Newer
Older
Presentations / FPCP_2018 / mchrzasz.tex
@Marcin Chrzaszcz Marcin Chrzaszcz on 26 Jul 2018 35 KB India seminar
\documentclass[11 pt,xcolor={dvipsnames,svgnames,x11names,table}]{beamer}

\usepackage[english]{babel}
\usepackage{polski}


\usetheme[
	bullet=circle,		% Other option: square
	bigpagenumber,		% circled page number on lower right
	topline=true,			% colored bar at the top of the frame
	shadow=false,			% Shading for beamer blocks
	watermark=BG_lower,	% png file for the watermark
	]{Flip}

%\logo{\kern+1.em\includegraphics[height=1cm]{SHiP-3_LightCharcoal}}


\usepackage[lf]{berenis}
\usepackage[LY1]{fontenc}
\usepackage[utf8]{inputenc}

%\usepackage{emerald}
\usefonttheme{professionalfonts}
\usepackage[no-math]{fontspec}
\defaultfontfeatures{Mapping=tex-text}	% This seems to be important for mapping glyphs properly

\setmainfont{Gillius ADF}			% Beamer ignores "main font" in favor of sans font
\setsansfont{Gillius ADF}			% This is the font that beamer will use by default
% \setmainfont{Gill Sans Light}		% Prettier, but harder to read

\setbeamerfont{title}{family=\fontspec{Gillius ADF}}

\input t1augie.fd

%\newcommand{\handwriting}{\fontspec{augie}} % From Emerald City, free font
%\newcommand{\handwriting}{\usefont{T1}{fau}{m}{n}} % From Emerald City, free font
% \newcommand{\handwriting}{}	% If you prefer no special handwriting font or don't have augie

%% Gill Sans doesn't look very nice when boldfaced
%% This is a hack to use Helvetica instead
%% Usage: \textbf{\forbold some stuff}
%\newcommand{\forbold}{\fontspec{Arial}}

\usepackage{graphicx}
\usepackage[export]{adjustbox}
\usepackage[absolute,overlay]{textpos}
\usepackage{rotating}



\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{bm}
\usepackage{colortbl}
\usepackage{mathrsfs} 			% For Weinberg-esque letters
\usepackage{cancel}				% For "SUSY-breaking" symbol
\usepackage{slashed}            % for slashed characters in math mode
\usepackage{bbm}                % for \mathbbm{1} (unit matrix)
\usepackage{amsthm}				% For theorem environment
\usepackage{multirow}			% For multi row cells in table
\usepackage{arydshln} 			% For dashed lines in arrays and tables
\usepackage{siunitx}
\usepackage{xhfill}
\usepackage{grffile}
\usepackage{textpos}
\usepackage{subfigure}
\usepackage{tikz}

%\usepackage{hepparticles}
\usepackage[italic]{hepparticles}

\usepackage{hepnicenames}

% Drawing a line
\tikzstyle{lw} = [line width=20pt]
\newcommand{\topline}{%
  \tikz[remember picture,overlay] {%
    \draw[crimsonred] ([yshift=-23.5pt]current page.north west)
             -- ([yshift=-23.5pt,xshift=\paperwidth]current page.north west);}}



% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
\usepackage{tikzfeynman}		% For Feynman diagrams
\usetikzlibrary{arrows,shapes}
\usetikzlibrary{trees}
\usetikzlibrary{matrix,arrows} 				% For commutative diagram
% http://www.felixl.de/commu.pdf
\usetikzlibrary{positioning}				% For "above of=" commands
\usetikzlibrary{calc,through}				% For coordinates
\usetikzlibrary{decorations.pathreplacing}  % For curly braces
% http://www.math.ucla.edu/~getreuer/tikz.html
\usepackage{pgffor}							% For repeating patterns

\usetikzlibrary{decorations.pathmorphing}	% For Feynman Diagrams
\usetikzlibrary{decorations.markings}
\tikzset{
	% >=stealth', %%  Uncomment for more conventional arrows
	vector/.style={decorate, decoration={snake}, draw},
	provector/.style={decorate, decoration={snake,amplitude=2.5pt}, draw},
	antivector/.style={decorate, decoration={snake,amplitude=-2.5pt}, draw},
	fermion/.style={draw=gray, postaction={decorate},
		decoration={markings,mark=at position .55 with {\arrow[draw=gray]{>}}}},
	fermionbar/.style={draw=gray, postaction={decorate},
		decoration={markings,mark=at position .55 with {\arrow[draw=gray]{<}}}},
	fermionnoarrow/.style={draw=gray},
	gluon/.style={decorate, draw=black,
		decoration={coil,amplitude=4pt, segment length=5pt}},
	scalar/.style={dashed,draw=black, postaction={decorate},
		decoration={markings,mark=at position .55 with {\arrow[draw=black]{>}}}},
	scalarbar/.style={dashed,draw=black, postaction={decorate},
		decoration={markings,mark=at position .55 with {\arrow[draw=black]{<}}}},
	scalarnoarrow/.style={dashed,draw=black},
	electron/.style={draw=black, postaction={decorate},
		decoration={markings,mark=at position .55 with {\arrow[draw=black]{>}}}},
	bigvector/.style={decorate, decoration={snake,amplitude=4pt}, draw},
}

% TIKZ - for block diagrams,
% from http://www.texample.net/tikz/examples/control-system-principles/
% \usetikzlibrary{shapes,arrows}
\tikzstyle{block} = [draw, rectangle,
minimum height=3em, minimum width=6em]




\usetikzlibrary{backgrounds}
\usetikzlibrary{mindmap,trees}	% For mind map
\newcommand{\degree}{\ensuremath{^\circ}}
\newcommand{\E}{\mathrm{E}}
\newcommand{\Var}{\mathrm{Var}}
\newcommand{\Cov}{\mathrm{Cov}}
\newcommand\Ts{\rule{0pt}{2.6ex}}       % Top strut
\newcommand\Bs{\rule[-1.2ex]{0pt}{0pt}} % Bottom strut

\graphicspath{{images/}}	% Put all images in this directory. Avoids clutter.

% SOME COMMANDS THAT I FIND HANDY
% \renewcommand{\tilde}{\widetilde} % dinky tildes look silly, dosn't work with fontspec
\newcommand{\comment}[1]{\textcolor{comment}{\footnotesize{#1}\normalsize}} % comment mild
\newcommand{\Comment}[1]{\textcolor{Comment}{\footnotesize{#1}\normalsize}} % comment bold
\newcommand{\COMMENT}[1]{\textcolor{COMMENT}{\footnotesize{#1}\normalsize}} % comment crazy bold
\newcommand{\Alert}[1]{\textcolor{Alert}{#1}} % louder alert
\newcommand{\ALERT}[1]{\textcolor{ALERT}{#1}} % loudest alert
%% "\alert" is already a beamer pre-defined
\newcommand*{\Scale}[2][4]{\scalebox{#1}{$#2$}}%

\def\Put(#1,#2)#3{\leavevmode\makebox(0,0){\put(#1,#2){#3}}}

\usepackage{gmp}
\usepackage[final]{feynmp-auto}

\usepackage[backend=bibtex,style=numeric-comp,firstinits=true]{biblatex}
\bibliography{bib}
\setbeamertemplate{bibliography item}[text]

\makeatletter\let\frametextheight\beamer@frametextheight\makeatother

% suppress frame numbering for backup slides
% you always need the appendix for this!
\newcommand{\backupbegin}{
	\newcounter{framenumberappendix}
	\setcounter{framenumberappendix}{\value{framenumber}}
}
\newcommand{\backupend}{
	\addtocounter{framenumberappendix}{-\value{framenumber}}
	\addtocounter{framenumber}{\value{framenumberappendix}}
}


\definecolor{links}{HTML}{2A1B81}
%\hypersetup{colorlinks,linkcolor=,urlcolor=links}

% For shapo's formulas:
\def\lsi{\raise0.3ex\hbox{$<$\kern-0.75em\raise-1.1ex\hbox{$\sim$}}}
\def\gsi{\raise0.3ex\hbox{$>$\kern-0.75em\raise-1.1ex\hbox{$\sim$}}}
\newcommand{\lsim}{\mathop{\lsi}}
\newcommand{\gsim}{\mathop{\gsi}}
\newcommand{\wt}{\widetilde}
%\newcommand{\ol}{\overline}
\newcommand{\Tr}{\rm{Tr}}
\newcommand{\tr}{\rm{tr}}
\newcommand{\eqn}[1]{&\hspace{-0.7em}#1\hspace{-0.7em}&}
\newcommand{\vev}[1]{\rm{$\langle #1 \rangle$}}
\newcommand{\abs}[1]{\rm{$\left| #1 \right|$}}
\newcommand{\eV}{\rm{eV}}
\newcommand{\keV}{\rm{keV}}
\newcommand{\GeV}{\rm{GeV}}
\newcommand{\MeV}{\rm{MeV}}
\newcommand{\im}{\rm{Im}}
\newcommand{\re}{{\rm Re}}
\newcommand{\invfb}{\rm{fb^{-1}}}
\newcommand{\fixme}{\rm{{\color{red}{FIXME!}}}}
\newcommand{\thetal}{\theta_l}
\newcommand{\thetak}{\theta_k}
\newcommand{\nn}{\nonumber}
\newcommand{\eq}[1]{\begin{equation} #1 \end{equation}}
%\newcommand{\eqn}[1]{\begin{displaymath} #1 \end{displaymath}}
\newcommand{\eqa}[1]{\begin{eqnarray} #1 \end{eqnarray}}
\newcommand{\apeL}{{A_\perp^L}}
\newcommand{\apeR}{{A_\perp^R}}
\newcommand{\apeLR}{{A_\perp^{L,R}}}
\newcommand{\apaL}{{A_\|^L}}
\newcommand{\apaR}{{A_\|^R}}
\newcommand{\apaLR}{{A_\|^{L,R}}}
\newcommand{\azeL}{{A_0^L}}
\newcommand{\azeR}{{A_0^R}}
\newcommand{\azeLR}{{A_0^{L,R}}}
\newcommand{\Real}{\ensuremath{\mathcal{R}e}\xspace}
\newcommand{\Imag}{\ensuremath{\mathcal{I}m}\xspace}

\renewcommand{\C}[1]{{\cal C}_{#1}}
\newcommand{\Ceff}[1]{{\cal C}^{\rm eff}_{#1}}
\newcommand{\Cpeff}[1]{{\cal C}^{\rm eff\prime}_{#1}}
\newcommand{\Cp}[1]{{\cal C}^{\prime}_{#1}}
\def\FL       {\ensuremath{F_{\mathrm{L}}}\xspace}
\def\ATDPH    {\ensuremath{A_{\mathrm{T,PR}}^{(2)}}\xspace}
\def\ATImPH     {\ensuremath{A_{\mathrm{T,PR}}^{\mathrm{Im}}}\xspace}
\def\ATRePH     {\ensuremath{A_{\mathrm{T,PR}}^{\mathrm{Re}}}\xspace}
\def\FLPH      {\ensuremath{F_{\mathrm{L,PR}}}\xspace}
\def\ATDKG    {\ensuremath{A_{\mathrm{T,\Kstarz \gamma}}^{(2)}}\xspace}
\def\ATImKG     {\ensuremath{A_{\mathrm{T,\Kstarz \gamma}}^{\mathrm{Im}}}\xspace}
\def\ATReKG     {\ensuremath{A_{\mathrm{T,\Kstarz \gamma}}^{\mathrm{Re}}}\xspace}
\def\FLKG       {\ensuremath{F_{\mathrm{L,\Kstarz \gamma}}}\xspace}
\def\ATD     {\ensuremath{A_{\mathrm{T}}^{(2)}}\xspace}
\def\ATIm     {\ensuremath{A_{\mathrm{T}}^{\mathrm{Im}}}\xspace}
\def\ATRe     {\ensuremath{A_{\mathrm{T}}^{\mathrm{Re}}}\xspace}

\def\cgreen{\color{green}}
\definecolor{green}{rgb}{0.2,0.6,0.2}


\newcommand{\disp}{\displaystyle}
\def\be{\begin{equation}}
\def\ee{\end{equation}}
\def\ba{\begin{eqnarray}}
\def\ea{\end{eqnarray}}
\def\d{\partial}
\def\l{\left(}
\def\r{\right)}
\def\la{\langle}
\def\ra{\rangle}
\def\e{{\rm e}}
\def\Br{{\rm Br}}

\def\ARROW{{\color{JungleGreen}{$\Rrightarrow$}}\xspace}

\newcommand\textref[1]{%
  \begin{textblock*}{\paperwidth}(0pt,0.025\textheight)
    \raggedleft \small{{\color{RoyalBlue} \emph{#1}}}\hspace{1.5em}
  \end{textblock*}}

\newcommand\textahref[2]{%
  \begin{textblock*}{\paperwidth}(0pt,0.025\textheight)
  \raggedleft \small{\emph{\href{#1}{#2}  }}\hspace{1.5em}
  \end{textblock*}}



\author{ {M.Chrzaszcz} (CERN)}
\institute{UZH}
\title[Rare decays in the beauty, charm and strange sector]{Rare decays in the beauty, charm and strange sector}
\date{28 March 2018}


\begin{document}
\tikzstyle{every picture}+=[remember picture]

{
\setbeamertemplate{sidebar right}{\llap{\includegraphics[width=\paperwidth,height=\paperheight]{bubble2}}}
\begin{frame}[c]%{\phantom{title page}}
\begin{center}
\begin{center}
	\begin{columns}
		\begin{column}{0.75\textwidth}
			\flushright\bfseries \Huge {Rare decays in the beauty, charm and strange sector}
		\end{column}
                \begin{column}{0.02\textwidth}
                  {~}
                  \end{column}
                \begin{column}{0.23\textwidth}
                 % \hspace*{-1.cm}
                  \vspace*{-3mm}
                  \includegraphics[width=0.6\textwidth]{lhcb-logo}
                  \end{column}

	\end{columns}
\end{center}
	\quad
	\vspace{3em}
\begin{columns}
\begin{column}{0.44\textwidth}
\flushright \vspace{-1.8em} { \Large Marcin Chrzaszcz\\\vspace{-0.1em}\small \href{mailto:mchrzasz@cern.ch}{mchrzasz@cern.ch}}    

\end{column}
\begin{column}{0.53\textwidth}
\includegraphics[height=1.3cm]{cern}
\end{column}
\end{columns}
\vspace{0.2em}


\vspace{1em}

\vspace{0.5em}

	\textcolor{normal text.fg!50!Comment}{FPCP, Hyderabad\\14-18 July 2018
}
\end{center}
\end{frame}
}


\begin{frame}{Outline}

\begin{enumerate}
\item Beauty decays
\begin{itemize}
\item $\Lambda_b \to \Lambda \mu \mu$
\item $\APBs \to \PKstar \mu \mu$
\item $\PB_{(s)} \to e \mu$
\item $\PB \to \PKstar e \mu$.
\end{itemize}
\item Charm decays
\begin{itemize}
\item $\Lambda_c \to \Pproton \mu \mu$
\item $\PD \to hh \mu\mu$
\end{itemize}
\item Strange decays
\begin{itemize}
\item $\PKshort \to \mu \mu$
\item $\Sigma \to \Pproton \mu \mu$
\end{itemize}
\end{enumerate}



\end{frame}




%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}\frametitle{Why rare decays?}                                                                           
\begin{columns}                                                                                                      
\column{4in}                                                                                                         
\begin{itemize}                                                                                                      
\item The SM allows only charged interactions to change flavour.                                                  
\begin{itemize}                                                                                                      
\item Other interactions are flavour conserving.                                                                     
\end{itemize}                                                                                                        
\item One can escape this constraint and produce $\Pbottom \to \Pstrange$ and $\Pbottom \to \Pdown$ at loop level.    
\begin{itemize}                                                                                                      
\item These kinds of processes are suppressed in the SM $\to$~Rare decays.                                                 
\item New Physics can enter in the loops.                                                                            
\end{itemize}                                                                                                        
\end{itemize}                                                                                                        
\begin{center}                                                                                                       
\includegraphics[scale=0.3]{images/lupa.png}                                                                           
\includegraphics[scale=0.3]{images/example.png}                                                                        
\end{center}                                                                                                         
\column{1.5in}                                                                                                       
\includegraphics[width=0.61\textwidth]{images/couplings.png}                                                           
\end{columns}                                                                                                        
                                                                                                                     
\end{frame}



\begin{frame}
\only<1>{\frametitle{LHCb detector - tracking} 

\begin{columns}
\column{3in}
\includegraphics[width=0.9\textwidth]{images/1050px-Lhcbview.jpg}

\column{2in}
\includegraphics[width=0.95\textwidth]{images/sketch.png}
\end{columns}
\begin{itemize}
\item Excellent Impact Parameter (IP) resolution ($20~\rm \mu m$).\\
$\Rightarrow$ Identify secondary vertices from heavy flavour decays
\item Proper time resolution $\sim~40-50~\rm fs$.\\
$\Rightarrow$ Good separation of primary and secondary vertices.
\item Excellent momentum ($\delta p/p \sim 0.5 - 1.0\%$) and inv. mass resolution.\\
$\Rightarrow$ Low combinatorial background.

\end{itemize}

}

\only<2>{\frametitle{LHCb detector - PID}

\begin{columns}
\column{3in}
\includegraphics[width=0.9\textwidth]{images/1050px-Lhcbview.jpg}

\column{2in}
\includegraphics[width=0.95\textwidth]{images/cher.png}
\end{columns}
\begin{itemize}
\item Excellent Muon identification $\epsilon_{\mu \to \mu} \sim 97\%$, $\epsilon_{\pi \to \mu} \sim 1-3\%$
\item Good $\PK-\Ppi$ separation via RICH detectors, $\epsilon_{\PK \to \PK} \sim 95\%$,  $\epsilon_{\Ppi \to \PK} \sim 5\%$.\\
$\Rightarrow$ Reject peaking backgrounds.
\item High trigger efficiencies, low momentum thresholds.\\
%Muons: $p_T > 1.76 \GeV/c$ at L0, $p_T > 1.0 \GeV/c$ at HLT1,\\
$B \to \PJpsi X $: Trigger $\sim 90\%$.

\end{itemize}


}

\textref{Int. J. Mod. Phys. A30 (2015) 1530022}
\vspace*{2.1cm}
\end{frame}




\begin{frame}{Rare beauty decays}

\begin{columns}

\column{0.5\textwidth}
\begin{exampleblock}{$\Pbeauty \to \Pstrange \ell \ell$ family}
\begin{itemize}
\item $\PB \to \PKstar \mu \mu$
\item $\PBs \to \Pphi \mu \mu$
\item $\Lambda_b \to \Pproton \PK \mu \mu$
\item LUV: $R_K$, $R_{\PKstar}$
\end{itemize}
\end{exampleblock}
{~}\\
\ARROW Too many results to be covered in one talk! Please see A.~Oyanguren's talk for more!

\column{0.5\textwidth}
\begin{alertblock}{$\Pbeauty \to \Pstrange \gamma$ family}
\begin{itemize}
\item $\PB \to \PJpsi \gamma$
\item $\PB \to \PK \Ppi \Ppi \gamma$
\end{itemize}
\end{alertblock}

\begin{block}{$\Pbeauty \to \Pdown \ell \ell$ family}
\begin{itemize}
\item $\PB \to \pi \pi \mu \mu$
\item $\APBs \to \PKstar \mu \mu$
\item $\Lambda_b \to \Pproton \pi \mu \mu$
\end{itemize}

\end{block}

\begin{exampleblock}{Purely leptonic family}
\begin{itemize}
\item $\PB \to \ell \ell$
\item LFV: $\PB \to \ell \ell^{\prime}$
\item LFV in $\tau$

\end{itemize}

\end{exampleblock}

\end{columns}



\end{frame}



{
\usebackgroundtemplate{\includegraphics[width=\paperwidth,height=\paperheight]{images/familie.jpg}}
\begin{frame}[plain]
\end{frame}
}




%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5

\begin{frame}{$\Lambda_b \to \Lambda \mu \mu$}
\begin{columns}
\column{0.01\textwidth}
{~}
\column{0.5\textwidth}
\ARROW $\Pbeauty \to \Pstrange \mu \mu$ in baryon sector. \\
\ARROW Because of spin $1/2$ nature of the baryon there the system has to be described by 5 angles:~\href{https://arxiv.org/pdf/1710.00746.pdf}{{\color{blue}1710.00746}}\\
\ARROW Impossible to perform a likelihood fit. Need to use moments:
\begin{align*}
M_i = \frac{3}{32\pi^2} \int \sum_{i=1}^{34} K_i(q^2) f(\overrightarrow{\Omega}) d\overrightarrow{\Omega}
\end{align*}

\column{0.5\textwidth}
\includegraphics[width=0.99\textwidth]{{images/angular_basis.pdf}}

~~\ARROW In total we have 34 observables!

\end{columns}

\textref{LHCb-PAPER-2018-029}
\end{frame}


\begin{frame}{$\Lambda_b \to \Lambda \mu \mu$}
\begin{columns}
\column{0.01\textwidth}
{~}
\column{0.6\textwidth}
\ARROW Update with $5~\invfb$.\\
\ARROW 610 events observed at high $q^2$.\\
\ARROW Angular efficiency modelled in 6D.\\{~}\\
\includegraphics[width=0.99\textwidth]{{images/angles.pdf}}

\column{0.4\textwidth}
\includegraphics[width=0.99\textwidth]{{images/figure51.pdf}}\\
\ARROW The results:\\{~}\\
\includegraphics[width=0.99\textwidth]{{images/Ki.pdf}}\\


\end{columns}

\textref{LHCb-PAPER-2018-029}
\end{frame}



\begin{frame}{$\Pbeauty \to \Pdown$ transitions}

\ARROW The $\Pbeauty \to \Pdown$ is further suppressed by $\vert V_{td}\vert / \vert V_{ts}\vert$ $\rightarrow~\mathcal{B} \sim \mathcal{O} (10^{-8})$.\\
\ARROW Already lots of results in Run1:

\begin{columns}
\column{0.01\textwidth}
{~}
\column{0.33\textwidth}
\includegraphics[angle=-90,width=0.99\textwidth]{{images/pimumu_fitresult0_col}.pdf}
\begin{turn}{90} 
\hspace{-2.5cm}\href{  https://arxiv.org/abs/1509.00414 }{ \begin{footnotesize} [JHEP 10 (2015) 034] \end{footnotesize} }
\end{turn}



\column{0.33\textwidth}
\includegraphics[angle=-90,width=0.99\textwidth]{{images/pipimumu}.pdf}
\begin{turn}{90} 
\hspace{-3cm}\href{https://arxiv.org/abs/1412.6433}{ \begin{tiny} [PHYS. LETT. B743 (2015) 46] \end{tiny} }
\end{turn}


\column{0.33\textwidth}
\includegraphics[angle=-90,width=0.99\textwidth]{{images/Fig3}.pdf}
\begin{turn}{90} 
\hspace{-2.5cm}\href{https://arxiv.org/abs/1701.08705}{ \begin{footnotesize} [JHEP 04 (2017) 029] \end{footnotesize} }
\end{turn}



\end{columns}

\ARROW The ratio between the $\Pbeauty \to \Pstrange$  and $\Pbeauty \to \Pdown$ can be used to determine some CKM elements:
\begin{equation}
\frac{\mathcal{B}(\PB \to \pi \mu \mu)}{\mathcal{B}(\PB \to \PK \mu \mu)}  \sim \vert V_{td}/V_{ts} \vert = 0.20 \pm 0.02   \nonumber
\end{equation}
\ARROW Large improvements expected in Run2.


\end{frame}


\begin{frame}{$\APBs \to \PKstar \mu \mu$}

\begin{columns}
\column{0.01\textwidth}
{~}
\column{0.5\textwidth}
\ARROW $4.6~\invfb$ of data!\\
\ARROW Analysis in 4 bins of NN response.\\
\ARROW Signal yield determined from a simultaneous fit to the NN response bins. \\
\ARROW Normalized to $\PB \to \PKstar \PJpsi$.\\
\ARROW First evidence with $3.4~\sigma$.
\column{0.5\textwidth}
\only<2>{
\includegraphics[angle=-90,width=0.99\textwidth]{{images/tom}.pdf}
}

\only<1>{
\includegraphics[angle=-90,width=0.99\textwidth]{{images/tom2}.pdf}
}
\end{columns}
\ARROW The measured branching fraction:
\begin{align*}
\mathcal{B}(\APBs \to \PKstar \mu \mu) = \left( 2.9 \pm 1.0 ({\rm stat}) \pm 0.2 ({\rm syst}) \pm 0.3({\rm norm}) \right) \times 10^{-8}
\end{align*}
\ARROW For now consistent with SM predictions \href{https://arxiv.org/abs/1803.05876}{arXiv:1803.05876}

\textref{arxiv::1804.07167}

\end{frame}

\begin{frame}\frametitle{Lepton Flavour/Number Violation}
\begin{small}
 Lepton Flavour Violation(LFV):
\end{small}


\begin{footnotesize}

\ARROW After $\Pmuon$ was discovered it was logical to think of it as an excited $\Pelectron$.
\begin{columns}
\column{3in}
\begin{itemize}
\item Expected: $B(\mu\to\Pe\gamma) \approx  10^{-4}$
\item Unless another $\Pnu$, in intermediate vector boson loop cancels. 
\end{itemize}
\column{2in}
{~}\includegraphics[width=0.98\textwidth]{rabi.png}

\end{columns}
\begin{columns}
\column{1in}
{~}
\column{3in}
\begin{exampleblock}{I.I.Rabi:}
"Who ordered that?"
\end{exampleblock}
\column{2in}
~~~~{~}\includegraphics[scale=0.08]{II_Rabi.jpg}

\end{columns}


\begin{itemize}
\item Up to this day charged LFV is being searched for in various decay modes.
\item LFV was already found in neutrino sector.
\end{itemize}
\end{footnotesize}


\begin{small}

\ARROW Anomalies may suggest connections between LUV and LFV.

\end{small}
\begin{footnotesize}

\begin{columns}

\column{0.02\textwidth}
{~}
\column{0.5\textwidth}
\begin{align*}
\mathcal{B}(\PB \to \PK e \mu ) \sim 3 \cdot 10^{-8} \left( \frac{1-R_K}{0.23} \right)
\end{align*}

\begin{align*}
\frac{ \mathcal{B}(\PBs \to e \mu )}{ \mathcal{B}(\PBs \to \mu \mu )}  \sim 0.01 \left( \frac{1-R_K}{0.23} \right)
\end{align*}

\column{0.5\textwidth}
\begin{align*}
\mathcal{B}(\PB \to \PK \mu \tau ) \sim 2 \cdot 10^{-8} \left( \frac{1-R_K}{0.23} \right)
\end{align*}
\begin{align*}
\frac{ \mathcal{B}(\PBs \to \tau \mu )}{ \mathcal{B}(\PBs \to \mu \mu )}  \sim 4 \left( \frac{1-R_K}{0.23} \right)
\end{align*}


\end{columns}

\end{footnotesize}

\textref{arxiv::1609.08895}

\end{frame}


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}\frametitle{$\PB_{(s)} \to e \mu$}
\ARROW Need to deal with bremsstrahlung: different efficiency and mass shapes.\\
\ARROW  Fit performed separately in bremsstrahlung categories.

\begin{columns}

\column{0.01\textwidth}

\column{0.6\textwidth}
\ARROW Primary background: $\PB \to hh$:
\includegraphics[angle=-90,width=0.80\textwidth]{images/Fig10.pdf}\\
\ARROW Estimated with the data driven method to be $<6$ events.

\column{0.4\textwidth}
\includegraphics[angle=-90,width=0.99\textwidth]{images/Fig3left.pdf}\\
\includegraphics[angle=-90,width=0.99\textwidth]{images/Fig3right.pdf}

\end{columns}

\textref{[JHEP 1803 (2018) 078]}

\end{frame}


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}\frametitle{$\PB_{(s)} \to e \mu$}


\begin{columns}

\column{0.01\textwidth}

\column{0.57\textwidth}
\ARROW With $3~\invfb$ data.\\
\ARROW Fit the $m_{e\mu}$ mass and calculate $\rm CL_s$.\\
\begin{align*}
\mathcal{B}(\PBzero \to e^{\pm} \mu^{\mp}) < 1.3 (1.0) \cdot 10^{-8}
\end{align*}


\column{0.45\textwidth}
\includegraphics[angle=-90,width=0.99\textwidth]{images/Fig9.pdf}\\



\end{columns}


\begin{columns}

\column{0.01\textwidth}

\column{0.75\textwidth}
\includegraphics[angle=-90,width=0.49\textwidth]{images/Fig5left.pdf}
\includegraphics[angle=-90,width=0.49\textwidth]{images/Fig5right.pdf}\\

\column{0.25\textwidth}


\end{columns}




\begin{align*}
\mathcal{B}(\PBs \to e^{\pm} \mu^{\mp}) < 6.3 (5.4) \cdot 10^{-9}~~~~~~~~~~~~{\rm if~light~eigenstate~dominates}
\end{align*}   
\begin{align*}
\mathcal{B}(\PBs \to e^{\pm} \mu^{\mp}) < 7.2 (6.0) \cdot 10^{-9}~~~~~~~~~~~~{\rm if~heavy~eigenstate~dominates}
\end{align*}
\textref{[JHEP 1803 (2018) 078]}
\end{frame}





%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}\frametitle{$\PB \to \PKstar e \mu$}


\ARROW Fit to $M_{bc}$:
\begin{align*}
M_{bc}=\sqrt{ (E_{beam})^2 - (p_B)^2 }
\end{align*}

\begin{columns}

\column{0.01\textwidth}

\column{0.8\textwidth}
\includegraphics[width=0.99\textwidth]{images/Belle.png}

\column{0.2\textwidth}
\begin{footnotesize}
\ARROW No statistically significant events observed, upper limits set

\end{footnotesize}

\end{columns}


\begin{columns}

\column{0.01\textwidth}

\column{0.4\textwidth}
\ARROW The best UL but  order of magnitude above the LUV model predictions.
\column{0.6\textwidth}
\includegraphics[width=0.8\textwidth]{images/Belle2.png}

\end{columns}


\textref{[Belle, arxiv::1807.03267]}
\end{frame}







%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%



{
\usebackgroundtemplate{\includegraphics[width=\paperwidth,height=\paperheight]{images/charmingpenguing.jpg}}
\begin{frame}[plain]
\end{frame}
}

\begin{frame}\frametitle{$\Lambda_c \to \Pproton \mu \mu$}

\vspace{0.5em}                                                                              
        \begin{minipage}{\textwidth}                                                        
                                                                                            
                                                                                            
\begin{columns}                                                                             
\column{0.1in}                                                                              
{~}\\                                                                                       
\column{3in}                                                                                
\vspace{0.5em}                                                                              
                                                                                            
\ARROW SM predictions:\\                                                                    
~~~~~~$\mathcal{O}(10^{-8})$\\                                                              
\ARROW Long distance effects:\\                                                             
~~~~~~$\mathcal{O}(10^{-6})$\\                                                              
~~~~\\                                                                                      
\ARROW Previous measurement done by Babar:\\                                                
~~${\rm Br}(\Lambda_c^{+} \to p \mu^+ \mu^-) < 4.4\cdot 10^{-5}$ at 90\% CL\\               
\begin{center}                                                                              
\includegraphics[width=0.65\textwidth]{images/babar.png}\\                                  
                                                                                            
\end{center}                                                                                
                                                                                            
                                                                                            
\column{2in}                                                                                
\includegraphics[width=0.95\textwidth]{images/indeks1.jpg}\\                                
\includegraphics[width=0.95\textwidth]{images/indeks2.jpg}\\                                
\begin{exampleblock}{}                                                                      
LHCb analysis with $3~\invfb$
\end{exampleblock}                                                                          
                                                                                            
                                                                                            
\end{columns}                                                                               
                                                                                            
        \end{minipage}                                                                      
                \vspace*{2.cm}                                                              



\textref{[Phys. Rev D 84 072006]}
\end{frame}


\begin{frame}\frametitle{$\Lambda_c \to \Pproton \mu \mu$}
\ARROW Blind analysis with the normalization to the $\Lambda_c \to \Pproton \phi(\mu\mu)$.\\
\ARROW BDT to reduce combinatorial background.\\
\ARROW The dominant background: $\Lambda_c \to \Pproton \pi \pi$: $2.0\pm1.1$ events

\begin{columns}

\column{0.01\textwidth}

\column{0.6\textwidth}
\includegraphics[angle=-90,width=0.85\textwidth]{{images/Lc2pPhi_presel}.pdf}\\
Analysis performed in 3 mass windows:
\begin{itemize}
\item $\phi$ region: $m_{\mu\mu} \in \left[ 985, 1055 \right]~{\rm MeV/c^2}$
\item $\omega$ region: $m_{\mu\mu} \in \left[ 759, 805 \right]~{\rm MeV/c^2}$
\item nonresonant: rest of phase-space.
\end{itemize}
\column{0.4\textwidth}
\includegraphics[width=0.85\textwidth]{{images/pmumu_masses}.pdf}


\end{columns}


\textref{[PHYS. REV. D 97, 091101 (2018)]}

\end{frame}




\begin{frame}\frametitle{$\Lambda_c \to \Pproton \mu \mu$}

\begin{columns}

\column{0.02\textwidth}

\column{0.5\textwidth}
\ARROW It's the first observation of $\Lambda_c \to \Pproton \mu \mu$ in the $\omega$ region, with $5.0~\sigma$  significance.\\
\ARROW The corresponding branching fraction reads:
\begin{align*}
\mathcal{B}(\Lambda_c \to \Pproton \omega) = \left( 9.4 \pm 3.2 \pm 1.0 \pm 2.0 \right) \cdot 10^{-4}
\end{align*}
\ARROW No significant excess observed in the nonresonant region:
\begin{align*}
\mathcal{B}(\Lambda_c \to \Pproton \mu \mu) < 7.7(9.6) \times 10^{-8} 
\end{align*}
\ARROW Improving BaBar result by 3 orders of magnitude!
\column{0.5\textwidth}
\includegraphics[angle=-90,width=0.92\textwidth]{{images/Lc_mumu_mass_fit_sel}.pdf}\\
\includegraphics[angle=-90,width=0.92\textwidth]{{images/Lc2pmumu_bf90}.pdf}


\end{columns}

\textref{[PHYS. REV. D 97, 091101 (2018)]}
\end{frame}









\begin{frame}\frametitle{$\PD \to h h \mu \mu$}


\begin{columns}

\column{0.02\textwidth}

\column{0.5\textwidth}
\includegraphics[width=0.9\textwidth]{{images/Fig1D}.pdf}\\

\ARROW First observation with $2~\invfb$ of data!\\
\ARROW Dominated by long distance contributions.\\
\ARROW Normalized to $\PD \to \PK \pi [\mu \mu]_{\omega/\rho}$
\ARROW LHCb has measured the branching fractions:
\begin{footnotesize}
\begin{align*}
\mathcal{B}(\PD \to \pi \pi \mu \mu) = \left( 9.64 \pm 0.48 \pm 0.51 \pm 0.97 \right) \cdot 10^{-7}
\end{align*}
\begin{align*}
\mathcal{B}(\PD \to \PK \PK \mu \mu) = \left( 1.54 \pm 0.27 \pm 0.09 \pm 0.16 \right) \cdot 10^{-7}
\end{align*}
\end{footnotesize}

\column{0.5\textwidth}
\includegraphics[angle=-90,width=0.82\textwidth]{{images/Fig7aD}.pdf}\\
\includegraphics[angle=-90,width=0.82\textwidth]{{images/Fig7bD}.pdf}
\end{columns}

\textref{[PHYS. REV. LETT. 119, 181805 (2017)]}
\end{frame}





\begin{frame}\frametitle{$\PD \to h h \mu \mu$}

\begin{columns}

\column{0.02\textwidth}

\column{0.5\textwidth}
\ARROW The challenge is to disentangle the SD and LD.\\
\ARROW Angular observables can help:
\begin{footnotesize}

\begin{align*}
A_{FB}=\frac{\Gamma(\cos \theta_{\mu} >0) - \Gamma(\cos \theta_{\mu} <0 ) }{\Gamma(\cos \theta_{\mu} >0) + \Gamma(\cos \theta_{\mu} <0)  }
\end{align*}

\begin{align*}
A_{2\phi}=\frac{\Gamma(\sin 2 \phi >0) - \Gamma(\sin 2 \phi <0 ) }{\Gamma(\sin 2 \phi >0) + \Gamma(\sin 2 \phi <0)  }
\end{align*}

\begin{align*}
A_{CP}=\frac{\Gamma(\PD \to hh\mu\mu ) - \Gamma(\APD \to hh\mu\mu  ) }{\Gamma(\PD \to hh\mu\mu ) + \Gamma(\APD \to hh\mu\mu )  }
\end{align*}

\begin{alertblock}{}
Analysis with $5~\invfb$.\\
See M. Gersabeck talk for more details!
\end{alertblock}

\end{footnotesize}




\column{0.5\textwidth}\includegraphics[width=0.82\textwidth]{{images/Fig1DD}.pdf}\\
\includegraphics[angle=-90,width=0.82\textwidth]{{images/Fig2aDD}.pdf}
\end{columns}


\textref{[arXiv:1806.10793]}

\end{frame}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\begin{frame}\frametitle{$\PD \to h h \mu \mu$}

\begin{columns}

\column{0.02\textwidth}

\column{0.5\textwidth}
\ARROW Need to perform a 4D acceptance correction.\\
\ARROW BDT technique used to determine it.\\
\includegraphics[width=0.6\textwidth]{{images/Fig6a}.pdf}\\
\ARROW Yields done by a weighted likelihood fit.\\
\begin{exampleblock}{}
All observables consistent with $0$!
\end{exampleblock}



\column{0.5\textwidth}

\includegraphics[angle=-90,width=0.45\textwidth]{{images/Fig9aDD}.pdf}
\includegraphics[angle=-90,width=0.45\textwidth]{{images/Fig9bDD}.pdf}\\
\includegraphics[angle=-90,width=0.45\textwidth]{{images/Fig9cDD}.pdf}
\includegraphics[angle=-90,width=0.45\textwidth]{{images/Fig9dDD}.pdf}\\
\includegraphics[angle=-90,width=0.45\textwidth]{{images/Fig9eDD}.pdf}
\includegraphics[angle=-90,width=0.45\textwidth]{{images/Fig9fDD}.pdf}\\


\end{columns}


\textref{[arXiv:1806.10793]}

\end{frame}


{
\usebackgroundtemplate{\includegraphics[width=\paperwidth,height=\paperheight]{images/strange.jpg}}
\begin{frame}[plain]
\end{frame}
}


\begin{frame}{$\PKshort \to \mu \mu$}
{~}
\begin{minipage}{\textwidth}


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{center}

\begin{columns}
\column{0.60\textwidth}
\ARROW $\Pproton \Pproton$ collisions create enormous amount of strange mesons.\\
\ARROW Can be used to search for $\PKshort \to \mu \mu$.\\
\ARROW SM prediction: $\Br(\PKshort \to \mu \mu)= (5.0 \pm 1.5) \times 10^{-12}$\\
\ARROW Dominated by the long distance effects.\\
%\ARROW We used two types of triggers: TIS and TOS.\\
\ARROW Bkg dominated by $\PKshort \to \pi \pi$.

\includegraphics[width=0.75\textwidth]{{images/ks2mumu2}.png}\\




\column{0.4\textwidth}

\includegraphics[width=0.95\textwidth]{images/ks2mumu.png}\\
\ARROW No significant enhancement of signal has been observed and UL was set:
\begin{alertblock}{}\begin{small}
$\Br(\PKshort \to \mu \mu) <0.8 (1.0) \times 10^{-9}$ at $90 (95)\%$ CL 
\end{small}
\end{alertblock}


\end{columns}
\end{center}

\end{minipage}
\textref{EUR. PHYS. J. C, 77 10 (2017) 678}
\vspace*{2.1cm}
\end{frame}







\begin{frame}\frametitle{$\Sigma \to \Pproton \mu \mu$}

\ARROW $\Sigma \to \Pproton \mu \mu$ is a $\Pstrange \to \Pdown$ transition, which in SM are dominated by LD:~$\mathcal{O}(10^{-8})$.\\
\begin{center}
\includegraphics[width=0.25\textwidth]{{images/Fig9aS}.pdf}
\includegraphics[width=0.25\textwidth]{{images/Fig9bS}.pdf}\\

\end{center}

\ARROW Previously HyperCP collaboration reported evidence of this decay: $\mathcal{B}(\Sigma \to \Pproton \mu \mu) = \left( 8.6^{+6.6}_{-5.4} \pm 5.5 \right) \cdot 10^{-8}$ \begin{footnotesize} [Phys Rev Lett 94 021801, 2005] \end{footnotesize}\\

\begin{columns}
\column{0.02\textwidth}



\column{0.50\textwidth}

\ARROW Calibrated with $\PK \to \pi \pi \pi$: resolution of $4.28~{\rm MeV/c^2}$.

\begin{exampleblock}{}
Used $3~\invfb$ of data.
\end{exampleblock}

\column{0.5\textwidth}
\includegraphics[angle=-90,width=0.95\textwidth]{{images/Fig6S}.pdf}\\


\end{columns}


\textref{PHYS. REV. LETT. 120, 221803 (2018)}

\end{frame}

\begin{frame}\frametitle{$\Sigma \to \Pproton \mu \mu$}


\begin{columns}
\column{0.02\textwidth}



\column{0.50\textwidth}

\ARROW Normalize to $\Sigma \to \Pproton \gamma$.\\
\includegraphics[angle=-90,width=0.95\textwidth]{{images/Fig1S}.pdf}\\

\ARROW Evidence with $4.1~\sigma$ significance.
\ARROW Branching fraction measured:
\begin{align*}
\mathcal{B}( \Sigma \to \Pproton \mu \mu ) = \left( 2.2^{+1.8}_{-1.3} \right) \cdot 10^{-8}
\end{align*}

\column{0.5\textwidth}
\includegraphics[angle=-90,width=0.9\textwidth]{{images/Fig2}.pdf}\\
\includegraphics[angle=-90,width=0.9\textwidth]{{images/Fig3S}.pdf}\\


\end{columns}


\textref{EUR. PHYS. J. C, 77 10 (2017) 678}


\end{frame}


\begin{frame}\frametitle{Summary}

\ARROW FCNC processes provide powerful constraints on extensions of the SM. \\
\ARROW Large $\Pbeauty\APbeauty$ cross-section provides a large sample of ''rare'' decay processes.\\
\ARROW More results being updated with Run2 data.\\
\begin{center}
\includegraphics[width=0.6\textwidth]{images/2017stat.png}
\end{center}

\ARROW Stay tuned for more results!

\end{frame}









\backupbegin

\begin{frame}\frametitle{Backup}
\topline

\end{frame}

\backupend

\end{document}