Newer
Older
Presentations / Lc2PMuMu / Aproval / mchrzasz.tex
@Marcin Chrzaszcz Marcin Chrzaszcz on 26 Sep 2017 33 KB finished aproval presentation
\documentclass[11 pt,xcolor={dvipsnames,svgnames,x11names,table}]{beamer}

\usepackage[english]{babel}
\usepackage{polski}


\usetheme[
	bullet=circle,		% Other option: square
	bigpagenumber,		% circled page number on lower right
	topline=true,			% colored bar at the top of the frame
	shadow=false,			% Shading for beamer blocks
	watermark=BG_lower,	% png file for the watermark
	]{Flip}

%\logo{\kern+1.em\includegraphics[height=1cm]{SHiP-3_LightCharcoal}}


\usepackage[lf]{berenis}
\usepackage[LY1]{fontenc}
\usepackage[utf8]{inputenc}

\usefonttheme{professionalfonts}
\usepackage[no-math]{fontspec}
\defaultfontfeatures{Mapping=tex-text}	% This seems to be important for mapping glyphs properly

\setmainfont{Times}			% Beamer ignores "main font" in favor of sans font
\setsansfont{Times}			% This is the font that beamer will use by default
% \setmainfont{Gill Sans Light}		% Prettier, but harder to read

\setbeamerfont{title}{family=\fontspec{Times}}

\input t1augie.fd

%\newcommand{\handwriting}{\fontspec{augie}} % From Emerald City, free font
%\newcommand{\handwriting}{\usefont{T1}{fau}{m}{n}} % From Emerald City, free font
% \newcommand{\handwriting}{}	% If you prefer no special handwriting font or don't have augie

%% Gill Sans doesn't look very nice when boldfaced
%% This is a hack to use Helvetica instead
%% Usage: \textbf{\forbold some stuff}
%\newcommand{\forbold}{\fontspec{Arial}}

\usepackage{graphicx}
\usepackage[export]{adjustbox}

\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{bm}
\usepackage{colortbl}
\usepackage{mathrsfs} 			% For Weinberg-esque letters
\usepackage{cancel}				% For "SUSY-breaking" symbol
\usepackage{slashed}            % for slashed characters in math mode
\usepackage{bbm}                % for \mathbbm{1} (unit matrix)
\usepackage{amsthm}				% For theorem environment
\usepackage{multirow}			% For multi row cells in table
\usepackage{arydshln} 			% For dashed lines in arrays and tables
\usepackage{siunitx}
\usepackage{xhfill}
\usepackage{grffile}
\usepackage{textpos}
\usepackage{subfigure}
\usepackage{tikz}

%\usepackage{hepparticles}
\usepackage[italic]{hepparticles}

\usepackage{hepnicenames}

% Drawing a line
\tikzstyle{lw} = [line width=20pt]
\newcommand{\topline}{%
  \tikz[remember picture,overlay] {%
    \draw[crimsonred] ([yshift=-23.5pt]current page.north west)
             -- ([yshift=-23.5pt,xshift=\paperwidth]current page.north west);}}



% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
\usepackage{tikzfeynman}		% For Feynman diagrams
\usetikzlibrary{arrows,shapes}
\usetikzlibrary{trees}
\usetikzlibrary{matrix,arrows} 				% For commutative diagram
% http://www.felixl.de/commu.pdf
\usetikzlibrary{positioning}				% For "above of=" commands
\usetikzlibrary{calc,through}				% For coordinates
\usetikzlibrary{decorations.pathreplacing}  % For curly braces
% http://www.math.ucla.edu/~getreuer/tikz.html
\usepackage{pgffor}							% For repeating patterns

\usetikzlibrary{decorations.pathmorphing}	% For Feynman Diagrams
\usetikzlibrary{decorations.markings}
\tikzset{
	% >=stealth', %%  Uncomment for more conventional arrows
	vector/.style={decorate, decoration={snake}, draw},
	provector/.style={decorate, decoration={snake,amplitude=2.5pt}, draw},
	antivector/.style={decorate, decoration={snake,amplitude=-2.5pt}, draw},
	fermion/.style={draw=gray, postaction={decorate},
		decoration={markings,mark=at position .55 with {\arrow[draw=gray]{>}}}},
	fermionbar/.style={draw=gray, postaction={decorate},
		decoration={markings,mark=at position .55 with {\arrow[draw=gray]{<}}}},
	fermionnoarrow/.style={draw=gray},
	gluon/.style={decorate, draw=black,
		decoration={coil,amplitude=4pt, segment length=5pt}},
	scalar/.style={dashed,draw=black, postaction={decorate},
		decoration={markings,mark=at position .55 with {\arrow[draw=black]{>}}}},
	scalarbar/.style={dashed,draw=black, postaction={decorate},
		decoration={markings,mark=at position .55 with {\arrow[draw=black]{<}}}},
	scalarnoarrow/.style={dashed,draw=black},
	electron/.style={draw=black, postaction={decorate},
		decoration={markings,mark=at position .55 with {\arrow[draw=black]{>}}}},
	bigvector/.style={decorate, decoration={snake,amplitude=4pt}, draw},
}

% TIKZ - for block diagrams,
% from http://www.texample.net/tikz/examples/control-system-principles/
% \usetikzlibrary{shapes,arrows}
\tikzstyle{block} = [draw, rectangle,
minimum height=3em, minimum width=6em]




\usetikzlibrary{backgrounds}
\usetikzlibrary{mindmap,trees}	% For mind map
\newcommand{\degree}{\ensuremath{^\circ}}
\newcommand{\E}{\mathrm{E}}
\newcommand{\Var}{\mathrm{Var}}
\newcommand{\Cov}{\mathrm{Cov}}
\newcommand\Ts{\rule{0pt}{2.6ex}}       % Top strut
\newcommand\Bs{\rule[-1.2ex]{0pt}{0pt}} % Bottom strut

\graphicspath{{images/}}	% Put all images in this directory. Avoids clutter.

% SOME COMMANDS THAT I FIND HANDY
% \renewcommand{\tilde}{\widetilde} % dinky tildes look silly, dosn't work with fontspec
\newcommand{\comment}[1]{\textcolor{comment}{\footnotesize{#1}\normalsize}} % comment mild
\newcommand{\Comment}[1]{\textcolor{Comment}{\footnotesize{#1}\normalsize}} % comment bold
\newcommand{\COMMENT}[1]{\textcolor{COMMENT}{\footnotesize{#1}\normalsize}} % comment crazy bold
\newcommand{\Alert}[1]{\textcolor{Alert}{#1}} % louder alert
\newcommand{\ALERT}[1]{\textcolor{ALERT}{#1}} % loudest alert
%% "\alert" is already a beamer pre-defined
\newcommand*{\Scale}[2][4]{\scalebox{#1}{$#2$}}%

\def\Put(#1,#2)#3{\leavevmode\makebox(0,0){\put(#1,#2){#3}}}

\usepackage{gmp}
\usepackage[final]{feynmp-auto}

\usepackage[backend=bibtex,style=numeric-comp,firstinits=true]{biblatex}
\bibliography{bib}
\setbeamertemplate{bibliography item}[text]

\makeatletter\let\frametextheight\beamer@frametextheight\makeatother

% suppress frame numbering for backup slides
% you always need the appendix for this!
\newcommand{\backupbegin}{
	\newcounter{framenumberappendix}
	\setcounter{framenumberappendix}{\value{framenumber}}
}
\newcommand{\backupend}{
	\addtocounter{framenumberappendix}{-\value{framenumber}}
	\addtocounter{framenumber}{\value{framenumberappendix}}
}


\definecolor{links}{HTML}{2A1B81}
%\hypersetup{colorlinks,linkcolor=,urlcolor=links}

% For shapo's formulas:
\def\lsi{\raise0.3ex\hbox{$<$\kern-0.75em\raise-1.1ex\hbox{$\sim$}}}
\def\gsi{\raise0.3ex\hbox{$>$\kern-0.75em\raise-1.1ex\hbox{$\sim$}}}
\newcommand{\lsim}{\mathop{\lsi}}
\newcommand{\gsim}{\mathop{\gsi}}
\newcommand{\wt}{\widetilde}
%\newcommand{\ol}{\overline}
\newcommand{\Tr}{\rm{Tr}}
\newcommand{\tr}{\rm{tr}}
\newcommand{\eqn}[1]{&\hspace{-0.7em}#1\hspace{-0.7em}&}
\newcommand{\vev}[1]{\rm{$\langle #1 \rangle$}}
\newcommand{\abs}[1]{\rm{$\left| #1 \right|$}}
\newcommand{\eV}{\rm{eV}}
\newcommand{\keV}{\rm{keV}}
\newcommand{\GeV}{\rm{GeV}}
\newcommand{\im}{\rm{Im}}
\newcommand{\disp}{\displaystyle}
\def\be{\begin{equation}}
\def\ee{\end{equation}}
\def\ba{\begin{eqnarray}}
\def\ea{\end{eqnarray}}
\def\d{\partial}
\def\l{\left(}
\def\r{\right)}
\def\la{\langle}
\def\ra{\rangle}
\def\e{{\rm e}}
\def\Br{{\rm Br}}
\def\LcTopmumu{\Lambda_c^{+} \to p \mu^+ \mu^-}
\def\Lc{\Lambda_c^{+}}
\def\mumu{\mu\mu}
\newcommand{\BRof}[1]{\ensuremath{{\cal B}(#1)}\xspace}

\def\LcTopphi{\Lc \to p \Pphi (\mumu)}
\def\Lcpomegano{\Lc \to p \omega}




\def\ARROW{{\color{JungleGreen}{$\Rrightarrow$}}\xspace}
\def\ARROWR{{\color{WildStrawberry}{$\Rrightarrow$}}\xspace}
\def\pt{p_T}
\def\mevc{MeV/c}
\def\mevcc{MeV/c^2}
\def\gevc{GeV/c}
\def\gevcc{GeV/c^2}
\author{ {Marcin Chrzaszcz} (CERN)}
\institute{UZH}
\title[Search for the $\Lambda_c^{+} \to p \mu^+ \mu^-$ decay ]{Search for the $\Lambda_c^{+} \to p \mu^+ \mu^-$ decay }

\date{25 September 2014}


\begin{document}
\tikzstyle{every picture}+=[remember picture]

{
\setbeamertemplate{sidebar right}{\llap{\includegraphics[width=\paperwidth,height=\paperheight]{bubble2}}}
\begin{frame}[c]%{\phantom{title page}}
\begin{center}
\begin{center}
	\begin{columns}
		\begin{column}{0.75\textwidth}
			\flushright \bfseries \Large {Search for the suppressed $\Lambda_c^{+} \to p \mu^+ \mu^-$ decay and observation of the  $\Lambda_c^{+} \to p \omega$ decay}
		\end{column}
                \begin{column}{0.02\textwidth}
                  {~}
                  \end{column}
                \begin{column}{0.23\textwidth}
                 % \hspace*{-1.cm}
                  \vspace*{-3mm}
                  \includegraphics[width=0.6\textwidth]{lhcb-logo}
                  \end{column}

	\end{columns}
\end{center}
	\quad
	\vspace{3em}
\begin{columns}
\begin{column}{0.44\textwidth}
\flushright \vspace{-2.8em} {  \fontspec{Zapfino} Marcin Chrzaszcz\\\vspace{-0.1em}\small \href{mailto:mchrzasz@cern.ch}{mchrzasz@cern.ch}}

\end{column}
\begin{column}{0.53\textwidth}
\hspace{2.0cm}
\includegraphics[height=1.6cm]{cern}
\end{column}
\end{columns}

\vspace{1em}
	\footnotesize{\large With M. Jezabek, T. Lesiak, B. Nowak, M. Witek (IFJ PAN)}
\vspace{0.5em}

	\textcolor{normal text.fg!50!Comment}{Tuesday meeting, CERN\\September 26, 2017}
\end{center}
\end{frame}
}


\begin{frame}{Yellow pages}
\vspace{0.5em}
	\begin{minipage}{\textwidth}
	\ARROW Reviewers: Tom Blake(chair), Harry Cliff, Simon Eydelman(EB)\\
	\ARROW Twiki:\\
	 \href{https://twiki.cern.ch/twiki/bin/viewauth/LHCbPhysics/Lc2PMuMu}{\url{https://twiki.cern.ch/twiki/bin/viewauth/LHCbPhysics/Lc2PMuMu}}\\
	\ARROW Review start: 31.03.2017\\
	\ARROW Fruitfull interactions with the review committee. \\
	\ARROW Unblinding: 18.07.2017\\
	\ARROW Minor changes to the analysis during the review.\\
	
\begin{center}
We would like to take this occasion and than Tom, Harry and Simon for fruitful, constructive and smooth review!
\end{center}	
	
	\end{minipage}
		\vspace*{2.cm}
\end{frame}



\begin{frame}{Motivation}
\vspace{0.5em}
	\begin{minipage}{\textwidth}


\begin{columns}
\column{0.1in}
{~}\\
\column{3in}
\vspace{0.5em}

\ARROW SM predictions:\\
~~~~~~$\mathcal{O}(10^{-8})$\\
\ARROW Long distance effects:\\
~~~~~~$\mathcal{O}(10^{-6})$\\
~~~~\\
\ARROW Previous measurement done by Babar:\\
~~${\rm Br}(\Lambda_c^{+} \to p \mu^+ \mu^-) < 4.4\cdot 10^{-5}$ at 90\% CL\\
\begin{center}
\includegraphics[width=0.65\textwidth]{images/babar.png}\\

\end{center}


\column{2in}
\includegraphics[width=0.95\textwidth]{images/indeks1.jpg}\\
\includegraphics[width=0.95\textwidth]{images/indeks2.jpg}\\
\begin{exampleblock}{}
Should be able to improve by \\a factor of 100!
\end{exampleblock}


\end{columns}

	\end{minipage}
		\vspace*{2.cm}
\end{frame}





\begin{frame}{Analysis strategy}
\vspace{0.5em}
	\begin{minipage}{\textwidth}

\ARROW Normalization to $\Lambda_c^+ \to p \phi(\mu\mu)$.\\
\ARROW Typical steps rare decays:
\begin{itemize}
\item Loose stripping selection.
\item BDT1 used for first preselection.
\item BDT2 used to further suppress the background.
\item PID used to fight the peaking background.
\end{itemize}
\ARROW Search performed in several dimuon mass windows.\\
\ARROW Selection optimized on $\rm CL_s$.\\
\ARROW Unblinding and calculate the UL of BR using  $\rm CL_s$.
\pause
\begin{center}
\includegraphics[width=0.5\textwidth]{images/blind.jpg}
\end{center}
	\end{minipage}
		\vspace*{2.cm}
\end{frame}




%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%



\begin{frame}{Normalization channel}
\vspace{0.5em}
	\begin{minipage}{\textwidth}
\begin{columns}
\column{0.1in}
{~}\\
\column{3in}
{\Large Use the $\Lambda_c^{+} \to p \phi(\mu\mu)$.}\\
\ARROW Same final state, same selection, a lot of systematics cancel.\\
\ARROWR The Branching fraction of $\Lambda_c^{+} \to p \phi$ is known with $22~\%$.

{\Large Use the $\Lambda_c^{+} \to p K \pi$.}\\
\ARROW More precisely known branching fraction (precision: $6.4~\%$).\\
\ARROWR A lot of additional systematics due to different final states, different selections 

\column{2in}
\only<1>{
\includegraphics[width=0.9\textwidth]{images/quovadis.jpg}
}
\only<2>{
\includegraphics[width=0.9\textwidth]{images/quovadis2.jpg}
}
\end{columns}
\begin{exampleblock}{We choose the $\Lambda_c^{+} \to p \phi(\mu\mu)$ option}
\ARROWR In the most optimistic scenario where you assume the $22~\%$ systematic to go town to $6.4~\%$ the UL. \\
In this case the UL gets worse $7.8~\%$.
\end{exampleblock}


	\end{minipage}
		\vspace*{2.cm}
\end{frame}




\begin{frame}{Data sets and Stripping}
\vspace{0.5em}
	\begin{minipage}{\textwidth}
\ARROW 2011+2012 (aka Run1) Stripping 20.\\
\begin{center}

\begin{tabular}{|c|c|}                                             
\hline                                                             
Condition & ~~$\LcTopmumu$~~\\                                       
\hline                                                             
$\mu^{\pm}$ and $p$         &  \\                              
$\pt$                            & {$>300\mevc$} \\                  
Track $\chi^2$/ndf             & {$<3 $} \\                        
IP $\chi^2$/ndf                & {$>9 $} \\                        
PID $\mu^\pm$     &  PIDmu$ >$ -5 and (PIDmu - PIDK) $>$ 0  \\     
PID p      &    PIDp$>$10  \\                                 
\hline                                                             
$\Lc$  & {~} \\                                                       
$\Delta m$         & $<150\mevcc$ \\                               
Vertex $\chi^2$    &   {$<15$} \\                                  
IP $\chi^2$        &  {$<225 $} \\                                 
$c\tau$            &  {$>100\rm \mu m$} \\                              
Lifetime fit $\chi^2$  & {$<225 $} \\                              
%\hline                                                            
%$m_{\mu^+\mu^-}$ & $> 450\mevcc$ \\                               
%$m_{\mu^+\mu^+}$ & $> 250\mevcc$ \\                               
\hline                                                             
\end{tabular}   
\end{center}                                                   
	\end{minipage}
		\vspace*{2.cm}
\end{frame}


\begin{frame}{Preselection}
\vspace{0.5em}
	\begin{minipage}{\textwidth}
	
\ARROW Additional cuts:
                               
\begin{center}\begin{tabular}{|c|}                                              
    \hline                                                                      
    Common cuts  \\                                                             
    \hline                                                                      
    $m_{\mumu}$    $< 1400~\mevcc$       \\                                     
    proton $ProbNNp  > 0.1 $    \\    %     Podzielic te ciecia i opisac gdzie t
    $\mu^+,\mu^-$ $ ProbNNmu > 0.1 $    \\                                      
    $ 10~\gevc < p_{proton} < 100~\gevc $  \\                                   
     \hline                                                                                     
  \end{tabular}\end{center}                                                     

\ARROW We define couple of dimuom mass regions:
\begin{center}
     \begin{tabular}{|c | c|}                                                                                              
\hline                                                                                                                
$m(\mu\mu)$ region & $\left[ \mevcc \right]$\\ \hline                                                                 
$\phi$ region & $\left[985, 1055\right]$\\                                                                            
$\omega$ region & $\left[759 ,  805\right]$\\                                                                         
{\it{non resonant} } & $\left[210, 747 \right] \cup \left[817, 980  \right] \cup \left[1060, 1400\right]$ \\ \hline   
\end{tabular}                                                                                                                                           
\end{center}

                                  
	\end{minipage}
		\vspace*{2.cm}
\end{frame}


\begin{frame}{Trigger}
\vspace{0.5em}
	\begin{minipage}{\textwidth}
	\vspace{0.5em}

\ARROW We require the following triggers (all are TOS):	
\begin{itemize}                                                                   
  \item L0                                                                        
    \begin{itemize}                                                               
      \item L0MuonDecision                                  
    \end{itemize}                                                                 
  \item HLT1                                                                      
    \begin{itemize}                                                               
      \item Hlt1TrackMuonDecision                          
      \item Hlt1DiMuonLowMassDecision                         
      \item Hlt1TrackAllL0Decision                         
    \end{itemize}                                                                 
  \item HLT2                                                                      
    \begin{itemize}                                                               
      \item Hlt2DiMuonDetachedDecision                      
      \item Hlt2CharmSemilep3bodyD2KMuMuDecision            
      \item Hlt2CharmSemilepD2HMuMuDecision               
    \end{itemize}                                                                 
\end{itemize}                                                                     

\ARROW The TIS increase the signal yield by $<10~\%$ and were asked to be removed at the WG review stage.                                                                                 

                                  
	\end{minipage}
		\vspace*{2.cm}
\end{frame}


\begin{frame}{BDT1 training}
\vspace{0.5em}
	\begin{minipage}{\textwidth}
	\vspace{0.5em}
\begin{columns}

\column{0.1in}
{~}\\

\column{3in}
\ARROW The normalization channel is also a rather ``rare decay'':\\
${\rm Br}(\Lambda_c^+ \to p \phi) \cdot {\rm Br}(\phi \to \mu \mu) = 3.1 \cdot 10^{-7}$\\
\ARROW After the previous preselection a simple BDT is trained using  variables that are well simulated in the MC. k-folding used ($k=10$)
\ARROW The BDT1 (not surprisingly) likes the prompt $\Lambda_c$ rather the secondary ones.
\begin{center}
\includegraphics[angle=-90,width=0.7\textwidth]{images/BDT_pre_history.pdf}

\end{center}

\column{2in}
\includegraphics[angle=-90,width=0.95\textwidth]{images/compare_BDT1_2011.pdf}                 \\
\includegraphics[angle=-90,width=0.95\textwidth]{images/compare_BDT1_2012.pdf}                 \\

                 
                 
\end{columns}                 
	\end{minipage}
		\vspace*{2.cm}
\end{frame}



\begin{frame}{BDT1 selection}
\vspace{0.5em}
	\begin{minipage}{\textwidth}
\ARROW The selection based on BDT1 is not optimised.\\
\ARROW A loose cut:
\begin{equation}
{\rm BDT1} > -0.1 \nonumber
\end{equation}	
	
  \begin{center}    
\includegraphics[angle=-90,width=0.49\linewidth]{images//Lc2pPhi5_pre.pdf}               
    \includegraphics[angle=-90,width=0.49\linewidth]{images/expected_bck5_pre.pdf}          

                                                       
  \end{center}                                                             
	\ARROW The normalization channel peak is observed. 
	
	\end{minipage}
		\vspace*{2.cm}
\end{frame}



\begin{frame}{BDT2 selection}
\vspace{0.5em}
	\begin{minipage}{\textwidth}
\begin{columns}

\column{0.1in}
{~}\\

\column{3in}

\ARROW Variables used:

\begin{footnotesize}
\begin{itemize}                                                                      
 \item                                                                                                                                  
   flight distance - the one between the production and decay points.                                                                   
 \item                                                                                                                                  
   $\chi^2$ of flight distance,                                                                                                         
 \item                                                                                                                                  
   transformed decay time - $T=\exp{(-1000 \cdot \tau / {\mathrm{ns}})}$,                                                               
 \item                                                                                                                                  
   IP - impact parameter with respect to primary vertex,                                                                                
 \item                                                                                                                                  
   $\chi^2$ of IP of $\Lc$
 \item                                                                                                                                  
   $\log(\chi^2_{DTF})$,
 \item                                                                                                                                  
   $p_T$ - transverse momentum of $\Lc$,                                                                                             

   \item                                                                             
     minimum of $\chi^2$ of $p$, $\mu^+$, $\mu^-$ w.r.t. primary vertex,
   \item                                                                             
     transverse momenta 
   \item                                                                             
     minimum of $\chi^2$/NDF of track fit of $p$, $\mu^+$, $\mu^-$.     
\end{itemize}                                                                        
\end{footnotesize}



\column{2in}
\vspace{3.0em}
\includegraphics[angle=-90,width=0.95\textwidth]{images/compare_BDT2_2011.pdf}                 \\

\includegraphics[angle=-90,width=0.95\textwidth]{images/compare_BDT2_2012.pdf}                 \\
\vspace{3.0em}
{~}
                 
                 
\end{columns}  
	\end{minipage}
		\vspace*{2.cm}
\end{frame}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%


\begin{frame}{BDT2}
\vspace{0.5em}
	\begin{minipage}{\textwidth}

\begin{columns}

\column{0.02\textwidth}
{~}\\

\column{0.48\textwidth}
\begin{small}
\ARROW After correcting the DATA/MC differences the BDT distribution shows a good DATA/MC agreement.\\
\ARROW No mass correlation observed.
\end{small}
\includegraphics[angle=-90,width=0.95\textwidth]{images/mBDT2_profile.pdf}


\column{0.48\textwidth}

\includegraphics[angle=-90,width=0.95\textwidth]{images/Comparison_BDT_data_mc_shifted.pdf}

\includegraphics[angle=-90,width=0.95\textwidth]{images/BDT_check_3mu_bkg_1.pdf}


\column{0.02\textwidth}
{~}\\



\end{columns}


	\end{minipage}
		\vspace*{2.cm}
\end{frame}




\begin{frame}{PID}
\vspace{0.5em}
	\begin{minipage}{\textwidth}
\begin{small}

\ARROW MC resampling is choose to correct the PID distributions:\\ 
For MC samples the ProbNNp and ProbNNmu are drawn from the PIDCalib distributions.\\

\begin{columns}
\column{0.5\textwidth}

\ARROWR The PIDCalib doesn't cover the low $\pt$ region for muons ($10\%$).\\
\ARROWR Decided to use for them the $D_s \to \phi(\mu\mu)$ sample.\\

\includegraphics[angle=-90,width=0.95\textwidth]{images/Comparison_ProbNNmu_data_mc.pdf}


\column{0.5\textwidth}
\includegraphics[angle=-90,width=0.95\textwidth]{images/effmu_pid.pdf}\\
\includegraphics[angle=-90,width=0.95\textwidth]{images/Comparison_ProbNNp_data_mc.pdf}


\end{columns}



\end{small}

	\end{minipage}
		\vspace*{2.cm}
\end{frame}






\begin{frame}{Selection optimization}
\vspace{1.5em}
	\begin{minipage}{\textwidth}
\begin{small}
\begin{columns}

\column{0.01\textwidth}
{~}\\

\column{0.68\textwidth}

\ARROW The final selection of the analysis is optimized!\\
\ARROW $\rm CL_s$ method used.\\
\ARROW Toy experiment used to find the optimum.
{~}\\
\begin{center}\begin{tabular}{lc}                                                                                                                           
    \hline                                                                                                                                                  
    Variable                           &  Condition   \\                                                                                                    
    \hline                                                                                                                                                  
    BDT                                &  $> 0.0$   \\                                                                                                      
    $ProbNNp(p)$                       &  $> 0.68$   \\                                                                                                     
    minimum $ProbNNmu(\mu^{\pm})$       &  $> 0.38$   \\                                                                                                    
    \hline                                                                                                                                                  
  \end{tabular}\end{center} 



\includegraphics[angle=-90,width=0.5\linewidth]{images/Lc2pPhi5.pdf}                                                                                                
\includegraphics[angle=-90,width=0.5\linewidth]{images/expected_bck5.pdf}   

\column{0.3\textwidth}
\includegraphics[width=0.99\textwidth]{images/scan_ul.pdf}
\column{0.01\textwidth}




\end{columns}


\end{small}

	\end{minipage}
		\vspace*{2.cm}
\end{frame}


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%



\begin{frame}{Peaking backgrounds}
\vspace{1.5em}
	\begin{minipage}{\textwidth}


\begin{columns}

\column{0.6\textwidth}
\ARROW The tight PID cuts essentially kill the peaking bkg!\\
\ARROW The only bkg left is the $\Lambda_c^{+} \to p \pi \pi$.\\

\begin{center}
  \includegraphics[angle=-90,width=0.80\linewidth]{images/mass_bkg_p2pi.pdf}
\end{center}  
  \ARROW Estimated contamination: \\$1.96 \pm 1.13$ \ARROWR assigned as systematic
\column{0.4\textwidth}

\begin{center}                                                   
  \includegraphics[angle=-90,width=0.99\linewidth]{images/ref_Lc2pmumu.pdf}  \\ 
  \includegraphics[angle=-90,width=0.99\linewidth]{images/ref_Lc2ppipi.pdf}  \\ 
  \includegraphics[angle=-90,width=0.99\linewidth]{images/ref_Lc2pkpi.pdf}   \\ 
  \includegraphics[angle=-90,width=0.99\linewidth]{images/ref_Ds2kmumu.pdf} \\  
  \includegraphics[angle=-90,width=0.99\linewidth]{images/ref_Dp2kpipi.pdf}   
  \vspace*{-1.0cm}                                               
\end{center}                                                     


\end{columns}


	\end{minipage}
		\vspace*{2.cm}
\end{frame}



\begin{frame}{Normalization}
\vspace{1.5em}
	\begin{minipage}{\textwidth}
\ARROW The gold equation:

\begin{equation*}                            
{\frac{\BRof\LcTopmumu}{\BRof\LcTopphi}  =  
\frac{\rm                                   
{\epsilon\mathstrut_{norm}}^{TOT}           
}{\rm                                       
{\epsilon\mathstrut_{sig}}^{TOT}            
}                                           
\times\frac{N_{\rm sig}}{N_{\rm norm}},  } 
\label{eq:normalization}                    
\end{equation*}                              
\ARROW We take advantage of the cancellation that:

\begin{equation*}                                                                                                                                                                                                                                                                                                              
{\frac{\rm {\epsilon\mathstrut_{norm}}^{TOT} }{\rm {\epsilon\mathstrut_{sig}}^{TOT}}}                                                                                                                                                                                                                                         
=                                                                                                                                                                                                                                                                                                                             
{\frac{\rm {\epsilon\mathstrut_{norm}}^{STRIP}}{\rm {\epsilon\mathstrut_{sig}}^{STRIP}}}                                                                                                                                                                                                                                      
\times                                                                                                                                                                                                                                                                                                                        
{\frac{\rm {\epsilon\mathstrut_{norm}}^{COMM}}{\rm {\epsilon\mathstrut_{sig}}^{COMM}}}                                                                                                                                                                                                                                        
\times                                                                                                                                                                                                                                                                                                                        
{\frac{\rm {\epsilon\mathstrut_{norm}}^{SPEC}}{\rm {\epsilon\mathstrut_{sig}}^{SPEC}}}                                                                                                                                                                                                                                        ,~~ {\frac{\rm {\epsilon\mathstrut_{norm}}^{i}}{\rm {\epsilon\mathstrut_{sig}}^{i}}} \simeq 1                                                                                                                                                                                                                                        
\label{eq:effprod}                                                                                                                                                                                                                                                                                                            
\end{equation*}  

\begin{columns}
\column{0.02\textwidth}

\column{0.56\textwidth}
\ARROW In addition we have added 6 mass bins to increase the sensitivity.\\
\ARROW Signal is modelled by a double Crystall Ball.

\column{0.4\textwidth}
\includegraphics[width=0.85\textwidth]{images/massbin.png}

\column{0.02\textwidth}


\end{columns}





	\end{minipage}
		\vspace*{2.cm}
\end{frame}


\begin{frame}{Expected background}
\vspace{1.5em}
	\begin{minipage}{\textwidth}
	
	
	\begin{small}
\begin{columns}

\column{0.02\textwidth}

\column{0.48\textwidth}
\ARROW Background modelled with a linear function.\\

    \includegraphics[width=0.9\linewidth]{images/expected_bck5_obs_with_signal1.pdf}                                                                            

\column{0.48\textwidth}



\begin{center}\begin{tabular}{|c|c|}       
\hline                                     
bin & no events \\                         
\hline                                     
bin1 &  $ 8.56136 \pm 0.540302 $  \\       
bin2 &  $ 8.60318 \pm 0.536917 $  \\       
bin3 &  $ 8.64582 \pm 0.536561 $  \\       
bin4 &  $ 8.6887 \pm 0.539208 $  \\        
bin5 &  $ 8.7304 \pm 0.544752 $  \\        
bin6 &  $ 8.77226 \pm 0.553162 $  \\       
\hline                                     
  \end{tabular}\end{center}                


\column{0.02\textwidth}



\end{columns}

\begin{columns}

\column{0.6\textwidth}

  \includegraphics[angle=-90,width=0.49\linewidth]{images/br90rel.pdf} 
  \includegraphics[angle=-90,width=0.49\linewidth]{images/br90abs.pdf} 

\column{0.4\textwidth}


\ARROW Expected upper limits:
$\BRof\LcTopmumu < 5.91 \times 10^{-8}$ at 90~\% CL

\end{columns}





\end{small}


	\end{minipage}
		\vspace*{2.cm}
\end{frame}




\begin{frame}{Observed Upper limits}
\vspace{1.5em}
	\begin{minipage}{\textwidth}
	
	
\begin{columns}

\column{0.6\textwidth}

\ARROW After the green light from RC we have unblinded; no significant access of events have been observed.
\ARROW We have set an UL:
\begin{equation*}
\BRof\LcTopmumu < 7.68 \times 10^{-8}~ \rm at 90~\%~CL
\end{equation*}

\column{0.4\textwidth}
    \includegraphics[angle=-90,width=0.9\linewidth]{images/expected_bck5_obs_with_signal.pdf}                                                                            


\end{columns}

  \includegraphics[angle=-90,width=0.45\linewidth]{images/br90rel_obs.pdf}  
  \includegraphics[angle=-90,width=0.45\linewidth]{images/br90abs_obs.pdf}  


	\end{minipage}
		\vspace*{2.cm}
\end{frame}



\begin{frame}{By product :)}
\vspace{1.5em}
	\begin{minipage}{\textwidth}
	
	
	\begin{columns}

\column{0.5\textwidth}

	\ARROW We also looked at the $\omega$ dimuon region.\\
\begin{exampleblock}{We observed an access}
Using Wilks theorem we have calculated the singificance to be $5.0~\sigma$!
\end{exampleblock}
\ARROW This is the first observation of this decay!!!\\
$\BRof\Lcpomegano = (7.6 \pm 2.6~(stat) \pm 0.9~(syst1) \pm 3.1~(syst2) )~\times 10^{-4}$

\column{0.5\textwidth}
\includegraphics[angle=-90,width=0.99\textwidth]{images/Lc2pomega_DATA_mass_sel.pdf}\\
\includegraphics[angle=-90,width=0.99\textwidth]{images/mumu_mass_fit_sel.pdf}


\end{columns}


	\end{minipage}
		\vspace*{2.cm}
\end{frame}


\begin{frame}{Conclusion}
\vspace{1.5em}
	\begin{minipage}{\textwidth}
	
	\begin{itemize}
	\item Improved the UL for $\BRof\LcTopmumu$ by two orders of magnitude!\\
	\pause
	\includegraphics[width=0.5\textwidth]{images/mr_bean_laboratory.jpg}

	\item First time observed the decay $\Lcpomegano$!!
	\item Paper is beeing prepared, aiming PRL
	\item We would like to ask the collaboration for approving this analysis.
	\end{itemize}
\begin{center}
\end{center}

	\end{minipage}
		\vspace*{2.cm}
\end{frame}




\backupbegin

\begin{frame}\frametitle{Backup}
\topline

\end{frame}

\backupend

\end{document}