\documentclass[11 pt,xcolor={dvipsnames,svgnames,x11names,table}]{beamer} \usepackage[english]{babel} \usepackage{polski} \usetheme[ bullet=circle, % Other option: square bigpagenumber, % circled page number on lower right topline=true, % colored bar at the top of the frame shadow=false, % Shading for beamer blocks watermark=BG_lower, % png file for the watermark ]{Flip} %\logo{\kern+1.em\includegraphics[height=1cm]{SHiP-3_LightCharcoal}} \usepackage[lf]{berenis} \usepackage[LY1]{fontenc} \usepackage[utf8]{inputenc} \usefonttheme{professionalfonts} \usepackage[no-math]{fontspec} \defaultfontfeatures{Mapping=tex-text} % This seems to be important for mapping glyphs properly \setmainfont{Times} % Beamer ignores "main font" in favor of sans font \setsansfont{Times} % This is the font that beamer will use by default % \setmainfont{Gill Sans Light} % Prettier, but harder to read \setbeamerfont{title}{family=\fontspec{Times}} \input t1augie.fd %\newcommand{\handwriting}{\fontspec{augie}} % From Emerald City, free font %\newcommand{\handwriting}{\usefont{T1}{fau}{m}{n}} % From Emerald City, free font % \newcommand{\handwriting}{} % If you prefer no special handwriting font or don't have augie %% Gill Sans doesn't look very nice when boldfaced %% This is a hack to use Helvetica instead %% Usage: \textbf{\forbold some stuff} %\newcommand{\forbold}{\fontspec{Arial}} \usepackage{graphicx} \usepackage[export]{adjustbox} \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{colortbl} \usepackage{mathrsfs} % For Weinberg-esque letters \usepackage{cancel} % For "SUSY-breaking" symbol \usepackage{slashed} % for slashed characters in math mode \usepackage{bbm} % for \mathbbm{1} (unit matrix) \usepackage{amsthm} % For theorem environment \usepackage{multirow} % For multi row cells in table \usepackage{arydshln} % For dashed lines in arrays and tables \usepackage{siunitx} \usepackage{xhfill} \usepackage{grffile} \usepackage{textpos} \usepackage{subfigure} \usepackage{tikz} %\usepackage{hepparticles} \usepackage[italic]{hepparticles} \usepackage{hepnicenames} % Drawing a line \tikzstyle{lw} = [line width=20pt] \newcommand{\topline}{% \tikz[remember picture,overlay] {% \draw[crimsonred] ([yshift=-23.5pt]current page.north west) -- ([yshift=-23.5pt,xshift=\paperwidth]current page.north west);}} % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % \usepackage{tikzfeynman} % For Feynman diagrams \usetikzlibrary{arrows,shapes} \usetikzlibrary{trees} \usetikzlibrary{matrix,arrows} % For commutative diagram % http://www.felixl.de/commu.pdf \usetikzlibrary{positioning} % For "above of=" commands \usetikzlibrary{calc,through} % For coordinates \usetikzlibrary{decorations.pathreplacing} % For curly braces % http://www.math.ucla.edu/~getreuer/tikz.html \usepackage{pgffor} % For repeating patterns \usetikzlibrary{decorations.pathmorphing} % For Feynman Diagrams \usetikzlibrary{decorations.markings} \tikzset{ % >=stealth', %% Uncomment for more conventional arrows vector/.style={decorate, decoration={snake}, draw}, provector/.style={decorate, decoration={snake,amplitude=2.5pt}, draw}, antivector/.style={decorate, decoration={snake,amplitude=-2.5pt}, draw}, fermion/.style={draw=gray, postaction={decorate}, decoration={markings,mark=at position .55 with {\arrow[draw=gray]{>}}}}, fermionbar/.style={draw=gray, postaction={decorate}, decoration={markings,mark=at position .55 with {\arrow[draw=gray]{<}}}}, fermionnoarrow/.style={draw=gray}, gluon/.style={decorate, draw=black, decoration={coil,amplitude=4pt, segment length=5pt}}, scalar/.style={dashed,draw=black, postaction={decorate}, decoration={markings,mark=at position .55 with {\arrow[draw=black]{>}}}}, scalarbar/.style={dashed,draw=black, postaction={decorate}, decoration={markings,mark=at position .55 with {\arrow[draw=black]{<}}}}, scalarnoarrow/.style={dashed,draw=black}, electron/.style={draw=black, postaction={decorate}, decoration={markings,mark=at position .55 with {\arrow[draw=black]{>}}}}, bigvector/.style={decorate, decoration={snake,amplitude=4pt}, draw}, } % TIKZ - for block diagrams, % from http://www.texample.net/tikz/examples/control-system-principles/ % \usetikzlibrary{shapes,arrows} \tikzstyle{block} = [draw, rectangle, minimum height=3em, minimum width=6em] \usetikzlibrary{backgrounds} \usetikzlibrary{mindmap,trees} % For mind map \newcommand{\degree}{\ensuremath{^\circ}} \newcommand{\E}{\mathrm{E}} \newcommand{\Var}{\mathrm{Var}} \newcommand{\Cov}{\mathrm{Cov}} \newcommand\Ts{\rule{0pt}{2.6ex}} % Top strut \newcommand\Bs{\rule[-1.2ex]{0pt}{0pt}} % Bottom strut \graphicspath{{images/}} % Put all images in this directory. Avoids clutter. % SOME COMMANDS THAT I FIND HANDY % \renewcommand{\tilde}{\widetilde} % dinky tildes look silly, dosn't work with fontspec \newcommand{\comment}[1]{\textcolor{comment}{\footnotesize{#1}\normalsize}} % comment mild \newcommand{\Comment}[1]{\textcolor{Comment}{\footnotesize{#1}\normalsize}} % comment bold \newcommand{\COMMENT}[1]{\textcolor{COMMENT}{\footnotesize{#1}\normalsize}} % comment crazy bold \newcommand{\Alert}[1]{\textcolor{Alert}{#1}} % louder alert \newcommand{\ALERT}[1]{\textcolor{ALERT}{#1}} % loudest alert %% "\alert" is already a beamer pre-defined \newcommand*{\Scale}[2][4]{\scalebox{#1}{$#2$}}% \def\Put(#1,#2)#3{\leavevmode\makebox(0,0){\put(#1,#2){#3}}} \usepackage{gmp} \usepackage[final]{feynmp-auto} \usepackage[backend=bibtex,style=numeric-comp,firstinits=true]{biblatex} \bibliography{bib} \setbeamertemplate{bibliography item}[text] \makeatletter\let\frametextheight\beamer@frametextheight\makeatother % suppress frame numbering for backup slides % you always need the appendix for this! \newcommand{\backupbegin}{ \newcounter{framenumberappendix} \setcounter{framenumberappendix}{\value{framenumber}} } \newcommand{\backupend}{ \addtocounter{framenumberappendix}{-\value{framenumber}} \addtocounter{framenumber}{\value{framenumberappendix}} } \definecolor{links}{HTML}{2A1B81} %\hypersetup{colorlinks,linkcolor=,urlcolor=links} % For shapo's formulas: \def\lsi{\raise0.3ex\hbox{$<$\kern-0.75em\raise-1.1ex\hbox{$\sim$}}} \def\gsi{\raise0.3ex\hbox{$>$\kern-0.75em\raise-1.1ex\hbox{$\sim$}}} \newcommand{\lsim}{\mathop{\lsi}} \newcommand{\gsim}{\mathop{\gsi}} \newcommand{\wt}{\widetilde} %\newcommand{\ol}{\overline} \newcommand{\Tr}{\rm{Tr}} \newcommand{\tr}{\rm{tr}} \newcommand{\eqn}[1]{&\hspace{-0.7em}#1\hspace{-0.7em}&} \newcommand{\vev}[1]{\rm{$\langle #1 \rangle$}} \newcommand{\abs}[1]{\rm{$\left| #1 \right|$}} \newcommand{\eV}{\rm{eV}} \newcommand{\keV}{\rm{keV}} \newcommand{\GeV}{\rm{GeV}} \newcommand{\im}{\rm{Im}} \newcommand{\disp}{\displaystyle} \def\be{\begin{equation}} \def\ee{\end{equation}} \def\ba{\begin{eqnarray}} \def\ea{\end{eqnarray}} \def\d{\partial} \def\l{\left(} \def\r{\right)} \def\la{\langle} \def\ra{\rangle} \def\e{{\rm e}} \def\Br{{\rm Br}} \def\LcTopmumu{\Lambda_c^{+} \to p \mu^+ \mu^-} \def\Lc{\Lambda_c^{+}} \def\mumu{\mu\mu} \newcommand{\BRof}[1]{\ensuremath{{\cal B}(#1)}\xspace} \def\LcTopphi{\Lc \to p \Pphi (\mumu)} \def\Lcpomegano{\Lc \to p \omega} \def\ARROW{{\color{JungleGreen}{$\Rrightarrow$}}\xspace} \def\ARROWR{{\color{WildStrawberry}{$\Rrightarrow$}}\xspace} \def\pt{p_T} \def\mevc{MeV/c} \def\mevcc{MeV/c^2} \def\gevc{GeV/c} \def\gevcc{GeV/c^2} \author{ {Marcin Chrzaszcz} (CERN)} \institute{UZH} \title[Search for the $\Lambda_c^{+} \to p \mu^+ \mu^-$ decay ]{Search for the $\Lambda_c^{+} \to p \mu^+ \mu^-$ decay } \date{25 September 2014} \begin{document} \tikzstyle{every picture}+=[remember picture] { \setbeamertemplate{sidebar right}{\llap{\includegraphics[width=\paperwidth,height=\paperheight]{bubble2}}} \begin{frame}[c]%{\phantom{title page}} \begin{center} \begin{center} \begin{columns} \begin{column}{0.75\textwidth} \flushright \bfseries \Large {Search for the suppressed $\Lambda_c^{+} \to p \mu^+ \mu^-$ decay and observation of the $\Lambda_c^{+} \to p \omega$ decay} \end{column} \begin{column}{0.02\textwidth} {~} \end{column} \begin{column}{0.23\textwidth} % \hspace*{-1.cm} \vspace*{-3mm} \includegraphics[width=0.6\textwidth]{lhcb-logo} \end{column} \end{columns} \end{center} \quad \vspace{3em} \begin{columns} \begin{column}{0.44\textwidth} \flushright \vspace{-2.8em} { \fontspec{Zapfino} Marcin Chrzaszcz\\\vspace{-0.1em}\small \href{mailto:mchrzasz@cern.ch}{mchrzasz@cern.ch}} \end{column} \begin{column}{0.53\textwidth} \hspace{2.0cm} \includegraphics[height=1.6cm]{cern} \end{column} \end{columns} \vspace{1em} \footnotesize{\large With M. Jezabek, T. Lesiak, B. Nowak, M. Witek (IFJ PAN)} \vspace{0.5em} \textcolor{normal text.fg!50!Comment}{Tuesday meeting, CERN\\September 26, 2017} \end{center} \end{frame} } \begin{frame}{Yellow pages} \vspace{0.5em} \begin{minipage}{\textwidth} \ARROW Reviewers: Tom Blake(chair), Harry Cliff, Simon Eydelman(EB)\\ \ARROW Twiki:\\ \href{https://twiki.cern.ch/twiki/bin/viewauth/LHCbPhysics/Lc2PMuMu}{\url{https://twiki.cern.ch/twiki/bin/viewauth/LHCbPhysics/Lc2PMuMu}}\\ \ARROW Review start: 31.03.2017\\ \ARROW Fruitfull interactions with the review committee. \\ \ARROW Unblinding: 18.07.2017\\ \ARROW Minor changes to the analysis during the review.\\ \begin{center} We would like to take this occasion and than Tom, Harry and Simon for fruitful, constructive and smooth review! \end{center} \end{minipage} \vspace*{2.cm} \end{frame} \begin{frame}{Motivation} \vspace{0.5em} \begin{minipage}{\textwidth} \begin{columns} \column{0.1in} {~}\\ \column{3in} \vspace{0.5em} \ARROW SM predictions:\\ ~~~~~~$\mathcal{O}(10^{-8})$\\ \ARROW Long distance effects:\\ ~~~~~~$\mathcal{O}(10^{-6})$\\ ~~~~\\ \ARROW Previous measurement done by Babar:\\ ~~${\rm Br}(\Lambda_c^{+} \to p \mu^+ \mu^-) < 4.4\cdot 10^{-5}$ at 90\% CL\\ \begin{center} \includegraphics[width=0.65\textwidth]{images/babar.png}\\ \end{center} \column{2in} \includegraphics[width=0.95\textwidth]{images/indeks1.jpg}\\ \includegraphics[width=0.95\textwidth]{images/indeks2.jpg}\\ \begin{exampleblock}{} Should be able to improve by \\a factor of 100! \end{exampleblock} \end{columns} \end{minipage} \vspace*{2.cm} \end{frame} \begin{frame}{Analysis strategy} \vspace{0.5em} \begin{minipage}{\textwidth} \ARROW Normalization to $\Lambda_c^+ \to p \phi(\mu\mu)$.\\ \ARROW Typical steps rare decays: \begin{itemize} \item Loose stripping selection. \item BDT1 used for first preselection. \item BDT2 used to further suppress the background. \item PID used to fight the peaking background. \end{itemize} \ARROW Search performed in several dimuon mass windows.\\ \ARROW Selection optimized on $\rm CL_s$.\\ \ARROW Unblinding and calculate the UL of BR using $\rm CL_s$. \pause \begin{center} \includegraphics[width=0.5\textwidth]{images/blind.jpg} \end{center} \end{minipage} \vspace*{2.cm} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}{Normalization channel} \vspace{0.5em} \begin{minipage}{\textwidth} \begin{columns} \column{0.1in} {~}\\ \column{3in} {\Large Use the $\Lambda_c^{+} \to p \phi(\mu\mu)$.}\\ \ARROW Same final state, same selection, a lot of systematics cancel.\\ \ARROWR The Branching fraction of $\Lambda_c^{+} \to p \phi$ is known with $22~\%$. {\Large Use the $\Lambda_c^{+} \to p K \pi$.}\\ \ARROW More precisely known branching fraction (precision: $6.4~\%$).\\ \ARROWR A lot of additional systematics due to different final states, different selections \column{2in} \only<1>{ \includegraphics[width=0.9\textwidth]{images/quovadis.jpg} } \only<2>{ \includegraphics[width=0.9\textwidth]{images/quovadis2.jpg} } \end{columns} \begin{exampleblock}{We choose the $\Lambda_c^{+} \to p \phi(\mu\mu)$ option} \ARROWR In the most optimistic scenario where you assume the $22~\%$ systematic to go town to $6.4~\%$ the UL. \\ In this case the UL gets worse $7.8~\%$. \end{exampleblock} \end{minipage} \vspace*{2.cm} \end{frame} \begin{frame}{Data sets and Stripping} \vspace{0.5em} \begin{minipage}{\textwidth} \ARROW 2011+2012 (aka Run1) Stripping 20.\\ \begin{center} \begin{tabular}{|c|c|} \hline Condition & ~~$\LcTopmumu$~~\\ \hline $\mu^{\pm}$ and $p$ & \\ $\pt$ & {$>300\mevc$} \\ Track $\chi^2$/ndf & {$<3 $} \\ IP $\chi^2$/ndf & {$>9 $} \\ PID $\mu^\pm$ & PIDmu$ >$ -5 and (PIDmu - PIDK) $>$ 0 \\ PID p & PIDp$>$10 \\ \hline $\Lc$ & {~} \\ $\Delta m$ & $<150\mevcc$ \\ Vertex $\chi^2$ & {$<15$} \\ IP $\chi^2$ & {$<225 $} \\ $c\tau$ & {$>100\rm \mu m$} \\ Lifetime fit $\chi^2$ & {$<225 $} \\ %\hline %$m_{\mu^+\mu^-}$ & $> 450\mevcc$ \\ %$m_{\mu^+\mu^+}$ & $> 250\mevcc$ \\ \hline \end{tabular} \end{center} \end{minipage} \vspace*{2.cm} \end{frame} \begin{frame}{Preselection} \vspace{0.5em} \begin{minipage}{\textwidth} \ARROW Additional cuts: \begin{center}\begin{tabular}{|c|} \hline Common cuts \\ \hline $m_{\mumu}$ $< 1400~\mevcc$ \\ proton $ProbNNp > 0.1 $ \\ % Podzielic te ciecia i opisac gdzie t $\mu^+,\mu^-$ $ ProbNNmu > 0.1 $ \\ $ 10~\gevc < p_{proton} < 100~\gevc $ \\ \hline \end{tabular}\end{center} \ARROW We define couple of dimuom mass regions: \begin{center} \begin{tabular}{|c | c|} \hline $m(\mu\mu)$ region & $\left[ \mevcc \right]$\\ \hline $\phi$ region & $\left[985, 1055\right]$\\ $\omega$ region & $\left[759 , 805\right]$\\ {\it{non resonant} } & $\left[210, 747 \right] \cup \left[817, 980 \right] \cup \left[1060, 1400\right]$ \\ \hline \end{tabular} \end{center} \end{minipage} \vspace*{2.cm} \end{frame} \begin{frame}{Trigger} \vspace{0.5em} \begin{minipage}{\textwidth} \vspace{0.5em} \ARROW We require the following triggers (all are TOS): \begin{itemize} \item L0 \begin{itemize} \item L0MuonDecision \end{itemize} \item HLT1 \begin{itemize} \item Hlt1TrackMuonDecision \item Hlt1DiMuonLowMassDecision \item Hlt1TrackAllL0Decision \end{itemize} \item HLT2 \begin{itemize} \item Hlt2DiMuonDetachedDecision \item Hlt2CharmSemilep3bodyD2KMuMuDecision \item Hlt2CharmSemilepD2HMuMuDecision \end{itemize} \end{itemize} \ARROW The TIS increase the signal yield by $<10~\%$ and were asked to be removed at the WG review stage. \end{minipage} \vspace*{2.cm} \end{frame} \begin{frame}{BDT1 training} \vspace{0.5em} \begin{minipage}{\textwidth} \vspace{0.5em} \begin{columns} \column{0.1in} {~}\\ \column{3in} \ARROW The normalization channel is also a rather ``rare decay'':\\ ${\rm Br}(\Lambda_c^+ \to p \phi) \cdot {\rm Br}(\phi \to \mu \mu) = 3.1 \cdot 10^{-7}$\\ \ARROW After the previous preselection a simple BDT is trained using variables that are well simulated in the MC. k-folding used ($k=10$) \ARROW The BDT1 (not surprisingly) likes the prompt $\Lambda_c$ rather the secondary ones. \begin{center} \includegraphics[angle=-90,width=0.7\textwidth]{images/BDT_pre_history.pdf} \end{center} \column{2in} \includegraphics[angle=-90,width=0.95\textwidth]{images/compare_BDT1_2011.pdf} \\ \includegraphics[angle=-90,width=0.95\textwidth]{images/compare_BDT1_2012.pdf} \\ \end{columns} \end{minipage} \vspace*{2.cm} \end{frame} \begin{frame}{BDT1 selection} \vspace{0.5em} \begin{minipage}{\textwidth} \ARROW The selection based on BDT1 is not optimised.\\ \ARROW A loose cut: \begin{equation} {\rm BDT1} > -0.1 \nonumber \end{equation} \begin{center} \includegraphics[angle=-90,width=0.49\linewidth]{images//Lc2pPhi5_pre.pdf} \includegraphics[angle=-90,width=0.49\linewidth]{images/expected_bck5_pre.pdf} \end{center} \ARROW The normalization channel peak is observed. \end{minipage} \vspace*{2.cm} \end{frame} \begin{frame}{BDT2 selection} \vspace{0.5em} \begin{minipage}{\textwidth} \begin{columns} \column{0.1in} {~}\\ \column{3in} \ARROW Variables used: \begin{footnotesize} \begin{itemize} \item flight distance - the one between the production and decay points. \item $\chi^2$ of flight distance, \item transformed decay time - $T=\exp{(-1000 \cdot \tau / {\mathrm{ns}})}$, \item IP - impact parameter with respect to primary vertex, \item $\chi^2$ of IP of $\Lc$ \item $\log(\chi^2_{DTF})$, \item $p_T$ - transverse momentum of $\Lc$, \item minimum of $\chi^2$ of $p$, $\mu^+$, $\mu^-$ w.r.t. primary vertex, \item transverse momenta \item minimum of $\chi^2$/NDF of track fit of $p$, $\mu^+$, $\mu^-$. \end{itemize} \end{footnotesize} \column{2in} \vspace{3.0em} \includegraphics[angle=-90,width=0.95\textwidth]{images/compare_BDT2_2011.pdf} \\ \includegraphics[angle=-90,width=0.95\textwidth]{images/compare_BDT2_2012.pdf} \\ \vspace{3.0em} {~} \end{columns} \end{minipage} \vspace*{2.cm} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}{BDT2} \vspace{0.5em} \begin{minipage}{\textwidth} \begin{columns} \column{0.02\textwidth} {~}\\ \column{0.48\textwidth} \begin{small} \ARROW After correcting the DATA/MC differences the BDT distribution shows a good DATA/MC agreement.\\ \ARROW No mass correlation observed. \end{small} \includegraphics[angle=-90,width=0.95\textwidth]{images/mBDT2_profile.pdf} \column{0.48\textwidth} \includegraphics[angle=-90,width=0.95\textwidth]{images/Comparison_BDT_data_mc_shifted.pdf} \includegraphics[angle=-90,width=0.95\textwidth]{images/BDT_check_3mu_bkg_1.pdf} \column{0.02\textwidth} {~}\\ \end{columns} \end{minipage} \vspace*{2.cm} \end{frame} \begin{frame}{PID} \vspace{0.5em} \begin{minipage}{\textwidth} \begin{small} \ARROW MC resampling is choose to correct the PID distributions:\\ For MC samples the ProbNNp and ProbNNmu are drawn from the PIDCalib distributions.\\ \begin{columns} \column{0.5\textwidth} \ARROWR The PIDCalib doesn't cover the low $\pt$ region for muons ($10\%$).\\ \ARROWR Decided to use for them the $D_s \to \phi(\mu\mu)$ sample.\\ \includegraphics[angle=-90,width=0.95\textwidth]{images/Comparison_ProbNNmu_data_mc.pdf} \column{0.5\textwidth} \includegraphics[angle=-90,width=0.95\textwidth]{images/effmu_pid.pdf}\\ \includegraphics[angle=-90,width=0.95\textwidth]{images/Comparison_ProbNNp_data_mc.pdf} \end{columns} \end{small} \end{minipage} \vspace*{2.cm} \end{frame} \begin{frame}{Selection optimization} \vspace{1.5em} \begin{minipage}{\textwidth} \begin{small} \begin{columns} \column{0.01\textwidth} {~}\\ \column{0.68\textwidth} \ARROW The final selection of the analysis is optimized!\\ \ARROW $\rm CL_s$ method used.\\ \ARROW Toy experiment used to find the optimum. {~}\\ \begin{center}\begin{tabular}{lc} \hline Variable & Condition \\ \hline BDT & $> 0.0$ \\ $ProbNNp(p)$ & $> 0.68$ \\ minimum $ProbNNmu(\mu^{\pm})$ & $> 0.38$ \\ \hline \end{tabular}\end{center} \includegraphics[angle=-90,width=0.5\linewidth]{images/Lc2pPhi5.pdf} \includegraphics[angle=-90,width=0.5\linewidth]{images/expected_bck5.pdf} \column{0.3\textwidth} \includegraphics[width=0.99\textwidth]{images/scan_ul.pdf} \column{0.01\textwidth} \end{columns} \end{small} \end{minipage} \vspace*{2.cm} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}{Peaking backgrounds} \vspace{1.5em} \begin{minipage}{\textwidth} \begin{columns} \column{0.6\textwidth} \ARROW The tight PID cuts essentially kill the peaking bkg!\\ \ARROW The only bkg left is the $\Lambda_c^{+} \to p \pi \pi$.\\ \begin{center} \includegraphics[angle=-90,width=0.80\linewidth]{images/mass_bkg_p2pi.pdf} \end{center} \ARROW Estimated contamination: \\$1.96 \pm 1.13$ \ARROWR assigned as systematic \column{0.4\textwidth} \begin{center} \includegraphics[angle=-90,width=0.99\linewidth]{images/ref_Lc2pmumu.pdf} \\ \includegraphics[angle=-90,width=0.99\linewidth]{images/ref_Lc2ppipi.pdf} \\ \includegraphics[angle=-90,width=0.99\linewidth]{images/ref_Lc2pkpi.pdf} \\ \includegraphics[angle=-90,width=0.99\linewidth]{images/ref_Ds2kmumu.pdf} \\ \includegraphics[angle=-90,width=0.99\linewidth]{images/ref_Dp2kpipi.pdf} \vspace*{-1.0cm} \end{center} \end{columns} \end{minipage} \vspace*{2.cm} \end{frame} \begin{frame}{Normalization} \vspace{1.5em} \begin{minipage}{\textwidth} \ARROW The gold equation: \begin{equation*} {\frac{\BRof\LcTopmumu}{\BRof\LcTopphi} = \frac{\rm {\epsilon\mathstrut_{norm}}^{TOT} }{\rm {\epsilon\mathstrut_{sig}}^{TOT} } \times\frac{N_{\rm sig}}{N_{\rm norm}}, } \label{eq:normalization} \end{equation*} \ARROW We take advantage of the cancellation that: \begin{equation*} {\frac{\rm {\epsilon\mathstrut_{norm}}^{TOT} }{\rm {\epsilon\mathstrut_{sig}}^{TOT}}} = {\frac{\rm {\epsilon\mathstrut_{norm}}^{STRIP}}{\rm {\epsilon\mathstrut_{sig}}^{STRIP}}} \times {\frac{\rm {\epsilon\mathstrut_{norm}}^{COMM}}{\rm {\epsilon\mathstrut_{sig}}^{COMM}}} \times {\frac{\rm {\epsilon\mathstrut_{norm}}^{SPEC}}{\rm {\epsilon\mathstrut_{sig}}^{SPEC}}} ,~~ {\frac{\rm {\epsilon\mathstrut_{norm}}^{i}}{\rm {\epsilon\mathstrut_{sig}}^{i}}} \simeq 1 \label{eq:effprod} \end{equation*} \begin{columns} \column{0.02\textwidth} \column{0.56\textwidth} \ARROW In addition we have added 6 mass bins to increase the sensitivity.\\ \ARROW Signal is modelled by a double Crystall Ball. \column{0.4\textwidth} \includegraphics[width=0.85\textwidth]{images/massbin.png} \column{0.02\textwidth} \end{columns} \end{minipage} \vspace*{2.cm} \end{frame} \begin{frame}{Expected background} \vspace{1.5em} \begin{minipage}{\textwidth} \begin{small} \begin{columns} \column{0.02\textwidth} \column{0.48\textwidth} \ARROW Background modelled with a linear function.\\ \includegraphics[width=0.9\linewidth]{images/expected_bck5_obs_with_signal1.pdf} \column{0.48\textwidth} \begin{center}\begin{tabular}{|c|c|} \hline bin & no events \\ \hline bin1 & $ 8.56136 \pm 0.540302 $ \\ bin2 & $ 8.60318 \pm 0.536917 $ \\ bin3 & $ 8.64582 \pm 0.536561 $ \\ bin4 & $ 8.6887 \pm 0.539208 $ \\ bin5 & $ 8.7304 \pm 0.544752 $ \\ bin6 & $ 8.77226 \pm 0.553162 $ \\ \hline \end{tabular}\end{center} \column{0.02\textwidth} \end{columns} \begin{columns} \column{0.6\textwidth} \includegraphics[angle=-90,width=0.49\linewidth]{images/br90rel.pdf} \includegraphics[angle=-90,width=0.49\linewidth]{images/br90abs.pdf} \column{0.4\textwidth} \ARROW Expected upper limits: $\BRof\LcTopmumu < 5.91 \times 10^{-8}$ at 90~\% CL \end{columns} \end{small} \end{minipage} \vspace*{2.cm} \end{frame} \begin{frame}{Observed Upper limits} \vspace{1.5em} \begin{minipage}{\textwidth} \begin{columns} \column{0.6\textwidth} \ARROW After the green light from RC we have unblinded; no significant access of events have been observed. \ARROW We have set an UL: \begin{equation*} \BRof\LcTopmumu < 7.68 \times 10^{-8}~ \rm at 90~\%~CL \end{equation*} \column{0.4\textwidth} \includegraphics[angle=-90,width=0.9\linewidth]{images/expected_bck5_obs_with_signal.pdf} \end{columns} \includegraphics[angle=-90,width=0.45\linewidth]{images/br90rel_obs.pdf} \includegraphics[angle=-90,width=0.45\linewidth]{images/br90abs_obs.pdf} \end{minipage} \vspace*{2.cm} \end{frame} \begin{frame}{By product :)} \vspace{1.5em} \begin{minipage}{\textwidth} \begin{columns} \column{0.5\textwidth} \ARROW We also looked at the $\omega$ dimuon region.\\ \begin{exampleblock}{We observed an access} Using Wilks theorem we have calculated the singificance to be $5.0~\sigma$! \end{exampleblock} \ARROW This is the first observation of this decay!!!\\ $\BRof\Lcpomegano = (7.6 \pm 2.6~(stat) \pm 0.9~(syst1) \pm 3.1~(syst2) )~\times 10^{-4}$ \column{0.5\textwidth} \includegraphics[angle=-90,width=0.99\textwidth]{images/Lc2pomega_DATA_mass_sel.pdf}\\ \includegraphics[angle=-90,width=0.99\textwidth]{images/mumu_mass_fit_sel.pdf} \end{columns} \end{minipage} \vspace*{2.cm} \end{frame} \begin{frame}{Conclusion} \vspace{1.5em} \begin{minipage}{\textwidth} \begin{itemize} \item Improved the UL for $\BRof\LcTopmumu$ by two orders of magnitude!\\ \pause \includegraphics[width=0.5\textwidth]{images/mr_bean_laboratory.jpg} \item First time observed the decay $\Lcpomegano$!! \item Paper is beeing prepared, aiming PRL \item We would like to ask the collaboration for approving this analysis. \end{itemize} \begin{center} \end{center} \end{minipage} \vspace*{2.cm} \end{frame} \backupbegin \begin{frame}\frametitle{Backup} \topline \end{frame} \backupend \end{document}