Newer
Older
Lecture_repo / Lectures_my / NumMet / 2016 / Lecture4 / lecture4.tex
@mchrzasz mchrzasz on 12 Oct 2016 21 KB fixed small things
% vim: set sts=4 et :
\documentclass[11 pt,xcolor={dvipsnames,svgnames,x11names,table}]{beamer}

\usetheme[
	bullet=circle,		% Other option: square
	bigpagenumber,		% circled page number on lower right
	topline=true,			% colored bar at the top of the frame 
	shadow=false,			% Shading for beamer blocks
	watermark=BG_lower,	% png file for the watermark
	]{Flip}

\usepackage{bm}
\usepackage{tikz,pgfplots}
\usepackage{graphicx}

% SOME COMMANDS THAT I FIND HANDY
% \renewcommand{\tilde}{\widetilde} % dinky tildes look silly, dosn't work with fontspec
\newcommand{\comment}[1]{\textcolor{comment}{\footnotesize{#1}\normalsize}} % comment mild
\newcommand{\Comment}[1]{\textcolor{Comment}{\footnotesize{#1}\normalsize}} % comment bold
\newcommand{\COMMENT}[1]{\textcolor{COMMENT}{\footnotesize{#1}\normalsize}} % comment crazy bold
\newcommand{\Alert}[1]{\textcolor{Alert}{#1}} % louder alert
\newcommand{\ALERT}[1]{\textcolor{ALERT}{#1}} % loudest alert
%% "\alert" is already a beamer pre-defined
\newcommand*{\Scale}[2][4]{\scalebox{#1}{$#2$}}%

\graphicspath{{images/}}	% Put all images in this directory. Avoids clutter.

% suppress frame numbering for backup slides
% you always need the appendix for this!
\newcommand{\backupbegin}{
	\newcounter{framenumberappendix}
	\setcounter{framenumberappendix}{\value{framenumber}}
}
\newcommand{\backupend}{
	\addtocounter{framenumberappendix}{-\value{framenumber}}
	\addtocounter{framenumber}{\value{framenumberappendix}} 
}

\begin{document}
\tikzstyle{every picture}+=[remember picture]

{
\setbeamertemplate{sidebar right}{\llap{\includegraphics[width=\paperwidth,height=\paperheight]{bubble2}}}
\begin{frame}[c]%{\phantom{title page}} 
\begin{center}
\begin{center}
	\begin{columns}
		\begin{column}{0.9\textwidth}
			\flushright%\fontspec{Trebuchet MS}
			\bfseries \Huge {Root Finding}
		\end{column}
		\begin{column}{0.2\textwidth}
		  %\includegraphics[width=\textwidth]{SHiP-2}
		\end{column}
	\end{columns}
\end{center}
	\quad
	\vspace{3em}
\begin{columns}
\begin{column}{0.6\textwidth}
\flushright \vspace{-1.8em} {%\fontspec{Trebuchet MS}
    \large Marcin Chrzaszcz, Danny van Dyk\\\vspace{-0.1em}\small \href{mailto:mchrzasz@cern.ch}{mchrzasz@cern.ch}, \href{mailto:dany.van.dyk@gmail.com}{danny.van.dyk@gmail.com}}

\end{column}
\begin{column}{0.4\textwidth}
\includegraphics[height=1.3cm]{uzh-transp}
\end{column}
\end{columns}

\vspace{1em}
\vspace{0.5em}
	\textcolor{normal text.fg!50!Comment}{Numerical Methods, \\ 26. September, 2016}
\end{center}
\end{frame}
}

\begin{frame}{Plan for today}
    \begin{itemize}
        \item \alert{General problem of finding the root of a function}\\
            $\xi$ is a root of $f$ iff $f(\xi) = 0$.
        \vfill
        \item \alert{Begin with $D=1$}\\
            What properties of $f(x)$ can we use to find one, any, or all roots
            of $f$? What are the requirements on $f(x)$?
        \vfill
        \item \alert{How about $D>1$?}\\
            Can we generalize root finding from $D=1$ do arbitrary $D$?
    \end{itemize}
\end{frame}

\begin{frame}{General iterative procedure}
    Let's assume that
    \begin{itemize}
        \item $f(x)$ is a our function of interest,
        \item $\xi$ is the only root of $f$,
        \item we have a point $x_0$ close to $\xi$
    \end{itemize}
    We now want to find a sequence $\lbrace x_0, x_1, \dots \rbrace$ that
    \begin{enumerate}
        \item converges toward $\xi$: $\lim_{k\to \infty} x_k = \xi$,
        \item is iterative: $x_{k + 1} = \Phi[f](x_k)$
    \end{enumerate}
    We can attempt to Taylor expand $f$ around $x_0$ to order $N$, in order
    to obtain the generator $\Phi[f]$ for the iteration:
    \begin{block}{Expansion around $x_0$}
    \begin{equation*}
        f(\xi) = 0 = \sum_{n=0}^N \frac{(\xi - x_0)^n}{n!} f^{(n)}(x_0)
    \end{equation*}
    where $f^{(n)}(x_0)$ is the $n$th derivative of $f$ at the position $x_0$.
    \end{block}
\end{frame}

\begin{frame}{Newton-Raphson method \hfill ($N=1$)}
    \begin{block}{Expansion for $N=1$}
        \begin{equation}
            \tag{*}
            f(\xi) = 0 = f(x_0) + (\xi - x_0) \cdot f'(x_0) + \mathcal{O}((\xi - x_0)^2)
        \end{equation}
    \end{block}
    \vfill
    Algorithm:
    \begin{enumerate}
        \item start with index $k=0$
        \item solve equation (*), assuming a vanshing approximation error:
            \begin{gather*}
                x_{k + 1} \leftarrow x_k - \frac{f(x_k)}{f'(x_k)} \approx \xi + \mathcal{O}((\xi - x_k)^2)\\
                \Phi[f](x) \equiv x - \frac{f(x)}{f'(x)}
            \end{gather*}
        \item if $f(x_{k + 1}) \leq t$, where $t$ is an a-prior threshold, then stop; otherwise
            jump back to step \#2.
    \end{enumerate}
\end{frame}

\begin{frame}{Illustration of Newton-Raphson}
    \begin{columns}
    \begin{column}[T]{.5\textwidth}
    \begin{overlayarea}{\textwidth}{\textheight}
        $\bm{k=0}$:
        \only<2->{%
        \begin{equation*}
            x_0 := 1
        \end{equation*}
        }
        \only<3->{%
            $\bm{k=1}$:
            \begin{align*}
                x_0     & = 1 &
                f(x_0)  & = +0.54 \\
                        &     &
                f'(x_0) & = -0.84 \\
            \end{align*}
        }
        \only<4->{%
            \begin{equation*}
                {\color{red} x_1 \leftarrow 1.64}
            \end{equation*}
        }
        \only<6->{%
            $\bm{k=2}$:
            \begin{align*}
                x_1     & = 1.64 &
                f(x_0)  & = -0.07 \\
                        &     &
                f'(x_0) & = -0.997 \\
            \end{align*}
        }
        \only<7->{%
            \begin{equation*}
                {\color{red} x_2 \leftarrow 1.57}
            \end{equation*}
        }
    \end{overlayarea}
    \end{column}
    \begin{column}[T]{.5\textwidth}
    \hspace{-1cm}
    \resizebox{1.1\textwidth}{!}{
    \begin{tikzpicture}
        \begin{axis}[%
            axis x line=center,
            axis y line=center,
            ymin=-0.2,ymax=0.8,
            xmin=0.0,xmax=1.8,
            title=$\cos(x)$
        ]
            \addplot[thick,black,domain=0:3.14] {
                cos(deg(x))
            };
            \only<2-3>{
                \addplot[thick,blue,only marks,mark=+,mark size=5pt] coordinates {
                    ( 1, 0.54030 )
                };
            }
            \only<3-4>{
                \addplot+[thick,blue,domain=0:3.14,mark=none] {
                    0.54030 - 0.84147 * (x - 1)
                };
            }
            \only<4-5>{
                \addplot[thick,red,only marks,mark=o,mark size=5pt] coordinates {
                    ( 1.6421, 0.0 )
                };
                \draw[thick,red] (axis cs:1.6421, 0) -- (axis cs:1.6421, -0.0712);
            }
            \only<5-6>{
                \addplot[thick,blue,only marks,mark=+,mark size=5pt] coordinates {
                    ( 1.6421, -0.0712 )
                };
            }
            \only<6-7>{
                \addplot+[thick,blue,domain=0:3.14,mark=none] {
                    -0.0712 - 0.99746 * (x - 1.6421)
                };
            }
            \only<7->{
                \addplot[thick,red,only marks,mark=o,mark size=5pt] coordinates {
                    ( 1.5707, 7.8e-5 )
                };
            }
        \end{axis}
    \end{tikzpicture}
    }
    \vfill
    \begin{overlayarea}{\textwidth}{.3\textheight}
        \only<8->{
        \begin{tabular}{c|cc}
            $k$ & $x_k$ & $f(x_k)$\\
            \hline
            $0$ & $1.00$ & $+0.54$\\
            $1$ & $1.64$ & $-0.07$\\
            $2$ & $1.57$ & $+0.00$\\
            \hline
            $\xi$&$1.5708$ & $0$
        \end{tabular}
        }
    \end{overlayarea}
    \end{column}
    \end{columns}
\end{frame}

\begin{frame}{Modified Newton-Raphson method \hfill ($N=2$)}
    \begin{block}{Expansion for $N=2$}
        \vspace{-2\medskipamount}
        \begin{equation}
            \tag{*}
            f(\xi) = 0 = f(x_0) + (\xi - x_0) \cdot f'(x_0) + \frac{1}{2} (\xi - x_0)^2 f''(x_0) + \mathcal{O}((\xi - x_0)^3)
        \end{equation}
    \end{block}
    \vfill
    Algorithm:
    \begin{enumerate}
        \item start with index $k=0$
        \item solve equation (*), assuming a vanshing approximation error:
            \begin{align*}
                a_\pm
                    & \leftarrow x_k - \frac{f'(x_k) \pm \sqrt{[f'(x_k)]^2 - 2 f(x_k) f''(x_k)}}{f''(x_k)}\\
                    & \approx \xi + \mathcal{O}((\xi - x_k)^3)
            \end{align*}
        \item if $|f(a_+)| < |f(a_-)|$, then $x_{k + 1} \leftarrow a_+$; otherwise $x_{k + 1} \leftarrow a_-$
        \item if $f(x_{k + 1}) \leq t$, where $t$ is an a-priori threshold, then stop; otherwise
            jump back to step \#2.
    \end{enumerate}
\end{frame}

\begin{frame}{Rate of convergence}
    Does this iterative procedure converge? If yes, how fast? How can we quantify the rate of convergence?

    \begin{itemize}
        \item we have \alert{local} convergence of order $p \geq 1$, if for all $x \in U(\xi)$
        \begin{equation*}
            || \Phi[f](x) - \xi|| \leq C \cdot || x - \xi||^p\,,\quad\text{with}\quad C \geq 0\,.
        \end{equation*}
        Note: if $p = 1$ then we must have $C < 1$.
        \item we have \alert{global} convergence if $U(\xi) = \mathbb{R}$
        \item for $D=1$ we can calculate $p$ if $\Phi[f](x)$ is differentiable to sufficient degree:
        \begin{align*}
            \Phi(x) - \xi = \Phi(x) - \Phi(\xi) = \frac{(x - \xi)^p}{p!} + o(||x - \xi||^p)
        \end{align*}
    \end{itemize}
\end{frame}

\begin{frame}{Rate of convergence for Newton-Raphson}
    We have $\Phi(x) \equiv \Phi[f](x)$:
    \begin{itemize}
        \item $\Phi(\xi) = \xi$ by construction
        \item $\Phi'(\xi) = \frac{f(\xi) \cdot f''(\xi)}{[f'(\xi)]^2} = 0$ \alert{(*)} by construction
        \item $\Phi''(\xi) = \frac{f''(\xi)}{f'(\xi)}$
    \end{itemize}
    We can therefore write
    \begin{equation}
        \Phi(x) - \Phi(\xi) = \frac{(x - \xi)^2}{2!} \Phi''(\xi) + o(||x - \xi||^2)\,.
    \end{equation}
    The Newton-Raphson method converges therefore \emph{at least quadratically}, i.e.: it is a
    second-order method.
    \vfill
    \alert{(*): only if $f'(\xi) \neq 0$}, which is equivalent to $\xi$ is a simple root of $f$.
\end{frame}

\begin{frame}{Pathological Example}
    \begin{columns}
    \begin{column}[T]{.5\textwidth}
    \begin{overlayarea}{\textwidth}{\textheight}
        $\bm{k=0}$:
        \only<2->{%
        \begin{equation*}
            x_0 := 0.5
        \end{equation*}
        }
        \only<3->{%
            $\bm{k=1}$:
            \begin{align*}
                x_0     & = 0.5 &
                f(x_0)  & = +0.707 \\
                        &     &
                f'(x_0) & = -0.707 \\
            \end{align*}
        }
        \only<4->{%
            \begin{equation*}
                {\color{red} x_1 \leftarrow -0.5}
            \end{equation*}
        }
        \only<6->{%
            $\bm{k=2}$:
            \begin{align*}
                x_1     & = -0.5 &
                f(x_0)  & = +0.707 \\
                        &     &
                f'(x_0) & = -0.707 \\
            \end{align*}
        }
        \only<7->{%
            \begin{equation*}
                {\color{red} x_2 \leftarrow +0.5}
            \end{equation*}
        }
    \end{overlayarea}
    \end{column}
    \begin{column}[T]{.5\textwidth}
    \hspace{-1cm}
    \resizebox{1.1\textwidth}{!}{
    \begin{tikzpicture}
        \begin{axis}[%
            axis x line=center,
            axis y line=center,
            ymin=-0.1,ymax=0.9,
            xmin=-0.7,xmax=0.7,
            title=$\sqrt(|x|)$,
            samples=160
        ]
            \addplot[thick,black,domain=-1:+0] {
                sqrt(abs(x))
            };
            \addplot[thick,black,domain=-0:+1] {
                sqrt(abs(x))
            };
            \only<2-3>{
                \addplot[thick,blue,only marks,mark=+,mark size=5pt] coordinates {
                    ( +0.5, 0.707 )
                };
            }
            \only<3-4>{
                \addplot+[thick,blue,domain=-1:1,mark=none] {
                    0.707 + 0.707 * (x - 0.5)
                };
            }
            \only<4-5>{
                \addplot[thick,red,only marks,mark=o,mark size=5pt] coordinates {
                    ( -0.5, 0.707 )
                };
                \draw[thick,red] (axis cs:-0.5, 0) -- (axis cs:-0.5, +0.707);
            }
            \only<5-6>{
                \addplot[thick,blue,only marks,mark=+,mark size=5pt] coordinates {
                    ( -0.5, 0.707 )
                };
            }
            \only<6-7>{
                \addplot+[thick,blue,domain=-1:1,mark=none] {
                    0.707 - 0.707 * (x + 0.5)
                };
            }
            \only<7->{
                \addplot[thick,red,only marks,mark=o,mark size=5pt] coordinates {
                    ( 0.5, 0.707 )
                };
                \draw[thick,red] (axis cs:+0.5, 0) -- (axis cs:+0.5, +0.707);
            }
        \end{axis}
    \end{tikzpicture}
    }
    \vfill
    \begin{overlayarea}{\textwidth}{.3\textheight}
        ~\\\bigskip
        endless loop
    \end{overlayarea}
    \end{column}
    \end{columns}
\end{frame}

\begin{frame}{Pitfalls of Newton-Raphson}
    We had previously discussed that Newton-Raphson is guaranteed to converge
    in an environment $U(\xi)$ of the root $\xi$.\\ \medskip

    However, it may fail to converge or converge only very slowly\dots
    \begin{itemize}
        \item if $U(\xi)$ is a small interval and the initial point lies outside of $U$,
        \item if the algorithm encounters a stationary point $\chi$ of $f$ (i.e. $f'(\chi) = 0$),
        \item if $\xi$ is a $m$-multiple root of $f$ (i.e. $f(x) \sim (x - \xi)^m \dots$)
    \end{itemize}

    The last point can be accomodated for: If you know the mulitplicity $m$ of the root,
    modify the Newton-Raphson step to read:
    \begin{equation*}
        x_{k + 1} \leftarrow x_{k} - m \frac{f(x_k)}{f'(x_k)}
    \end{equation*}
    Basically, this rescales the derivative from $f'(x) \to f'(x) / m$.
\end{frame}

\begin{frame}{Honorable mention: Horner Scheme}
    If $f(x) \equiv p_n(x)$ is a polynomial of degree $n$ in $x$, there might be multiple roots of $f$, i.e.
    roots $\xi_{n}$ with $f'(\xi_n) = 0$.\\
    \vfill
    The Horner Scheme allows to efficiently calculate all the (multiple) roots
    of the polynomial $p_n(x)$.\\
    \vfill
    However, this is of limited use: The polynomials dominantly arise in numerical computations
    as the characteric polynomial $\chi_M$ of a matrix $M$. In these cases, the roots of $\chi_M$
    correspond to eigenvalue of $M$. However, the are better/more stables ways to \alert{numerically} compute
    all eigenvalues of $M$, instead of finding all root of $\chi_M$.
\end{frame}

\begin{frame}{Intermission: Derivatives}
    Both the original and the modified Newton-Raphson methods involve taking
    the derivative $f'$ of our target function $f$ at arbitrary points. Of
    course, if we can analytically calculate the derivative, there is no problem.\\

    \vfill

    What about functions that we can only evaluate numerically? (Think: Experiments,
    numerical calculations)\\

    \vfill

    Enter the field of \emph{numerical differentiation}!
\end{frame}

\begin{frame}{Intermission: Derivatives}
    How can we obtain the derivative $f'(x)$ numerically? Let's start from an expansion of
    $f(x)$ close to the point of interest $x_0$:
    \begin{tikzpicture}
        \node at (0,0) {
        \begin{minipage}{\textwidth}
        \begin{align*}
            f(x_0 + 2         h)  & = f(x_0) + f'(x_0) \cdot 2         h + \frac{f''(x_0)}{2} \cdot 4         h^2 + \dots\\
            f(x_0 + \phantom2 h)  & = f(x_0) + f'(x_0) \cdot \phantom2 h + \frac{f''(x_0)}{2} \cdot \phantom4 h^2 + \dots\\
            f(x_0 {\color{white}+ 2h}) & = f(x_0)\\
            f(x_0 - \phantom2 h)  & = f(x_0) - f'(x_0) \cdot \phantom2 h + \frac{f''(x_0)}{2} \cdot \phantom4 h^2 + \dots\\
            f(x_0 - 2         h)  & = f(x_0) - f'(x_0) \cdot 2         h + \frac{f''(x_0)}{2} \cdot 4         h^2 + \dots
        \end{align*}
        \end{minipage}
        };
        %\draw[step=0.50,black,thin] (-4.5,-2.0) grid (4.5,2.0);
        \draw[green!75!black,thick,rounded corners=5pt] (-4.5,+0.15) rectangle (+4.5,+1.05);
        \only<1>{
        \draw[red,           thick,rounded corners=5pt] (-4.5,-0.5) rectangle (+4.5,+0.1);
        }
        \only<2>{
        \draw[red,           thick,rounded corners=5pt] (-4.5,-1.5) rectangle (+4.5,-0.5);
        }
    \end{tikzpicture}


    \begin{overlayarea}{\textwidth}{.4\textheight}
    \only<1>{
    \begin{block}{Variant \#1: Forward difference quotient}
        \begin{equation*}
            \frac{{\color{green!75!black}f(x_0 + h)} - {\color{red!90!black}f(x_0)}}{h} = f'(x_0) + \frac{f''(x_0)}{2} \cdot h = f'(x_0) + o(h)
        \end{equation*}
    \end{block}
    }
    \only<2>{
    \begin{block}{Variant \#2: Central difference quotient}
        \vspace{-1.5\medskipamount}
        \begin{equation*}
            \frac{{\color{green!75!black}f(x_0 + h)} - {\color{red!90!black}f(x_0 - h)}}{2h} = f'(x_0) + \frac{f'''(x_0)}{3} h^2 = f'(x_0) + o(h^2)
        \end{equation*}
    \end{block}
    }
    \end{overlayarea}
\end{frame}

\begin{frame}{Intermission: How to choose $h$?}
    \begin{columns}
    \begin{column}{.5\textwidth}
        \includegraphics[width=\textwidth]{eps.png}\\
        {\tiny \hfill source: Wikipedia}
        \begin{itemize}
            \item two sources of numerical errors compete:
            \begin{itemize}
                \item formula errors, and
                \item round-off (finite precision) errors
            \end{itemize}
        \end{itemize}
    \end{column}
    \begin{column}{.5\textwidth}
        \begin{itemize}
            \item formula error can be reduced through ``intelligent formulae''
            \item round-off error can be reduced through (schematically):
            \begin{align*}
                x_\text{approx}
                    & \leftarrow x + h\\
                h_\text{approx}
                    & \leftarrow x_\text{approx} - x\\
                f'  & \leftarrow \frac{f(x_\text{approx}) - f(x)}{h_\text{approx}}
            \end{align*}
            \item optimal choice of $h$ will be close to
            \begin{equation*}
                h \sim \sqrt{\varepsilon} \cdot x
            \end{equation*}
            with $\varepsilon$: working precision
        \end{itemize}
    \end{column}
    \end{columns}
\end{frame}

\begin{frame}{Intermission: Higher derivatives}
    What about $f''(x_0)$, $f^{(3)}(x_0)$ or even higher derivatives?\\
    \medskip
    \begin{block}{Central difference quotient for $f^{(n)}$}
        \begin{align*}
            \sum_{k=0}^n (-1)^k \binom{n}{k} \frac{f(x_0 + (n - 2 k) h)}{(2 h)^n}
                & = f^{(n)}(x_0) + o(h^2)
        \end{align*}
    \end{block}
\end{frame}

\newcommand{\del}{\partial}
\begin{frame}{Intermission: Multiple partial derivatives}
    What about (multiple) partial derivatives $\del_x \del_y f(x, y)$?\\
    \medskip
    \begin{block}{Central difference ``stencil'' for $\del_x \del_y f(x, y)$}
        Combine what we learned previously:
        \begin{multline*}
            \frac{\only<1>{a}\only<2>{+} f(+ h_x, + h_y) \only<1>{+b}\only<2>{-} f(+ h_x, - h_y) \only<1>{+c}\only<2>{-} f(- h_x, + h_y) \only<1>{+d}\only<2>{+} f(- h_x, - h_y)}{4 h_x h_y}\\
            = \only<1>{\dots}\only<2>{\del x\del_y f(x,y)|_{x=0,y=0} + o(h_x^2) + o(h_y^2)}
        \end{multline*}
    \end{block}
    \vfill
    \only<2>{End of intermission.}
\end{frame}

\begin{frame}{Newton-Raphson for $D > 1$?}
    What happens if we generalize to $D > 1$?\\
    \medskip
    Let's consider the case $D=2$ first, for a polynomial of degree $1$
    \begin{equation*}
        f(x_1, x_2) = (1 - x) \cdot (2 - y)
    \end{equation*}
    \medskip
    $f$ has infinitely many roots:
    \begin{itemize}
        \item $x = 1$ and $y$ arbitrary
        \item $y = 2$ and $x$ arbitrary
    \end{itemize}
    In order to pin-point only one point in $D=2$, we need to solve $2$
    equations:
    \begin{align*}
        f_1(x_1, x_2) & = 0, &
        f_2(x_1, x_2) & = 0
    \end{align*}
    In $D$ dimensions, we will need to solve $D$ simultaneous equations!
\end{frame}

\begin{frame}{Generalization to $D > 1$}
    Substitute:
    \begin{align*}
        f(x) \in \mathbb{R} \quad  & \to \quad f(x) \in \mathbb{R}^D\\
        x \in \mathbb{R} \quad     & \to \quad x \in \mathbb{R}^D\\
        f'(x) \in \mathbb{R} \quad & \to \quad [D_f]_{ij} \equiv \frac{\del f_i(x)}{\del x_j} \in \mathbb{R}^{D\times D}
    \end{align*}

    Then the Newton-Raphson steps reads
    \begin{equation*}
        x^{(k+1)} \leftarrow x^{(k)} - \left[D_f(x^{(k)})\right]^{-1} f(x^{(k)})\,.
    \end{equation*}
    Problems:
    \begin{itemize}
        \item the functional matrix $D_f(x^{(k)})$ might be singular, or numerically close to being
            singular
        \item inverting $D_f$ is generally computationally expensive!
    \end{itemize}

    In the next two lectures, Marcin will discuss how to solve systems of linear equations.
    These methods will also introduce you to methods to numerically compute the above $x^{(k + 1)}$
    from $D_f(x^{(k)})$.
\end{frame}

\backupbegin

\begin{frame}\frametitle{Backup}

\end{frame}

\backupend
\end{document}