\documentclass[11 pt,xcolor={dvipsnames,svgnames,x11names,table}]{beamer} \usepackage[english]{babel} \usepackage{polski} \usetheme[ bullet=circle, % Other option: square bigpagenumber, % circled page number on lower right topline=true, % colored bar at the top of the frame shadow=false, % Shading for beamer blocks watermark=BG_lower, % png file for the watermark ]{Flip} %\logo{\kern+1.em\includegraphics[height=1cm]{SHiP-3_LightCharcoal}} \usepackage[lf]{berenis} \usepackage[LY1]{fontenc} \usepackage[utf8]{inputenc} %\usepackage{emerald} \usefonttheme{professionalfonts} \usepackage[no-math]{fontspec} \defaultfontfeatures{Mapping=tex-text} % This seems to be important for mapping glyphs properly \setmainfont{Gillius ADF} % Beamer ignores "main font" in favor of sans font \setsansfont{Gillius ADF} % This is the font that beamer will use by default % \setmainfont{Gill Sans Light} % Prettier, but harder to read \setbeamerfont{title}{family=\fontspec{Gillius ADF}} \input t1augie.fd %\newcommand{\handwriting}{\fontspec{augie}} % From Emerald City, free font %\newcommand{\handwriting}{\usefont{T1}{fau}{m}{n}} % From Emerald City, free font % \newcommand{\handwriting}{} % If you prefer no special handwriting font or don't have augie %% Gill Sans doesn't look very nice when boldfaced %% This is a hack to use Helvetica instead %% Usage: \textbf{\forbold some stuff} %\newcommand{\forbold}{\fontspec{Arial}} \usepackage{graphicx} \usepackage[export]{adjustbox} \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{colortbl} \usepackage{mathrsfs} % For Weinberg-esque letters \usepackage{cancel} % For "SUSY-breaking" symbol \usepackage{slashed} % for slashed characters in math mode \usepackage{bbm} % for \mathbbm{1} (unit matrix) \usepackage{amsthm} % For theorem environment \usepackage{multirow} % For multi row cells in table \usepackage{arydshln} % For dashed lines in arrays and tables \usepackage{siunitx} \usepackage{xhfill} \usepackage{grffile} \usepackage{textpos} \usepackage{subfigure} \usepackage{tikz} \usepackage{hyperref} %\usepackage{hepparticles} \usepackage[italic]{hepparticles} \usepackage{hepnicenames} % Drawing a line \tikzstyle{lw} = [line width=20pt] \newcommand{\topline}{% \tikz[remember picture,overlay] {% \draw[crimsonred] ([yshift=-23.5pt]current page.north west) -- ([yshift=-23.5pt,xshift=\paperwidth]current page.north west);}} % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % \usepackage{tikzfeynman} % For Feynman diagrams \usetikzlibrary{arrows,shapes} \usetikzlibrary{trees} \usetikzlibrary{matrix,arrows} % For commutative diagram % http://www.felixl.de/commu.pdf \usetikzlibrary{positioning} % For "above of=" commands \usetikzlibrary{calc,through} % For coordinates \usetikzlibrary{decorations.pathreplacing} % For curly braces % http://www.math.ucla.edu/~getreuer/tikz.html \usepackage{pgffor} % For repeating patterns \usetikzlibrary{decorations.pathmorphing} % For Feynman Diagrams \usetikzlibrary{decorations.markings} \tikzset{ % >=stealth', %% Uncomment for more conventional arrows vector/.style={decorate, decoration={snake}, draw}, provector/.style={decorate, decoration={snake,amplitude=2.5pt}, draw}, antivector/.style={decorate, decoration={snake,amplitude=-2.5pt}, draw}, fermion/.style={draw=gray, postaction={decorate}, decoration={markings,mark=at position .55 with {\arrow[draw=gray]{>}}}}, fermionbar/.style={draw=gray, postaction={decorate}, decoration={markings,mark=at position .55 with {\arrow[draw=gray]{<}}}}, fermionnoarrow/.style={draw=gray}, gluon/.style={decorate, draw=black, decoration={coil,amplitude=4pt, segment length=5pt}}, scalar/.style={dashed,draw=black, postaction={decorate}, decoration={markings,mark=at position .55 with {\arrow[draw=black]{>}}}}, scalarbar/.style={dashed,draw=black, postaction={decorate}, decoration={markings,mark=at position .55 with {\arrow[draw=black]{<}}}}, scalarnoarrow/.style={dashed,draw=black}, electron/.style={draw=black, postaction={decorate}, decoration={markings,mark=at position .55 with {\arrow[draw=black]{>}}}}, bigvector/.style={decorate, decoration={snake,amplitude=4pt}, draw}, } % TIKZ - for block diagrams, % from http://www.texample.net/tikz/examples/control-system-principles/ % \usetikzlibrary{shapes,arrows} \tikzstyle{block} = [draw, rectangle, minimum height=3em, minimum width=6em] \usetikzlibrary{backgrounds} \usetikzlibrary{mindmap,trees} % For mind map \newcommand{\degree}{\ensuremath{^\circ}} \newcommand{\E}{\mathrm{E}} \newcommand{\Var}{\mathrm{Var}} \newcommand{\Cov}{\mathrm{Cov}} \newcommand\Ts{\rule{0pt}{2.6ex}} % Top strut \newcommand\Bs{\rule[-1.2ex]{0pt}{0pt}} % Bottom strut \graphicspath{{images/}} % Put all images in this directory. Avoids clutter. % SOME COMMANDS THAT I FIND HANDY % \renewcommand{\tilde}{\widetilde} % dinky tildes look silly, dosn't work with fontspec \newcommand{\comment}[1]{\textcolor{comment}{\footnotesize{#1}\normalsize}} % comment mild \newcommand{\Comment}[1]{\textcolor{Comment}{\footnotesize{#1}\normalsize}} % comment bold \newcommand{\COMMENT}[1]{\textcolor{COMMENT}{\footnotesize{#1}\normalsize}} % comment crazy bold \newcommand{\Alert}[1]{\textcolor{Alert}{#1}} % louder alert \newcommand{\ALERT}[1]{\textcolor{ALERT}{#1}} % loudest alert %% "\alert" is already a beamer pre-defined \newcommand*{\Scale}[2][4]{\scalebox{#1}{$#2$}}% \def\Put(#1,#2)#3{\leavevmode\makebox(0,0){\put(#1,#2){#3}}} \usepackage{gmp} \usepackage[final]{feynmp-auto} \usepackage[backend=bibtex,style=numeric-comp,firstinits=true]{biblatex} \bibliography{bib} \setbeamertemplate{bibliography item}[text] \makeatletter\let\frametextheight\beamer@frametextheight\makeatother % suppress frame numbering for backup slides % you always need the appendix for this! \newcommand{\backupbegin}{ \newcounter{framenumberappendix} \setcounter{framenumberappendix}{\value{framenumber}} } \newcommand{\backupend}{ \addtocounter{framenumberappendix}{-\value{framenumber}} \addtocounter{framenumber}{\value{framenumberappendix}} } \definecolor{links}{HTML}{2A1B81} %\hypersetup{colorlinks,linkcolor=,urlcolor=links} % For shapo's formulas: \def\lsi{\raise0.3ex\hbox{$<$\kern-0.75em\raise-1.1ex\hbox{$\sim$}}} \def\gsi{\raise0.3ex\hbox{$>$\kern-0.75em\raise-1.1ex\hbox{$\sim$}}} \newcommand{\lsim}{\mathop{\lsi}} \newcommand{\gsim}{\mathop{\gsi}} \newcommand{\wt}{\widetilde} %\newcommand{\ol}{\overline} \newcommand{\Tr}{\rm{Tr}} \newcommand{\tr}{\rm{tr}} \newcommand{\eqn}[1]{&\hspace{-0.7em}#1\hspace{-0.7em}&} \newcommand{\vev}[1]{\rm{$\langle #1 \rangle$}} \newcommand{\abs}[1]{\rm{$\left| #1 \right|$}} \newcommand{\eV}{\rm{eV}} \newcommand{\keV}{\rm{keV}} \newcommand{\GeV}{\rm{GeV}} \newcommand{\im}{\rm{Im}} \newcommand{\disp}{\displaystyle} \def\be{\begin{equation}} \def\ee{\end{equation}} \def\ba{\begin{eqnarray}} \def\ea{\end{eqnarray}} \def\d{\partial} \def\l{\left(} \def\r{\right)} \def\la{\langle} \def\ra{\rangle} \def\e{{\rm e}} \def\Br{{\rm Br}} \def\fixme{{\color{red} FIXME!}} \def\mc{{\color{Magenta}{MC}}} \def\pdf{{\rm p.d.f.}} \def\ARROW{{\color{JungleGreen}{$\Rrightarrow$}}\xspace} \def\be{\begin{equation}} \def\ee{\end{equation}} \def\ba{\begin{eqnarray}} \def\ea{\end{eqnarray}} \def\d{\partial} \def\l{\left(} \def\r{\right)} \def\la{\langle} \def\ra{\rangle} \def\e{{\rm e}} \def\Br{{\rm Br}} \newcommand{\av}[1]{\langle #1 \rangle} % particles \def\LstFTTT {\ensuremath{\PLambda^{*}(1520)^{0}}\xspace} \def\dll {\ensuremath{\mathrm{DLL}}\xspace} \def\Lb {\ensuremath{\PLambda_b}} % useful decays \def\BdToKpimm {\decay{\Bd}{\Kp\pim\mumu}} \def\BuToKmm {\decay{\Bu}{\Kp\mumu}} \def\BsToJPsiKst {\decay{\Bs}{\jpsi\Kstarz}} \def\BdTopsitwosKst {\decay{\Bd}{\psitwos\Kstarz}} \def\LstFTTTT {\decay{\LstFTTT}{p\Km}} %\def\LbToLstmm {\decay{\Lb}{\PLambda^{*}(1520)^{0} \mumu}} \def\LbTopKmm {\decay{\Lb}{p\Km\mumu}} \def\BuToKmm {\decay{\Bu}{\Kp\mumu}} \def\BsTophimm {\decay{\Bs}{\Pphi\mumu}} % interesting variables \def\mkpi {\ensuremath{m_{K\pi}}\xspace} \def\mkpimm{\ensuremath{m_{K\pi\mu\mu}}\xspace} %% peaking background mass hypotheses \def\mkmm {\ensuremath{m_{K\mu\mu}}\xspace} \def\mSwappKmm {\ensuremath{m_{(\pi\to p)K\mu\mu}}\xspace} \def\mSwappiK {\ensuremath{m_{(\pi\to K)K}}\xspace} \def\mSwappiKmm {\ensuremath{m_{(\pi\to K)K\mu\mu}}\xspace} \def\mSwappK {\ensuremath{m_{(\pi\to p)K}}\xspace} \def\mDoubleSwappKmm {\ensuremath{m_{(K\to p)(\pi\to K)\mu\mu}}\xspace} \def\mDoubleSwappK {\ensuremath{m_{(K\to p)(\pi\to K)}}\xspace} \def\mSwapKst {\ensuremath{m_{K\leftrightarrow\pi}}\xspace} %% some other decays \def\BsToPhimm {\decay{\Bs}{\phi\mumu}} \def\BsToPhimmFULL {\decay{\Bs}{\phi(\to\!K^{+}K^{-})\mumu}} \def\BsToKKmm {\decay{\Bs}{\Kp\Km\mumu}} % For shapo's formulas: \def\lsi{\raise0.3ex\hbox{$<$\kern-0.75em\raise-1.1ex\hbox{$\sim$}}} \def\gsi{\raise0.3ex\hbox{$>$\kern-0.75em\raise-1.1ex\hbox{$\sim$}}} %\newcommand{\ol}{\overline} \newcommand{\re}{{\rm Re}} \newcommand{\invfb}{\rm{fb^{-1}}} \newcommand{\thetal}{\theta_l} \newcommand{\thetak}{\theta_k} \newcommand{\nn}{\nonumber} \newcommand{\eq}[1]{\begin{equation} #1 \end{equation}} %\newcommand{\eqn}[1]{\begin{displaymath} #1 \end{displaymath}} \newcommand{\eqa}[1]{\begin{eqnarray} #1 \end{eqnarray}} \newcommand{\apeL}{{A_\perp^L}} \newcommand{\apeR}{{A_\perp^R}} \newcommand{\apeLR}{{A_\perp^{L,R}}} \newcommand{\apaL}{{A_\|^L}} \newcommand{\apaR}{{A_\|^R}} \newcommand{\apaLR}{{A_\|^{L,R}}} \newcommand{\azeL}{{A_0^L}} \newcommand{\azeR}{{A_0^R}} \newcommand{\azeLR}{{A_0^{L,R}}} \newcommand{\Real}{\ensuremath{\mathcal{R}e}\xspace} \newcommand{\Imag}{\ensuremath{\mathcal{I}m}\xspace} \newcommand{\delC}[1]{\delta {\cal C}_{#1}} \newcommand{\dC}[1]{{\cal C}_{#1}^{\rm NP}} \newcommand{\dCp}[1]{{\cal C}_{#1^\prime}^{\rm NP}} \renewcommand{\C}[1]{{\cal C}_{#1}} \newcommand{\Ceff}[1]{{\cal C}^{\rm eff}_{#1}} \newcommand{\Cpeff}[1]{{\cal C}^{\rm eff\prime}_{#1}} \newcommand{\Cp}[1]{{\cal C}^{\prime}_{#1}} \def\FL {\ensuremath{F_{\mathrm{L}}}\xspace} \def\ATDPH {\ensuremath{A_{\mathrm{T,PR}}^{(2)}}\xspace} \def\ATImPH {\ensuremath{A_{\mathrm{T,PR}}^{\mathrm{Im}}}\xspace} \def\ATRePH {\ensuremath{A_{\mathrm{T,PR}}^{\mathrm{Re}}}\xspace} \def\FLPH {\ensuremath{F_{\mathrm{L,PR}}}\xspace} \def\ATDKG {\ensuremath{A_{\mathrm{T,\Kstarz \gamma}}^{(2)}}\xspace} \def\ATImKG {\ensuremath{A_{\mathrm{T,\Kstarz \gamma}}^{\mathrm{Im}}}\xspace} \def\ATReKG {\ensuremath{A_{\mathrm{T,\Kstarz \gamma}}^{\mathrm{Re}}}\xspace} \def\FLKG {\ensuremath{F_{\mathrm{L,\Kstarz \gamma}}}\xspace} \def\ATD {\ensuremath{A_{\mathrm{T}}^{(2)}}\xspace} \def\ATIm {\ensuremath{A_{\mathrm{T}}^{\mathrm{Im}}}\xspace} \def\ATRe {\ensuremath{A_{\mathrm{T}}^{\mathrm{Re}}}\xspace} \def\ARROW{{\color{JungleGreen}{$\Rrightarrow$}}\xspace} \def\ARROWR{{\color{WildStrawberry}{$\Rrightarrow$}}\xspace} \definecolor{green}{rgb}{0.2,0.6,0.2} \definecolor{lightgreen}{rgb}{0.4,1,0.4} \definecolor{verylightgreen}{rgb}{0.7,1,0.7} \def\cgreen{\color{green}} \definecolor{brown}{rgb}{0.4,0.2,0.0} \def\cbrown{\color{brown}} \def\cred{\color{red}} \definecolor{darkblue}{rgb}{0.0,0.0,1.0} \def\cdarkblue{\color{darkblue}} \definecolor{darkgrey}{rgb}{0.4,0.4,0.4} \definecolor{lightgrey}{rgb}{0.7,0.7,0.7} \definecolor{verylightblue}{rgb}{0.8,0.8,1.0} \definecolor{lightblue}{rgb}{0.6,0.6,1.0} \definecolor{verylightyellow}{rgb}{1.0,1.0,0.5} \definecolor{lightyellow}{rgb}{1.0,0.7,0.3} \definecolor{darkred}{rgb}{0.6,0.0,0.0} \definecolor{green}{rgb}{0.3,0.6,0.2} \definecolor{green}{rgb}{0.3,0.7,0.4} \author{ {Marcin Chrzaszcz} (Universit\"{a}t Z\"{u}rich)} \institute{UZH} \title[B(eautiful) Physics]{B(eautiful) Physics} \date{\fixme} \begin{document} \tikzstyle{every picture}+=[remember picture] { \setbeamertemplate{sidebar right}{\llap{\includegraphics[width=\paperwidth,height=\paperheight]{bubble2}}} \begin{frame}[c]%{\phantom{title page}} \begin{center} \begin{center} \begin{columns} \begin{column}{0.9\textwidth} \flushright \bfseries \Huge {B(eautiful) Physics II} \end{column} \begin{column}{0.2\textwidth} %\includegraphics[width=\textwidth]{SHiP-2} \end{column} \end{columns} \end{center} \quad \vspace{3em} \begin{columns} \begin{column}{0.44\textwidth} \flushright \vspace{-1.8em} { \Large Marcin Chrzaszcz\\\vspace{-0.1em}\small \href{mailto:mchrzasz@cern.ch}{mchrzasz@cern.ch}} \end{column} \begin{column}{0.53\textwidth} \includegraphics[height=1.3cm]{uzh-transp} \end{column} \end{columns} \vspace{1em} % \footnotesize\textcolor{gray}{With N. Serra, B. Storaci\\Thanks to the theory support from M. Shaposhnikov, D. Gorbunov}\normalsize\\ \vspace{0.5em} \textcolor{normal text.fg!50!Comment}{Kern- und Teilchenphysik II, \\ 12 May, 2017} \end{center} \end{frame} } \begin{frame} \only<1>{\frametitle{LHCb detector - tracking} \begin{columns} \column{3in} \includegraphics[width=0.9\textwidth]{images/1050px-Lhcbview.jpg} \column{2in} \includegraphics[width=0.95\textwidth]{images/sketch.png} \end{columns} \begin{itemize} \item Excellent Impact Parameter (IP) resolution ($20~\rm \mu m$).\\ $\Rightarrow$ Identify secondary vertices from heavy flavour decays \item Proper time resolution $\sim~40~\rm fs$.\\ $\Rightarrow$ Good separation of primary and secondary vertices. \item Excellent momentum ($\delta p/p \sim 0.4 - 0.6\%$) and inv. mass resolution.\\ $\Rightarrow$ Low combinatorial background. \end{itemize} } \only<2>{\frametitle{LHCb detector - particle identification} \begin{columns} \column{3in} \includegraphics[width=0.9\textwidth]{images/1050px-Lhcbview.jpg} \column{2in} \includegraphics[width=0.95\textwidth]{images/cher.png} \end{columns} \begin{itemize} \item Excellent Muon identification $\epsilon_{\mu \to \mu} \sim 97\%$, $\epsilon_{\pi \to \mu} \sim 1-3\%$ \item Good $\PK-\Ppi$ separation via RICH detectors, $\epsilon_{\PK \to \PK} \sim 95\%$, $\epsilon_{\Ppi \to \PK} \sim 5\%$.\\ $\Rightarrow$ Reject peaking backgrounds. \item High trigger efficiencies, low momentum thresholds. Muons: $p_T > 1.76 \GeV$ at L0, $p_T > 1.0 \GeV$ at HLT1,\\ $B \to \PJpsi X $: Trigger $\sim 90\%$. \end{itemize} } \end{frame} \begin{frame}{Legacy of B-factories} \begin{center} \includegraphics[width=0.99\textwidth]{images/legacy.png} \end{center} \end{frame} \begin{frame}{CP violation in $\PBzero$ system from B factories} \begin{center} \includegraphics[width=0.99\textwidth]{images/sinbeta.png} \end{center} \end{frame} \begin{frame} \begin{center} \includegraphics[width=0.99\textwidth]{images/gamma.png} \end{center} \end{frame} \begin{frame}{$\gamma$ from $\PB \to \PD \PK$} \begin{center} \includegraphics[width=0.99\textwidth]{images/gamma2.png} \end{center} \end{frame} \begin{frame}{$\gamma$ from $\PB \to \PD \PK$} \begin{center} \includegraphics[width=0.99\textwidth]{images/gamma3.png} \end{center} \end{frame} \begin{frame}{$\vert V_{ub}$ from $\Lambda_b$} \begin{center} \includegraphics[width=0.99\textwidth]{images/vub.png} \end{center} \end{frame} \begin{frame}{$\vert V_{ub}\vert $ from $\Lambda_b$} \begin{center} \includegraphics[width=0.99\textwidth]{images/vub.png} \end{center} \end{frame} \begin{frame}{$\vert V_{ub}\vert$ from $\Lambda_b$} \begin{center} \includegraphics[width=0.99\textwidth]{images/vub2.png} \end{center} \end{frame} \begin{frame}{$\vert V_{ub}\vert$ Puzzle} \begin{center} \includegraphics[width=0.99\textwidth]{images/vub3.png} \end{center} \end{frame} \begin{frame}{$\Delta m_s$ and $\Delta m_d$} \begin{center} \includegraphics[width=0.99\textwidth]{images/dms.png} \end{center} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}{$\PB_{s/d} \to \mu \mu$} {~} \begin{minipage}{\textwidth} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{center} \begin{columns} \column{0.60\textwidth} \ARROW Golden channel for LHCb.\\ \ARROW Normalized to the $\PB \to \PK \Ppi$ and $\PB \to \PK \PJpsi$.\\ \ARROW The selection is achived by BDT trained on MC and calibrated on data. \\ %\ARROW $\Br(\PBs \to \mu \mu) = 3.0 \pm 0.6^{+0.3}_{-0.2}$,\\ \begin{exampleblock}{\begin{small}\ARROWR $\Br(\PBs \to \mu \mu) =( 3.0 \pm 0.6^{+0.3}_{-0.2})10^{-9}$\end{small} } $7.8~\sigma$ significant! \end{exampleblock} \begin{alertblock}{} \begin{small}\ARROWR $\Br(\PBd \to \mu \mu) < 3.4 \times 10^{-10}$, $90\%\rm CL$\end{small} \end{alertblock} \begin{exampleblock}{Effective lifetime} \ARROWR Sensitivity to non-scalar NP.\\ \ARROWR $\tau(\PBs \to \mu\mu)=2.04\pm0.44\pm0.05 \rm ps$ \end{exampleblock} \column{0.40\textwidth} \includegraphics[width=0.90\textwidth]{images/hidef_Fig1.png}\\ \only<1>{ \includegraphics[width=0.90\textwidth]{images/hidef_Fig22.png}\\ \includegraphics[width=0.90\textwidth]{images/hidef_Fig20.png} } \only<2>{ \includegraphics[width=0.9\textwidth]{images/life.png}\\ \includegraphics[width=0.9\textwidth]{images/hidef_Fig2bot.png}\\ } \end{columns} \end{center} \end{minipage} \vspace*{2.1cm} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}{$\PB_{s/d} \to \tau \tau$} {~} \begin{minipage}{\textwidth} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{center} \begin{columns} \column{0.50\textwidth} \ARROW NP sensitivity enhanced due to the high $\tau$ mass.\\ \ARROW More challenging: at least 2$\nu$ are escaping.\\ \ARROW Selecting $\tau \to 3\pi \nu$, $\rightarrow~9.31~\%$\\ \ARROW Normalization channel: $\PB \to \PD(\PK \pi \pi) \PDs(\PK \PK \pi)$.\\ \ARROW No peak in the $\PB$ mass window $\rightarrow$ fit the NN output. \includegraphics[width=0.85\textwidth]{images/hidef_Fig7.png} \column{0.50\textwidth} \includegraphics[width=0.85\textwidth]{images/hidef_Fig11.png}\\ \includegraphics[width=0.85\textwidth]{images/hidef_Fig2a.png}\\ \end{columns} \end{center} \end{minipage} %\textref{arXiv:1703.02508} \vspace*{2.1cm} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}{$\Lambda_b \to p \pi \mu \mu$} {~} \begin{minipage}{\textwidth} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{center} \begin{columns} \column{0.60\textwidth} \ARROW First observation of $b \to d$ in baryon system!\\ \ARROW BDT selection trained on MC\\ \ARROW Normalized to $\Lambda_b \to p \pi \PJpsi$\\ \ARROW With futher QCD improvements we will be able to to measure $\frac{\vert V_{ts}\vert }{\vert V_{td}\vert}$. \begin{exampleblock}{\begin{small}\ARROWR $\frac{\Br(\Lambda_b \to p \pi \mu \mu)}{\Br(\Lambda_b \to p \pi \PJpsi)} =0.044 \pm 0.012 \pm 0.007$\end{small} } \ARROWR $5.5~\sigma$ significance! \ARROWR First observation.\\ \end{exampleblock} \includegraphics[width=0.71\textwidth]{images/hidef_Fig3.png} \column{0.50\textwidth} \includegraphics[width=0.95\textwidth]{images/dupa.png}\\ \includegraphics[width=0.95\textwidth]{images/hidef_Fig2.png}\\ \begin{alertblock}{}\begin{small} $\Br(\Lambda_b \to p \pi \mu \mu) = (6.9 \pm 1.9 \pm 1.1^{+1.3}_{-1.0} ) \times 10^{-8}$ \end{small} \end{alertblock} \end{columns} \end{center} \end{minipage} %\textref{J. High Energy Phys. 04 (2017) 029} \vspace*{2.1cm} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}{Search for light scalars} {~} \begin{minipage}{\textwidth} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{center} \begin{columns} \column{0.55\textwidth} \ARROW Hidden sector models are gathering more and more attention.\\ \ARROW Inflaton model: new scalar then mixes with the Higgs.\\ \ARROW $\PB$ decays are sensitive as the inflaton might be light.\\ \ARROW Searched for long living particle $\chi$ produced in: $\PB \to \chi(\mu\mu) \PK$.\\ \ARROW Analysis performed blindly as a peak search.\\ \ARROW Light inflaton essentially ruled out:\\ \includegraphics[width=0.75\textwidth]{{images/hidef_Inflaton_parameter_space_log_PAPER}.png}\\ \column{0.45\textwidth} \includegraphics[width=0.95\textwidth]{images/hidef_diagram.png}\\ \includegraphics[width=0.95\textwidth]{images/hidef_excluded_limit2D.png} \end{columns} \end{center} \end{minipage} %\textref{Phys. Rev. D 95, 071101 (2017)} \vspace*{2.1cm} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}{$\PKshort \to \mu \mu$} {~} \begin{minipage}{\textwidth} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{center} \begin{columns} \column{0.60\textwidth} \ARROW $\Pproton \Pproton$ collisions create enormous amount of strange mesons.\\ \ARROW Can be used to search for $\PKshort \to \mu \mu$.\\ \ARROW SM prediction: $\Br(\PKshort \to \mu \mu)= (5.0 \pm 1.5) \times 10^{-12}$\\ \ARROW Dominated by the long distance effects.\\ \ARROW We used two types of triggers: TIS and TOS.\\ \ARROW Bkg dominated by $\PKshort \to \pi \pi$. \includegraphics[width=0.75\textwidth]{{images/hidef_Fig222}.png}\\ \column{0.4\textwidth} \includegraphics[width=0.95\textwidth]{images/hidef_Fig6.png}\\ \ARROWR No significant enhanced of signal has been observed and UL was set: \begin{alertblock}{}\begin{small} $\Br(\PKshort \to \mu \mu) <6.9 (5.8) \times 10^{-9}$ at $95 (90)\%$ CL \end{small} \end{alertblock} \end{columns} \end{center} \end{minipage} %\textref{CONF-2016-013} \vspace*{2.1cm} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}{$\PBzero \to \PKstar \Pmuon \APmuon$ decay } {~} \begin{minipage}{\textwidth} \begin{columns} \column{0.55\textwidth} \ARROW $\PBzero \to \PKstar \Pmuon \APmuon$ is a smoking gun for NP hunting!\\ \ARROW Reach angular observables makes is sensitive to different NP models\\ \ARROW In addition one can construct less form factor dependent observables: \begin{equation} P_5^{\prime}=\frac{S_5}{\sqrt{F_L(1-F_L)}}\nonumber \end{equation} \ARROW In single analysis observed $3.4~\sigma$ discrepancy in the $C_9$ WC. \column{0.45\textwidth} \includegraphics[angle=-90,width=0.9\textwidth]{images/P5p.pdf} \\ \includegraphics[angle=-90,width=0.9\textwidth]{images/AFBPad.pdf} \end{columns} \end{minipage} % \textref{JHEP 02 (2016) 104, CMS-PAS-BPH-15-008,\\ ATLAS-CONF-2017-023, Phys. Rev. Lett. 118 (2017)} \vspace*{2.1cm} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}{Branching fraction measurements of $\PBs \to \Pphi \Pmu \Pmu$} {~} \begin{minipage}{\textwidth} \begin{center} \includegraphics[height=4cm]{images/bs2phipi.png} \includegraphics[height=4cm]{images/BsSel.png} \end{center} \begin{itemize} \item Recent LHCb measurement, \href{https://cds.cern.ch/record/2029820/files/JHEP09-179.pdf}{{\color{blue}{JHEP09 (2015) 179}}}. \item Suppressed by $\frac{f_s}{f_d}$. \item Cleaner because of narrow $\Pphi$ resonance. \item $3.3~\sigma$ deviation in SM in the $1-6\GeV^2$ bin. \item Angular part in agreement with SM ($S_5$ is not accessible). \end{itemize} \end{minipage} \vspace*{2.1cm} \end{frame} \begin{frame}{Theory implications of $b \to s \ell \ell$} {~} \begin{minipage}{\textwidth} \begin{itemize} \item A fit prepared by \texttt{S. Descotes-Genon, L. Hofer, J. Matias, J. Virto}. \item The data can be explained by modifying the $C_9$ Wilson coefficient. \item Overall there is $>4~\sigma$ discrepancy wrt. the SM prediction. \end{itemize} \includegraphics[width=0.9\textwidth]{images/FIT.png} \end{minipage} %\textref{JHEP 06 (2016) 092} \vspace*{2.1cm} \end{frame} \begin{frame}{Summary} {~} \begin{minipage}{\textwidth} \ARROW LHCb is the new $\PB$-factory.\\ \ARROW A lot of consistent anomalies have been observed!\\ \ARROW Until Belle2 starts to produce results LHCb will dominate the heavy flavour physics. \end{minipage} %\textref{JHEP 06 (2016) 092} \vspace*{2.1cm} \end{frame} %%%%%%%%%%%%%%%% \backupbegin %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}{Theory implications of $b \to s \ell \ell$} {~} \begin{minipage}{\textwidth} \begin{itemize} \item A fit prepared by \texttt{S. Descotes-Genon, L. Hofer, J. Matias, J. Virto}. \item The data can be explained by modifying the $C_9$ Wilson coefficient. \item Overall there is $>4~\sigma$ discrepancy wrt. the SM prediction. \end{itemize} \includegraphics[width=0.9\textwidth]{images/FIT.png} \end{minipage} %\textref{JHEP 06 (2016) 092} \vspace*{2.1cm} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}{Reminder} {~} \begin{minipage}{\textwidth} \begin{itemize} \item \textbf{Operator Product Expansion and Effective Field Theory} \end{itemize} \begin{columns} \column{0.1in}{~} \column{3.2in} \begin{footnotesize} \begin{align*} H_{eff} = - \dfrac{4G_f}{\sqrt{2}} V V^{\prime \ast}\ \sum_i \left[\underbrace{C_i(\mu)O_i(\mu)}_\text{left-handed} +\ \underbrace{C'_i(\mu)O'_i(\mu)}_\text{right-handed}\right], \end{align*} \end{footnotesize} \column{2in} \begin{tiny} \begin{description} \item[i=1,2] Tree \item[i=3-6,8] Gluon penguin \item[i=7] Photon penguin \item[i=9.10] EW penguin \item[i=S] Scalar penguin \item[i=P] Pseudoscalar penguin \end{description} \end{tiny} \end{columns} where $C_i$ are the Wilson coefficients and $O_i$ are the corresponding effective operators. \begin{center} \includegraphics[width=0.85\textwidth,height=3cm]{images/all.png} \end{center} \end{minipage} \vspace*{2.1cm} \end{frame} \begin{frame}{Analysis of Rare decays} \begin{footnotesize} %{\Large Since a long time ago...} \\ \medskip %\hspace*{1.4cm}$\Rightarrow$ $b \to s \gamma$ and $b \to s \ell\ell $ {\bf Flavour Changing Neutral Currents} have been used as {\bf \cred Our Portal} \\ to explore the fundamental theory beyond SM. \\ %\medskip %\medskip %\hfill....... with not much success till 2013.\hspace*{1cm} %\bigskip Analysis of FCNC in a model-independent approach, effective Hamiltonian: \vspace*{-0.1cm} \begin{columns} \begin{column}{1cm} ~ \end{column} \begin{column}{8cm} \begin{equation*} b\to s\gamma(^*): {\mathcal H}^{SM}_{\Delta F=1} \propto \sum_{i=1}^{10} V_{ts}^* V_{tb} {\cgreen \C{i}} \alert{ {\cal O}_i} + \ldots \end{equation*} \vspace{-0.2cm} \begin{itemize} \item $\alert{ {\cal O}_7} = \frac{e}{16 \pi^2}m_b\, (\bar s\sigma^{\mu\nu} P_R b) F_{\mu\nu}\,$ %\quad [real or soft photon] \item $\alert{ {\cal O}_9}=\frac{e^2}{16 \pi^2}(\bar{s}\gamma_\mu P_L b)\ (\bar\ell\gamma_\mu\ell)$ %\quad [$b\to s\mu\mu$ via $Z$/hard $\gamma$] \item $\alert{ {\cal O}_{10}}=\frac{e^2}{16 \pi^2}(\bar{s}\gamma_\mu P_L b) \ (\bar\ell\gamma_\mu\gamma_5\ell)$, ... %\quad [$b\to s\mu\mu$ via $Z$] \end{itemize} \end{column} \begin{column}{5.5cm} \includegraphics[width=3.5cm]{images/qum1.png} %\includegraphics[width=3cm]{bsll.pdf} \end{column} \end{columns} %\hspace*{5cm} with no clear success yet... %\bigskip %\centerline{{\bf Goal}: \underline{Decode the short distance physics to find a smoking gun of BSM}\hspace*{2cm}} \bigskip \hspace*{0.0cm} $\bullet$ {\bf SM} Wilson coefficients up to NNLO + e.m. corrections at $\mu_{ref}=4.8$ GeV [{\cgreen Misiak et al.}]: $${\cal C}_7^{\rm SM}=-0.29,\, {\cal C}_9^{\rm SM}=4.1,\, {\cal C}_{10}^{\rm SM}=-4.3$$ %BUT, like in the film there is always the good, the bad and the ugly. \bigskip $\bullet$ {\bf NP} changes short distance ${\cal C}_i-{\cal C}_i^{\rm SM}={\cal C}_i^{\rm NP}$ and induce new operators, like ${\cal O}^\prime_{7,9,10}={\cal O}_{7,9,10}\,\, (P_L \leftrightarrow P_R)$ ... also scalars, pseudoescalar, tensor operators...%\bigskip \end{footnotesize} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}{$\PBzero \to \PKstar \Pmuon \APmuon$ kinematics} {~} \begin{minipage}{\textwidth} $\color{JungleGreen}{\Rrightarrow}$ The kinematics of $\PBzero \to \PKstar \Pmuon \APmuon$ decay is described by three angles $\thetal$, $\thetak$, $\phi$ and invariant mass of the dimuon system ($q^2)$. \only<1>{ \begin{columns} \column{0.5\textwidth} $\color{JungleGreen}{\Rrightarrow}$ $\cos \thetak$: the angle between the direction of the kaon in the $\PKstar$ ($\overline{\PKstar}$) rest frame and the direction of the $\PKstar$ ($\overline{\PKstar}$) in the $\PBzero$ ($\APBzero$) rest frame.\\ $\color{JungleGreen}{\Rrightarrow}$ $\cos \thetal$: the angle between the direction of the $\Pmuon$ ($\APmuon$) in the dimuon rest frame and the direction of the dimuon in the $\PBzero$ ($\APBzero$) rest frame.\\ $\color{JungleGreen}{\Rrightarrow}$ $\phi$: the angle between the plane containing the $\Pmuon$ and $\APmuon$ and the plane containing the kaon and pion from the $\PKstar$. \column{0.5\textwidth} \includegraphics[width=0.95\textwidth]{images/angles.png} \end{columns} } \only<2>{ {\tiny{ \eqa{\label{dist} \frac{d^4\Gamma}{dq^2\,d\!\cos\theta_K\,d\!\cos\theta_l\,d\phi}&=&\frac9{32\pi} \bigg[ J_{1s} \sin^2\theta_K + J_{1c} \cos^2\theta_K + (J_{2s} \sin^2\theta_K + J_{2c} \cos^2\theta_K) \cos 2\theta_l\nn\\[1.5mm] &&\hspace{-2.7cm}+ J_3 \sin^2\theta_K \sin^2\theta_l \cos 2\phi + J_4 \sin 2\theta_K \sin 2\theta_l \cos\phi + J_5 \sin 2\theta_K \sin\theta_l \cos\phi \nn\\[1.5mm] &&\hspace{-2.7cm}+ (J_{6s} \sin^2\theta_K + {J_{6c} \cos^2\theta_K}) \cos\theta_l + J_7 \sin 2\theta_K \sin\theta_l \sin\phi + J_8 \sin 2\theta_K \sin 2\theta_l \sin\phi \nn\\[1.5mm] &&\hspace{-2.7cm}+ J_9 \sin^2\theta_K \sin^2\theta_l \sin 2\phi \bigg]\,, \nonumber} }} $\color{JungleGreen}{\Rrightarrow}$ This is the most general expression of this kind of decay. } \end{minipage} \vspace*{2.1cm} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}{Transversity amplitudes } {~} \begin{minipage}{\textwidth} $\color{JungleGreen}{\Rrightarrow}$ One can link the angular observables to transversity amplitudes {\tiny{ \eqa{ J_{1s} & = & \frac{(2+\beta_\ell^2)}{4} \left[|\apeL|^2 + |\apaL|^2 +|\apeR|^2 + |\apaR|^2 \right] + \frac{4 m_\ell^2}{q^2} \re\left(\apeL\apeR^* + \apaL\apaR^*\right)\,,\nn\\[1mm] % J_{1c} & = & |\azeL|^2 +|\azeR|^2 + \frac{4m_\ell^2}{q^2} \left[|A_t|^2 + 2\re(\azeL^{}\azeR^*) \right] + \beta_\ell^2\, |A_S|^2 \,,\nn\\[1mm] % J_{2s} & = & \frac{ \beta_\ell^2}{4}\left[ |\apeL|^2+ |\apaL|^2 + |\apeR|^2+ |\apaR|^2\right], \hspace{0.92cm} J_{2c} = - \beta_\ell^2\left[|\azeL|^2 + |\azeR|^2 \right]\,,\nn\\[1mm] % J_3 & = & \frac{1}{2}\beta_\ell^2\left[ |\apeL|^2 - |\apaL|^2 + |\apeR|^2 - |\apaR|^2\right], \qquad J_4 = \frac{1}{\sqrt{2}}\beta_\ell^2\left[\re (\azeL\apaL^* + \azeR\apaR^* )\right],\nn \\[1mm] % J_5 & = & \sqrt{2}\beta_\ell\,\Big[\re(\azeL\apeL^* - \azeR\apeR^* ) - \frac{m_\ell}{\sqrt{q^2}}\, \re(\apaL A_S^*+ \apaR^* A_S) \Big]\,,\nn\\[1mm] % J_{6s} & = & 2\beta_\ell\left[\re (\apaL\apeL^* - \apaR\apeR^*) \right]\,, \hspace{2.25cm} J_{6c} = 4\beta_\ell\, \frac{m_\ell}{\sqrt{q^2}}\, \re (\azeL A_S^*+ \azeR^* A_S)\,,\nn\\[1mm] % J_7 & = & \sqrt{2} \beta_\ell\, \Big[\im (\azeL\apaL^* - \azeR\apaR^* ) + \frac{m_\ell}{\sqrt{q^2}}\, \im (\apeL A_S^* - \apeR^* A_S)) \Big]\,,\nn\\[1mm] % J_8 & = & \frac{1}{\sqrt{2}}\beta_\ell^2\left[\im(\azeL\apeL^* + \azeR\apeR^*)\right]\,, % \hspace{1.9cm} J_9 = \beta_\ell^2\left[\im (\apaL^{*}\apeL + \apaR^{*}\apeR)\right] \,, \label{Js}\nonumber} }} \end{minipage} \vspace*{2.1cm} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}{Link to effective operators} {~} \begin{minipage}{\textwidth} $\color{JungleGreen}{\Rrightarrow}$ So here is where the magic happens. At leading order the amplitudes can be written as: {\tiny{ \eqa{ \apeLR &=&\sqrt{2} N m_B(1- \hat s)\bigg[ (\Ceff9 + \Cpeff9) \mp (\C{10} + \Cp{10}) +\frac{2\hat{m}_b}{\hat s} (\Ceff7 + \Cpeff7) \bigg]\xi_{\bot}(E_{K^*}) \nn \\[2mm] \apaLR &=& -\sqrt{2} N m_B (1-\hat s)\bigg[(\Ceff9 - \Cpeff9) \mp (\C{10} - \Cp{10}) +\frac{2\hat{m}_b}{\hat s}(\Ceff7 - \Cpeff7) \bigg] \xi_{\bot}(E_{K^*}) \nn \\[2mm] \azeLR &=& -\frac{N m_B (1-\hat s)^2}{2 \hat{m}_{K^*} \sqrt{\hat s}} \bigg[ (\Ceff9 - \Cpeff9) \mp (\C{10} - \Cp{10}) + 2\hat{m}_b (\Ceff7 - \Cpeff7) \bigg]\xi_{\|}(E_{K^*}), \label{LargeRecoilAs}\nonumber} }} where $\hat s = q^2 /m_B^2$, $\hat{m}_i = m_i/m_B$. The $\xi_{\|,\bot }$ are the form factors. \\ \only<1>{ \ARROW In practice one measures normalized $J$ by branching fractions: \begin{equation*} S_i/A_i = \frac{J_i \pm \overline{J}_i}{d\Gamma + d \overline{\Gamma}/dq^2} \end{equation*} } \only<2>{ $\color{JungleGreen}{\Rrightarrow}$ Now we can construct observables that cancel the $\xi$ form factors at leading order: \eq{P_5^{\prime} = \dfrac{J_5+\bar{J}_5}{2\sqrt{-(J_2^c+\bar{J}_2^c)(J_2^s+\bar{J}_2^s)} }\nonumber } } \end{minipage} \vspace*{2.1cm} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame} \begin{center} \begin{Huge} LHCb measurement of $\PBd \to \PKstar \Pmu \Pmu$ \end{Huge} \end{center} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}{Multivariate simulation} {~} \begin{minipage}{\textwidth} \begin{columns} \column{0.5\textwidth} \begin{itemize} \begin{footnotesize} \item PID, kinematics and isolation variables used in a Boosted Decision Tree (BDT) to discriminate signal and background. \item BDT with k-Folding technique. \item Completely data driven. \end{footnotesize} \end{itemize} \begin{center} \includegraphics[width=0.70\textwidth]{images/Chopping_Distrib.pdf} \end{center} \column{0.5\textwidth} \includegraphics[angle=-90,width=0.82\textwidth]{images/Fig1.pdf} \\ \includegraphics[width=0.88\textwidth]{images/fold.png} \end{columns} \end{minipage} \vspace*{2.1cm} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}{Multivariate simulation, efficiency} {~} \begin{minipage}{\textwidth} \begin{footnotesize} \ARROW BDT was also checked in order not to bias our angular distribution: \begin{center} \includegraphics[angle=-90,width=0.8\textwidth]{images/BDT_Eff_Comp.pdf} \end{center} \ARROW The BDT has small impact on our angular observables. We will correct for these effects later on. \end{footnotesize} \end{minipage} \vspace*{2.1cm} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}{Detector acceptance} {~} \begin{minipage}{\textwidth} \begin{footnotesize} \begin{columns} \column{0.6\textwidth} \begin{itemize} \item Detector distorts our angular distribution. \item We need to model this effect. \item 4D function is used: \begin{align*} \epsilon (\cos \thetal, \cos \thetak, \phi, q^2) = \\\sum_{ijkl} P_i(\cos \thetal) P_j(\cos \thetak ) P_k(\phi) P_l(q^2), \end{align*} where $P_i$ is the Legendre polynomial of order $i$. \item We use up to $4^{th}, 5^{th}, 6^{th}, 5^{th}$ order for the $\cos \thetal, \cos \thetak, \phi, q^2$. \item The coefficients were determined using Method of Moments, with a huge simulation sample. \item The simulation was done assuming a flat phase space and reweighing the $q^2$ distribution to make is flat. \item To make this work the $q^2$ distribution needs to be reweighted to be flat. \end{itemize} %\includegraphics[width=0.75\textwidth]{images/q2PHSP.png} \column{0.4\textwidth} \only<1>{ \includegraphics[width=0.99\textwidth]{images/q2PHSP.png}\\ \includegraphics[width=0.99\textwidth]{images/q2PHSPw.png} } \only<2>{ \includegraphics[width=0.99\textwidth]{images/det.png} } \end{columns} \end{footnotesize} \end{minipage} \vspace*{2.1cm} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}{Control channel} {~} \begin{minipage}{\textwidth} \begin{footnotesize} \begin{itemize} \item We tested our unfolding procedure on $\PB \to \PJpsi \PKstar$. \item The result is in perfect agreement with other experiments and our different analysis of this decay. \end{itemize} \end{footnotesize} \begin{center} \includegraphics[angle=-90,width=0.4\textwidth]{images/mlogjpsi.pdf} \includegraphics[angle=-90,width=0.4\textwidth]{images/mkpijpsi.pdf}\\ \includegraphics[width=0.99\textwidth]{images/angles3.png} \end{center} \end{minipage} \vspace*{2.1cm} \end{frame} \begin{frame}{Results} {~} \begin{footnotesize} \begin{minipage}{\textwidth} \only<3> { \ARROW Method of Moments allowed us to measure for the first time a new observable: } \begin{center} \only<1>{ \includegraphics[angle=-90,width=0.49\textwidth]{images/compare_FLPad.pdf} \includegraphics[angle=-90,width=0.49\textwidth]{images/compare_S3Pad.pdf}\\ \includegraphics[angle=-90,width=0.49\textwidth]{images/compare_S4Pad.pdf} \includegraphics[angle=-90,width=0.49\textwidth]{images/compare_S5Pad.pdf} } \only<2>{ \includegraphics[angle=-90,width=0.49\textwidth]{images/compare_AFBPad.pdf} \includegraphics[angle=-90,width=0.49\textwidth]{images/compare_S7Pad.pdf}\\ \includegraphics[angle=-90,width=0.49\textwidth]{images/compare_S8Pad.pdf} \includegraphics[angle=-90,width=0.49\textwidth]{images/compare_S9Pad.pdf} } \only<3>{ \includegraphics[angle=-90,width=0.75\textwidth]{images/S6cPad.pdf} } \end{center} \end{minipage} \end{footnotesize} \vspace*{2.1cm} \end{frame} \begin{frame}{Compatibility with SM} {~} \begin{minipage}{\textwidth} \begin{columns} \column{0.1in} {~} \column{2in} \ARROW Use \texttt{EOS} software package to test compatibility with SM.\\ \ARROW Perform the $\chi^2$ fit to the measured: \begin{center} \begin{align*} F_L, A_{FB}, S_{3,..., 9} . \end{align*} \end{center} \ARROW Float a vector coupling: $\Re(C_9)$.\\ \ARROW Best fit is found to be $3.4~\sigma$ away from the SM. \column{3in} \begin{align*} \Delta \Re (C_9) \equiv \Re(C_9)^{{\rm fit}} - \Re(C_9)^{{\rm SM}} = -1.03 \end{align*} \includegraphics[angle=-90,width=0.95\textwidth]{images/wilsonchi2.pdf} \end{columns} \end{minipage} \vspace*{2.1cm} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}{Branching fraction measurements of $\PB \to \PKstar^{\pm} \Pmu \Pmu$} {~} \includegraphics[width=0.5\textwidth]{images/ksmumu_BF.png} \includegraphics[width=0.5\textwidth]{images/kmumu_BF.png} \begin{center} \begin{columns} \column{0.4\textwidth} \begin{itemize} \item Despite large theoretical errors the results are consistently smaller than SM prediction. \end{itemize} \column{0.6\textwidth} \includegraphics[width=0.87\textwidth]{images/bukst_BF.png} \end{columns} \end{center} \vspace*{2.1cm} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}{Branching fraction measurements of $\PBs \to \Pphi \Pmu \Pmu$} {~} \begin{minipage}{\textwidth} \begin{center} \includegraphics[width=0.65\textwidth]{images/bs2phipi.png}\\ \end{center} \begin{itemize} \item Recent LHCb measurement [JHEPP09 (2015) 179]. \item Suppressed by $\frac{f_s}{f_d}$. \item Cleaner because of narrow $\Pphi$ resonance. \item $3.3~\sigma$ deviation in SM in the $1-6\GeV^2$ bin. \end{itemize} \end{minipage} \vspace*{2.1cm} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}{Branching fraction measurements of $\PLambdab \to \PLambda \Pmu \Pmu$} {~} \begin{minipage}{\textwidth} \begin{center} \only<1>{ \includegraphics[width=0.65\textwidth]{images/Lb_BR.png} } \only<2>{ \includegraphics[width=0.45\textwidth]{images/Lblow.png} \includegraphics[width=0.45\textwidth]{images/Lbhigh.png} } \end{center} \begin{itemize} \item This years LHCb measurement [JHEP 06 (2015) 115]]. \item In total $\sim 300$ candidates in data set. \item Decay not present in the low $q^2$. \end{itemize} \end{minipage} \vspace*{2.1cm} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}{Lepton universality test} {~} \begin{minipage}{\textwidth} \begin{columns} \column{3.0in} \includegraphics[width=0.9\textwidth]{images/uni2.png} \begin{itemize} \item Challenging analysis due to bremsstrahlung. \item Migration of events modeled by MC. \item Correct for bremsstrahlung. \item Take double ratio with $\PBplus \to \PJpsi \PKplus$ to cancel systematics. \item In $3\invfb$, LHCb measures $R_K=0.745^{+0.090}_{-0.074}(stat.)^{+0.036}_{-0.036}(syst.)$ \item Consistent with SM at $2.6\sigma$. \end{itemize} \column{2.0in} \includegraphics[width=0.99\textwidth]{images/RK.png}\\ \begin{itemize} \item \href{http://arxiv.org/abs/1406.6482}{Phys. Rev. Lett. 113, 151601 (2014)} \end{itemize} \end{columns} \end{minipage} \vspace*{2.1cm} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}\frametitle{Grab it While it's Hot!} %https://indico.cern.ch/event/580620/ \ARROW Yesterday(18.04) we shown a new preliminary result: \href{https://indico.cern.ch/event/580620/}{{\color{blue}CERN Seminar}}\\ \ARROW We measured the ratio: \begin{equation*} R_{\PKstar}= \frac{\mathcal{B}( \PB \to \PKstar \Pmu \Pmu)}{\mathcal{B}( \PB \to \PKstar \Pe \Pe)} \end{equation*} \pause \begin{columns} \column{0.4\textwidth} \ARROW Measurement performed in two $q^2$ bins. \\ \ARROW Normalized in double ratio to $\PB \to \PKstar \PJpsi$.\\ \includegraphics[width=0.95\textwidth]{images/plot.png} \column{0.6\textwidth} \begin{center} \includegraphics[width=0.95\textwidth]{images/RKstar.png} \end{center} \end{columns} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}{There is more!} {~} \begin{minipage}{\textwidth} \begin{itemize} \item There is one other LUV decay recently measured by LHCb. \item $R(\PDstar)=\dfrac{\mathcal{B}(\PB \to \PDstar \Ptau \Pnu)}{\mathcal{B}(\PB \to \PDstar \Pmu \Pnu)}$ \item Clean SM prediction: $R(\PDstar)=0.252(3)$, PRD 85 094025 (2012) \item LHCb result: $R(\PDstar)= 0.336 \pm 0.027 \pm 0.030$, HFAG average: $R(\PDstar)=0.322 \pm 0.022$ \item $3.9~\sigma$ discrepancy wrt. SM prediction \end{itemize} \begin{center} \includegraphics[width=0.52\textwidth]{images/RDstar.png} \end{center} \end{minipage} \vspace*{2.1cm} \end{frame} \begin{frame} \begin{center} \begin{Huge} Global fit to $\Pbeauty \to \Pstrange \ell \ell$ measurements \end{Huge} \end{center} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}{Theory implications} {~} \begin{minipage}{\textwidth} \begin{itemize} \item The data can be explained by modifying the $C_9$ Wilson coefficient. \item Overall there is around $4.5~\sigma$ discrepancy wrt. SM. \end{itemize} \includegraphics[width=0.9\textwidth]{images/C9.png} \end{minipage} \vspace*{2.1cm} \end{frame} \begin{frame}\frametitle{Grab it While it's Hotter!} %https://indico.cern.ch/event/580620/ \ARROW Today(19.04) there was already first paper with the phenomenological work about this measurement: \href{https://arxiv.org/pdf/1704.05340.pdf}{arxiv::1704.05340} J. Matias, et. al.\\ \begin{center} \includegraphics[width=0.99\textwidth]{images/quim1.png} \end{center} \begin{columns} \column{0.5\textwidth} \includegraphics[width=0.75\textwidth]{images/quim2.png} \column{0.5\textwidth} \includegraphics[width=0.75\textwidth]{images/quim3.png} \end{columns} \end{frame} \backupend \end{document}