\documentclass[11 pt,xcolor={dvipsnames,svgnames,x11names,table}]{beamer} \usepackage[english]{babel} \usepackage{polski} \usetheme[ bullet=circle, % Other option: square bigpagenumber, % circled page number on lower right topline=true, % colored bar at the top of the frame shadow=false, % Shading for beamer blocks watermark=BG_lower, % png file for the watermark ]{Flip} %\logo{\kern+1.em\includegraphics[height=1cm]{SHiP-3_LightCharcoal}} \usepackage[lf]{berenis} \usepackage[LY1]{fontenc} \usepackage[utf8]{inputenc} %\usepackage{emerald} \usefonttheme{professionalfonts} \usepackage[no-math]{fontspec} \defaultfontfeatures{Mapping=tex-text} % This seems to be important for mapping glyphs properly \setmainfont{Gillius ADF} % Beamer ignores "main font" in favor of sans font \setsansfont{Gillius ADF} % This is the font that beamer will use by default % \setmainfont{Gill Sans Light} % Prettier, but harder to read \setbeamerfont{title}{family=\fontspec{Gillius ADF}} \input t1augie.fd %\newcommand{\handwriting}{\fontspec{augie}} % From Emerald City, free font %\newcommand{\handwriting}{\usefont{T1}{fau}{m}{n}} % From Emerald City, free font % \newcommand{\handwriting}{} % If you prefer no special handwriting font or don't have augie %% Gill Sans doesn't look very nice when boldfaced %% This is a hack to use Helvetica instead %% Usage: \textbf{\forbold some stuff} %\newcommand{\forbold}{\fontspec{Arial}} \usepackage{graphicx} \usepackage[export]{adjustbox} \usepackage[absolute,overlay]{textpos} \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{colortbl} \usepackage{mathrsfs} % For Weinberg-esque letters \usepackage{cancel} % For "SUSY-breaking" symbol \usepackage{slashed} % for slashed characters in math mode \usepackage{bbm} % for \mathbbm{1} (unit matrix) \usepackage{amsthm} % For theorem environment \usepackage{multirow} % For multi row cells in table \usepackage{arydshln} % For dashed lines in arrays and tables \usepackage{siunitx} \usepackage{xhfill} \usepackage{grffile} \usepackage{textpos} \usepackage{subfigure} \usepackage{tikz} \usepackage[normalem]{ulem} %\usepackage{hepparticles} \usepackage[italic]{hepparticles} \usepackage{hepnicenames} % Drawing a line \tikzstyle{lw} = [line width=20pt] \newcommand{\topline}{% \tikz[remember picture,overlay] {% \draw[crimsonred] ([yshift=-23.5pt]current page.north west) -- ([yshift=-23.5pt,xshift=\paperwidth]current page.north west);}} % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % \usepackage{tikzfeynman} % For Feynman diagrams \usetikzlibrary{arrows,shapes} \usetikzlibrary{trees} \usetikzlibrary{matrix,arrows} % For commutative diagram % http://www.felixl.de/commu.pdf \usetikzlibrary{positioning} % For "above of=" commands \usetikzlibrary{calc,through} % For coordinates \usetikzlibrary{decorations.pathreplacing} % For curly braces % http://www.math.ucla.edu/~getreuer/tikz.html \usepackage{pgffor} % For repeating patterns \usetikzlibrary{decorations.pathmorphing} % For Feynman Diagrams \usetikzlibrary{decorations.markings} \tikzset{ % >=stealth', %% Uncomment for more conventional arrows vector/.style={decorate, decoration={snake}, draw}, provector/.style={decorate, decoration={snake,amplitude=2.5pt}, draw}, antivector/.style={decorate, decoration={snake,amplitude=-2.5pt}, draw}, fermion/.style={draw=gray, postaction={decorate}, decoration={markings,mark=at position .55 with {\arrow[draw=gray]{>}}}}, fermionbar/.style={draw=gray, postaction={decorate}, decoration={markings,mark=at position .55 with {\arrow[draw=gray]{<}}}}, fermionnoarrow/.style={draw=gray}, gluon/.style={decorate, draw=black, decoration={coil,amplitude=4pt, segment length=5pt}}, scalar/.style={dashed,draw=black, postaction={decorate}, decoration={markings,mark=at position .55 with {\arrow[draw=black]{>}}}}, scalarbar/.style={dashed,draw=black, postaction={decorate}, decoration={markings,mark=at position .55 with {\arrow[draw=black]{<}}}}, scalarnoarrow/.style={dashed,draw=black}, electron/.style={draw=black, postaction={decorate}, decoration={markings,mark=at position .55 with {\arrow[draw=black]{>}}}}, bigvector/.style={decorate, decoration={snake,amplitude=4pt}, draw}, } % TIKZ - for block diagrams, % from http://www.texample.net/tikz/examples/control-system-principles/ % \usetikzlibrary{shapes,arrows} \tikzstyle{block} = [draw, rectangle, minimum height=3em, minimum width=6em] \usetikzlibrary{backgrounds} \usetikzlibrary{mindmap,trees} % For mind map \newcommand{\degree}{\ensuremath{^\circ}} \newcommand{\E}{\mathrm{E}} \newcommand{\Var}{\mathrm{Var}} \newcommand{\Cov}{\mathrm{Cov}} \newcommand\Ts{\rule{0pt}{2.6ex}} % Top strut \newcommand\Bs{\rule[-1.2ex]{0pt}{0pt}} % Bottom strut \graphicspath{{images/}} % Put all images in this directory. Avoids clutter. % SOME COMMANDS THAT I FIND HANDY % \renewcommand{\tilde}{\widetilde} % dinky tildes look silly, dosn't work with fontspec \newcommand{\comment}[1]{\textcolor{comment}{\footnotesize{#1}\normalsize}} % comment mild \newcommand{\Comment}[1]{\textcolor{Comment}{\footnotesize{#1}\normalsize}} % comment bold \newcommand{\COMMENT}[1]{\textcolor{COMMENT}{\footnotesize{#1}\normalsize}} % comment crazy bold \newcommand{\Alert}[1]{\textcolor{Alert}{#1}} % louder alert \newcommand{\ALERT}[1]{\textcolor{ALERT}{#1}} % loudest alert %% "\alert" is already a beamer pre-defined \newcommand*{\Scale}[2][4]{\scalebox{#1}{$#2$}}% \def\Put(#1,#2)#3{\leavevmode\makebox(0,0){\put(#1,#2){#3}}} \usepackage{gmp} \usepackage[final]{feynmp-auto} \usepackage[backend=bibtex,style=numeric-comp,firstinits=true]{biblatex} \bibliography{bib} \setbeamertemplate{bibliography item}[text] \makeatletter\let\frametextheight\beamer@frametextheight\makeatother % suppress frame numbering for backup slides % you always need the appendix for this! \newcommand{\backupbegin}{ \newcounter{framenumberappendix} \setcounter{framenumberappendix}{\value{framenumber}} } \newcommand{\backupend}{ \addtocounter{framenumberappendix}{-\value{framenumber}} \addtocounter{framenumber}{\value{framenumberappendix}} } \definecolor{links}{HTML}{2A1B81} %\hypersetup{colorlinks,linkcolor=,urlcolor=links} % For shapo's formulas: \def\lsi{\raise0.3ex\hbox{$<$\kern-0.75em\raise-1.1ex\hbox{$\sim$}}} \def\gsi{\raise0.3ex\hbox{$>$\kern-0.75em\raise-1.1ex\hbox{$\sim$}}} \newcommand{\lsim}{\mathop{\lsi}} \newcommand{\gsim}{\mathop{\gsi}} \newcommand{\wt}{\widetilde} %\newcommand{\ol}{\overline} \newcommand{\Tr}{\rm{Tr}} \newcommand{\tr}{\rm{tr}} \newcommand{\eqn}[1]{&\hspace{-0.7em}#1\hspace{-0.7em}&} \newcommand{\vev}[1]{\rm{$\langle #1 \rangle$}} \newcommand{\abs}[1]{\rm{$\left| #1 \right|$}} \newcommand{\eV}{\rm{eV}} \newcommand{\keV}{\rm{keV}} \newcommand{\GeV}{\rm{GeV}} \newcommand{\MeV}{\rm{MeV}} \newcommand{\im}{\rm{Im}} \newcommand{\re}{{\rm Re}} \newcommand{\invfb}{\rm{fb^{-1}}} \newcommand{\fixme}{\rm{{\color{red}{FIXME!}}}} \newcommand{\thetal}{\theta_l} \newcommand{\thetak}{\theta_k} \newcommand{\nn}{\nonumber} \newcommand{\eq}[1]{\begin{equation} #1 \end{equation}} %\newcommand{\eqn}[1]{\begin{displaymath} #1 \end{displaymath}} \newcommand{\eqa}[1]{\begin{eqnarray} #1 \end{eqnarray}} \newcommand{\apeL}{{A_\perp^L}} \newcommand{\apeR}{{A_\perp^R}} \newcommand{\apeLR}{{A_\perp^{L,R}}} \newcommand{\apaL}{{A_\|^L}} \newcommand{\apaR}{{A_\|^R}} \newcommand{\apaLR}{{A_\|^{L,R}}} \newcommand{\azeL}{{A_0^L}} \newcommand{\azeR}{{A_0^R}} \newcommand{\azeLR}{{A_0^{L,R}}} \newcommand{\Real}{\ensuremath{\mathcal{R}e}\xspace} \newcommand{\Imag}{\ensuremath{\mathcal{I}m}\xspace} \renewcommand{\C}[1]{{\cal C}_{#1}} \newcommand{\Ceff}[1]{{\cal C}^{\rm eff}_{#1}} \newcommand{\Cpeff}[1]{{\cal C}^{\rm eff\prime}_{#1}} \newcommand{\Cp}[1]{{\cal C}^{\prime}_{#1}} \def\FL {\ensuremath{F_{\mathrm{L}}}\xspace} \def\ATDPH {\ensuremath{A_{\mathrm{T,PR}}^{(2)}}\xspace} \def\ATImPH {\ensuremath{A_{\mathrm{T,PR}}^{\mathrm{Im}}}\xspace} \def\ATRePH {\ensuremath{A_{\mathrm{T,PR}}^{\mathrm{Re}}}\xspace} \def\FLPH {\ensuremath{F_{\mathrm{L,PR}}}\xspace} \def\ATDKG {\ensuremath{A_{\mathrm{T,\Kstarz \gamma}}^{(2)}}\xspace} \def\ATImKG {\ensuremath{A_{\mathrm{T,\Kstarz \gamma}}^{\mathrm{Im}}}\xspace} \def\ATReKG {\ensuremath{A_{\mathrm{T,\Kstarz \gamma}}^{\mathrm{Re}}}\xspace} \def\FLKG {\ensuremath{F_{\mathrm{L,\Kstarz \gamma}}}\xspace} \def\ATD {\ensuremath{A_{\mathrm{T}}^{(2)}}\xspace} \def\ATIm {\ensuremath{A_{\mathrm{T}}^{\mathrm{Im}}}\xspace} \def\ATRe {\ensuremath{A_{\mathrm{T}}^{\mathrm{Re}}}\xspace} \def\cgreen{\color{green}} \definecolor{green}{rgb}{0.2,0.6,0.2} \newcommand{\disp}{\displaystyle} \def\be{\begin{equation}} \def\ee{\end{equation}} \def\ba{\begin{eqnarray}} \def\ea{\end{eqnarray}} \def\d{\partial} \def\l{\left(} \def\r{\right)} \def\la{\langle} \def\ra{\rangle} \def\e{{\rm e}} \def\Br{{\mathcal{B}}} \def\ARROW{{\color{JungleGreen}{$\Rrightarrow$}}\xspace} \def\ARROWR{{\color{WildStrawberry}{$\Rrightarrow$}}\xspace} \newcommand\textref[1]{% \begin{textblock*}{\paperwidth}(0pt,0.025\textheight) \raggedleft \small{{\color{RoyalBlue} \emph{#1}}}\hspace{1.5em} \end{textblock*}} \newcommand\textahref[2]{% \begin{textblock*}{\paperwidth}(0pt,0.025\textheight) \raggedleft \small{\emph{\href{#1}{#2} }}\hspace{1.5em} \end{textblock*}} \author{ {Marcin Chrzaszcz} (IFJ PAN)} \institute{UZH, IFJ PAN} \title[Rare Decays at LHCb]{Rare Decays at LHCb} \date{25 September 2014} \begin{document} \tikzstyle{every picture}+=[remember picture] %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% { \setbeamertemplate{sidebar right}{\llap{\includegraphics[width=\paperwidth,height=\paperheight]{bubble2}}} \begin{frame}[c]%{\phantom{title page}} \begin{center} \begin{center} \begin{columns} \begin{column}{0.75\textwidth} \flushright\bfseries \LARGE {Rare decays at LHCb\\ including LFU test and LFV searches} \end{column} \begin{column}{0.02\textwidth} {~} \end{column} \begin{column}{0.23\textwidth} % \hspace*{-1.cm} \vspace*{-3mm} \includegraphics[width=0.6\textwidth]{lhcb-logo} \end{column} \end{columns} \end{center} \quad \vspace{3em} \begin{columns} \begin{column}{0.44\textwidth} \flushright \vspace{-1.8em} { \Large Marcin Chrzaszcz\\\vspace{-0.1em}\small \href{mailto:mchrzasz@cern.ch}{mchrzasz@cern.ch}} \end{column} \begin{column}{0.53\textwidth} \includegraphics[height=1.1cm]{ifj.png} \end{column} \end{columns} \vspace{1em} \footnotesize\textcolor{gray}{on behalf of the LHCb collaboration,\\ Institute of Nuclear Physics, Polish Academy of Science}\normalsize\\ \vspace{0.5em} \textcolor{normal text.fg!50!Comment}{BEACH, Krakow, 6 June 2022} \end{center} \end{frame} } \begin{frame}{Rare Decays at LHCb} \begin{minipage}{\textwidth} \begin{center} \begin{columns} \column{0.45\textwidth} \begin{exampleblock}{Muonic $\PB$ decays} \ARROWR Br $\PBs/\PBd \to \mu \mu / \tau \tau$.\\ \ARROWR Br + Ang. $\PB \to \PKstar \mu \mu$.\\ \ARROWR Br + Ang. $\PBs \to \Pphi \mu \mu$.\\ \ARROWR Br + Ang. $\Lambda_b \to p \pi \mu \mu$.\\ \ARROWR Isospin $\PB \to \PK \mu \mu$.\\ \end{exampleblock} \begin{alertblock}{Charm decays} \ARROWR $\PD\to h h\Pmu \Pmu$\\ \ARROWR $\PD\to e \mu$. \end{alertblock} \ARROW Enormous Physics program which is constantly expanding.\\ \ARROW Will cover only part of the results. \column{0.45\textwidth} \begin{alertblock}{LFU test} \ARROW $\PBplus \to \PKplus \ell \ell$\\ \ARROW $\PBd \to \PKstar \ell \ell$\\ \ARROW $\Lambda_b \to p \pi \ell \ell$\\ \end{alertblock} \begin{exampleblock}{Strange decays} \ARROW $\PKshort \to \mu \mu$. \end{exampleblock} \begin{alertblock}{Radiative decays} \ARROWR $\PB \to \PKstar \gamma$, $\PBs \to \Pphi \gamma$\\ \ARROWR $\Xi_b \to \Xi \gamma$\\ \ARROWR $\PBs/\PBd \to \PJpsi \gamma$ \end{alertblock} \begin{exampleblock}{$\tau$ decays} \ARROW $\tau \to \mu \mu \mu$. \ARROW $\tau \to p \mu \mu$. \end{exampleblock} \end{columns} \end{center} \end{minipage} \vspace*{2.cm} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}\frametitle{Why rare decays?} \begin{columns} \column{4in} \begin{itemize} \item In SM allows only the charged interactions to change flavour. \begin{itemize} \item Other interactions are flavour conserving. \end{itemize} \item One can escape this constrain and produce $\Pbottom \to \Pstrange$ and $\Pbottom \to \Pdown$ at loop level. \begin{itemize} \item This kind of processes are suppressed in SM $\to$~Rare decays. \item New Physics can enter in the loops. \end{itemize} \end{itemize} \begin{center} \includegraphics[scale=0.3]{images/lupa.png} \includegraphics[scale=0.3]{images/example.png} \end{center} \column{1.5in} \includegraphics[width=0.61\textwidth]{images/couplings.png} \end{columns} \end{frame} \begin{frame}\frametitle{Tools} \begin{itemize} \item \textbf{Operator Product Expansion and Effective Field Theory} \end{itemize} \begin{columns} \column{0.1in}{~} \column{1.2in} \begin{small} \begin{align*} H_{eff} = - \dfrac{4G_f}{\sqrt{2}} V V^{\prime \ast}\ \sum_i \left[\underbrace{C_i(\mu)O_i(\mu)}_\text{left-handed} +\underbrace{C'_i(\mu)O'_i(\mu)}_\text{right-handed}\right], \end{align*} \end{small} \column{1.8in} \begin{tiny} \begin{description} \item[i=1,2] Tree \item[i=3-6,8] Gluon penguin \item[i=7] Photon penguin \item[i=9.10] EW penguin \item[i=S] Scalar penguin \item[i=P] Pseudoscalar penguin \end{description} \end{tiny} \end{columns} where $C_i$ are the Wilson coefficients and $O_i$ are the corresponding effective operators. \begin{center} \includegraphics[width=0.85\textwidth,height=3cm]{images/all.png} \end{center} \end{frame} \iffalse %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame} \only<1>{\frametitle{LHCb detector - tracking} \begin{columns} \column{3in} \includegraphics[width=0.9\textwidth]{images/1050px-Lhcbview.jpg} \column{2in} \includegraphics[width=0.95\textwidth]{images/sketch.png} \end{columns} \begin{itemize} \item Excellent Impact Parameter (IP) resolution ($20~\rm \mu m$).\\ $\Rightarrow$ Identify secondary vertices from heavy flavour decays \item Proper time resolution $\sim~40~\rm fs$.\\ $\Rightarrow$ Good separation of primary and secondary vertices. \item Excellent momentum ($\delta p/p \sim 0.5 - 1.0\%$) and inv. mass resolution.\\ $\Rightarrow$ Low combinatorial background. \end{itemize} } \only<2>{\frametitle{LHCb detector - PID} \begin{columns} \column{3in} \includegraphics[width=0.9\textwidth]{images/1050px-Lhcbview.jpg} \column{2in} \includegraphics[width=0.95\textwidth]{images/cher.png} \end{columns} \begin{itemize} \item Excellent Muon identification $\epsilon_{\mu \to \mu} \sim 97\%$, $\epsilon_{\pi \to \mu} \sim 1-3\%$ \item Good $\PK-\Ppi$ separation via RICH detectors, $\epsilon_{\PK \to \PK} \sim 95\%$, $\epsilon_{\Ppi \to \PK} \sim 5\%$.\\ $\Rightarrow$ Reject peaking backgrounds. \item High trigger efficiencies, low momentum thresholds. Muons: $p_T > 1.76 \GeV$ at L0, $p_T > 1.0 \GeV$ at HLT1,\\ $B \to \PJpsi X $: Trigger $\sim 90\%$. \end{itemize} } \textref{Int. J. Mod. Phys. A30 (2015) 1530022} \vspace*{2.1cm} \end{frame} \fi \iffalse \begin{frame}{Observables in $\PB \to \PKstar \Pmu \Pmu$} {~} \begin{minipage}{\textwidth} \ARROW The kinematics of $\PBzero \to \PKstar \Pmuon \APmuon$ decay is described by three angles $\thetal$, $\thetak$, $\phi$ and invariant mass of the dimuon system ($q^2)$.\\ \ARROW The angular distribution can be written as: \begin{tiny} \begin{align*} \left.\frac{1}{{\rm d}(\Gamma+\bar{\Gamma})/{\rm d}q^2}\frac{{\rm d}(\Gamma+\bar{\Gamma})}{{\rm dcos}\thetal\,{\rm dcos}\thetak\,{\rm d}\phi}\right|_{\rm P} = \tfrac{9}{32\pi}\bigl[ &\tfrac{3}{4} (1-{F_{\rm L}})\sin^2\thetak \label{eq:pdfpwave}\\[-0.75em] &+ {F_{\rm L}}\cos^2\thetak + \tfrac{1}{4}(1-{F_{\rm L}})\sin^2\thetak\cos 2\thetal\nonumber\\ &- {F_{\rm L}} \cos^2\thetak\cos 2\thetal + {S_3}\sin^2\thetak \sin^2\thetal \cos 2\phi\nonumber\\ &+ {S_4} \sin 2\thetak \sin 2\thetal \cos\phi + {S_5}\sin 2\thetak \sin \thetal \cos \phi\nonumber\\ &+ \tfrac{4}{3} {A_{\rm FB}} \sin^2\thetak \cos\thetal + {S_7} \sin 2\thetak \sin\thetal \sin\phi\nonumber\\ &+ {S_8} \sin 2\thetak \sin 2\thetal \sin\phi + {S_9}\sin^2\thetak \sin^2\thetal \sin 2\phi \nonumber \bigr]. %\end{split} %\bigr],\ \end{align*} \end{tiny} \end{minipage} \vspace*{2.1cm} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}{Link to effective operators} {~} \begin{minipage}{\textwidth} $\color{JungleGreen}{\Rrightarrow}$ The observables ${\color{red}{S_i}}$ are bilinear combinations of transversity amplitudes: $\apeLR,~\apaLR,~\azeLR $. \\ $\color{JungleGreen}{\Rrightarrow}$ So here is where the magic happens. At leading order the amplitudes can be written as: {\tiny{ \eqa{ \apeLR &=&\sqrt{2} N m_B(1- \hat s)\bigg[ (\Ceff9 + \Cpeff9) \mp (\C{10} + \Cp{10}) +\frac{2\hat{m}_b}{\hat s} (\Ceff7 + \Cpeff7) \bigg]\xi_{\bot}(E_{K^*}) \nn \\[2mm] \apaLR &=& -\sqrt{2} N m_B (1-\hat s)\bigg[(\Ceff9 - \Cpeff9) \mp (\C{10} - \Cp{10}) +\frac{2\hat{m}_b}{\hat s}(\Ceff7 - \Cpeff7) \bigg] \xi_{\bot}(E_{K^*}) \nn \\[2mm] \azeLR &=& -\frac{N m_B (1-\hat s)^2}{2 \hat{m}_{K^*} \sqrt{\hat s}} \bigg[ (\Ceff9 - \Cpeff9) \mp (\C{10} - \Cp{10}) + 2\hat{m}_b (\Ceff7 - \Cpeff7) \bigg]\xi_{\|}(E_{K^*}), \label{LargeRecoilAs}\nonumber} }} where $\hat s = q^2 /m_B^2$, $\hat{m}_i = m_i/m_B$. The $\xi_{\|,\bot }$ are the soft form factors. \\ \pause $\color{JungleGreen}{\Rrightarrow}$ Now we can construct observables that cancel the $\xi$ soft form factors at leading order: \eq{P_5^{\prime} = \dfrac{J_5+\bar{J}_5}{2\sqrt{-(J_2^c+\bar{J}_2^c)(J_2^s+\bar{J}_2^s)} }\nonumber } \end{minipage} \vspace*{2.1cm} \end{frame} % symmetries \fi %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}{$\PB_{s/d} \to \mu \mu$} {~} \begin{minipage}{\textwidth} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{center} \begin{columns} \column{0.52\textwidth} \only<1> { \ARROW Golden channel for LHCb.\\ \ARROW Normalized to the $\PB \to \PK \Ppi$ and $\PB \to \PK \PJpsi$.\\ \ARROW The selection is achived by BDT trained on MC and calibrated on data. \\ %\ARROW $\Br(\PBs \to \mu \mu) = 3.0 \pm 0.6^{+0.3}_{-0.2}$,\\ \begin{exampleblock}{\begin{small}\ARROWR $\Br(\PBs \to \mu \mu) =( 3.09^{+0.46+0.15}_{-0.43-0.11} )10^{-9}$\end{small} } $>10~\sigma$ significant! \end{exampleblock} \begin{alertblock}{} \begin{small}\ARROWR $\Br(\PBd \to \mu \mu) < 2.3 \times 10^{-10}$, $90\%\rm CL$\end{small} \begin{small}\ARROWR $\Br(\PBs \to \mu \mu \gamma ) < 1.5 \times 10^{-9}$, $90\%\rm CL$\end{small} \end{alertblock} } \only<2> { \begin{exampleblock}{Effective lifetime} \ARROWR Sensitivity to non-scalar NP.\\ $\tau(\PBs \to \mu\mu)=2.07\pm0.29\pm0.03 \rm~ps$ \end{exampleblock} \includegraphics[width=0.9\textwidth]{images/Fig11_bottom_left.pdf} } \column{0.50\textwidth} \only<1>{ \includegraphics[width=0.90\textwidth]{images/Fig10_right_e.pdf}\\ \includegraphics[width=0.90\textwidth]{images/Fig11_top.pdf}\\ } \only<2>{ \includegraphics[width=0.9\textwidth]{images/Fig17_right.pdf}\\ \includegraphics[width=0.9\textwidth]{images/life.png}\\ } \end{columns} \end{center} \end{minipage} \textref{PHYS. REV. LETT. 128, (2022) 041801} \vspace*{2.1cm} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}{$\PB_{s/d} \to \mu \mu \mu \mu$} {~} \begin{minipage}{\textwidth} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{center} \begin{columns} \column{0.52\textwidth} \only<1> { \ARROW \sout{Golden} Platinum channel for LHCb.\\ \ARROW Normalized to the $\PBs \to \PJpsi(\mu\mu) \phi (\mu\mu)$.\\ %\ARROW $\Br(\PBs \to \mu \mu) = 3.0 \pm 0.6^{+0.3}_{-0.2}$,\\ \begin{exampleblock}{UL at $95~\%$ CL:} \begin{small} \ARROWR $\Br(\PBs \to \mu \mu \mu \mu) < 8.6 \times 10^{-10}$\\ \ARROWR $\Br(\PBd \to \mu \mu \mu \mu) < 1.8 \times 10^{-10}$\\ \end{small} } \end{exampleblock} \includegraphics[width=0.9\textwidth]{images/Fig4a_4m.pdf} \column{0.50\textwidth} \only<1>{ \includegraphics[width=0.9\textwidth]{images/Fig1_4m.pdf} \includegraphics[width=0.90\textwidth]{images/Fig3.pdf}\\ } \end{columns} \end{center} \end{minipage} \textref{JHEP 03 (2022) 109} \vspace*{2.1cm} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}{$\PB_{s/d} \to \tau \tau$} {~} \begin{minipage}{\textwidth} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{center} \begin{columns} \column{0.50\textwidth} \ARROW NP sensitivity enhanced due to the high $\tau$ mass.\\ \ARROW More challenging: at least 2$\nu$ are escaping.\\ \ARROW Selecting $\tau \to 3\pi \nu$, $\rightarrow~9.31~\%$\\ \ARROW Normalization channel: $\PB \to \PD(\PK \pi \pi) \PDs(\PK \PK \pi)$.\\ \ARROW No peak in the $\PB$ mass window $\rightarrow$ fit the NN output. \includegraphics[width=0.85\textwidth]{images/hidef_Fig7.png} \column{0.50\textwidth} \includegraphics[width=0.85\textwidth]{images/hidef_Fig11.png}\\ \includegraphics[width=0.85\textwidth]{images/hidef_Fig2a.png}\\ \end{columns} \end{center} \end{minipage} \textref{Phys. Rev. Lett. 118, 251802 (2017)} \vspace*{2.1cm} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}{$\PB_{s/d} \to e e$} {~} \begin{minipage}{\textwidth} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{center} \begin{columns} \column{0.52\textwidth} \ARROW Extreamly rare decays!: $\Br(\PBs \to e e)=(8.60 \pm 0.36) \times 10^{-14}$\\ $\Br(\PBd \to e e)=(2.41 \pm 0.13) \times 10^{-15}$.\\ \ARROW Analysed $5~\invfb$ of data.\\ \ARROW Set UL ($90\%$ CL):\\ $\Br(\PBs \to e e) <9.4 \times 10^{-9}$\\ $\Br(\PBd \to e e) <2.5 \times 10^{-9}$ \includegraphics[width=0.85\textwidth]{images/Fig2a1.pdf} \column{0.48\textwidth} \includegraphics[width=0.85\textwidth]{images/Fig1a.pdf}\\ \includegraphics[width=0.85\textwidth]{images/Fig9a1.pdf}\\ \end{columns} \end{center} \end{minipage} \textref{PHYS. REV. LETT. 124 (2020) 211802} \vspace*{2.1cm} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % B2sll %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}{$\PBzero \to \PKstar \Pmuon \APmuon$ decay } {~} \begin{minipage}{\textwidth} \begin{columns} \column{0.55\textwidth} \ARROW $\PBzero \to \PKstar \Pmuon \APmuon$ is a smoking gun for NP hunting!\\ \ARROW Rich angular observables makes is sensitive to different NP models\\ \ARROW In addition one can construct less form factor dependent observables: \begin{equation} P_5^{\prime}=\frac{S_5}{\sqrt{F_L(1-F_L)}}\nonumber \end{equation} \ARROW Analysed $4.7~\invfb$ of data.\\ \ARROW Results correspond to $3.3~\sigma$ deviation in $\Re(C_9)$ WC wrt. SM. \column{0.45\textwidth} \includegraphics[width=0.9\textwidth]{images/Fig2d1.pdf} \\ \includegraphics[width=0.9\textwidth]{images/AFBNEW.pdf} \end{columns} \end{minipage} \textref{PHYS. REV. LETT. 125 (2020) 011802} \vspace*{2.1cm} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}{$\PBu \to \PKstar^+ (\PKshort \pi^+) \Pmuon \APmuon$ decay } {~} \begin{minipage}{\textwidth} \begin{columns} \column{0.55\textwidth} \ARROW Isospin partner of previous decay.\\ \ARROW Experimentally more chalanging due to the $\PKshort$ presents.\\ \ARROW Analysed $9~\invfb$ of data.\\ \includegraphics[width=0.9\textwidth]{images/Fig1Bu.pdf} \column{0.45\textwidth} \includegraphics[width=0.9\textwidth]{images/Fig2bBu.pdf} \\ \includegraphics[width=0.9\textwidth]{images/Fig3eBu.pdf} \end{columns} \end{minipage} \textref{PHYS. REV. LETT.126 (2021) 161802} \vspace*{2.1cm} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}{$\PBs \to \phi/f^{\prime}_2 (1525) \Pmuon \APmuon$ decays } {~} \begin{minipage}{\textwidth} \begin{columns} \column{0.6\textwidth} \ARROW No self-tagging $\rightarrow$ not all angular observables accessible. \includegraphics[width=0.46\textwidth]{images/Fig3aBs.pdf} \includegraphics[width=0.46\textwidth]{images/Fig2.pdf} \\ \ARROW Tension wrt. the current SM prediction remains. \includegraphics[width=0.75\textwidth]{images/WC_2_3_like2D.pdf} \column{0.4\textwidth} \includegraphics[width=0.86\textwidth]{images/Fig1bBs.pdf} \\ \includegraphics[width=0.86\textwidth]{images/Fig3aBs2.pdf} \includegraphics[width=0.86\textwidth]{images/Fig3bBs2.pdf} \end{columns} \end{minipage} \textref{PHYS. REV. LETT.127 (2021) 151801,\\JHEP 11 (2021) 043 } \vspace*{2.1cm} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}{$\Lambda_b \to p \pi \mu \mu$} {~} \begin{minipage}{\textwidth} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{center} \begin{columns} \column{0.60\textwidth} \ARROW First observation of $b \to d$ in baryon system!\\ \ARROW BDT selection trained on MC\\ \ARROW Normalized to $\Lambda_b \to p \pi \PJpsi$\\ \ARROW With futher QCD improvements we will be able to to measure $\frac{\vert V_{ts}\vert }{\vert V_{td}\vert}$. \begin{exampleblock}{\begin{small}\ARROWR $\frac{\Br(\Lambda_b \to p \pi \mu \mu)}{\Br(\Lambda_b \to p \pi \PJpsi)} =0.044 \pm 0.012 \pm 0.007$\end{small} } \ARROWR $5.5~\sigma$ significance! \ARROWR First observation.\\ \end{exampleblock} \includegraphics[width=0.71\textwidth]{images/hidef_Fig3.png} \column{0.50\textwidth} \includegraphics[width=0.95\textwidth]{images/dupa.png}\\ \includegraphics[width=0.95\textwidth]{images/hidef_Fig2.png}\\ \begin{alertblock}{}\begin{small} $\Br(\Lambda_b \to p \pi \mu \mu) = (6.9 \pm 1.9 \pm 1.1^{+1.3}_{-1.0} ) \times 10^{-8}$ \end{small} \end{alertblock} \end{columns} \end{center} \end{minipage} \textref{J. High Energy Phys. 04 (2017) 029} \vspace*{2.1cm} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}{Search for light scalars} {~} \begin{minipage}{\textwidth} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{center} \begin{columns} \column{0.55\textwidth} \ARROW Hidden sector models are gathering more and more attention.\\ \ARROW Inflaton model: new scalar then mixes with the Higgs.\\ \ARROW $\PB$ decays are sensitive as the inflaton might be light.\\ \ARROW Searched for long living particle $\chi$ produced in: $\PB \to \chi(\mu\mu) \PK$.\\ \ARROW Analysis performed blindly as a peak search.\\ \ARROW Light inflaton essentially ruled out:\\ \includegraphics[width=0.75\textwidth]{{images/hidef_Inflaton_parameter_space_log_PAPER}.png}\\ \column{0.45\textwidth} \includegraphics[width=0.95\textwidth]{images/hidef_diagram.png}\\ \includegraphics[width=0.95\textwidth]{images/hidef_excluded_limit2D.png} \end{columns} \end{center} \end{minipage} \textref{Phys. Rev. D 95, 071101 (2017)} \vspace*{2.1cm} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}\frametitle{$\PBu \to \PK^+ \Pelectron \APelectron$} \ARROW Most precise measurements performed at LHCb.\\ \ARROW Main challenge is due to electron Bremsstrahlung.\\ \begin{center} \includegraphics[width=0.45\textwidth]{images/Fig2a_Rk.pdf} \includegraphics[width=0.45\textwidth]{images/Fig2b_Rk.pdf} \end{center} \ARROW To protect ourself from electron reconstruction issue we use double ratio: \begin{align*} R_K = \frac{ \Br(\PB \to \PK \mu \mu ) \times \Br(\PB \to \PK \PJpsi(\to e e)) }{ \Br(\PB \to \PK e e ) \times \Br(\PB \to \PK \PJpsi(\to \mu \mu)) } \end{align*} \textref{NATURE PHYSICS 18, (2022) 277-282} \end{frame} \begin{frame}\frametitle{$\PBu \to \PK^+ \Pelectron \APelectron$} \begin{columns} \column{0.5\textwidth} \ARROW The efficiency correction was calculated using $\PB \to \PJpsi \PK$.\\ \ARROW Cross-checked with $\PB \to \Ppsi(2S) \PK$.\\ \ARROW The result:\\ \begin{small} $R_{\PK}(1.1 < q^2 < 6.0~\GeV^2/c^4) = 0.846^{+0.042+0.013}_{-0.039-0.012}$ \end{small} \includegraphics[width=0.95\textwidth]{images/Fig8.pdf} \column{0.5\textwidth} \includegraphics[width=0.95\textwidth]{images/Fig3b_Rk.pdf} \ARROW Disagrees with SM at $3.1~\sigma$ level. \includegraphics[width=0.95\textwidth]{images/FigS1.pdf} \end{columns} \textref{NATURE PHYSICS 18, (2022) 277-282} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5 % RKstar %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}\frametitle{$\PBd \to \PKstar \Pelectron \APelectron$} \ARROW The neutral continuation of the $R_K$ measurement is to measure its partner: \begin{center} \begin{align*} R_{\PKstar} = \frac{\Br(\PB \to \PKstar \mu \mu)}{\Br(\PB \to \PKstar e e)} \end{align*} \end{center} \begin{columns} \column{0.4\textwidth} \ARROW Measurement performed in two $q^2$ bins. \\ \ARROW Normalized in double ratio to $\PB \to \PKstar \PJpsi$.\\ \includegraphics[width=0.95\textwidth]{images/plot.png} \column{0.6\textwidth} \begin{center} \includegraphics[width=0.92\textwidth]{images/Fig10akstar.pdf}\\ \ARROW Over $2~\sigma$ deviation in each bin. \end{center} \end{columns} \textref{JHEP 08 (2017) 055} \end{frame} \begin{frame}\frametitle{$\PBd/\PBu \to \PKshort/\PKstar^+ \Pelectron \APelectron$} \begin{columns} \column{0.6\textwidth} \includegraphics[width=0.48\textwidth]{images/for_publication_bd_rare_ee.pdf} \includegraphics[width=0.48\textwidth]{images/for_publication_bd_rare_mm.pdf}\\ \includegraphics[width=0.48\textwidth]{images/for_publication_bu_rare_ee.pdf} \includegraphics[width=0.48\textwidth]{images/for_publication_bu_rare_mm.pdf} \ARROW Measurement performed in the low $q^2$ regions.\\ \ARROW The electron decays have been observed with significance $> 5~\sigma$. \column{0.4\textwidth} \ARROW Same strategy as previous measurements.\\ \begin{exampleblock}{Results:} $R_{\PKshort} = 0.66^{+0.20+0.02}_{-0.14-0.04}$\\ $R_{\PKstar^+} = 0.70^{+0.18+0.03}_{-0.13-0.04}$\\ \end{exampleblock} \ARROW Consistent with SM at $2\sigma$ level. \includegraphics[width=0.92\textwidth]{images/R_Comparisons.pdf} \end{columns} \textref{Phys. Rev. Lett. 128 (2022) 191802} \end{frame} \begin{frame}\frametitle{$\PBd \to \PKstar \Pelectron \APelectron$ at low $q^2$} \begin{columns} \column{0.6\textwidth} \ARROW Use the electrons to measure the radiative penguing.\\ \ARROW Accessign the kinematic range: $\left[0.0008,0.257\right]~\GeV^2/c^4$. \begin{alertblock}{} $F_L=0.044 \pm 0.026 \pm 0.014$\\ $A^{Re}_T= −0.06 \pm 0.08 \pm 0.02$\\ $A^{2}_T= 0.11 \pm 0.10 \pm 0.02$\\ $A^{Im}_T= 0.02 \pm 0.10 \pm 0.01$\\ \end{alertblock} \includegraphics[width=0.92\textwidth]{images/Fig4.pdf} \column{0.4\textwidth} \includegraphics[width=0.95\textwidth]{images/plot.png} \includegraphics[width=0.92\textwidth]{images/rad_penguin2.jpg} \end{columns} \textref{JHEP 12 (2020) 081} \end{frame} \begin{frame}\frametitle{$\PD \to h h \mu \mu$} \begin{columns} \column{0.5\textwidth} \ARROW Extreamly suppressed by GIM mechanism. \\ \ARROW Dominated by long-range iteractions.\\ \includegraphics[width=0.45\textwidth]{images/fig1a.pdf} \includegraphics[width=0.45\textwidth]{images/fig1b.pdf}\\ \ARROW Because of tagging $(\PDstar \to \PD \pi_{\rm slow})$ one can measure angular observables. \column{0.5\textwidth} \only<1>{ \includegraphics[width=0.95\textwidth]{images/fig1.pdf} } \only<2> { \includegraphics[width=0.95\textwidth]{images/fig2a.pdf} } \end{columns} \textref{LHCB-PAPER-2021-035, accepted by PRL} \end{frame} \begin{frame}\frametitle{$\Lambda_c \to \Pproton \mu \mu$} \vspace{0.5em} \begin{minipage}{\textwidth} \begin{columns} \column{0.1in} {~}\\ \column{3in} \vspace{0.5em} \ARROW SM predictions:\\ ~~~~~~$\mathcal{O}(10^{-8})$\\ \ARROW Long distance effects:\\ ~~~~~~$\mathcal{O}(10^{-6})$\\ ~~~~\\ \ARROW Previous measurement done by Babar:\\ ~~${\rm Br}(\Lambda_c^{+} \to p \mu^+ \mu^-) < 4.4\cdot 10^{-5}$ at 90\% CL\\ \begin{center} \includegraphics[width=0.65\textwidth]{images/babar.png}\\ \end{center} \column{2in} \includegraphics[width=0.95\textwidth]{images/indeks1.jpg}\\ \includegraphics[width=0.95\textwidth]{images/indeks2.jpg}\\ \begin{exampleblock}{} LHCb analysis with $3~\invfb$ \end{exampleblock} \end{columns} \end{minipage} \vspace*{2.cm} \textref{Phys. Rev D 84 072006} \end{frame} \begin{frame}\frametitle{$\Lambda_c \to \Pproton \mu \mu$} \begin{columns} \column{0.02\textwidth} \column{0.5\textwidth} \ARROW It's the first observation of $\Lambda_c \to \Pproton \mu \mu$ in the $\omega$ region, with $5.0~\sigma$ significance.\\ \ARROW The corresponding branching fraction reads: \begin{align*} \mathcal{B}(\Lambda_c \to \Pproton \omega) = \left( 9.4 \pm 3.2 \pm 1.0 \pm 2.0 \right) \cdot 10^{-4} \end{align*} \ARROW No significant excess observed in the nonresonant region: \begin{align*} \mathcal{B}(\Lambda_c \to \Pproton \mu \mu) < 7.7(9.6) \times 10^{-8} \end{align*} \ARROW Improving BaBar result by 3 orders of magnitude! \column{0.5\textwidth} \includegraphics[width=0.92\textwidth]{{images/Lc_mumu_mass_fit_sel}.pdf}\\ \includegraphics[width=0.92\textwidth]{{images/Lc2pmumu_bf90}.pdf} \end{columns} \textref{Phys. Rev D , 091101 (2018]} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}{$\PKshort \to \mu \mu$} {~} \begin{minipage}{\textwidth} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{center} \begin{columns} \column{0.60\textwidth} \ARROW $\Pproton \Pproton$ collisions create enormous amount of strange mesons.\\ \ARROW Can be used to search for $\PKshort \to \mu \mu$.\\ \ARROW SM prediction: $\Br(\PKshort \to \mu \mu)= (5.0 \pm 1.5) \times 10^{-12}$\\ \ARROW Dominated by the long distance effects.\\ %\ARROW We used two types of triggers: TIS and TOS.\\ \ARROW Bkg dominated by $\PKshort \to \pi \pi$. \includegraphics[width=0.75\textwidth]{{images/ks2mumu2}.png}\\ \column{0.4\textwidth} \includegraphics[width=0.95\textwidth]{images/ks2mumu.png}\\ \ARROWR No significant enhanced of signal has been observed and UL was set: \begin{alertblock}{}\begin{small} $\Br(\PKshort \to \mu \mu) <0.8 (1.0) \times 10^{-9}$ at $90 (95)\%$ CL \end{small} \end{alertblock} \end{columns} \end{center} \end{minipage} \textref{Eur. Phys. J. C 77 (2017) 678} \vspace*{2.1cm} \end{frame} %%%%%%%%%%%%%% %LFV \begin{frame}\frametitle{$\PBu \to \PK^+ \mu e$} \begin{columns} \column{0.5\textwidth} \ARROW Normalized to $\PB \to \PK \PJpsi(\mu\mu)$.\\ \ARROW Both charge sign combinations considered: $\PBu \to \PK^+ \mu^{\pm} e^{\mp}$ \includegraphics[width=0.49\textwidth]{images/Fig3bLFVem.pdf} \includegraphics[width=0.49\textwidth]{images/Fig3bLFVem.pdf} \begin{alertblock}{Results at $90~\%$ CL:} \ARROWR $\Br(\PBu \to \PK^+ \mu^- e^+<7.0\times10^{-9}$\\ \ARROWR $\Br(\PBu \to \PK^+ \mu^+ e^-<6.4\times10^{-9}$ \end{alertblock} \column{0.5\textwidth} \includegraphics[width=0.95\textwidth]{images/Fig2aLFVem.pdf} \includegraphics[width=0.95\textwidth]{images/Fig2bLFVem.pdf} \end{columns} \textref{PHYS. REV. LETT.123 (2019) 241802} \end{frame} \begin{frame}\frametitle{$\PB \to \PK \mu \tau$} \begin{columns} \column{0.5\textwidth} \ARROW Very challanging due to presents of $\tau$ lepton.\\ \ARROW Use the $\PB_{s2}^{\ast 0} \to \PB^+ \PK^-$ to reconstruct the $\tau$ momentum.\\ \ARROW Normalized to $\PB \to \PK \PJpsi(\mu\mu)$. \includegraphics[width=0.49\textwidth]{images/Fig3aLFV.pdf} \includegraphics[width=0.49\textwidth]{images/Fig3bLFV.pdf} \includegraphics[width=0.49\textwidth]{images/Fig3cLFV.pdf} \includegraphics[width=0.49\textwidth]{images/Fig3dLFV.pdf} \column{0.5\textwidth} \includegraphics[width=0.95\textwidth]{images/Fig2aLFV.pdf} \includegraphics[width=0.95\textwidth]{images/Fig4LFV.pdf} \end{columns} \textref{JHEP 06 (2020) 129} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}{Conclusions} {~} \begin{minipage}{\textwidth} \begin{itemize} \item Lots of rare decays studied at LHCb. \item Observed tensions wrt. to SM in the $\Pbeauty \to \Pstrange \ell \ell$ transitions. \item LHCb is setting nowadays strongest limits on LFV. \item LUV are the cleanest (wrt. theory errors) of the anomalies. \end{itemize} \end{minipage} \vspace*{2.1cm} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame} {~} \begin{minipage}{\textwidth} \begin{center} \begin{LARGE} Thank you for the attention! \end{LARGE} \includegraphics[width=0.8\textwidth]{images/Joke.jpg} \end{center} \end{minipage} \vspace*{2.1cm} \end{frame} \backupbegin \begin{frame}\frametitle{Backup} \end{frame} \begin{frame}{Theory implications} {~} \begin{minipage}{\textwidth} \includegraphics[height=0.9\textheight]{images/table.png} \end{minipage} \vspace*{2.1cm} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}{If not NP?} {~} \begin{minipage}{\textwidth} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{itemize} \item How about our clean $P_i$ observables? \item The QCD cancel as mentioned only at leading order. \item Comparison to normal observables with the optimised ones. \end{itemize} \includegraphics[width=0.9\textwidth]{images/C9_S_P.png} \end{minipage} \vspace*{2.1cm} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}{Transversity amplitudes } {~} \begin{minipage}{\textwidth} $\color{JungleGreen}{\Rrightarrow}$ One can link the angular observables to transversity amplitudes {\tiny{ \eqa{ J_{1s} & = & \frac{(2+\beta_\ell^2)}{4} \left[|\apeL|^2 + |\apaL|^2 +|\apeR|^2 + |\apaR|^2 \right] + \frac{4 m_\ell^2}{q^2} \re\left(\apeL\apeR^* + \apaL\apaR^*\right)\,,\nn\\[1mm] % J_{1c} & = & |\azeL|^2 +|\azeR|^2 + \frac{4m_\ell^2}{q^2} \left[|A_t|^2 + 2\re(\azeL^{}\azeR^*) \right] + \beta_\ell^2\, |A_S|^2 \,,\nn\\[1mm] % J_{2s} & = & \frac{ \beta_\ell^2}{4}\left[ |\apeL|^2+ |\apaL|^2 + |\apeR|^2+ |\apaR|^2\right], \hspace{0.92cm} J_{2c} = - \beta_\ell^2\left[|\azeL|^2 + |\azeR|^2 \right]\,,\nn\\[1mm] % J_3 & = & \frac{1}{2}\beta_\ell^2\left[ |\apeL|^2 - |\apaL|^2 + |\apeR|^2 - |\apaR|^2\right], \qquad J_4 = \frac{1}{\sqrt{2}}\beta_\ell^2\left[\re (\azeL\apaL^* + \azeR\apaR^* )\right],\nn \\[1mm] % J_5 & = & \sqrt{2}\beta_\ell\,\Big[\re(\azeL\apeL^* - \azeR\apeR^* ) - \frac{m_\ell}{\sqrt{q^2}}\, \re(\apaL A_S^*+ \apaR^* A_S) \Big]\,,\nn\\[1mm] % J_{6s} & = & 2\beta_\ell\left[\re (\apaL\apeL^* - \apaR\apeR^*) \right]\,, \hspace{2.25cm} J_{6c} = 4\beta_\ell\, \frac{m_\ell}{\sqrt{q^2}}\, \re (\azeL A_S^*+ \azeR^* A_S)\,,\nn\\[1mm] % J_7 & = & \sqrt{2} \beta_\ell\, \Big[\im (\azeL\apaL^* - \azeR\apaR^* ) + \frac{m_\ell}{\sqrt{q^2}}\, \im (\apeL A_S^* - \apeR^* A_S)) \Big]\,,\nn\\[1mm] % J_8 & = & \frac{1}{\sqrt{2}}\beta_\ell^2\left[\im(\azeL\apeL^* + \azeR\apeR^*)\right]\,, % \hspace{1.9cm} J_9 = \beta_\ell^2\left[\im (\apaL^{*}\apeL + \apaR^{*}\apeR)\right] \,, \label{Js}\nonumber} }} \end{minipage} \vspace*{2.1cm} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}{Link to effective operators} {~} \begin{minipage}{\textwidth} $\color{JungleGreen}{\Rrightarrow}$ So here is where the magic happens. At leading order the amplitudes can be written as (soft form factors): {\tiny{ \eqa{ \apeLR &=&\sqrt{2} N m_B(1- \hat s)\bigg[ (\Ceff9 + \Cpeff9) \mp (\C{10} + \Cp{10}) +\frac{2\hat{m}_b}{\hat s} (\Ceff7 + \Cpeff7) \bigg]\xi_{\bot}(E_{K^*}) \nn \\[2mm] \apaLR &=& -\sqrt{2} N m_B (1-\hat s)\bigg[(\Ceff9 - \Cpeff9) \mp (\C{10} - \Cp{10}) +\frac{2\hat{m}_b}{\hat s}(\Ceff7 - \Cpeff7) \bigg] \xi_{\bot}(E_{K^*}) \nn \\[2mm] \azeLR &=& -\frac{N m_B (1-\hat s)^2}{2 \hat{m}_{K^*} \sqrt{\hat s}} \bigg[ (\Ceff9 - \Cpeff9) \mp (\C{10} - \Cp{10}) + 2\hat{m}_b (\Ceff7 - \Cpeff7) \bigg]\xi_{\|}(E_{K^*}), \label{LargeRecoilAs}\nonumber} }} where $\hat s = q^2 /m_B^2$, $\hat{m}_i = m_i/m_B$. The $\xi_{\|,\bot }$ are the form factors. \\ \pause $\color{JungleGreen}{\Rrightarrow}$ Now we can construct observables that cancel the $\xi$ form factors at leading order: \eq{P_5^{\prime} = \dfrac{J_5+\bar{J}_5}{2\sqrt{-(J_2^c+\bar{J}_2^c)(J_2^s+\bar{J}_2^s)} }\nonumber } \end{minipage} \vspace*{2.1cm} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}{$\PBzero \to \PKstar \Pmuon \APmuon$ kinematics} {~} \begin{minipage}{\textwidth} $\color{JungleGreen}{\Rrightarrow}$ The kinematics of $\PBzero \to \PKstar \Pmuon \APmuon$ decay is described by three angles $\thetal$, $\thetak$, $\phi$ and invariant mass of the dimuon system ($q^2)$. \only<1>{ \begin{columns} \column{0.5\textwidth} $\color{JungleGreen}{\Rrightarrow}$ $\cos \thetak$: the angle between the direction of the kaon in the $\PKstar$ ($\overline{\PK}^{\ast}$) rest frame and the direction of the $\PKstar$ ($\overline{\PK}^{\ast}$) in the $\PBzero$ ($\APBzero$) rest frame.\\ $\color{JungleGreen}{\Rrightarrow}$ $\cos \thetal$: the angle between the direction of the $\Pmuon$ ($\APmuon$) in the dimuon rest frame and the direction of the dimuon in the $\PBzero$ ($\APBzero$) rest frame.\\ $\color{JungleGreen}{\Rrightarrow}$ $\phi$: the angle between the plane containing the $\Pmuon$ and $\APmuon$ and the plane containing the kaon and pion from the $\PKstar$. \column{0.5\textwidth} \includegraphics[width=0.99\textwidth]{images/angles.png} \end{columns} } \only<2>{ {\tiny{ \eqa{\label{dist} \frac{d^4\Gamma}{dq^2\,d\!\cos\theta_K\,d\!\cos\theta_l\,d\phi}&=&\frac9{32\pi} \bigg[ {\color{red}{J_{1s}}} \sin^2\theta_K + {\color{red}{J_{1c}}} \cos^2\theta_K + ({\color{red}{J_{2s} }}\sin^2\theta_K + {\color{red}{J_{2c}}} \cos^2\theta_K) \cos 2\theta_l\nn\\[1.5mm] &&\hspace{-2.7cm}+ {\color{red}{J_3}} \sin^2\theta_K \sin^2\theta_l \cos 2\phi + {\color{red}{J_4}} \sin 2\theta_K \sin 2\theta_l \cos\phi + {\color{red}{J_5}} \sin 2\theta_K \sin\theta_l \cos\phi \nn\\[1.5mm] &&\hspace{-2.7cm}+ ({\color{red}{J_{6s}}} \sin^2\theta_K + {\color{red}{{J_{6c}}}} \cos^2\theta_K) \cos\theta_l + {\color{red}{J_7}} \sin 2\theta_K \sin\theta_l \sin\phi + {\color{red}{J_8}} \sin 2\theta_K \sin 2\theta_l \sin\phi \nn\\[1.5mm] &&\hspace{-2.7cm}+ {\color{red}{J_9}} \sin^2\theta_K \sin^2\theta_l \sin 2\phi \bigg]\,, \nonumber} }}\\{~}\\ $\color{JungleGreen}{\Rrightarrow}$ This is the most general expression of this kind of decay.\\ $\color{JungleGreen}{\Rrightarrow}$ The $CP$ averaged angular observables are defined:\\ \eq{ S_i = \dfrac{J_i+ \bar{J}_i}{(d \Gamma + d \bar{\Gamma})/dq^2}\nonumber } } \end{minipage} \vspace*{2.1cm} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}{Link to effective operators} {~} \begin{minipage}{\textwidth} $\color{JungleGreen}{\Rrightarrow}$ The observables ${\color{red}{J_i}}$ are bilinear combinations of transversity amplitudes: $\apeLR,~\apaLR,~\azeLR $. \\ $\color{JungleGreen}{\Rrightarrow}$ So here is where the magic happens. At leading order the amplitudes can be written as: {\tiny{ \eqa{ \apeLR &=&\sqrt{2} N m_B(1- \hat s)\bigg[ (\Ceff9 + \Cpeff9) \mp (\C{10} + \Cp{10}) +\frac{2\hat{m}_b}{\hat s} (\Ceff7 + \Cpeff7) \bigg]\xi_{\bot}(E_{K^*}) \nn \\[2mm] \apaLR &=& -\sqrt{2} N m_B (1-\hat s)\bigg[(\Ceff9 - \Cpeff9) \mp (\C{10} - \Cp{10}) +\frac{2\hat{m}_b}{\hat s}(\Ceff7 - \Cpeff7) \bigg] \xi_{\bot}(E_{K^*}) \nn \\[2mm] \azeLR &=& -\frac{N m_B (1-\hat s)^2}{2 \hat{m}_{K^*} \sqrt{\hat s}} \bigg[ (\Ceff9 - \Cpeff9) \mp (\C{10} - \Cp{10}) + 2\hat{m}_b (\Ceff7 - \Cpeff7) \bigg]\xi_{\|}(E_{K^*}), \label{LargeRecoilAs}\nonumber} }} where $\hat s = q^2 /m_B^2$, $\hat{m}_i = m_i/m_B$. The $\xi_{\|,\bot }$ are the soft form factors. \\ \pause $\color{JungleGreen}{\Rrightarrow}$ Now we can construct observables that cancel the $\xi$ soft form factors at leading order: \eq{P_5^{\prime} = \dfrac{J_5+\bar{J}_5}{2\sqrt{-(J_2^c+\bar{J}_2^c)(J_2^s+\bar{J}_2^s)} }\nonumber } \end{minipage} \vspace*{2.1cm} \end{frame} % symmetries \begin{frame}{Symmetries in $\PB \to \PKstar \Pmu \Pmu$} {~} \begin{minipage}{\textwidth} $\color{JungleGreen}{\Rrightarrow}$ We have 12 angular coefficients ($S_i$).\\ $\color{JungleGreen}{\Rrightarrow}$ There exist 4 symmetry transformations that leave the angular distributions unchanged: \begin{tiny} \eq{ n_\|=\binom{A_\|^L}{A_\|^{R*}}\ ,\quad n_\bot=\binom{A_\bot^L}{-A_\bot^{R*}}\ ,\quad n_0=\binom{A_0^L}{A_0^{R*}}\ .\nonumber } \end{tiny} \begin{tiny} \eq{ n_i^{'} = U n_i= \left[ \begin{array}{ll} e^{i\phi_L} & 0 \\ 0 & e^{-i \phi_R} \end{array} \right] \left[ \begin{array}{rr} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{array} \right] \left[ \begin{array}{rr} \cosh i \tilde{\theta} & -\sinh i \tilde{\theta} \\ - \sinh i \tilde{\theta} & \cosh i \tilde{\theta} \end{array} \right] n_i \,. \label{symmassless}\nonumber} \end{tiny} $\color{JungleGreen}{\Rrightarrow}$ Using this symmetries one can show that there are 8 independent observables. The pdf can be written as: \begin{tiny} \begin{align*} \left.\frac{1}{{\rm d}(\Gamma+\bar{\Gamma})/{\rm d}q^2}\frac{{\rm d}(\Gamma+\bar{\Gamma})}{{\rm dcos}\thetal\,{\rm dcos}\thetak\,{\rm d}\phi}\right|_{\rm P} = \tfrac{9}{32\pi}\bigl[ &\tfrac{3}{4} (1-{F_{\rm L}})\sin^2\thetak \label{eq:pdfpwave}\\[-0.75em] &+ {F_{\rm L}}\cos^2\thetak + \tfrac{1}{4}(1-{F_{\rm L}})\sin^2\thetak\cos 2\thetal\nonumber\\ &- {F_{\rm L}} \cos^2\thetak\cos 2\thetal + {S_3}\sin^2\thetak \sin^2\thetal \cos 2\phi\nonumber\\ &+ {S_4} \sin 2\thetak \sin 2\thetal \cos\phi + {S_5}\sin 2\thetak \sin \thetal \cos \phi\nonumber\\ &+ \tfrac{4}{3} {A_{\rm FB}} \sin^2\thetak \cos\thetal + {S_7} \sin 2\thetak \sin\thetal \sin\phi\nonumber\\ &+ {S_8} \sin 2\thetak \sin 2\thetal \sin\phi + {S_9}\sin^2\thetak \sin^2\thetal \sin 2\phi \nonumber \bigr]. %\end{split} %\bigr],\ \end{align*} \end{tiny} \end{minipage} \vspace*{2.1cm} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}{$\Lambda_b \to p \pi \mu \mu$} {~} \begin{minipage}{\textwidth} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{center} \begin{columns} \column{0.60\textwidth} \ARROW First observation of $b \to d$ in baryon system!\\ \ARROW BDT selection trained on MC\\ \ARROW Normalized to $\Lambda_b \to p \pi \PJpsi$\\ \ARROW With futher QCD improvements we will be able to to measure $\frac{\vert V_{ts}\vert }{\vert V_{td}\vert}$. \begin{exampleblock}{\begin{small}\ARROWR $\frac{\Br(\Lambda_b \to p \pi \mu \mu)}{\Br(\Lambda_b \to p \pi \PJpsi)} =0.044 \pm 0.012 \pm 0.007$\end{small} } \ARROWR $5.5~\sigma$ significance! \ARROWR First observation.\\ \end{exampleblock} \includegraphics[width=0.71\textwidth]{images/hidef_Fig3.png} \column{0.50\textwidth} \includegraphics[width=0.95\textwidth]{images/dupa.png}\\ \includegraphics[width=0.95\textwidth]{images/hidef_Fig2.png}\\ \begin{alertblock}{}\begin{small} $\Br(\Lambda_b \to p \pi \mu \mu) = (6.9 \pm 1.9 \pm 1.1^{+1.3}_{-1.0} ) \times 10^{-8}$ \end{small} \end{alertblock} \end{columns} \end{center} \end{minipage} \textref{J. High Energy Phys. 04 (2017) 029} \vspace*{2.1cm} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}{Search for light scalars} {~} \begin{minipage}{\textwidth} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{center} \begin{columns} \column{0.55\textwidth} \ARROW Hidden sector models are gathering more and more attention.\\ \ARROW Inflaton model: new scalar then mixes with the Higgs.\\ \ARROW $\PB$ decays are sensitive as the inflaton might be light.\\ \ARROW Searched for long living particle $\chi$ produced in: $\PB \to \chi(\mu\mu) \PK$.\\ \ARROW Analysis performed blindly as a peak search.\\ \ARROW Light inflaton essentially ruled out:\\ \includegraphics[width=0.75\textwidth]{{images/hidef_Inflaton_parameter_space_log_PAPER}.png}\\ \column{0.45\textwidth} \includegraphics[width=0.95\textwidth]{images/hidef_diagram.png}\\ \includegraphics[width=0.95\textwidth]{images/hidef_excluded_limit2D.png} \end{columns} \end{center} \end{minipage} \textref{Phys. Rev. D 95, 071101 (2017)} \vspace*{2.1cm} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}{$\PBzero \to \PKstar \Pmuon \APmuon$ decay } {~} \begin{minipage}{\textwidth} \begin{columns} \column{0.55\textwidth} \ARROW $\PBzero \to \PKstar \Pmuon \APmuon$ is a smoking gun for NP hunting!\\ \ARROW Reach angular observables makes is sensitive to different NP models\\ \ARROW In addition one can construct less form factor dependent observables: \begin{equation} P_5^{\prime}=\frac{S_5}{\sqrt{F_L(1-F_L)}}\nonumber \end{equation} \ARROW In single analysis observed $3.4~\sigma$ discrepancy in the $C_9$ WC. \column{0.45\textwidth} \includegraphics[width=0.9\textwidth]{images/P5p.pdf} \\ \includegraphics[width=0.9\textwidth]{images/AFBPad.pdf} \end{columns} \end{minipage} \textref{JHEP 02 (2016) 104, CMS-PAS-BPH-15-008,\\ ATLAS-CONF-2017-023, Phys. Rev. Lett. 118 (2017)} \vspace*{2.1cm} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}{$\PBzero \to \PKstar \Pmuon \APmuon$ decay } {~} \begin{minipage}{\textwidth} \begin{columns} \column{0.55\textwidth} \ARROW $\PBzero \to \PKstar \Pmuon \APmuon$ is a smoking gun for NP hunting!\\ \ARROW Reach angular observables makes is sensitive to different NP models\\ \ARROW In addition one can construct less form factor dependent observables: \begin{equation} P_5^{\prime}=\frac{S_5}{\sqrt{F_L(1-F_L)}}\nonumber \end{equation} \ARROW In single analysis observed $3.4~\sigma$ discrepancy in the $C_9$ WC. \column{0.45\textwidth} \includegraphics[angle=-90,width=0.9\textwidth]{images/P5p.pdf} \\ \includegraphics[angle=-90,width=0.9\textwidth]{images/AFBPad.pdf} \end{columns} \end{minipage} \textref{JHEP 02 (2016) 104, CMS-PAS-BPH-15-008,\\ ATLAS-CONF-2017-023, Phys. Rev. Lett. 118 (2017)} \vspace*{2.1cm} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}{Branching fraction measurements of $\PBs \to \Pphi \Pmu \Pmu$} {~} \begin{minipage}{\textwidth} \begin{center} \includegraphics[height=4cm]{images/bs2phipi.png} \includegraphics[height=4cm]{images/BsSel.png} \end{center} \begin{itemize} \item Recent LHCb measurement, \href{https://cds.cern.ch/record/2029820/files/JHEP09-179.pdf}{{\color{blue}{JHEP09 (2015) 179}}}. \item Suppressed by $\frac{f_s}{f_d}$. \item Cleaner because of narrow $\Pphi$ resonance. \item $3.3~\sigma$ deviation in SM in the $1-6\GeV^2$ bin. \item Angular part in agreement with SM ($S_5$ is not accessible). \end{itemize} \end{minipage} \vspace*{2.1cm} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}{Theory implications of $b \to s \ell \ell$} {~} \begin{minipage}{\textwidth} \begin{itemize} \item A fit prepared by \texttt{S. Descotes-Genon, L. Hofer, J. Matias, J. Virto}. \item The data can be explained by modifying the $C_9$ Wilson coefficient. \item Overall there is $>4~\sigma$ discrepancy wrt. the SM prediction. \end{itemize} \includegraphics[width=0.9\textwidth]{images/FIT.png} \end{minipage} \textref{JHEP 06 (2016) 092} \vspace*{2.1cm} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}{Observables in $\PB \to \PKstar \Pmu \Pmu$} {~} \begin{minipage}{\textwidth} \ARROW The kinematics of $\PBzero \to \PKstar \Pmuon \APmuon$ decay is described by three angles $\thetal$, $\thetak$, $\phi$ and invariant mass of the dimuon system ($q^2)$.\\ \ARROW The angular distribution can be written as: \begin{tiny} \begin{align*} \left.\frac{1}{{\rm d}(\Gamma+\bar{\Gamma})/{\rm d}q^2}\frac{{\rm d}(\Gamma+\bar{\Gamma})}{{\rm dcos}\thetal\,{\rm dcos}\thetak\,{\rm d}\phi}\right|_{\rm P} = \tfrac{9}{32\pi}\bigl[ &\tfrac{3}{4} (1-{F_{\rm L}})\sin^2\thetak \label{eq:pdfpwave}\\[-0.75em] &+ {F_{\rm L}}\cos^2\thetak + \tfrac{1}{4}(1-{F_{\rm L}})\sin^2\thetak\cos 2\thetal\nonumber\\ &- {F_{\rm L}} \cos^2\thetak\cos 2\thetal + {S_3}\sin^2\thetak \sin^2\thetal \cos 2\phi\nonumber\\ &+ {S_4} \sin 2\thetak \sin 2\thetal \cos\phi + {S_5}\sin 2\thetak \sin \thetal \cos \phi\nonumber\\ &+ \tfrac{4}{3} {A_{\rm FB}} \sin^2\thetak \cos\thetal + {S_7} \sin 2\thetak \sin\thetal \sin\phi\nonumber\\ &+ {S_8} \sin 2\thetak \sin 2\thetal \sin\phi + {S_9}\sin^2\thetak \sin^2\thetal \sin 2\phi \nonumber \bigr]. %\end{split} %\bigr],\ \end{align*} \end{tiny} \end{minipage} \vspace*{2.1cm} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}{Link to effective operators} {~} \begin{minipage}{\textwidth} $\color{JungleGreen}{\Rrightarrow}$ The observables ${\color{red}{S_i}}$ are bilinear combinations of transversity amplitudes: $\apeLR,~\apaLR,~\azeLR $. \\ $\color{JungleGreen}{\Rrightarrow}$ So here is where the magic happens. At leading order the amplitudes can be written as: {\tiny{ \eqa{ \apeLR &=&\sqrt{2} N m_B(1- \hat s)\bigg[ (\Ceff9 + \Cpeff9) \mp (\C{10} + \Cp{10}) +\frac{2\hat{m}_b}{\hat s} (\Ceff7 + \Cpeff7) \bigg]\xi_{\bot}(E_{K^*}) \nn \\[2mm] \apaLR &=& -\sqrt{2} N m_B (1-\hat s)\bigg[(\Ceff9 - \Cpeff9) \mp (\C{10} - \Cp{10}) +\frac{2\hat{m}_b}{\hat s}(\Ceff7 - \Cpeff7) \bigg] \xi_{\bot}(E_{K^*}) \nn \\[2mm] \azeLR &=& -\frac{N m_B (1-\hat s)^2}{2 \hat{m}_{K^*} \sqrt{\hat s}} \bigg[ (\Ceff9 - \Cpeff9) \mp (\C{10} - \Cp{10}) + 2\hat{m}_b (\Ceff7 - \Cpeff7) \bigg]\xi_{\|}(E_{K^*}), \label{LargeRecoilAs}\nonumber} }} where $\hat s = q^2 /m_B^2$, $\hat{m}_i = m_i/m_B$. The $\xi_{\|,\bot }$ are the soft form factors. \\ \pause $\color{JungleGreen}{\Rrightarrow}$ Now we can construct observables that cancel the $\xi$ soft form factors at leading order: \eq{P_5^{\prime} = \dfrac{J_5+\bar{J}_5}{2\sqrt{-(J_2^c+\bar{J}_2^c)(J_2^s+\bar{J}_2^s)} }\nonumber } \end{minipage} \vspace*{2.1cm} \end{frame} \iffalse %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}{Theory implications 2} \begin{minipage}{\textwidth} {~} \ARROW If one includes recent measurements of $R_k$ and $R_{\PKstar}$: \begin{center} \includegraphics[width=0.99\textwidth]{images/quim1.png} \end{center} \begin{columns} \column{0.5\textwidth} \includegraphics[width=0.75\textwidth]{images/quim2.png} \column{0.5\textwidth} \includegraphics[width=0.75\textwidth]{images/quim3.png} \end{columns} \ARROW Strong indications of NP! \end{minipage} \textref{arxiv::1704.05340} \vspace*{2.1cm} \end{frame} \fi %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}{Measurement of phase difference} \begin{minipage}{\textwidth} {~} \begin{columns} \column{0.6\textwidth} \ARROW One could try to measure the phase difference between the resonances and the nonresonant amplitudes to see if the interference is large enough to explain the effects.\\ \ARROW Measured firstly done for the decay $\PB \to \PK \mu \mu$.\\ \ARROW The analysis based: \begin{equation} C_9^{\rm eff} = C_9 +Y(q^2) = C_9 +\sum_j \eta_j e^{i \delta_i} A_j^{\rm res}(q^2)\nonumber \end{equation} \ARROW The amplitudes are modelled Briet-Wigner and Flatte functions.\\ \ARROW Interference cannot explain the observed anomalies. \column{0.4\textwidth} \includegraphics[width=0.65\textwidth]{images/charm.png}\\ \includegraphics[width=0.75\textwidth]{{images/hidef_finalplot_pos_neg}.png}\\\includegraphics[width=0.7\textwidth]{images/hidef_WilsonProfile.png} \end{columns} \end{minipage} \textref{Phys. Rev. D 95, 071101 (2017)} \vspace*{2.1cm} \end{frame} \backupend \end{document}