Newer
Older
Presentations / Tau2014 / mchrzasz2.tex
\documentclass[xcolor=svgnames]{beamer}
\usepackage[utf8]{inputenc}
\usepackage[english]{babel}
\usepackage{polski}
%\usepackage{amssymb,amsmath}
%\usepackage[latin1]{inputenc}
%\usepackage{amsmath}
%\newcommand\abs[1]{\left|#1\right|}
\usepackage{amsmath}
\newcommand\abs[1]{\left|#1\right|}
\usepackage{hepnicenames}
\usepackage{hepunits}
\usepackage{color}
\usepackage{feynmp}
\usepackage{pst-pdf}
\usepackage{hyperref}
\usepackage{xcolor}

\setbeamertemplate{footline}{\insertframenumber/\inserttotalframenumber}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
\definecolor{mygreen}{cmyk}{0.82,0.11,1,0.25}


\usetheme{Sybila} 
\title[Lepton Flavour Violation at LHCb ]{Lepton Flavour Violation at LHCb}
\author{Marcin Chrz\k{a}szcz$^{1,2}$ \\ \footnotesize{on behalf of the LHCb collaboration}}
\institute{$^1$~University of Zurich,\\ $^2$~Institute of Nuclear Physics, Krakow \\{~}\\  International Workshop on Tau Lepton Physics 2014,\\ Aachen, Germany }
\date{\today}
\begin{document}
% --------------------------- SLIDE --------------------------------------------
\frame[plain]{\titlepage}
\author{Marcin Chrz\k{a}szcz}
% ------------------------------------------------------------------------------
% --------------------------- SLIDE --------------------------------------------

\institute{~(UZH, IFJ)}


   %   \begin{frame}\frametitle{Outline}
   %     \begin{enumerate}
   %       \item introduction\vspace{.5em}
   %       \item multivariate technique\vspace{.5em}
   %       \item normalisation\vspace{.5em}
  % %       \item backgrounds\vspace{.5em}
  %        \item expected sensitivity\vspace{.5em}
  %        \item model dependence\vspace{.5em} data from Reco14Stripping20(r1)
  %      \end{enumerate}
    %    Major news wrt.\ the $1~fb^{-1}$ analysis are highlighted in \textcolor{mygreen}{green}
  %    \end{frame}

      \begin{frame}\frametitle{Outline}
          \tableofcontents
      \end{frame}

\section{LHCb detector}

\begin{frame}\frametitle{LHCb detector}
\begin{columns}
\column{3.in}
\begin{center}
\includegraphics[width=0.98\textwidth]{det.jpg}
\end{center}

\column{2.0in}
\begin{footnotesize}


      LHCb is a forward spectrometer:
        	\begin{itemize}
        	\item Excellent vertex resolution.
        	\item Efficient trigger.
        	\item High acceptance for $\Ptau$ and $\PB$.
        	\item Great Particle ID
        	\end{itemize}	
        


\end{footnotesize}
\end{columns}

\end{frame}


\section{Lepton Flavour Violation status}
\begin{frame}\frametitle{Lepton Flavour/Number Violation}
\begin{small}
 Lepton Flavour Violation(LFV):
\end{small}


\begin{footnotesize}

After $\Pmuon$ was discovered (1936) it was natural to think of it as an excited $\Pelectron$.
\begin{columns}
\column{3in}
\begin{itemize}
\item Expected: $B(\mu\to\Pe\gamma) \approx  10^{-4}$
\item Unless another $\Pnu$, in intermediate vector boson loop, cancels. 
\end{itemize}

\column{2in}
{~}\includegraphics[width=0.98\textwidth]{rabi.png}

\end{columns}
\begin{columns}
\column{0.5in}
{~}
\column{3in}
\begin{block}{I.I.Rabi:}
"Who ordered that?"
\end{block}
\column{0.3in}{~}
\column{2in}
{~}\includegraphics[scale=0.08]{II_Rabi.jpg}

\end{columns}


\begin{itemize}
\item Up to this day charged LFV is being searched for in various decay modes.
\item LFV was already found in neutrino sector (oscillations).
\end{itemize}
\end{footnotesize}


\begin{footnotesize}

\begin{columns}
\column{3.5in}
\begin{small}
 Lepton Number Violation (LNV) (see \href{https://indico.cern.ch/event/300387/session/17/contribution/74}{J. Harrison talk})
\end{small}

\begin{itemize}
\item Even with LFV, lepton number can be a conserved quantity. 
\item Many NP models predict it violation(Majorana neutrinos)
\item Searched in so called Neutrinoless double $\beta$ decays.
\end{itemize}

\column{1.5in}
\includegraphics[width=0.73\textwidth]{Double_beta_decay_feynman.png}

\end{columns}

\end{footnotesize}
%Double_beta_decay_feynman.png

  % \textref{M.Chrz\k{a}szcz 2014}
\end{frame}

  \begin{frame}
        \frametitle{Status of $\color{white} \tau \to \mu \mu \mu$ in Tau 2012}

\begin{columns}
         \begin{column}{.6\textwidth}

            \begin{alertblock}{current limits ($ \color{white} 90\,\%$ CL)}

              \begin{description}
                \item[BaBar] $3.3\times 10^{-8}$
                \item[Belle] $2.1\times 10^{-8}$
                \item[LHCb] $8.0\times 10^{-8}~(1 \invfb)$
              \end{description}
            \end{alertblock}
{~}\\
 \includegraphics[width=.95\textwidth]{TauLFV_UL_2013001_old.pdf}


          \end{column}
   \begin{column}{.4\textwidth}
 \includegraphics[width=.45\textwidth]{275px-Nagoya_Castle.jpg}{~}
 \includegraphics[width=.45\textwidth]{taushodo.jpg}\\{~}\\{~}\\
  \includegraphics[width=.93\textwidth]{Fig3a.png}
        \end{column}
\end{columns}
\begin{Large}
Today: Update with full LHCb data sample $(3\invfb)$!
\end{Large}


      \end{frame}


 \begin{frame}
         \section{Selection}
        \frametitle{Strategy}
        \begin{itemize}
          \item Blind analysis.
          \item Loose selection.
          \item Multivariate classification in: mass, PID, ``geometry/topology''.
          \item Binning optimisation.
          \item Consider 2012($8~\TeV$) and 2011($7~\TeV$) data separately.
          \item Relative normalisation ($\PDs\to\Pphi(\Pmu\Pmu)\Ppi$).
          \item Invariant mass fit for expected background in each likelihood bin: fit in $\left| m-m_{\Ptau} \right| >\unit{30}{\MeV}$.
          \item ``middle sidebands'' for classifier evaluation and tests: ($\unit{20}{\MeV}<\left| m-m_{\Ptau}\right| <\unit{30}{\MeV}$).
          \item CLs for limit calculation.
        \end{itemize}
       
      \end{frame}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
      \begin{frame}
        \frametitle{$\color{white} \tau$ production}
        \begin{itemize}
          \item $\Ptau$'s in LHCb come from five main sources:
            \end{itemize}
            \begin{center}
            
         
\begin{tabular}{| c | c | c | }
\hline
  Mode & $7~\TeV$ & $8~\TeV$ \\ \hline
  Prompt $\PDs\to\Ptau$  & $71.1\pm3.0\,\%$ & $72.4\pm2.7\,\%$ \\
  Prompt $\PDplus\to\Ptau$  & $4.1\pm0.8\,\%$  & $4.2\pm0.7\,\%$ \\
  Non-prompt $\PDs\to\Ptau$ & $9.0\pm2.0\,\%$ & $8.5\pm1.7\,\%$ \\
  Non-prompt $\PDplus\to\Ptau$ &  $0.18\pm0.04\,\%$  & $0.17\pm0.04\,\%$ \\
  $X_{\Pbottom}\to\Ptau$   & $15.5\pm2.7\,\%$  & $14.7\pm2.3\,\%$ \\ \hline
  
\end{tabular}
             \end{center}

       
        \begin{columns}
        \column{0.8\textwidth}
        \begin{exampleblock}{$\mathcal{B}(\PDplus\to\Ptau)$}
          \begin{itemize}
            \item There is no measurement of $\mathcal{B}(\PDplus\to\Ptau)$.
            \item One can calculate it from: $\mathcal{B}(\PDplus\to\Pmu\Pnum)$ + helicity suppression + phase space.
            \item \texttt{hep-ex:0604043}.
            \item $\mathcal{B}(\PDplus\to\Ptau\Pnut)=(1.0\pm0.1) \times10^{-3}$.
          \end{itemize}
        \end{exampleblock}
        \column{0.2\textwidth}
        {~}
           \end{columns}
           
      \end{frame}
 
      \begin{frame}
        \frametitle{Triggers at LHCb}
\begin{itemize}
\item LHCb uses complicated trigger\footnote{\href{http://arxiv.org/abs/1211.3055}{arxiv 1211.3055}}
\item $\mathcal{O}(100)$ trigger lines.
\item Lines change with data taking.
\item Optimized choice of triggers based on $\dfrac{s}{\sqrt{b}}$ FOM.
\item Evaluated different triggers used in 2012 data taking.
\item Found negligible differences in trigger efficiencies.
\end{itemize}
   
   
   
   
        \end{frame}  
   
      \section{Multivariate technique}

      \begin{frame}
        \frametitle{Geometric likelihood}
        
        \begin{itemize}
        \item As mentioned in LHCb we have different production sources of $\Ptau$'s.
        \item Each source has different detector response signature.
        \item To maximise our performance we trained classifiers for each of the $\Ptau$ sources using:
        \begin{itemize}
        \item Kinematic properties of $\Ptau$ candidate.
        \item Geometric properties of $\Ptau$ candidate, like pointing angle, DOCA, Vertex $\chi^2$, flight distance.
        \item Isolations, for vertex and individual tracks.
        \end{itemize}
        \item After training the individual classifiers one that combines all this information in a single classifier on mixed sample of $\Ptau$'s. 
        \item This technique is known as Blending or 
        \item Using this approach we gain $6\%$ sensitivity!
        \end{itemize}


          \end{frame}      
      
      \begin{frame}
        \frametitle{Performance of Blend classifier}
        \begin{itemize}
          \item Classifier prefers $\Ptau$'s from prompt $\PDs$, the dominant channel.
        \end{itemize}
        \begin{columns}
          \begin{column}{.49\textwidth}
            \begin{exampleblock}{MC response for different\newline $\color{white} \tau$ production channels}
              \includegraphics[width=.98\textwidth]{./mixing.pdf}
             \end{exampleblock}
          \end{column}
          \begin{column}{.49\textwidth}
            \begin{exampleblock}{Response for $\color{white} D_s \rightarrow \phi\pi$\newline data and MC}
              \includegraphics[width=.98\textwidth]{./dataMC.pdf}
            \end{exampleblock}
          \end{column}
        \end{columns}
      \end{frame}

        \begin{frame}
        \frametitle{Calibration}
        \begin{itemize}
          \item Assume all differences between $\Ptau\to\Pmu\Pmu\Pmu$ and $\PDs\to\Pphi\Ppi$ come from kinematics (mass, resonance, decay time), which is correct in MC.
          \item Get correction $\PDs\leadsto\Ptau$ from MC.
          \item Apply corrections to $\PDs\to\Pphi\Ppi$ on data.
        \end{itemize}
        \begin{block}{validation}
          \begin{itemize}
              \item done for 2011 analysis, treating smeared MC as data
          \end{itemize}
        \end{block}
        \begin{columns}
        
        \begin{column}{.45\textwidth}
        \includegraphics[width=.95\textwidth]{m3body_2012.pdf}
        \end{column}
        \begin{column}{.45\textwidth}
          \begin{itemize}
              \item $\PDs\to\Pphi\Ppi$ well modelled in MC.
                        %       \item[$\rightarrow$] i.e.\ also badly pointing non-prompt $\PDs$
          \end{itemize}
        \end{column}

        \end{columns}
      \end{frame}
      \begin{frame}
        \frametitle{PID calibration }
      
        \begin{exampleblock}{Phenomenological treatment}
          \begin{itemize}
            \item correlations are small in $\PDs\to\Pphi\Ppi$ data and MC:
              \newline $\varepsilon(\text{cut on one muon})^2 = \varepsilon(\text{cut on two muons})$
            \item[$\Rightarrow$] use $c^3=(\varepsilon(\text{cut and fit})/\varepsilon(\text{PIDCalib}))^3$ as correction to PIDCalib for $\Ptau\to\Pmu\Pmu\Pmu$
              \item assign error of $0.02$ for $c$.
          \end{itemize}
        \end{exampleblock}
\begin{itemize}
\item Many cross-checks done.
\item Everything works fine.
\end{itemize}
  \begin{columns}
   \begin{column}{.45\textwidth}
        \includegraphics[width=.95\textwidth]{mPID_2012.pdf}
   	    \end{column}
   	     \end{columns}
      \end{frame}



  \begin{frame}
        \frametitle{Binning optimisation}
        \begin{itemize}
            \item How to optimise the binning in two classifiers?
          \item $\unit{1}{\reciprocal\femtobarn}$ CONF note: two one-dimensional optimisations as in $\PBs\to\Pmu\Pmu$.
          \item $\unit{1}{\reciprocal\femtobarn}$ PAPER: iterative loop of one-dimensional optimisations\newline optimising one classifier on the sensitive range of the other classifier.
          \item Now: optimise two-dimensions (optimise bin boundaries in both dimensions simultaneously).
            \item Unchanged: don't use lowest likelihood bins\newline(reflection backgrounds, no sensitivity gain).
      \end{itemize}
      \end{frame}
      \begin{frame}
        \frametitle{Impact of new binning optimisation}
        \begin{itemize}
          \item Removal of tiny bins which contribute negligible sensitivity.
          \item Colour: limit obtained, using only this particular bin.
          \item Number: rank of that bin (1=best sensitivity bin).
        \end{itemize}


        \begin{columns}

        \begin{column}{.8\textwidth}
           \begin{center}
           Bin sensitivity 
            (2011 data)
\end{center}            
            \includegraphics[width=.95\textwidth]{./rank.pdf}
        \end{column}
	   \begin{column}{.2\textwidth}
        {~}
         \end{column}
        \end{columns}
      \end{frame}

   \begin{frame}
        \frametitle{Mass shape}
          \begin{itemize}
              \item Double-Gaussian with fixed fraction ($70\,\%$ inner Gaussian).
                \item Fix fraction to ease calibration.
                \item Correct mass by MC:\newline
              $\sigma_{data}^{\Ptau} = \frac{\sigma_{MC}^{\Ptau}}{\sigma_{MC}^{\PDs}}\times\sigma_{data}^{\PDs}$
          \end{itemize}
       \includegraphics[width=.44\textwidth]{./Ds_data_2011.pdf}
       \includegraphics[width=.44\textwidth]{./Ds_data_2012.pdf}

       {\footnotesize{
         \begin{tabular}{|c|c|c|}
           \hline
           Calibrated $\Ptau$ Mass shape & 7~TeV & 8~TeV\\
           \hline
           Mean ($\MeV$) & $1779.1 \pm 0.1$ & $1779.0 \pm 0.1$\\
           \hline
           $\sigma_1$ ($\MeV$) & $7.7 \pm 0.1$ & $7.6 \pm 0.1$\\
           \hline
           $\sigma_2$ ($\MeV$) & $12.0 \pm 0.8$ & $11.5 \pm 0.5$\\
           \hline
         \end{tabular}
     }
   }
      \end{frame}
 


   \section{Normalisation}

     \begin{frame}
       \frametitle{Relative normalisation}
       $\mathcal{B}(\Ptau\to\Pmu\Pmu\Pmu) = \frac{\mathcal{B}(\PDs\to\Pphi\Ppi)}{\mathcal{B}(\PDs\to\Ptau\Pnut)} \times f_{\PDs}^{\Ptau} \times \frac{\varepsilon_\text{norm}    }{\varepsilon_\text{sig}     }  \times \frac{N_\text{sig}}{N_\text{norm}} = \alpha\times N_\text{sig}$
       \begin{itemize}
           \item where $\varepsilon$ stands for trigger, reconstruction, selection,
          \item $f_{\PDs}^{\Ptau}$ is the fraction of $\Ptau$ coming from $\PDs$,
           \item $\text{norm}$ = normalisation channel $\PDs\to\Pphi\Ppi$
                        \newline i.e.\ $(83\pm3)\,\%$ for 2012.
       \end{itemize}
       \includegraphics[width=.47\textwidth]{./Ds_data_2011.pdf}
       \includegraphics[width=.47\textwidth]{./Ds_data_2012.pdf}
     \end{frame}

     \begin{frame}[allowframebreaks]
       \frametitle{Normalisation in numbers}
       {\footnotesize{
$\begin{array}{c|c|c}
& \rm{7~TeV} & \rm{8~TeV}\\
\hline
\rm{\epsilon\mathstrut_{sig}}^{GEN} (\%) & 8.989 \pm 0.40 & 9.21 \pm 0.35\\
\hline
\rm{\epsilon_{cal}}^{GEN} (\%) & 11.19 \pm 0.34 & 11.53 \pm 0.32\\
\hline
\rm{\epsilon_{sig}}^{REC,isMuon,SEL} (\%) & 9.927 \pm 0.028 & 9.261 \pm 0.023 \\
\hline
\rm{\epsilon_{cal}}^{REC,isMuon,SEL} (\%) & 7.187 \pm 0.022 & 6.690 \pm 0.022 \\
\hline
\frac{\rm{c_{cal}}^{track}}{\rm{c_{sig}}^{track}} & 0.997 \pm 0.009 \pm 0.026 & 0.996 \pm 0.009 \pm 0.026 \\
\hline
\frac{\rm{c_{cal}}^{\mu ID}}{\rm{c_{sig}}^{\mu ID}} & 0.9731 \pm 0.0031 \pm 0.0264 & 1.0071 \pm 0.0022 \pm 0.0204 \\
\hline
\rm{c}^{\phi} & \multicolumn{2}{c}{0.98 \pm 0.01} \\
\hline
\rm{c}^{\tau} & 1.032 \pm 0.006 & 1.026 \pm 0.006\\
\hline
\rm{c}^{trash} & 1.89 \pm 0.12 & 1.96 \pm 0.12\\
\hline
\rm{\epsilon\mathstrut_{sig}}^{TRIG} (\%) & 35.52 \pm 0.14 \pm 0.14 & 39.3 \pm 1.7 \pm 2.0 \\
\hline
\rm{\epsilon\mathstrut_{cal}}^{TRIG} (\%) & 23.42 \pm 0.14 \pm 0.09 & 20.62 \pm 0.76 \pm 1.07 \\
\end{array}$
       }}

\framebreak

       {\footnotesize{
$\begin{array}{c|c|c}
& \rm{7~TeV} & \rm{8~TeV}\\
\hline
\mathcal{B}(\PDs \to \Pphi \Ppi) & \multicolumn{2}{c}{(1.317 \pm 0.099) \times 10^{-5}}\\
\hline
f^{\tau}_{D_{s}} & 0.78 \pm 0.04 & 0.80 \pm 0.03 \\
\hline
\mathcal{B} (\PDs \to \Ptau \Pnut) & \multicolumn{2}{c}{0.0561 \pm 0.0024}\\
\hline
\rm{\epsilon\mathstrut_{cal}}^{REC\&SEL}/
\rm{\epsilon\mathstrut_{sig}}^{REC\&SEL}
& 0.898 \pm 0.060 & 0.912 \pm 0.054 \\  
\hline
\rm{\epsilon\mathstrut_{cal}}^{TRIG}/
\rm{\epsilon\mathstrut_{sig}}^{TRIG}  
& 0.6593 \pm 0.0058 & 0.525 \pm 0.040\\  
\hline
N_{cal} & 28,207 \pm 440 & 52,131 \pm 695\\
\hline & \\[-0.8em]\hline
\alpha & (3.81 \pm 0.46) \times 10^{-9} & (1.72 \pm 0.23) \times 10^{-9}\\
\alpha^{trash} & (7.20 \pm 0.98) \times 10^{-9} & (3.37 \pm 0.50) \times 10^{-9}\\
\end{array}$
}}
     \end{frame}


      \section{Backgrounds}

      \begin{frame}
        \frametitle{Misidentification 1}
        \begin{columns}
        \column{3in}
        \begin{itemize}
          \item Most dominant: $\PDplus\to\PK\Ppi\Ppi$.
          \item Also seen $\PDplus\to\Ppi\Ppi\Ppi$ and $\PDs\to\Ppi\Ppi\Ppi$.
          \item Looked in all mass hypothesis combinations.
         % \item Experience from last round: cut away \\low ProbNNmu range
         % \item Check remaining data under \\$\PK\Ppi\Ppi$ hypothesis for $\PDplus$ peak
        %  \item[$\Rightarrow$] misid safely contained in ``trash'' bin
        \end{itemize}
        \column{2in}
       \includegraphics[width=.95\textwidth]{./WMH.pdf}
        \end{columns}
        \includegraphics[width=.45\textwidth]{./Dp2Kpipi_all_2012_senseBins.pdf}
        \includegraphics[width=.45\textwidth]{./FittoD23pi_2012.pdf}
      \end{frame}

 \begin{frame}
        \frametitle{Misidentification 2}
\begin{itemize}
\item Many tests were performed to be sure we are safe from $\PD_x \to 3h$.
\item Tested both on MC and data.
\item Referees also suggest looking into semileptonic decays.
\item Our background is safely contained in ''trash''\footnote{\begin{tiny} Lowest $ProbNNmu$ and $M_{blend}$ bins, not taken for limit calculation. \end{tiny}} bins.
\end{itemize}

 \includegraphics[width=.7\textwidth]{./c_2dHisto_2012.pdf}

      \end{frame}

      \begin{frame}
        \frametitle{Dangerous backgrounds}
	\begin{columns}
	\column{3in}      
        \begin{itemize}
          \item $\Pphi\to\Pmu\Pmu + X$: narrow veto on dimuon mass.
          \item $\PDs\to\Peta(\Pmu\Pmu\Pphoton)\Pmu\Pnum$: not so easy:
            \begin{itemize}
              \item  Modelled in CONF note.
              \item Optimised veto in PAPER.
              \item Both versions in the ANA note.
            \end{itemize}
          \item Baseline: veto $m_{\APmuon\Pmuon} < \unit{450}{\MeV}$:
            \begin{itemize}
              \item Fits better understood.
              \item Sensitivity unchanged when removing veto.
              \item Smaller uncertainty on expected background.
            \end{itemize}
        \end{itemize}
	\column{2in}
        \includegraphics[width=.95\textwidth]{./etaMass.pdf}\\
          \includegraphics[width=.95\textwidth]{./etaDalitz.pdf}
        
        	\end{columns}

      \end{frame}

      \begin{frame}
        \frametitle{Remaining backgrounds}
        \begin{itemize}
            \item Fit exponential to invariant mass spectrum in each likelihood bin.
            \item Don't use blinded region ( $\pm \unit{30}{\MeV}$ ).
            \item[$\rightarrow$] Compatible results blinding only $\pm \unit{20}{\MeV}$\footnote{partially used in classifier development}
        \end{itemize}
        {\begin{center}
          Example of most sensitive regions in 2011 and 2012
          \includegraphics[width=0.9\textwidth]{./fits.png}

          \end{center}}
      \end{frame}

      \section{Expected limit}

      \begin{frame}
        \frametitle{Expected limit}
        \begin{itemize}
                 \item Consider nuisance parameters from background fit, signal pdf calibration, normalisation.
              \item Nuisance parameters due to $\Ptau$ production, normalization.
                \item Limit for combined 2011+2012 analysis.
        \end{itemize}
      \end{frame}

      \begin{frame}
        \frametitle{Sensitivity}
        $\mathcal{B}(\Ptau\to\Pmu\Pmu\Pmu)<5.0 \times 10^{-8}$ at 90\% CL

        \includegraphics[width=.8\textwidth]{limit_blind.png}
      \end{frame}



    \section{Model dependence}

      \begin{frame}
        \frametitle{Model dependence}
        \begin{itemize}
          \item $\Peta$ veto $\Rightarrow$ our limit not constraining to New Physics with small $m_{\APmuon\Pmuon}$.
          \item Model description in \texttt{arXiv:0707.0988}.
            \item 5 relevant Dalitz distributions: 2 four-point operators, 1 radiative operator, 2 interference terms.
          \end{itemize}
          \only<2->{
            \begin{itemize}
              \item With radiative distribution limit gets worse by a factor of $1.5$ (dominantly from the $\Peta$ veto).
               \item The other four Dalitz distributions behave nicely (within $7\,\%$).
        \end{itemize}
      }
        \only<1>{
  \includegraphics[width=.331\textwidth]{./gammallll.pdf}
  \includegraphics[width=.331\textwidth]{./gammallrr.pdf}
  \includegraphics[width=.331\textwidth]{./gammarad.pdf}

  \includegraphics[width=.331\textwidth]{./gammarad-llll.pdf}
  \includegraphics[width=.331\textwidth]{./gammarad-llrr.pdf}
}

      \end{frame}


    %  \begin{frame}
    %    \frametitle{Conclusion}
    %    \begin{columns}
    %      \begin{column}{.55\textwidth}
    %    \begin{itemize}
    %        \item finally all pieces put together
    %          \item model (in)dependence of $\Peta$ veto investigated
    %          \item expected sensitivity computed\newline $5.6\times 10^{-8}$
    %    \end{itemize}
    %    \end{column}
    %    \begin{column}{.45\textwidth}
    %      \includegraphics[width=\textwidth]{party-music-hd-wallpaper-1920x1200-3850.jpg}
    %    \end{column}
    %    \end{columns}

    %  \end{frame}


    \section{Unblinded results}

      \begin{frame}
        \frametitle{Unblinding 1}
\begin{columns}
\column{1in}{~}
\column{3in}
''       
THERE came a day at summer’s full	\\
Entirely for us \\
I thought that such were for the saints,	\\
Where revelations be. ''\footnote{E.Dickinson}  \\ 
  \column{1in}{~}    
\end{columns}
{~}\\
{~}\\
\begin{Large}
On Monday $4^{th}$ of August we were given the permission to unblind.
\end{Large}      
      
      
      \end{frame}
      
      
      
          \begin{frame}
        \frametitle{Unblinding 2}
\begin{itemize}
\item Unfortunately no big ''revelations'' were there.
\item 2011 numbers:
\end{itemize}
      \includegraphics[width=1.\textwidth]{2011.png} 
      
      \end{frame}  
      
               \begin{frame}
        \frametitle{Unblinding 3}
\begin{itemize}
\item Unfortunately no big ''revelations'' were either in 2012 data:

\end{itemize}
      \includegraphics[width=1.1\textwidth]{2012.png} 
      
      \end{frame}  
      
            

    \begin{frame}
        \frametitle{Unblinding 4}

      \begin{center}
    \includegraphics[width=0.7\textwidth]{banana_line.pdf}
      \end{center}
\begin{columns} 

\column{0.2in}{~}   
\column{2in}       
Limits(PHSP):\\
Observed(Expected)\\
$4.6~(5.0)\times 10^{-8}$ at $90\%$ CL\\
$5.6~(6.1)\times 10^{-8}$ at $95\%$ CL\\  

 \column{3in}      
    \includegraphics[width=0.5\textwidth]{model.png} 
\end{columns}
      \end{frame}  
      
 \begin{frame}
        \frametitle{Conclusions}
 \begin{columns}
        \column{2.5in}
      \begin{itemize}
      \item We didn't find NP (yet). 
      \item Limits set with full LHCb dataset.
      \item We wait for the Run 2 dataset!
      \end{itemize}   
\column{2.5in}
      
          \includegraphics[width=1\textwidth]{TauLFV_UL_2013001.pdf}
     


 \end{columns}
    \begin{itemize}
    \item We would like to thank our referees for very friendly,thorough and fruitful review.
      \item With this presentation we ask collaboration for approval.
         \end{itemize}    
 

      \end{frame}        
      
      
      
\end{document}