% vim: set sts=4 et: \input{./header} \input{./shortcuts} \graphicspath{{images/}{image_install/}} \newcommand{\sheetnr}{1} \newcommand{\issued}{25.03.2017} \newcommand{\dueUni}{31.03.2017} %\newcommand{\version}{1} % if you need to release a corrected version, uncomment and increase this counter \newcommand{\dd}[1][]{\text{d}^{#1}} \newcommand{\Mod}{{\rm mod\,}} \DeclareMathOperator{\tr}{Tr} \showsolutions \startsheet \setcounter{exercise}{1} \exercise[3.5]{Conservation laws} Under which interactions are the following interactions possible (please not that some of the processes) are not possible at all): \begin{itemize} \item $\pi^- p \to \pi^0 n$ \item $\pi^0 \to \gamma \gamma \gamma$ \item $\pi^0 \to \gamma \gamma$ \item $\pi^+ \to \mu^+ \nu_{\mu}$ \item $\pi^+ \to \mu^+ \bar{\nu}_{\mu}$ \item $p \bar{p} \to \Lambda_0 \Lambda_0$ \item $p \bar{p} \to \gamma$ \end{itemize} \setcounter{exercise}{2} \exercise[2.0]{Forbade decays} Which conservation laws forbade the following decays: \begin{itemize} \item $n \to p e^-$ \item $n \to \pi^+ e^-$ \item $n \to p \pi^-$ \item $n \to p \gamma^-$ \end{itemize} \setcounter{exercise}{3} \exercise[2.0]{Suppress decays} Which conservation laws forbade or suppress the following processes: \begin{itemize} \item $p n \to p \Lambda^0$ \item $K^+ \to \pi^- \pi^+ \pi^- \pi^+ \pi^+ \pi^0 $ \item $\Lambda_0 \to K^0 \pi^0$ \item $K \to \pi \gamma$ \item $K^- \to \pi^0 e^-$ \item $K^+ \to \pi^+ \pi^- \pi^0$ \end{itemize} \setcounter{exercise}{4} \exercise[16]{Pion decay} Please calculate the matrix element of the dacay $\pi^- \to \mu \nu_{\mu}$. The form factor for the pion has the form of $F^{\mu} = p_{\mu} f_{\pi}$, where $f_{\pi}$ is so called pion decay constant and is calculated on lattice to be $f_{\pi}=130~\rm MeV$. Using the matrix element calculate the $\Gamma$. Calculate also the $\Gamma$ for the $\pi^- \to e \nu_{e}$. Why is the electron mode different then the muon one? Please read about the ''Casimir trick'' in the D. Griffiths handbook (Sec. 7.7). \setcounter{exercise}{5} \exercise[16]{Muon decay} Calculate the matrix element for the dacay of the muon: $\mu^- \to e^- \nu_{\mu} \bar{\nu_e}$. Using ''Golden Rule'' calculate the calculate the $\Gamma$ and the lifetime of the muon. \setcounter{exercise}{6} \exercise[12]{Muon decay simulation} Please simulate the muon decay from exercise 5 using ROOT. Please assume for the moment flat phase space (aka matrix element =1). The example can be found: \url{https://root.cern.ch/root/html/tutorials/physics/PhaseSpace.C.html} having simulate this decay please calculate the electron energy in the muon central of mass and draw it for your simulated events. Simulate at least 100.000 events. \clearpage \iffalse \begin{solution} \begin{subtasks} \task The answers are: \begin{center} \begin{tabular}{| l | l | l |} \hline Decimal: & Hexadecimal: & Binary: \\ \hline $12$ & C & 1100 \\ \hline $53$ & 35 & 110101 \\ \hline $123$ & 7B & 1111011 \\ \hline $431$ & 1AF & 110101111 \\ \hline \end{tabular} \end{center} A simple algorithm to convert an integer $N$ from decimal to hexadecimal is the following: \begin{enumerate} \item[1.] set $i=1$. \item[2.] Compute $h_i = N_{\Mod 16}$, i.e.~the remainder of the integer (Euclidean) division $N\div16$. \item[3.] Use the hexadecimal “dictionary" to convert $h_i$: \begin{tabular}{| l | l | l | l | l | l | l | l | l | l | l | l | l | l | l | l | l |} \hline $h$: & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\ \hline hex: & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & A & B & C & D & E & F \\ \hline \end{tabular} \item[4.] Replace $N \rightarrow (N - h_i)/16$, set $i=i+1$ and go back to step 2 until $N=0$. \item[5.] The number in hexadecimal representation is: $h_n h_{n-1} \cdots h_2 h_1$ \end{enumerate} This algorithm is actually valid for every base change. Let us apply the algorithm above. $N=12$: \begin{align*} & i=1; & \\ & h_1 = 12_{\Mod 16} = 12 \rightarrow \boxed{C}; & \\ & N \rightarrow (N - 12)/16 =0; \\ &{\rm end:~} 12_{10} = \boxed{C_{16}} \end{align*} % $N=53$: \begin{align*} & i=1 && i=2 \\ & h_1 = 53_{\Mod 16} = 5 \rightarrow \boxed{5}; & & h_2 = 3_{\Mod 16} = 3 \rightarrow \boxed{3} \\ & N \rightarrow (N - 5)/16 =3; && N \rightarrow (N - 3)/16 =0; \\ &&&{\rm end:~} 53_{10} = \boxed{35_{16}} \end{align*} % $N=123$: \begin{align*} & i=1 && i=2 \\ & h_1 = 123_{\Mod 16} = 11 \rightarrow \boxed{B}; & & h_2 = 7_{\Mod 16} = 7 \rightarrow \boxed{7} \\ & N \rightarrow (N - 11)/16 =7; && N \rightarrow (N - 7)/16 =0; \\ &&&{\rm end:~} 123_{10} = \boxed{7B_{16}} \end{align*} % $N=431$: \begin{align*} & i=1 && i=2 &&i=3\\ & h_1 = 431_{\Mod 16} = 15 \rightarrow \boxed{F}; && h_2 = 26_{\Mod 16} = 10 \rightarrow \boxed{A} && h_3 = 1_{\Mod 16} = 1 \rightarrow \boxed{1} \\ & N \rightarrow (N - 11)/16 =26; && N \rightarrow (N - 10)/16 =1; && N \rightarrow (N - 1)/16 =0; \\ &&&&&{\rm end:~} 431_{10} = \boxed{1AF_{16}} \end{align*} % The former algorithm can be applied also for the conversion in binary. One just need to change $\Mod 16 \rightarrow \Mod 2$ in step 2 and to divide by $2$ (not by $16$) in step 4. $N=12$: \begin{align*} & i=1 && i=2 && i=3 && i=4 \\ & h_1 = 12_{\Mod 2} = \boxed{0} && h_2 = 6_{\Mod 2} = \boxed{0} && h_3 = 3_{\Mod 2} = \boxed{1} && h_4 = 1_{\Mod 2} = \boxed{1} \\ & N \rightarrow (N - 0)/2 =6; && N \rightarrow (N - 0)/2 =3; && N \rightarrow (N - 1)/2 =1; && N \rightarrow (N - 1)/2 =0; \\ &&&&&&&{\rm end:~} 12_{10} = \boxed{1100_{2}} \end{align*} % $N=53$: \begin{align*} & i=1 && i=2 && i=3 && i=4 \\ & h_1 = 53_{\Mod 2} = \boxed{1} && h_2 = 26_{\Mod 2} = \boxed{0} && h_3 = 13_{\Mod 2} = \boxed{1} && h_4 = 6_{\Mod 2} = \boxed{0} \\ & N \rightarrow (N - 1)/2 =26; && N \rightarrow (N - 0)/2 =13; && N \rightarrow (N - 1)/2 =6; && N \rightarrow (N - 0)/2 =3; \\ % \\ % & i=5 && i=6 \\ & h_5 = 3_{\Mod 2} = \boxed{1} && h_6 = 1_{\Mod 2} = \boxed{1} \\ & N \rightarrow (N - 1)/2 =1; && N \rightarrow (N - 1)/2 =0; \\ &&&{\rm end:~} 53_{10} = \boxed{110101_{2}} \end{align*} % $N=123$: \begin{align*} & i=1; && i=2 && i=3 && i=4 \\ & h_1 = 123_{\Mod 2} = \boxed{1} && h_2 = 61_{\Mod 2} = \boxed{1} && h_3 = 30_{\Mod 2} = \boxed{0} && h_4 = 15_{\Mod 2} = \boxed{1} \\ & N \rightarrow (N - 1)/2 =61; && N \rightarrow (N - 1)/2 =30; && N \rightarrow (N)/2 =15; && N \rightarrow (N - 1)/2 =7; \\ % \\ % & i=5 && i=6 && i=7\\ & h_5 = 7_{\Mod 2} = \boxed{1} && h_6 = 3_{\Mod 2} = \boxed{1} && h_7 = 1_{\Mod 2} = \boxed{1} \\ & N \rightarrow (N - 1)/2 =3; && N \rightarrow (N-1)/2 =1; && N \rightarrow (N - 1)/2 =0; \\ &&&{\rm end:~} 53_{10} = \boxed{1111011_{2}} \end{align*} % $N=431$: \begin{align*} & i=1 && i=2 && i=3 && i=4,5,6,7,8,9 \\ & h_1 = 431_{\Mod 2} = \boxed{1} && h_2 = 215_{\Mod 2} = \boxed{1} && h_3 = 107_{\Mod 2} = \boxed{1} && \dots ({\rm see~}N=53) \\ & N \rightarrow (N - 1)/2 =215; && N \rightarrow (N - 1)/2 = 107; && N \rightarrow (N )/2 =53; && \dots \\ \\ & {\rm end:~} 431_{10} = \boxed{110101111_{2}} \end{align*} % \task One needs to understand that the decimal representation of an integer is just a short-cut notation. With $124_{10}$ one really means: \begin{equation*} 124_{10} = 1 \cdot 10^2 + 2 \cdot 10^1 + 4 \cdot 10^0 ~. \end{equation*} % This is valid in \emph{every} basis. Thus is easy to find: % \begin{align*} 10011_{2} &= (1 \cdot 2^4 + 0 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0)_{10} = (16+2+1)_{10} = 19_{10} \\ 1101_{2} &=(1 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0)_{10} = (8+4+1)_{10} = 13_{10} \\ A2_{16} &=(A \cdot 16^1 + 2 \cdot 16^0)_{10} = (10 \cdot 16 + 2)_{10} = 162_{10} \\ 1AD_{16} &=(1 \cdot 16^2 + A \cdot 16^1 + D \cdot 16^0)_{10} = (1 \cdot 256 + 10 \cdot 16 + 13)_{10} = 429_{10} \end{align*} % \task Before converting a value into a floating number, one should convert it into a binary expression. We already know how to convert $-431_{10}$. To convert a non-integer number $N$ into binary, one can use an extension of the algorithm used in exercise (1a). \begin{enumerate} \item[1.] i=0. \item[2.] Take $\lfloor N \rfloor$ (i.e.~integer part of $N$) and convert it into a binary expression (call it $h_i$). \item[3.] Substitute $N \rightarrow 2(N - \lfloor N \rfloor)$. \item[4.] Set $i=i+1$ and go back to step 2 until $N=0$ or you have reached the desired precision. \item[5.] Your number is $h_0. h_1 h_2 \dots h_n$ \end{enumerate} % Let us convert $0.3125$ with the mentioned algorithm: % \begin{align*} & i=0 && i=1 && i=2 \\ & h_0 = \lfloor 0.3125 \rfloor = \boxed{0} && h_1 = \lfloor 0.625 \rfloor = \boxed{0} && h_2 = \lfloor 1.25 \rfloor = \boxed{1} \\ & N \rightarrow 2(N - \lfloor N \rfloor) = 0.625; && N \rightarrow 2(N - \lfloor N) \rfloor) = 1.25; && N \rightarrow 2(N - \lfloor N) \rfloor) = 0.5; \\ \\ & i=3 && i=4 \\ & h_3 = \lfloor 0.5 \rfloor = \boxed{0} && h_1 = \lfloor 1 \rfloor = \boxed{1}\\ & N \rightarrow 2(N - \lfloor N \rfloor) = 1; && N \rightarrow 2(N - \lfloor N) \rfloor = 0; \\ &&& {\rm end:~} 0.3125_{10} = \boxed{0.0101_{2}} \end{align*} % Thus $0.3125_{10} = 0.0101_{2} = (1.01 \cdot 2^{-2})_2$. Thus: % \begin{itemize} \item[-] The sign is $+ \rightarrow 0$ \item[-] The exponent is $-2$. Exponent+bias: $-2+15=13=01101_2$. \item[-] The mantissa is $1.010$. The first digit ($1.$) is not stored, and we store $0100000000$. \end{itemize} % Thus we have: % \begin{equation*} 0.3125_{10} \rightarrow \underbrace{0}_{\rm sign} \underbrace{01101}_{\rm exp+bias} \underbrace{0100000000}_{\rm mantissa} \rightarrow \underbrace{00110101}_{\rm byte~1} ~ \underbrace{00000000}_{\rm byte~2} \rightarrow \underbrace{35~~00}_{\rm hexadecimal} \end{equation*} % For $-431_{10}$ the exercise is similar. We have already computed $431_{10}=110101111 = 1.10101111 \cdot 2^{8}$. Thus: % \begin{itemize} \item[-] The sign is $- \rightarrow 1$ \item[-] The exponent is $8$. Exponent+bias: $8+15=23=10111_2$. \item[-] The mantissa is $1.10101111$. The first digit ($1.$) is not stored, and we store $1010111100$. \end{itemize} % Thus we have: % \begin{equation*} -431_{10} \rightarrow \underbrace{1}_{\rm sign} \underbrace{10111}_{\rm exp+bias} \underbrace{1010111100}_{\rm mantissa} \rightarrow \underbrace{11011110}_{\rm byte~1} ~ \underbrace{10111100}_{\rm byte~2} \rightarrow \underbrace{\rm DE~~BC}_{\rm hexadecimal} \end{equation*} % \task We have already found the hexadecimal bytes representation for our floating numbers: $0.3125_{10}=35~00$ and $-431_{10}={\rm DE~BC}$. In big endian, these bytes would be sequentially stored in the memory “from left to right", while in little endian the sequential storage would go in the other direction. Explicitly: % \begin{align*} 0.3125_{10} \rightarrow ~& {\rm big~endian:~} \underbrace{\boxed{35}}_{\rm slot~i}~\underbrace{\boxed{00}}_{\rm slot~i+1} & -431_{10} \rightarrow ~& {\rm big~endian:~} \underbrace{\boxed{\rm DE}}_{\rm slot~i}~\underbrace{\boxed{\rm BC}}_{\rm slot~i+1} \\ \rightarrow ~& {\rm little~endian:~} \underbrace{\boxed{00}}_{\rm slot~i}~\underbrace{\boxed{35}}_{\rm slot~i+1} & \rightarrow ~& {\rm little~endian:~} \underbrace{\boxed{\rm BC}}_{\rm slot~i}~\underbrace{\boxed{\rm DE}}_{\rm slot~i+1} \end{align*} % \task The number $2050$ expressed in binary is $100000000010$. In {\it binary16} its representation is: % \begin{equation} \underbrace{0}_{\rm sign} \underbrace{11010}_{\rm exp+bias} \underbrace{0000000001}_{\rm mantissa} ~~\Rightarrow~~ + \; 2^{26 - 15} \times 1.0000000001 = 1.0000000001 \times 2^{11} \end{equation} % From this representation is already clear that the {\it binary16} precision doesn't allow to store numbers like $2049$ or $2051$ at all, since this would require a 12 digit precision. Thus, both in INPUT A and in INPUT B, the code is requiring the machine a precision it cannot reach. As it should be clear from how the number $2050$ is stored, the machine has reached it maximal precision and it cannot store the number $2051$ whatsoever. This means that at each step in which the number $2051$ is met, the machine truncate it consistently with its maximum working precision, returning $2050$. INPUT C is well written and works fine. Differently from INPUT B, this time the machine works \emph{at first} with numbers of order 1, which are manipulated without difficulties. For example, the {\it binary16} representation of $5$ would be: % \begin{equation} \underbrace{0}_{\rm sign} \underbrace{10001}_{\rm exp+bias} \underbrace{0100000000}_{\rm mantissa -1} ~~\Rightarrow~~ + \; 2^{17 - 15} \times 1.0100000000 = 1.01 \times 2^2 = 101_2 \end{equation} % where indeed $101_2=5_{10}$. After having dealt with all order-1 numbers, it finally sums them to 2050, getting 2060 which is a perfectly storable number. In conclusion, one should be aware of the bad consequences of requiring the machine to work with more significant digits than its maximum. \end{subtasks} \end{solution} \fi \end{document}