\sqrt{q^2}}\,
\re(\apaL A_S^*+ \apaR^* A_S) \Big]\,,\nn\\[1mm]
%
J_{6s} & = &  2\beta_\ell\left[\re (\apaL\apeL^* - \apaR\apeR^*) \right]\,,
\hspace{2.25cm} J_{6c} = 4\beta_\ell\, \frac{m_\ell}{\sqrt{q^2}}\, \re (\azeL A_S^*+ \azeR^* A_S)\,,\nn\\[1mm]
%
J_7 & = & \sqrt{2} \beta_\ell\, \Big[\im (\azeL\apaL^* - \azeR\apaR^* ) +
\frac{m_\ell}{\sqrt{q^2}}\, \im (\apeL A_S^* - \apeR^* A_S)) \Big]\,,\nn\\[1mm]
%
J_8 & = & \frac{1}{\sqrt{2}}\beta_\ell^2\left[\im(\azeL\apeL^* + \azeR\apeR^*)\right]\,,
%
\hspace{1.9cm} J_9 = \beta_\ell^2\left[\im (\apaL^{*}\apeL + \apaR^{*}\apeR)\right] \,,
\label{Js}\nonumber}
}}

\end{minipage}
		\vspace*{2.1cm}
\end{frame}



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}{Link to effective operators}
{~}
	\begin{minipage}{\textwidth}
$\color{JungleGreen}{\Rrightarrow}$ So here is where the magic happens. At leading order the amplitudes can be written as:
{\tiny{
\eqa{
\apeLR &=&\sqrt{2} N m_B(1- \hat s)\bigg[  (\Ceff9 + \Cpeff9) \mp (\C{10} + \Cp{10})
+\frac{2\hat{m}_b}{\hat s} (\Ceff7 + \Cpeff7) \bigg]\xi_{\bot}(E_{K^*})  \nn \\[2mm]
\apaLR &=& -\sqrt{2} N m_B (1-\hat s)\bigg[(\Ceff9 - \Cpeff9) \mp (\C{10} - \Cp{10})
+\frac{2\hat{m}_b}{\hat s}(\Ceff7 - \Cpeff7) \bigg] \xi_{\bot}(E_{K^*}) \nn \\[2mm]
\azeLR  &=& -\frac{N m_B (1-\hat s)^2}{2 \hat{m}_{K^*} \sqrt{\hat s}} \bigg[ (\Ceff9 - \Cpeff9)  \mp (\C{10} - \Cp{10}) + 2\hat{m}_b (\Ceff7 - \Cpeff7) \bigg]\xi_{\|}(E_{K^*}),
\label{LargeRecoilAs}\nonumber}
}}
where $\hat s = q^2 /m_B^2$, $\hat{m}_i = m_i/m_B$. The $\xi_{\|,\bot }$ are the form factors. \\

\only<1>{
\ARROW In practice one measures normalized $J$ by branching fractions:
\begin{equation*}
S_i/A_i = \frac{J_i \pm \overline{J}_i}{d\Gamma + d \overline{\Gamma}/dq^2}
\end{equation*}


}
\only<2>{
$\color{JungleGreen}{\Rrightarrow}$ Now we can construct observables that cancel the $\xi$ form factors at leading order:
\eq{P_5^{\prime} = \dfrac{J_5+\bar{J}_5}{2\sqrt{-(J_2^c+\bar{J}_2^c)(J_2^s+\bar{J}_2^s)} }\nonumber
}
}

\end{minipage}
		\vspace*{2.1cm}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\begin{center}
\begin{Huge}
LHCb measurement of $\PBd \to \PKstar \Pmu \Pmu$
\end{Huge}
\end{center}




\end{frame}



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}{Multivariate simulation}
{~}
	\begin{minipage}{\textwidth}
\begin{columns}

\column{0.5\textwidth}
\begin{itemize}
\begin{footnotesize}
\item PID, kinematics and isolation variables used in a Boosted Decision Tree (BDT) to discriminate signal and background.
\item BDT with k-Folding technique.
\item Completely data driven. 
\end{footnotesize}
\end{itemize}
\begin{center}
\includegraphics[width=0.70\textwidth]{images/Chopping_Distrib.pdf}
\end{center}

\column{0.5\textwidth}

\includegraphics[angle=-90,width=0.82\textwidth]{images/Fig1.pdf} \\
\includegraphics[width=0.88\textwidth]{images/fold.png}

\end{columns}



\end{minipage}
		\vspace*{2.1cm}
\end{frame}


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}{Multivariate simulation, efficiency}
{~}

	\begin{minipage}{\textwidth}
	\begin{footnotesize}

\ARROW BDT was also checked in order not to bias our angular distribution:
\begin{center}
\includegraphics[angle=-90,width=0.8\textwidth]{images/BDT_Eff_Comp.pdf}
\end{center}
\ARROW The BDT has small impact on our angular observables. We will correct for these effects later on.

\end{footnotesize}
\end{minipage}
		\vspace*{2.1cm}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}{Detector acceptance}
{~}
	\begin{minipage}{\textwidth}
\begin{footnotesize}

\begin{columns}

\column{0.6\textwidth}
\begin{itemize}
\item Detector distorts our angular distribution.
\item We need to model this effect.
\item 4D function is used:
\begin{align*}
\epsilon (\cos \thetal, \cos \thetak, \phi, q^2) = \\\sum_{ijkl} P_i(\cos \thetal) P_j(\cos \thetak ) P_k(\phi) P_l(q^2),
\end{align*}
where $P_i$ is the Legendre polynomial of order $i$.
\item We use up to $4^{th}, 5^{th}, 6^{th}, 5^{th}$ order for the $\cos \thetal, \cos \thetak, \phi, q^2$.
\item The coefficients were determined using Method of Moments, with a huge simulation sample.
\item The simulation was done assuming a flat phase space and reweighing the $q^2$ distribution to make is flat.
\item To make this work the $q^2$ distribution needs to be reweighted to be flat.
\end{itemize}
%\includegraphics[width=0.75\textwidth]{images/q2PHSP.png}



\column{0.4\textwidth}
\only<1>{
\includegraphics[width=0.99\textwidth]{images/q2PHSP.png}\\
\includegraphics[width=0.99\textwidth]{images/q2PHSPw.png}
}

\only<2>{
\includegraphics[width=0.99\textwidth]{images/det.png}
}
\end{columns}


\end{footnotesize}
\end{minipage}
		\vspace*{2.1cm}
\end{frame}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}{Control channel}
{~}
	\begin{minipage}{\textwidth}
\begin{footnotesize}
\begin{itemize}
\item We tested our unfolding procedure on $\PB \to \PJpsi \PKstar$.
\item The result is in perfect agreement with other experiments and our different analysis of this decay.
\end{itemize}
\end{footnotesize}
\begin{center}
\includegraphics[angle=-90,width=0.4\textwidth]{images/mlogjpsi.pdf}
\includegraphics[angle=-90,width=0.4\textwidth]{images/mkpijpsi.pdf}\\
\includegraphics[width=0.99\textwidth]{images/angles3.png}
\end{center}


\end{minipage}
		\vspace*{2.1cm}
\end{frame}



\begin{frame}{Results}
{~}
\begin{footnotesize}
	\begin{minipage}{\textwidth}
	
\only<3>
{
\ARROW Method of Moments allowed us to measure for the first time a new observable:
}	
	
\begin{center}
\only<1>{
\includegraphics[angle=-90,width=0.49\textwidth]{images/compare_FLPad.pdf}
\includegraphics[angle=-90,width=0.49\textwidth]{images/compare_S3Pad.pdf}\\
\includegraphics[angle=-90,width=0.49\textwidth]{images/compare_S4Pad.pdf}
\includegraphics[angle=-90,width=0.49\textwidth]{images/compare_S5Pad.pdf}
}
\only<2>{
\includegraphics[angle=-90,width=0.49\textwidth]{images/compare_AFBPad.pdf}
\includegraphics[angle=-90,width=0.49\textwidth]{images/compare_S7Pad.pdf}\\
\includegraphics[angle=-90,width=0.49\textwidth]{images/compare_S8Pad.pdf}
\includegraphics[angle=-90,width=0.49\textwidth]{images/compare_S9Pad.pdf}
}
\only<3>{
\includegraphics[angle=-90,width=0.75\textwidth]{images/S6cPad.pdf}
}

\end{center}	
	
\end{minipage}
\end{footnotesize}
		\vspace*{2.1cm}
\end{frame}



\begin{frame}{Compatibility with SM}
{~}

	\begin{minipage}{\textwidth}

\begin{columns}
\column{0.1in}
{~}
\column{2in}
\ARROW Use \texttt{EOS} software package to test compatibility with SM.\\
\ARROW Perform the $\chi^2$ fit to the measured:
\begin{center}
\begin{align*}
F_L, A_{FB}, S_{3,..., 9} .
\end{align*}
\end{center}
\ARROW Float a vector coupling: $\Re(C_9)$.\\
\ARROW Best fit is found to be $3.4~\sigma$ away from the SM.


\column{3in}
\begin{align*}
\Delta \Re (C_9) \equiv \Re(C_9)^{{\rm fit}} - \Re(C_9)^{{\rm SM}} = -1.03
\end{align*}
\includegraphics[angle=-90,width=0.95\textwidth]{images/wilsonchi2.pdf}
\end{columns}



\end{minipage}

		\vspace*{2.1cm}
\end{frame}





%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}{Branching fraction measurements of $\PB \to \PKstar^{\pm} \Pmu \Pmu$}
{~}
\includegraphics[width=0.5\textwidth]{images/ksmumu_BF.png}
\includegraphics[width=0.5\textwidth]{images/kmumu_BF.png}

\begin{center}
\begin{columns}

\column{0.4\textwidth}
\begin{itemize}
\item Despite large theoretical errors the results are consistently smaller than SM prediction.
\end{itemize}
\column{0.6\textwidth}
\includegraphics[width=0.87\textwidth]{images/bukst_BF.png}


\end{columns}







\end{center}
		\vspace*{2.1cm}
\end{frame}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}{Branching fraction measurements of $\PBs \to \Pphi \Pmu \Pmu$}
{~}
	\begin{minipage}{\textwidth}
	\begin{center}
	\includegraphics[width=0.65\textwidth]{images/bs2phipi.png}\\
	\end{center}

\begin{itemize}
\item Recent LHCb measurement [JHEPP09 (2015) 179].
\item Suppressed by $\frac{f_s}{f_d}$.
\item Cleaner because of narrow $\Pphi$ resonance.
\item $3.3~\sigma$ deviation in SM in the $1-6\GeV^2$ bin.
\end{itemize}


\end{minipage}
		\vspace*{2.1cm}
\end{frame}


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}{Branching fraction measurements of $\PLambdab \to \PLambda \Pmu \Pmu$}
{~}
	\begin{minipage}{\textwidth}

	\begin{center}
	\only<1>{
	\includegraphics[width=0.65\textwidth]{images/Lb_BR.png}
}
	\only<2>{
	\includegraphics[width=0.45\textwidth]{images/Lblow.png}
\includegraphics[width=0.45\textwidth]{images/Lbhigh.png}

}


	\end{center}


\begin{itemize}
\item This years LHCb measurement [JHEP 06 (2015) 115]].
\item In total $\sim 300$ candidates in data set.
\item Decay not present in the low $q^2$.

\end{itemize}



\end{minipage}
		\vspace*{2.1cm}
\end{frame}







%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}{Lepton universality test}
{~}
	\begin{minipage}{\textwidth}
\begin{columns}
\column{3.0in}
\includegraphics[width=0.9\textwidth]{images/uni2.png}

\begin{itemize}
\item Challenging analysis due to bremsstrahlung.
\item Migration of events modeled by MC.
\item Correct for bremsstrahlung.
\item Take double ratio with $\PBplus \to \PJpsi \PKplus$ to cancel systematics.
\item In $3\invfb$, LHCb measures $R_K=0.745^{+0.090}_{-0.074}(stat.)^{+0.036}_{-0.036}(syst.)$
\item Consistent with SM at $2.6\sigma$.

\end{itemize}
\column{2.0in}
\includegraphics[width=0.99\textwidth]{images/RK.png}\\
\begin{itemize}
\item \href{http://arxiv.org/abs/1406.6482}{Phys. Rev. Lett. 113, 151601 (2014)}
\end{itemize}
\end{columns}



\end{minipage}
		\vspace*{2.1cm}
\end{frame}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\begin{frame}\frametitle{Grab it While it's Hot!}
%https://indico.cern.ch/event/580620/
\ARROW Yesterday(18.04) we shown a new preliminary result: \href{https://indico.cern.ch/event/580620/}{{\color{blue}CERN Seminar}}\\
\ARROW We measured the ratio:
\begin{equation*}
R_{\PKstar}= \frac{\mathcal{B}( \PB \to \PKstar \Pmu \Pmu)}{\mathcal{B}( \PB \to \PKstar \Pe \Pe)}
\end{equation*}
\pause

\begin{columns}
\column{0.4\textwidth}
\ARROW Measurement performed in two $q^2$ bins. \\
\ARROW Normalized in double ratio to $\PB \to \PKstar \PJpsi$.\\
\includegraphics[width=0.95\textwidth]{images/plot.png}


\column{0.6\textwidth}
\begin{center}
\includegraphics[width=0.95\textwidth]{images/RKstar.png}
\end{center}

\end{columns}



\end{frame}


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%                                                            
\begin{frame}{There is more!}                                                                                        
{~}                                                                                                                  
\begin{minipage}{\textwidth}                                                                                         
                                                                                                                     
\begin{itemize}                                                                                                      
\item There is one other LUV decay recently measured by LHCb.                                                        
\item $R(\PDstar)=\dfrac{\mathcal{B}(\PB \to \PDstar \Ptau \Pnu)}{\mathcal{B}(\PB \to \PDstar \Pmu \Pnu)}$           
\item Clean SM prediction: $R(\PDstar)=0.252(3)$, PRD 85 094025 (2012)                                               
\item LHCb result: $R(\PDstar)= 0.336 \pm 0.027 \pm 0.030$, HFAG average: $R(\PDstar)=0.322 \pm 0.022$               
\item $3.9~\sigma$ discrepancy wrt. SM prediction                                                                    
\end{itemize}                                                                                                        
                                                                                                                     
\begin{center}                                                                                                       
                                                                                                                     
\includegraphics[width=0.52\textwidth]{images/RDstar.png}                                                            
                                                                                                                     
\end{center}                                                                                                         
\end{minipage}                                                                                                       
\vspace*{2.1cm}                                                                                                      
\end{frame}   


\begin{frame}
\begin{center}
\begin{Huge}
Global fit to $\Pbeauty \to \Pstrange \ell \ell$ measurements
\end{Huge}
\end{center}




\end{frame}



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}{Theory implications}
{~}
	\begin{minipage}{\textwidth}

\begin{itemize}
\item The data can be explained by modifying the $C_9$ Wilson coefficient.
\item Overall there is around $4.5~\sigma$ discrepancy wrt. SM.
\end{itemize}
\includegraphics[width=0.9\textwidth]{images/C9.png}




\end{minipage}
		\vspace*{2.1cm}
\end{frame}


\begin{frame}\frametitle{Grab it While it's Hotter!}
%https://indico.cern.ch/event/580620/
\ARROW Today(19.04) there was already first paper with the phenomenological work about this measurement: \href{https://arxiv.org/pdf/1704.05340.pdf}{arxiv::1704.05340} J. Matias, et. al.\\
\begin{center}
\includegraphics[width=0.99\textwidth]{images/quim1.png}
\end{center}
\begin{columns}
\column{0.5\textwidth}
\includegraphics[width=0.75\textwidth]{images/quim2.png}

\column{0.5\textwidth}
\includegraphics[width=0.75\textwidth]{images/quim3.png}


\end{columns}


\end{frame}


\backupend			

\end{document}