\documentclass[11 pt,xcolor={dvipsnames,svgnames,x11names,table}]{beamer} \usepackage[english]{babel} \usepackage{polski} \usetheme[ bullet=circle, % Other option: square bigpagenumber, % circled page number on lower right topline=true, % colored bar at the top of the frame shadow=false, % Shading for beamer blocks watermark=BG_lower, % png file for the watermark ]{Flip} %\logo{\kern+1.em\includegraphics[height=1cm]{SHiP-3_LightCharcoal}} \usepackage[lf]{berenis} \usepackage[LY1]{fontenc} \usepackage[utf8]{inputenc} %\usepackage{emerald} \usefonttheme{professionalfonts} \usepackage[no-math]{fontspec} \defaultfontfeatures{Mapping=tex-text} % This seems to be important for mapping glyphs properly \setmainfont{Gillius ADF} % Beamer ignores "main font" in favor of sans font \setsansfont{Gillius ADF} % This is the font that beamer will use by default % \setmainfont{Gill Sans Light} % Prettier, but harder to read \setbeamerfont{title}{family=\fontspec{Gillius ADF}} \input t1augie.fd %\newcommand{\handwriting}{\fontspec{augie}} % From Emerald City, free font %\newcommand{\handwriting}{\usefont{T1}{fau}{m}{n}} % From Emerald City, free font % \newcommand{\handwriting}{} % If you prefer no special handwriting font or don't have augie %% Gill Sans doesn't look very nice when boldfaced %% This is a hack to use Helvetica instead %% Usage: \textbf{\forbold some stuff} %\newcommand{\forbold}{\fontspec{Arial}} \usepackage{graphicx} \usepackage[export]{adjustbox} \usepackage[absolute,overlay]{textpos} \usepackage{rotating} \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{colortbl} \usepackage{mathrsfs} % For Weinberg-esque letters \usepackage{cancel} % For "SUSY-breaking" symbol \usepackage{slashed} % for slashed characters in math mode \usepackage{bbm} % for \mathbbm{1} (unit matrix) \usepackage{amsthm} % For theorem environment \usepackage{multirow} % For multi row cells in table \usepackage{arydshln} % For dashed lines in arrays and tables \usepackage{siunitx} \usepackage{xhfill} \usepackage{grffile} \usepackage{textpos} \usepackage{subfigure} \usepackage{tikz} %\usepackage{hepparticles} \usepackage[italic]{hepparticles} \usepackage{hepnicenames} % Drawing a line \tikzstyle{lw} = [line width=20pt] \newcommand{\topline}{% \tikz[remember picture,overlay] {% \draw[crimsonred] ([yshift=-23.5pt]current page.north west) -- ([yshift=-23.5pt,xshift=\paperwidth]current page.north west);}} % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % \usepackage{tikzfeynman} % For Feynman diagrams \usetikzlibrary{arrows,shapes} \usetikzlibrary{trees} \usetikzlibrary{matrix,arrows} % For commutative diagram % http://www.felixl.de/commu.pdf \usetikzlibrary{positioning} % For "above of=" commands \usetikzlibrary{calc,through} % For coordinates \usetikzlibrary{decorations.pathreplacing} % For curly braces % http://www.math.ucla.edu/~getreuer/tikz.html \usepackage{pgffor} % For repeating patterns \usetikzlibrary{decorations.pathmorphing} % For Feynman Diagrams \usetikzlibrary{decorations.markings} \tikzset{ % >=stealth', %% Uncomment for more conventional arrows vector/.style={decorate, decoration={snake}, draw}, provector/.style={decorate, decoration={snake,amplitude=2.5pt}, draw}, antivector/.style={decorate, decoration={snake,amplitude=-2.5pt}, draw}, fermion/.style={draw=gray, postaction={decorate}, decoration={markings,mark=at position .55 with {\arrow[draw=gray]{>}}}}, fermionbar/.style={draw=gray, postaction={decorate}, decoration={markings,mark=at position .55 with {\arrow[draw=gray]{<}}}}, fermionnoarrow/.style={draw=gray}, gluon/.style={decorate, draw=black, decoration={coil,amplitude=4pt, segment length=5pt}}, scalar/.style={dashed,draw=black, postaction={decorate}, decoration={markings,mark=at position .55 with {\arrow[draw=black]{>}}}}, scalarbar/.style={dashed,draw=black, postaction={decorate}, decoration={markings,mark=at position .55 with {\arrow[draw=black]{<}}}}, scalarnoarrow/.style={dashed,draw=black}, electron/.style={draw=black, postaction={decorate}, decoration={markings,mark=at position .55 with {\arrow[draw=black]{>}}}}, bigvector/.style={decorate, decoration={snake,amplitude=4pt}, draw}, } % TIKZ - for block diagrams, % from http://www.texample.net/tikz/examples/control-system-principles/ % \usetikzlibrary{shapes,arrows} \tikzstyle{block} = [draw, rectangle, minimum height=3em, minimum width=6em] \usetikzlibrary{backgrounds} \usetikzlibrary{mindmap,trees} % For mind map \newcommand{\degree}{\ensuremath{^\circ}} \newcommand{\E}{\mathrm{E}} \newcommand{\Var}{\mathrm{Var}} \newcommand{\Cov}{\mathrm{Cov}} \newcommand\Ts{\rule{0pt}{2.6ex}} % Top strut \newcommand\Bs{\rule[-1.2ex]{0pt}{0pt}} % Bottom strut \graphicspath{{images/}} % Put all images in this directory. Avoids clutter. % SOME COMMANDS THAT I FIND HANDY % \renewcommand{\tilde}{\widetilde} % dinky tildes look silly, dosn't work with fontspec \newcommand{\comment}[1]{\textcolor{comment}{\footnotesize{#1}\normalsize}} % comment mild \newcommand{\Comment}[1]{\textcolor{Comment}{\footnotesize{#1}\normalsize}} % comment bold \newcommand{\COMMENT}[1]{\textcolor{COMMENT}{\footnotesize{#1}\normalsize}} % comment crazy bold \newcommand{\Alert}[1]{\textcolor{Alert}{#1}} % louder alert \newcommand{\ALERT}[1]{\textcolor{ALERT}{#1}} % loudest alert %% "\alert" is already a beamer pre-defined \newcommand*{\Scale}[2][4]{\scalebox{#1}{$#2$}}% \def\Put(#1,#2)#3{\leavevmode\makebox(0,0){\put(#1,#2){#3}}} \usepackage{gmp} \usepackage[final]{feynmp-auto} \usepackage[backend=bibtex,style=numeric-comp,firstinits=true]{biblatex} \bibliography{bib} \setbeamertemplate{bibliography item}[text] \makeatletter\let\frametextheight\beamer@frametextheight\makeatother % suppress frame numbering for backup slides % you always need the appendix for this! \newcommand{\backupbegin}{ \newcounter{framenumberappendix} \setcounter{framenumberappendix}{\value{framenumber}} } \newcommand{\backupend}{ \addtocounter{framenumberappendix}{-\value{framenumber}} \addtocounter{framenumber}{\value{framenumberappendix}} } \definecolor{links}{HTML}{2A1B81} %\hypersetup{colorlinks,linkcolor=,urlcolor=links} % For shapo's formulas: \def\lsi{\raise0.3ex\hbox{$<$\kern-0.75em\raise-1.1ex\hbox{$\sim$}}} \def\gsi{\raise0.3ex\hbox{$>$\kern-0.75em\raise-1.1ex\hbox{$\sim$}}} \newcommand{\lsim}{\mathop{\lsi}} \newcommand{\gsim}{\mathop{\gsi}} \newcommand{\wt}{\widetilde} %\newcommand{\ol}{\overline} \newcommand{\Tr}{\rm{Tr}} \newcommand{\tr}{\rm{tr}} \newcommand{\eqn}[1]{&\hspace{-0.7em}#1\hspace{-0.7em}&} \newcommand{\vev}[1]{\rm{$\langle #1 \rangle$}} \newcommand{\abs}[1]{\rm{$\left| #1 \right|$}} \newcommand{\eV}{\rm{eV}} \newcommand{\keV}{\rm{keV}} \newcommand{\GeV}{\rm{GeV}} \newcommand{\MeV}{\rm{MeV}} \newcommand{\im}{\rm{Im}} \newcommand{\re}{{\rm Re}} \newcommand{\invfb}{\rm{fb^{-1}}} \newcommand{\fixme}{\rm{{\color{red}{FIXME!}}}} \newcommand{\thetal}{\theta_l} \newcommand{\thetak}{\theta_k} \newcommand{\nn}{\nonumber} \newcommand{\eq}[1]{\begin{equation} #1 \end{equation}} %\newcommand{\eqn}[1]{\begin{displaymath} #1 \end{displaymath}} \newcommand{\eqa}[1]{\begin{eqnarray} #1 \end{eqnarray}} \newcommand{\apeL}{{A_\perp^L}} \newcommand{\apeR}{{A_\perp^R}} \newcommand{\apeLR}{{A_\perp^{L,R}}} \newcommand{\apaL}{{A_\|^L}} \newcommand{\apaR}{{A_\|^R}} \newcommand{\apaLR}{{A_\|^{L,R}}} \newcommand{\azeL}{{A_0^L}} \newcommand{\azeR}{{A_0^R}} \newcommand{\azeLR}{{A_0^{L,R}}} \newcommand{\Real}{\ensuremath{\mathcal{R}e}\xspace} \newcommand{\Imag}{\ensuremath{\mathcal{I}m}\xspace} \renewcommand{\C}[1]{{\cal C}_{#1}} \newcommand{\Ceff}[1]{{\cal C}^{\rm eff}_{#1}} \newcommand{\Cpeff}[1]{{\cal C}^{\rm eff\prime}_{#1}} \newcommand{\Cp}[1]{{\cal C}^{\prime}_{#1}} \def\FL {\ensuremath{F_{\mathrm{L}}}\xspace} \def\ATDPH {\ensuremath{A_{\mathrm{T,PR}}^{(2)}}\xspace} \def\ATImPH {\ensuremath{A_{\mathrm{T,PR}}^{\mathrm{Im}}}\xspace} \def\ATRePH {\ensuremath{A_{\mathrm{T,PR}}^{\mathrm{Re}}}\xspace} \def\FLPH {\ensuremath{F_{\mathrm{L,PR}}}\xspace} \def\ATDKG {\ensuremath{A_{\mathrm{T,\Kstarz \gamma}}^{(2)}}\xspace} \def\ATImKG {\ensuremath{A_{\mathrm{T,\Kstarz \gamma}}^{\mathrm{Im}}}\xspace} \def\ATReKG {\ensuremath{A_{\mathrm{T,\Kstarz \gamma}}^{\mathrm{Re}}}\xspace} \def\FLKG {\ensuremath{F_{\mathrm{L,\Kstarz \gamma}}}\xspace} \def\ATD {\ensuremath{A_{\mathrm{T}}^{(2)}}\xspace} \def\ATIm {\ensuremath{A_{\mathrm{T}}^{\mathrm{Im}}}\xspace} \def\ATRe {\ensuremath{A_{\mathrm{T}}^{\mathrm{Re}}}\xspace} \def\cgreen{\color{green}} \definecolor{green}{rgb}{0.2,0.6,0.2} \newcommand{\disp}{\displaystyle} \def\be{\begin{equation}} \def\ee{\end{equation}} \def\ba{\begin{eqnarray}} \def\ea{\end{eqnarray}} \def\d{\partial} \def\l{\left(} \def\r{\right)} \def\la{\langle} \def\ra{\rangle} \def\e{{\rm e}} \def\Br{{\rm Br}} \def\ARROW{{\color{JungleGreen}{$\Rrightarrow$}}\xspace} \newcommand\textref[1]{% \begin{textblock*}{\paperwidth}(0pt,0.025\textheight) \raggedleft \small{{\color{RoyalBlue} \emph{#1}}}\hspace{1.5em} \end{textblock*}} \newcommand\textahref[2]{% \begin{textblock*}{\paperwidth}(0pt,0.025\textheight) \raggedleft \small{\emph{\href{#1}{#2} }}\hspace{1.5em} \end{textblock*}} \author{ {M.Chrzaszcz} (CERN)} \institute{UZH} \title[Rare decays in the beauty, charm and strange sector]{Rare decays in the beauty, charm and strange sector} \date{28 March 2018} \begin{document} \tikzstyle{every picture}+=[remember picture] { \setbeamertemplate{sidebar right}{\llap{\includegraphics[width=\paperwidth,height=\paperheight]{bubble2}}} \begin{frame}[c]%{\phantom{title page}} \begin{center} \begin{center} \begin{columns} \begin{column}{0.75\textwidth} \flushright\bfseries \Huge {Rare decays in the beauty, charm and strange sector} \end{column} \begin{column}{0.02\textwidth} {~} \end{column} \begin{column}{0.23\textwidth} % \hspace*{-1.cm} \vspace*{-3mm} \includegraphics[width=0.6\textwidth]{lhcb-logo} \end{column} \end{columns} \end{center} \quad \vspace{3em} \begin{columns} \begin{column}{0.44\textwidth} \flushright \vspace{-1.8em} { \Large Marcin Chrzaszcz\\\vspace{-0.1em}\small \href{mailto:mchrzasz@cern.ch}{mchrzasz@cern.ch}} \end{column} \begin{column}{0.53\textwidth} \includegraphics[height=1.3cm]{cern} \end{column} \end{columns} \vspace{0.2em} \vspace{1em} \vspace{0.5em} \textcolor{normal text.fg!50!Comment}{FPCP, Hyderabad\\14-18 July 2018 } \end{center} \end{frame} } \begin{frame}{Outline} \begin{enumerate} \item Beauty decays \begin{itemize} \item $\Lambda_b \to \Lambda \mu \mu$ \item $\APBs \to \PKstar \mu \mu$ \item $\PB_{(s)} \to e \mu$ \item $\PB \to \PKstar e \mu$. \end{itemize} \item Charm decays \begin{itemize} \item $\Lambda_c \to \Pproton \mu \mu$ \item $\PD \to hh \mu\mu$ \end{itemize} \item Strange decays \begin{itemize} \item $\PKshort \to \mu \mu$ \item $\Sigma \to \Pproton \mu \mu$ \end{itemize} \end{enumerate} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}\frametitle{Why rare decays?} \begin{columns} \column{4in} \begin{itemize} \item The SM allows only charged interactions to change flavour. \begin{itemize} \item Other interactions are flavour conserving. \end{itemize} \item One can escape this constraint and produce $\Pbottom \to \Pstrange$ and $\Pbottom \to \Pdown$ at loop level. \begin{itemize} \item These kinds of processes are suppressed in the SM $\to$~Rare decays. \item New Physics can enter in the loops. \end{itemize} \end{itemize} \begin{center} \includegraphics[scale=0.3]{images/lupa.png} \includegraphics[scale=0.3]{images/example.png} \end{center} \column{1.5in} \includegraphics[width=0.61\textwidth]{images/couplings.png} \end{columns} \end{frame} \begin{frame} \only<1>{\frametitle{LHCb detector - tracking} \begin{columns} \column{3in} \includegraphics[width=0.9\textwidth]{images/1050px-Lhcbview.jpg} \column{2in} \includegraphics[width=0.95\textwidth]{images/sketch.png} \end{columns} \begin{itemize} \item Excellent Impact Parameter (IP) resolution ($20~\rm \mu m$).\\ $\Rightarrow$ Identify secondary vertices from heavy flavour decays \item Proper time resolution $\sim~40-50~\rm fs$.\\ $\Rightarrow$ Good separation of primary and secondary vertices. \item Excellent momentum ($\delta p/p \sim 0.5 - 1.0\%$) and inv. mass resolution.\\ $\Rightarrow$ Low combinatorial background. \end{itemize} } \only<2>{\frametitle{LHCb detector - PID} \begin{columns} \column{3in} \includegraphics[width=0.9\textwidth]{images/1050px-Lhcbview.jpg} \column{2in} \includegraphics[width=0.95\textwidth]{images/cher.png} \end{columns} \begin{itemize} \item Excellent Muon identification $\epsilon_{\mu \to \mu} \sim 97\%$, $\epsilon_{\pi \to \mu} \sim 1-3\%$ \item Good $\PK-\Ppi$ separation via RICH detectors, $\epsilon_{\PK \to \PK} \sim 95\%$, $\epsilon_{\Ppi \to \PK} \sim 5\%$.\\ $\Rightarrow$ Reject peaking backgrounds. \item High trigger efficiencies, low momentum thresholds.\\ %Muons: $p_T > 1.76 \GeV/c$ at L0, $p_T > 1.0 \GeV/c$ at HLT1,\\ $B \to \PJpsi X $: Trigger $\sim 90\%$. \end{itemize} } \textref{Int. J. Mod. Phys. A30 (2015) 1530022} \vspace*{2.1cm} \end{frame} \begin{frame}{Rare beauty decays} \begin{columns} \column{0.5\textwidth} \begin{exampleblock}{$\Pbeauty \to \Pstrange \ell \ell$ family} \begin{itemize} \item $\PB \to \PKstar \mu \mu$ \item $\PBs \to \Pphi \mu \mu$ \item $\Lambda_b \to \Pproton \PK \mu \mu$ \item LUV: $R_K$, $R_{\PKstar}$ \end{itemize} \end{exampleblock} {~}\\ \ARROW Too many results to be covered in one talk! Please see A.~Oyanguren's talk for more! \column{0.5\textwidth} \begin{alertblock}{$\Pbeauty \to \Pstrange \gamma$ family} \begin{itemize} \item $\PB \to \PJpsi \gamma$ \item $\PB \to \PK \Ppi \Ppi \gamma$ \end{itemize} \end{alertblock} \begin{block}{$\Pbeauty \to \Pdown \ell \ell$ family} \begin{itemize} \item $\PB \to \pi \pi \mu \mu$ \item $\APBs \to \PKstar \mu \mu$ \item $\Lambda_b \to \Pproton \pi \mu \mu$ \end{itemize} \end{block} \begin{exampleblock}{Purely leptonic family} \begin{itemize} \item $\PB \to \ell \ell$ \item LFV: $\PB \to \ell \ell^{\prime}$ \item LFV in $\tau$ \end{itemize} \end{exampleblock} \end{columns} \end{frame} { \usebackgroundtemplate{\includegraphics[width=\paperwidth,height=\paperheight]{images/familie.jpg}} \begin{frame}[plain] \end{frame} } %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5 \begin{frame}{$\Lambda_b \to \Lambda \mu \mu$} \begin{columns} \column{0.01\textwidth} {~} \column{0.5\textwidth} \ARROW $\Pbeauty \to \Pstrange \mu \mu$ in baryon sector. \\ \ARROW Because of spin $1/2$ nature of the baryon there the system has to be described by 5 angles:~\href{https://arxiv.org/pdf/1710.00746.pdf}{{\color{blue}1710.00746}}\\ \ARROW Impossible to perform a likelihood fit. Need to use moments: \begin{align*} M_i = \frac{3}{32\pi^2} \int \sum_{i=1}^{34} K_i(q^2) f(\overrightarrow{\Omega}) d\overrightarrow{\Omega} \end{align*} \column{0.5\textwidth} \includegraphics[width=0.99\textwidth]{{images/angular_basis.pdf}} ~~\ARROW In total we have 34 observables! \end{columns} \textref{LHCb-PAPER-2018-029} \end{frame} \begin{frame}{$\Lambda_b \to \Lambda \mu \mu$} \begin{columns} \column{0.01\textwidth} {~} \column{0.6\textwidth} \ARROW Update with $5~\invfb$.\\ \ARROW 610 events observed at high $q^2$.\\ \ARROW Angular efficiency modelled in 6D.\\{~}\\ \includegraphics[width=0.99\textwidth]{{images/angles.pdf}} \column{0.4\textwidth} \includegraphics[width=0.99\textwidth]{{images/figure51.pdf}}\\ \ARROW The results:\\{~}\\ \includegraphics[width=0.99\textwidth]{{images/Ki.pdf}}\\ \end{columns} \textref{LHCb-PAPER-2018-029} \end{frame} \begin{frame}{$\Pbeauty \to \Pdown$ transitions} \ARROW The $\Pbeauty \to \Pdown$ is further suppressed by $\vert V_{td}\vert / \vert V_{ts}\vert$ $\rightarrow~\mathcal{B} \sim \mathcal{O} (10^{-8})$.\\ \ARROW Already lots of results in Run1: \begin{columns} \column{0.01\textwidth} {~} \column{0.33\textwidth} \includegraphics[angle=-90,width=0.99\textwidth]{{images/pimumu_fitresult0_col}.pdf} \begin{turn}{90} \hspace{-2.5cm}\href{ https://arxiv.org/abs/1509.00414 }{ \begin{footnotesize} [JHEP 10 (2015) 034] \end{footnotesize} } \end{turn} \column{0.33\textwidth} \includegraphics[angle=-90,width=0.99\textwidth]{{images/pipimumu}.pdf} \begin{turn}{90} \hspace{-3cm}\href{https://arxiv.org/abs/1412.6433}{ \begin{tiny} [PHYS. LETT. B743 (2015) 46] \end{tiny} } \end{turn} \column{0.33\textwidth} \includegraphics[angle=-90,width=0.99\textwidth]{{images/Fig3}.pdf} \begin{turn}{90} \hspace{-2.5cm}\href{https://arxiv.org/abs/1701.08705}{ \begin{footnotesize} [JHEP 04 (2017) 029] \end{footnotesize} } \end{turn} \end{columns} \ARROW The ratio between the $\Pbeauty \to \Pstrange$ and $\Pbeauty \to \Pdown$ can be used to determine some CKM elements: \begin{equation} \frac{\mathcal{B}(\PB \to \pi \mu \mu)}{\mathcal{B}(\PB \to \PK \mu \mu)} \sim \vert V_{td}/V_{ts} \vert = 0.20 \pm 0.02 \nonumber \end{equation} \ARROW Large improvements expected in Run2. \end{frame} \begin{frame}{$\APBs \to \PKstar \mu \mu$} \begin{columns} \column{0.01\textwidth} {~} \column{0.5\textwidth} \ARROW $4.6~\invfb$ of data!\\ \ARROW Analysis in 4 bins of NN response.\\ \ARROW Signal yield determined from a simultaneous fit to the NN response bins. \\ \ARROW Normalized to $\PB \to \PKstar \PJpsi$.\\ \ARROW First evidence with $3.4~\sigma$. \column{0.5\textwidth} \only<2>{ \includegraphics[angle=-90,width=0.99\textwidth]{{images/tom}.pdf} } \only<1>{ \includegraphics[angle=-90,width=0.99\textwidth]{{images/tom2}.pdf} } \end{columns} \ARROW The measured branching fraction: \begin{align*} \mathcal{B}(\APBs \to \PKstar \mu \mu) = \left( 2.9 \pm 1.0 ({\rm stat}) \pm 0.2 ({\rm syst}) \pm 0.3({\rm norm}) \right) \times 10^{-8} \end{align*} \ARROW For now consistent with SM predictions \href{https://arxiv.org/abs/1803.05876}{arXiv:1803.05876} \textref{arxiv::1804.07167} \end{frame} \begin{frame}\frametitle{Lepton Flavour/Number Violation} \begin{small} Lepton Flavour Violation(LFV): \end{small} \begin{footnotesize} \ARROW After $\Pmuon$ was discovered it was logical to think of it as an excited $\Pelectron$. \begin{columns} \column{3in} \begin{itemize} \item Expected: $B(\mu\to\Pe\gamma) \approx 10^{-4}$ \item Unless another $\Pnu$, in intermediate vector boson loop cancels. \end{itemize} \column{2in} {~}\includegraphics[width=0.98\textwidth]{rabi.png} \end{columns} \begin{columns} \column{1in} {~} \column{3in} \begin{exampleblock}{I.I.Rabi:} "Who ordered that?" \end{exampleblock} \column{2in} ~~~~{~}\includegraphics[scale=0.08]{II_Rabi.jpg} \end{columns} \begin{itemize} \item Up to this day charged LFV is being searched for in various decay modes. \item LFV was already found in neutrino sector. \end{itemize} \end{footnotesize} \begin{small} \ARROW Anomalies may suggest connections between LUV and LFV. \end{small} \begin{footnotesize} \begin{columns} \column{0.02\textwidth} {~} \column{0.5\textwidth} \begin{align*} \mathcal{B}(\PB \to \PK e \mu ) \sim 3 \cdot 10^{-8} \left( \frac{1-R_K}{0.23} \right) \end{align*} \begin{align*} \frac{ \mathcal{B}(\PBs \to e \mu )}{ \mathcal{B}(\PBs \to \mu \mu )} \sim 0.01 \left( \frac{1-R_K}{0.23} \right) \end{align*} \column{0.5\textwidth} \begin{align*} \mathcal{B}(\PB \to \PK \mu \tau ) \sim 2 \cdot 10^{-8} \left( \frac{1-R_K}{0.23} \right) \end{align*} \begin{align*} \frac{ \mathcal{B}(\PBs \to \tau \mu )}{ \mathcal{B}(\PBs \to \mu \mu )} \sim 4 \left( \frac{1-R_K}{0.23} \right) \end{align*} \end{columns} \end{footnotesize} \textref{arxiv::1609.08895} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}\frametitle{$\PB_{(s)} \to e \mu$} \ARROW Need to deal with bremsstrahlung: different efficiency and mass shapes.\\ \ARROW Fit performed separately in bremsstrahlung categories. \begin{columns} \column{0.01\textwidth} \column{0.6\textwidth} \ARROW Primary background: $\PB \to hh$: \includegraphics[angle=-90,width=0.80\textwidth]{images/Fig10.pdf}\\ \ARROW Estimated with the data driven method to be $<6$ events. \column{0.4\textwidth} \includegraphics[angle=-90,width=0.99\textwidth]{images/Fig3left.pdf}\\ \includegraphics[angle=-90,width=0.99\textwidth]{images/Fig3right.pdf} \end{columns} \textref{[JHEP 1803 (2018) 078]} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}\frametitle{$\PB_{(s)} \to e \mu$} \begin{columns} \column{0.01\textwidth} \column{0.57\textwidth} \ARROW With $3~\invfb$ data.\\ \ARROW Fit the $m_{e\mu}$ mass and calculate $\rm CL_s$.\\ \begin{align*} \mathcal{B}(\PBzero \to e^{\pm} \mu^{\mp}) < 1.3 (1.0) \cdot 10^{-8} \end{align*} \column{0.45\textwidth} \includegraphics[angle=-90,width=0.99\textwidth]{images/Fig9.pdf}\\ \end{columns} \begin{columns} \column{0.01\textwidth} \column{0.75\textwidth} \includegraphics[angle=-90,width=0.49\textwidth]{images/Fig5left.pdf} \includegraphics[angle=-90,width=0.49\textwidth]{images/Fig5right.pdf}\\ \column{0.25\textwidth} \end{columns} \begin{align*} \mathcal{B}(\PBs \to e^{\pm} \mu^{\mp}) < 6.3 (5.4) \cdot 10^{-9}~~~~~~~~~~~~{\rm if~light~eigenstate~dominates} \end{align*} \begin{align*} \mathcal{B}(\PBs \to e^{\pm} \mu^{\mp}) < 7.2 (6.0) \cdot 10^{-9}~~~~~~~~~~~~{\rm if~heavy~eigenstate~dominates} \end{align*} \textref{[JHEP 1803 (2018) 078]} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}\frametitle{$\PB \to \PKstar e \mu$} \ARROW Fit to $M_{bc}$: \begin{align*} M_{bc}=\sqrt{ (E_{beam})^2 - (p_B)^2 } \end{align*} \begin{columns} \column{0.01\textwidth} \column{0.8\textwidth} \includegraphics[width=0.99\textwidth]{images/Belle.png} \column{0.2\textwidth} \begin{footnotesize} \ARROW No statistically significant events observed, upper limits set \end{footnotesize} \end{columns} \begin{columns} \column{0.01\textwidth} \column{0.4\textwidth} \ARROW The best UL but order of magnitude above the LUV model predictions. \column{0.6\textwidth} \includegraphics[width=0.8\textwidth]{images/Belle2.png} \end{columns} \textref{[Belle, arxiv::1807.03267]} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% { \usebackgroundtemplate{\includegraphics[width=\paperwidth,height=\paperheight]{images/charmingpenguing.jpg}} \begin{frame}[plain] \end{frame} } \begin{frame}\frametitle{$\Lambda_c \to \Pproton \mu \mu$} \vspace{0.5em} \begin{minipage}{\textwidth} \begin{columns} \column{0.1in} {~}\\ \column{3in} \vspace{0.5em} \ARROW SM predictions:\\ ~~~~~~$\mathcal{O}(10^{-8})$\\ \ARROW Long distance effects:\\ ~~~~~~$\mathcal{O}(10^{-6})$\\ ~~~~\\ \ARROW Previous measurement done by Babar:\\ ~~${\rm Br}(\Lambda_c^{+} \to p \mu^+ \mu^-) < 4.4\cdot 10^{-5}$ at 90\% CL\\ \begin{center} \includegraphics[width=0.65\textwidth]{images/babar.png}\\ \end{center} \column{2in} \includegraphics[width=0.95\textwidth]{images/indeks1.jpg}\\ \includegraphics[width=0.95\textwidth]{images/indeks2.jpg}\\ \begin{exampleblock}{} LHCb analysis with $3~\invfb$ \end{exampleblock} \end{columns} \end{minipage} \vspace*{2.cm} \textref{[Phys. Rev D 84 072006]} \end{frame} \begin{frame}\frametitle{$\Lambda_c \to \Pproton \mu \mu$} \ARROW Blind analysis with the normalization to the $\Lambda_c \to \Pproton \phi(\mu\mu)$.\\ \ARROW BDT to reduce combinatorial background.\\ \ARROW The dominant background: $\Lambda_c \to \Pproton \pi \pi$: $2.0\pm1.1$ events \begin{columns} \column{0.01\textwidth} \column{0.6\textwidth} \includegraphics[angle=-90,width=0.85\textwidth]{{images/Lc2pPhi_presel}.pdf}\\ Analysis performed in 3 mass windows: \begin{itemize} \item $\phi$ region: $m_{\mu\mu} \in \left[ 985, 1055 \right]~{\rm MeV/c^2}$ \item $\omega$ region: $m_{\mu\mu} \in \left[ 759, 805 \right]~{\rm MeV/c^2}$ \item nonresonant: rest of phase-space. \end{itemize} \column{0.4\textwidth} \includegraphics[width=0.85\textwidth]{{images/pmumu_masses}.pdf} \end{columns} \textref{[PHYS. REV. D 97, 091101 (2018)]} \end{frame} \begin{frame}\frametitle{$\Lambda_c \to \Pproton \mu \mu$} \begin{columns} \column{0.02\textwidth} \column{0.5\textwidth} \ARROW It's the first observation of $\Lambda_c \to \Pproton \mu \mu$ in the $\omega$ region, with $5.0~\sigma$ significance.\\ \ARROW The corresponding branching fraction reads: \begin{align*} \mathcal{B}(\Lambda_c \to \Pproton \omega) = \left( 9.4 \pm 3.2 \pm 1.0 \pm 2.0 \right) \cdot 10^{-4} \end{align*} \ARROW No significant excess observed in the nonresonant region: \begin{align*} \mathcal{B}(\Lambda_c \to \Pproton \mu \mu) < 7.7(9.6) \times 10^{-8} \end{align*} \ARROW Improving BaBar result by 3 orders of magnitude! \column{0.5\textwidth} \includegraphics[angle=-90,width=0.92\textwidth]{{images/Lc_mumu_mass_fit_sel}.pdf}\\ \includegraphics[angle=-90,width=0.92\textwidth]{{images/Lc2pmumu_bf90}.pdf} \end{columns} \textref{[PHYS. REV. D 97, 091101 (2018)]} \end{frame} \begin{frame}\frametitle{$\PD \to h h \mu \mu$} \begin{columns} \column{0.02\textwidth} \column{0.5\textwidth} \includegraphics[width=0.9\textwidth]{{images/Fig1D}.pdf}\\ \ARROW First observation with $2~\invfb$ of data!\\ \ARROW Dominated by long distance contributions.\\ \ARROW Normalized to $\PD \to \PK \pi [\mu \mu]_{\omega/\rho}$ \ARROW LHCb has measured the branching fractions: \begin{footnotesize} \begin{align*} \mathcal{B}(\PD \to \pi \pi \mu \mu) = \left( 9.64 \pm 0.48 \pm 0.51 \pm 0.97 \right) \cdot 10^{-7} \end{align*} \begin{align*} \mathcal{B}(\PD \to \PK \PK \mu \mu) = \left( 1.54 \pm 0.27 \pm 0.09 \pm 0.16 \right) \cdot 10^{-7} \end{align*} \end{footnotesize} \column{0.5\textwidth} \includegraphics[angle=-90,width=0.82\textwidth]{{images/Fig7aD}.pdf}\\ \includegraphics[angle=-90,width=0.82\textwidth]{{images/Fig7bD}.pdf} \end{columns} \textref{[PHYS. REV. LETT. 119, 181805 (2017)]} \end{frame} \begin{frame}\frametitle{$\PD \to h h \mu \mu$} \begin{columns} \column{0.02\textwidth} \column{0.5\textwidth} \ARROW The challenge is to disentangle the SD and LD.\\ \ARROW Angular observables can help: \begin{footnotesize} \begin{align*} A_{FB}=\frac{\Gamma(\cos \theta_{\mu} >0) - \Gamma(\cos \theta_{\mu} <0 ) }{\Gamma(\cos \theta_{\mu} >0) + \Gamma(\cos \theta_{\mu} <0) } \end{align*} \begin{align*} A_{2\phi}=\frac{\Gamma(\sin 2 \phi >0) - \Gamma(\sin 2 \phi <0 ) }{\Gamma(\sin 2 \phi >0) + \Gamma(\sin 2 \phi <0) } \end{align*} \begin{align*} A_{CP}=\frac{\Gamma(\PD \to hh\mu\mu ) - \Gamma(\APD \to hh\mu\mu ) }{\Gamma(\PD \to hh\mu\mu ) + \Gamma(\APD \to hh\mu\mu ) } \end{align*} \begin{alertblock}{} Analysis with $5~\invfb$.\\ See M. Gersabeck talk for more details! \end{alertblock} \end{footnotesize} \column{0.5\textwidth}\includegraphics[width=0.82\textwidth]{{images/Fig1DD}.pdf}\\ \includegraphics[angle=-90,width=0.82\textwidth]{{images/Fig2aDD}.pdf} \end{columns} \textref{[arXiv:1806.10793]} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}\frametitle{$\PD \to h h \mu \mu$} \begin{columns} \column{0.02\textwidth} \column{0.5\textwidth} \ARROW Need to perform a 4D acceptance correction.\\ \ARROW BDT technique used to determine it.\\ \includegraphics[width=0.6\textwidth]{{images/Fig6a}.pdf}\\ \ARROW Yields done by a weighted likelihood fit.\\ \begin{exampleblock}{} All observables consistent with $0$! \end{exampleblock} \column{0.5\textwidth} \includegraphics[angle=-90,width=0.45\textwidth]{{images/Fig9aDD}.pdf} \includegraphics[angle=-90,width=0.45\textwidth]{{images/Fig9bDD}.pdf}\\ \includegraphics[angle=-90,width=0.45\textwidth]{{images/Fig9cDD}.pdf} \includegraphics[angle=-90,width=0.45\textwidth]{{images/Fig9dDD}.pdf}\\ \includegraphics[angle=-90,width=0.45\textwidth]{{images/Fig9eDD}.pdf} \includegraphics[angle=-90,width=0.45\textwidth]{{images/Fig9fDD}.pdf}\\ \end{columns} \textref{[arXiv:1806.10793]} \end{frame} { \usebackgroundtemplate{\includegraphics[width=\paperwidth,height=\paperheight]{images/strange.jpg}} \begin{frame}[plain] \end{frame} } \begin{frame}{$\PKshort \to \mu \mu$} {~} \begin{minipage}{\textwidth} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{center} \begin{columns} \column{0.60\textwidth} \ARROW $\Pproton \Pproton$ collisions create enormous amount of strange mesons.\\ \ARROW Can be used to search for $\PKshort \to \mu \mu$.\\ \ARROW SM prediction: $\Br(\PKshort \to \mu \mu)= (5.0 \pm 1.5) \times 10^{-12}$\\ \ARROW Dominated by the long distance effects.\\ %\ARROW We used two types of triggers: TIS and TOS.\\ \ARROW Bkg dominated by $\PKshort \to \pi \pi$. \includegraphics[width=0.75\textwidth]{{images/ks2mumu2}.png}\\ \column{0.4\textwidth} \includegraphics[width=0.95\textwidth]{images/ks2mumu.png}\\ \ARROW No significant enhancement of signal has been observed and UL was set: \begin{alertblock}{}\begin{small} $\Br(\PKshort \to \mu \mu) <0.8 (1.0) \times 10^{-9}$ at $90 (95)\%$ CL \end{small} \end{alertblock} \end{columns} \end{center} \end{minipage} \textref{EUR. PHYS. J. C, 77 10 (2017) 678} \vspace*{2.1cm} \end{frame} \begin{frame}\frametitle{$\Sigma \to \Pproton \mu \mu$} \ARROW $\Sigma \to \Pproton \mu \mu$ is a $\Pstrange \to \Pdown$ transition, which in SM are dominated by LD:~$\mathcal{O}(10^{-8})$.\\ \begin{center} \includegraphics[width=0.25\textwidth]{{images/Fig9aS}.pdf} \includegraphics[width=0.25\textwidth]{{images/Fig9bS}.pdf}\\ \end{center} \ARROW Previously HyperCP collaboration reported evidence of this decay: $\mathcal{B}(\Sigma \to \Pproton \mu \mu) = \left( 8.6^{+6.6}_{-5.4} \pm 5.5 \right) \cdot 10^{-8}$ \begin{footnotesize} [Phys Rev Lett 94 021801, 2005] \end{footnotesize}\\ \begin{columns} \column{0.02\textwidth} \column{0.50\textwidth} \ARROW Calibrated with $\PK \to \pi \pi \pi$: resolution of $4.28~{\rm MeV/c^2}$. \begin{exampleblock}{} Used $3~\invfb$ of data. \end{exampleblock} \column{0.5\textwidth} \includegraphics[angle=-90,width=0.95\textwidth]{{images/Fig6S}.pdf}\\ \end{columns} \textref{PHYS. REV. LETT. 120, 221803 (2018)} \end{frame} \begin{frame}\frametitle{$\Sigma \to \Pproton \mu \mu$} \begin{columns} \column{0.02\textwidth} \column{0.50\textwidth} \ARROW Normalize to $\Sigma \to \Pproton \gamma$.\\ \includegraphics[angle=-90,width=0.95\textwidth]{{images/Fig1S}.pdf}\\ \ARROW Evidence with $4.1~\sigma$ significance. \ARROW Branching fraction measured: \begin{align*} \mathcal{B}( \Sigma \to \Pproton \mu \mu ) = \left( 2.2^{+1.8}_{-1.3} \right) \cdot 10^{-8} \end{align*} \column{0.5\textwidth} \includegraphics[angle=-90,width=0.9\textwidth]{{images/Fig2}.pdf}\\ \includegraphics[angle=-90,width=0.9\textwidth]{{images/Fig3S}.pdf}\\ \end{columns} \textref{EUR. PHYS. J. C, 77 10 (2017) 678} \end{frame} \begin{frame}\frametitle{Summary} \ARROW FCNC processes provide powerful constraints on extensions of the SM. \\ \ARROW Large $\Pbeauty\APbeauty$ cross-section provides a large sample of ''rare'' decay processes.\\ \ARROW More results being updated with Run2 data.\\ \begin{center} \includegraphics[width=0.6\textwidth]{images/2017stat.png} \end{center} \ARROW Stay tuned for more results! \end{frame} \backupbegin \begin{frame}\frametitle{Backup} \topline \end{frame} \backupend \end{document}