\documentclass[xcolor=svgnames]{beamer} \usepackage[utf8]{inputenc} \usepackage[english]{babel} \usepackage{polski} %\usepackage{amssymb,amsmath} %\usepackage[latin1]{inputenc} %\usepackage{amsmath} %\newcommand\abs[1]{\left|#1\right|} \usepackage{amsmath} \newcommand\abs[1]{\left|#1\right|} \usepackage{hepnicenames} \usepackage{hepunits} \usepackage{color} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5 \definecolor{mygreen}{cmyk}{0.82,0.11,1,0.25} \usetheme{Sybila} \title[Drell-Yan measurement]{Drell-Yan measurement} \author{Marcin Chrz\k{a}szcz$^{1}$} \institute{$^1$~University of Zurich} \date{\today} \begin{document} % --------------------------- SLIDE -------------------------------------------- \frame[plain]{\titlepage} \author{Marcin Chrz\k{a}szcz{~}} \institute{(UZH)} % ------------------------------------------------------------------------------ % --------------------------- SLIDE -------------------------------------------- \begin{frame}\frametitle{Outlook} \begin{itemize} \item Nicola performed this analysis for PhD. \item Bringing the analysis towards publication. \item Cross checking and trying to improve. \item Nicola gave all the code with documentation. \item I am old fashioned and rewrote the code from scratch. \end{itemize} \end{frame} \begin{frame}\frametitle{Preselection} \begin{itemize} \item No Changes here. \item Trigger lines: \begin{itemize} \item \texttt{L0DiMuonDecision\_TOS}, \texttt{Hlt1DiMuonHighMassDecision\_TOS}, \texttt{Hlt2DiMuonDY(2,3,4)Decision\_TOS} \end{itemize} \item Selection: \begin{itemize} %\item a \item \texttt{muminus\_TrEta>2.0}, \texttt{ muminus\_TrEta<4.5}, \texttt{muplus\_TrEta>2.0}, \texttt{ muplus\_TrEta<4.5}, \texttt{ min(muminus\_TrPChi2,muplus\_TrPChi2)>0.001}, \texttt{min(muminus\_P , muplus\_P)>10000}, \texttt{ min(muminus\_PT , muplus\_PT)>3000} \end{itemize} \end{itemize} \end{frame} \begin{frame}\frametitle{Muon isolation} \begin{itemize} \item We define an isolation for a single track: \end{itemize} \includegraphics[width=0.95\textwidth]{images/iso1.png} \begin{itemize} \item And for 2 tracks: \end{itemize} \includegraphics[width=0.95\textwidth]{images/iso2.png} \begin{itemize} \item No changes here. \end{itemize} \end{frame} \begin{frame}\frametitle{Background Templates} \begin{itemize} \item Now I started playing around :) \item We have two sources of background: MissID and Heavy Flavour decays. \item For now I take MissID for same sign data, and Heavy Flavour decays from selecting muons with Vertex $\chi > 50$. This cut is much larger what it was before. \item For cross check I have 2 different sources of templates: MinBias(muon free), and IP cut(also tighter) instead of vertex. \end{itemize} \end{frame} \begin{frame}\frametitle{Signal Templates -Nicola approach} \begin{columns} \column{2.5in} \includegraphics[width=0.95\textwidth]{images/Z0.png} \begin{itemize} \item $\PZzero$ is background free, take range of $80,100$ and we have a data $\mu\mu_{iso}$ for the $\PZzero$. \item Determine the scale factor to minimalize the $\chi^2$ in MC. \end{itemize} \column{2.5in} \includegraphics[width=0.95\textwidth]{images/scale.png}\\ \includegraphics[width=0.85\textwidth]{images/chi2.png} \end{columns} \end{frame} \begin{frame}\frametitle{Signal Templates - My idea} \begin{itemize} \item Instead of extrapolating from $\PZzero$, let's try interpolating :) \item \texttt{Splot}ed Both $\PZzero$ and $\PUpsilon(1S)$. \end{itemize} \begin{columns} \column{1.6in} \includegraphics[width=0.95\textwidth]{images/result_upsilon.png} \column{1.6in} \includegraphics[width=0.95\textwidth]{images/result_Z0.png} \column{1.6in} \includegraphics[width=0.95\textwidth]{images/result_1CB.png} \end{columns} \begin{itemize} \item For $\PZzero$ we need to to use double CB. \end{itemize} \end{frame} \begin{frame}\frametitle{Signal Templates - My idea} \only<1>{ \begin{itemize} \item Ok form \texttt{Splot} we have the $\mu\mu_{iso}$ for two mass points: $M_Z$ and $M_{\PUpsilon}$ \item Ad hoc anzats to get the signal template for $M_X$: \end{itemize} \begin{equation} \mu\mu_{iso, M_X} =\dfrac{M_X-M_{\PUpsilon}}{M_Z-M_{\PUpsilon}} \times T_Z + (1-\dfrac{M_X-M_{\PUpsilon}}{M_Z-M_{\PUpsilon}}) \times T_{\PUpsilon} \end{equation} } \only<2> { \begin{center} \begin{Large} Attention, from this slide work has been done on jet lag, during confernece talks, in airplane, or all above. \end{Large} \end{center} } \end{frame} \begin{frame}\frametitle{Signal Templates - My idea, results} \begin{itemize} \item Some $M_{\mu\mu}, y$ bins don't converge. \item But the ones that do look awesome (to be checked): \end{itemize} \includegraphics[width=0.95\textwidth]{images/dupa.png} \end{frame} \begin{frame}\frametitle{Todo} \begin{itemize} \item Those are just preliminary results! Don't bite my head off. \item Want to compare the two method of obtaining signal templates. \item Try different ''mixing'' functions. \item See why some bins do not converge. \item Lots of fun ahead. \end{itemize} \end{frame} \end{document}