Newer
Older
Presentations / Lc2PMuMu / AandSWeek2017 / mchrzasz.tex
@Marcin Chrzaszcz Marcin Chrzaszcz on 1 Apr 2017 37 KB updated the Lc
\documentclass[11 pt,xcolor={dvipsnames,svgnames,x11names,table}]{beamer}

\usepackage[english]{babel}
\usepackage{polski}


\usetheme[
	bullet=circle,		% Other option: square
	bigpagenumber,		% circled page number on lower right
	topline=true,			% colored bar at the top of the frame
	shadow=false,			% Shading for beamer blocks
	watermark=BG_lower,	% png file for the watermark
	]{Flip}

%\logo{\kern+1.em\includegraphics[height=1cm]{SHiP-3_LightCharcoal}}


\usepackage[lf]{berenis}
\usepackage[LY1]{fontenc}
\usepackage[utf8]{inputenc}

%\usepackage{emerald}
\usefonttheme{professionalfonts}
\usepackage[no-math]{fontspec}
\defaultfontfeatures{Mapping=tex-text}	% This seems to be important for mapping glyphs properly

\setmainfont{Gillius ADF}			% Beamer ignores "main font" in favor of sans font
\setsansfont{Gillius ADF}			% This is the font that beamer will use by default
% \setmainfont{Gill Sans Light}		% Prettier, but harder to read

\setbeamerfont{title}{family=\fontspec{Gillius ADF}}

\input t1augie.fd

%\newcommand{\handwriting}{\fontspec{augie}} % From Emerald City, free font
%\newcommand{\handwriting}{\usefont{T1}{fau}{m}{n}} % From Emerald City, free font
% \newcommand{\handwriting}{}	% If you prefer no special handwriting font or don't have augie

%% Gill Sans doesn't look very nice when boldfaced
%% This is a hack to use Helvetica instead
%% Usage: \textbf{\forbold some stuff}
%\newcommand{\forbold}{\fontspec{Arial}}

\usepackage{graphicx}
\usepackage[export]{adjustbox}

\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{bm}
\usepackage{colortbl}
\usepackage{mathrsfs} 			% For Weinberg-esque letters
\usepackage{cancel}				% For "SUSY-breaking" symbol
\usepackage{slashed}            % for slashed characters in math mode
\usepackage{bbm}                %for \mathbbm{1} (unit matrix)
\usepackage{amsthm}				% For theorem environment
\usepackage{multirow}			% For multi row cells in table
\usepackage{arydshln} 			% For dashed lines in arrays and tables
\usepackage{siunitx}
\usepackage{xhfill}
\usepackage{grffile}
\usepackage{textpos}
\usepackage{subfigure}
\usepackage{tikz}

%\usepackage{hepparticles}
%\usepackage[italic]{hepparticles}

\usepackage{hepnicenames}
\usepackage{hepparticles}
% Drawing a line
\tikzstyle{lw} = [line width=20pt]
\newcommand{\topline}{%
  \tikz[remember picture,overlay] {%
    \draw[crimsonred] ([yshift=-23.5pt]current page.north west)
             -- ([yshift=-23.5pt,xshift=\paperwidth]current page.north west);}}



% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
\usepackage{tikzfeynman}		% For Feynman diagrams
\usetikzlibrary{arrows,shapes}
\usetikzlibrary{trees}
\usetikzlibrary{matrix,arrows} 				% For commutative diagram
% http://www.felixl.de/commu.pdf
\usetikzlibrary{positioning}				% For "above of=" commands
\usetikzlibrary{calc,through}				% For coordinates
\usetikzlibrary{decorations.pathreplacing}  % For curly braces
% http://www.math.ucla.edu/~getreuer/tikz.html
\usepackage{pgffor}							% For repeating patterns

\usetikzlibrary{decorations.pathmorphing}	% For Feynman Diagrams
\usetikzlibrary{decorations.markings}
\tikzset{
	% >=stealth', %%  Uncomment for more conventional arrows
	vector/.style={decorate, decoration={snake}, draw},
	provector/.style={decorate, decoration={snake,amplitude=2.5pt}, draw},
	antivector/.style={decorate, decoration={snake,amplitude=-2.5pt}, draw},
	fermion/.style={draw=gray, postaction={decorate},
		decoration={markings,mark=at position .55 with {\arrow[draw=gray]{>}}}},
	fermionbar/.style={draw=gray, postaction={decorate},
		decoration={markings,mark=at position .55 with {\arrow[draw=gray]{<}}}},
	fermionnoarrow/.style={draw=gray},
	gluon/.style={decorate, draw=black,
		decoration={coil,amplitude=4pt, segment length=5pt}},
	scalar/.style={dashed,draw=black, postaction={decorate},
		decoration={markings,mark=at position .55 with {\arrow[draw=black]{>}}}},
	scalarbar/.style={dashed,draw=black, postaction={decorate},
		decoration={markings,mark=at position .55 with {\arrow[draw=black]{<}}}},
	scalarnoarrow/.style={dashed,draw=black},
	electron/.style={draw=black, postaction={decorate},
		decoration={markings,mark=at position .55 with {\arrow[draw=black]{>}}}},
	bigvector/.style={decorate, decoration={snake,amplitude=4pt}, draw},
}

% TIKZ - for block diagrams,
% from http://www.texample.net/tikz/examples/control-system-principles/
% \usetikzlibrary{shapes,arrows}
\tikzstyle{block} = [draw, rectangle,
minimum height=3em, minimum width=6em]




\usetikzlibrary{backgrounds}
\usetikzlibrary{mindmap,trees}	% For mind map
\newcommand{\degree}{\ensuremath{^\circ}}
\newcommand{\E}{\mathrm{E}}
\newcommand{\Var}{\mathrm{Var}}
\newcommand{\Cov}{\mathrm{Cov}}
\newcommand\Ts{\rule{0pt}{2.6ex}}       % Top strut
\newcommand\Bs{\rule[-1.2ex]{0pt}{0pt}} % Bottom strut

\graphicspath{{images/}}	% Put all images in this directory. Avoids clutter.

% SOME COMMANDS THAT I FIND HANDY
% \renewcommand{\tilde}{\widetilde} % dinky tildes look silly, dosn't work with fontspec
\newcommand{\comment}[1]{\textcolor{comment}{\footnotesize{#1}\normalsize}} % comment mild
\newcommand{\Comment}[1]{\textcolor{Comment}{\footnotesize{#1}\normalsize}} % comment bold
\newcommand{\COMMENT}[1]{\textcolor{COMMENT}{\footnotesize{#1}\normalsize}} % comment crazy bold
\newcommand{\Alert}[1]{\textcolor{Alert}{#1}} % louder alert
\newcommand{\ALERT}[1]{\textcolor{ALERT}{#1}} % loudest alert
%% "\alert" is already a beamer pre-defined
\newcommand*{\Scale}[2][4]{\scalebox{#1}{$#2$}}%

\def\Put(#1,#2)#3{\leavevmode\makebox(0,0){\put(#1,#2){#3}}}

\usepackage{gmp}
\usepackage[final]{feynmp-auto}

\usepackage[backend=bibtex,style=numeric-comp,firstinits=true]{biblatex}
\bibliography{bib}
\setbeamertemplate{bibliography item}[text]

\makeatletter\let\frametextheight\beamer@frametextheight\makeatother

% suppress frame numbering for backup slides
% you always need the appendix for this!
\newcommand{\backupbegin}{
	\newcounter{framenumberappendix}
	\setcounter{framenumberappendix}{\value{framenumber}}
}
\newcommand{\backupend}{
	\addtocounter{framenumberappendix}{-\value{framenumber}}
	\addtocounter{framenumber}{\value{framenumberappendix}}
}


\definecolor{links}{HTML}{2A1B81}
%\hypersetup{colorlinks,linkcolor=,urlcolor=links}

% For shapo's formulas:
\def\lsi{\raise0.3ex\hbox{$<$\kern-0.75em\raise-1.1ex\hbox{$\sim$}}}
\def\gsi{\raise0.3ex\hbox{$>$\kern-0.75em\raise-1.1ex\hbox{$\sim$}}}
\newcommand{\lsim}{\mathop{\lsi}}
\newcommand{\gsim}{\mathop{\gsi}}
\newcommand{\wt}{\widetilde}
%\newcommand{\ol}{\overline}
\newcommand{\Tr}{\rm{Tr}}
\newcommand{\tr}{\rm{tr}}
\newcommand{\eqn}[1]{&\hspace{-0.7em}#1\hspace{-0.7em}&}
\newcommand{\vev}[1]{\rm{$\langle #1 \rangle$}}
\newcommand{\abs}[1]{\rm{$\left| #1 \right|$}}
\newcommand{\eV}{\rm{eV}}
\newcommand{\keV}{\rm{keV}}
\newcommand{\GeV}{\rm{GeV}}
\newcommand{\im}{\rm{Im}}
\newcommand{\disp}{\displaystyle}
\def\be{\begin{equation}}
\def\ee{\end{equation}}
\def\ba{\begin{eqnarray}}
\def\ea{\end{eqnarray}}
\def\d{\partial}
\def\l{\left(}
\def\r{\right)}
\def\la{\langle}
\def\ra{\rangle}
\def\e{{\rm e}}
\def\Br{{\rm Br}}

\def\ARROW{{\color{JungleGreen}{$\Rrightarrow$}}\xspace}
\def\ARROWR{{\color{WildStrawberry}{$\Rrightarrow$}}\xspace}

\author{ {M.Chrzaszcz} (UZH,IFJ)}
\institute{UZH}
\title[$\PLambdac \to \Pproton \Pmu \Pmu$ Status and Plans]{$\PLambdac \to \Pproton \Pmu \Pmu$ Status and Plans}
\date{30 January 2017}


\begin{document}
\tikzstyle{every picture}+=[remember picture]

{
\setbeamertemplate{sidebar right}{\llap{\includegraphics[width=\paperwidth,height=\paperheight]{bubble2}}}
\begin{frame}[c]%{\phantom{title page}}
\begin{center}
\begin{center}
	\begin{columns}
		\begin{column}{0.75\textwidth}
			\flushright\bfseries \Huge {$\Lambda_c^+ \to \Pproton \Pmu \Pmu$ \\Status Update \\and Plans for future}
		\end{column}
                \begin{column}{0.02\textwidth}
                  {~}
                  \end{column}
                \begin{column}{0.23\textwidth}
                 % \hspace*{-1.cm}
                  \vspace*{-3mm}
                  \includegraphics[width=0.6\textwidth]{lhcb-logo}
                  \end{column}

	\end{columns}
\end{center}
	\quad
	\vspace{3em}


\begin{columns}
\begin{column}{0.44\textwidth}
\flushright \vspace{-1.8em} { \large Marcin Chrzaszcz\\\vspace{-0.1em}  }

\end{column}

\begin{column}{0.53\textwidth}
\includegraphics[height=1.3cm]{uzh-transp}

\end{column}

\end{columns}
\vspace{0.1em}
on behalf of the $\PLambdac \to \Pproton \Pmu \Pmu$ team:\\
\vspace{0.2em}
T.Lesiak(IFJ, Krakow), B.Nowak(IFJ, Krakow), M.Witek (IFJ, Krakow), \\
L.Pescatore(EPFL, Lousanne), M.Stamenkovic(EPFL, Lousanne), M.Martinelli(EPFL, Lousanne)

\vspace{0.4em}

\vspace{0.5em}

	\textcolor{normal text.fg!50!Comment}{Analysis and Software Week, CERN\\April, 2017}
\end{center}
\end{frame}
}

\begin{frame}\frametitle{Topics covered in this presentation}

\begin{enumerate}
\item Physics of $\Lambda_c^+ \to \Pproton \Pmu \Pmu$
\item Pre-Selection.
\item MVA selection.
\item PID.
\item Normalization.
\item Systematics.
\item Expected limits.
\item Run2 extensions.
\end{enumerate}



\end{frame}


\begin{frame}\frametitle{Physics of $\Lambda_c^+ \to \Pproton \Pmu \Pmu$}

\ARROW $\Lambda_c^+ \to \Pproton \Pmu \Pmu$ is a FCNC in the charm sector:

\begin{center}
\includegraphics[width=0.7\textwidth]{images/diag.png}
\end{center}


\begin{columns}
\column{0.35\textwidth}
\ARROW SM prediction:
\begin{itemize}
\item Short distance $Br \sim \mathcal{O}(10^{-8})$
\item Long distance $Br \sim \mathcal{O}(10^{-6})$
\item Expected to improve by $\mathcal{O}(10^2)$
\end{itemize}

\column{0.65\textwidth}
\ARROW Current experimental situation:
\begin{itemize}
\item $Br(\Lambda_c^+ \to \Pproton \Pmu \Pmu) < 4.4 \times 10^{-5}$ at  $90~\%\rm CL$ arXiv:1107.4465
\end{itemize}
\begin{center}

\includegraphics[width=0.45\textwidth]{images/bab.png}
\end{center}


\end{columns}

\end{frame}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5

\begin{frame}\frametitle{Strategy}
\ARROW We follow  the strategy of previous analysis: $\tau \to \mu \mu \mu$ and $\tau \to \Pproton \mu \mu$.\\
\ARROW Analysis based on $2011$ and $2012$ data sets.\\
\ARROW Blind the signal window: $\vert m_{p\mu\mu} - m_{\PLambdac}^{PDG} \vert < 40~\rm MeV$\\
\ARROW We start from stripping and loose pre-selection.\\
\ARROW MVA:
\begin{itemize}
\item Signal MC.
\item Background side-bands.
\end{itemize}
\ARROW k-Folding technique applied.\\
\ARROW Two BDT in used:
\begin{itemize}
\item BDT1 to first clean up the sample.
\item BDT2 to further increase the sensitivity.
\end{itemize}
\ARROW Final 3D optimization: $\rm (BDT2, ProbNNp, ProbNNmu)$.\\
\ARROW Calculate the UL with $\rm CL_s$.

\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5

\begin{frame}\frametitle{Trigger}

\ARROW We decided to based the analysis on muon triggers:

\begin{itemize}                                                                   
  \item L0                                                                        
    \begin{itemize}                                                               
      \item Lambda\_cplus\_L0MuonDecision\_TOS                                    
      \item Lambda\_cplus\_L0DiMuonDecision\_TOS                                  
    \end{itemize}                                                                 
  \item HLT1                                                                      
    \begin{itemize}                                                               
      \item Lambda\_cplus\_Hlt1TrackMuonDecision\_TOS                             
      \item Lambda\_cplus\_Hlt1DiMuonLowMassDecision\_TOS                         
      \item Lambda\_cplus\_Hlt1TrackAllL0Decision\_TOS                            
    \end{itemize}                                                                 
  \item HLT2                                                                      
    \begin{itemize}                                                               
%%%%      \item Lambda\_cplus\_Hlt2CharmSemilepD02HMuNu\_D02KMuNuDecision\_TOS";  
      \item Lambda\_cplus\_Hlt2CharmHadD2HHHDecision\_TOS;                        
      \item Lambda\_cplus\_Hlt2DiMuonDetachedDecision\_TOS;                       
      \item Lambda\_cplus\_Hlt2CharmSemilep3bodyD2KMuMuDecision\_TOS;             
      \item Lambda\_cplus\_Hlt2CharmSemilepD2HMuMuDecision\_TOS;                  
%      \item Lambda\_cplus\_Hlt2TopoMu2BodyBBDTDecision\_TOS;                     
    \end{itemize}                                                                 
\end{itemize}

\end{frame}



\begin{frame}\frametitle{Stripping}



\begin{center}
\begin{tabular}{|c|c|}                                                                                                                                                                                                                                                                                                        
\hline                                                                                                                                                                                                                                                                                                                        
Condition & ~~$\Lambda_c^+ \to \Pproton \Pmu \Pmu$~~\\                                                                                                                                                                                                                                                                                                  
\hline                                                                                                                                                                                                                                                                                                                        
$\mu^\pm$ and $\Pproton$         &  \\                                                                                                                                                                                                                                                                                         
$P_T$                            & {$>300~\rm MeV/c$} \\                                                                                                                                                                                                                                                                             
Track $\chi^2$/ndf             & {$<3 $} \\                                                                                                                                                                                                                                                                                   
IP $\chi^2$/ndf                & {$>9 $} \\                                                                                                                                                                                                                                                                                   
PID $\mu^\pm$     &  PIDmu$ >$ -5 and (PIDmu - PIDK) $>$ 0  \\                                                                                                                                                                                                                                                                
PID $\Pproton$     &    PIDp$>$10  \\                                                                                                                                                                                                                                                                                            
\hline                                                                                                                                                                                                                                                                                                                        
$\PLambdac$  &  \\                                                                                                                                                                                                                                                                                                                  
$\Delta m$         & $<150\rm MeV/c^2$ \\                                                                                                                                                                                                                                                                                          
Vertex $\chi^2$    &   {$<15$} \\                                                                                                                                                                                                                                                                                             
IP $\chi^2$        &  {$<225 $} \\                                                                                                                                                                                                                                                                                            
$c\tau$            &  {$>100\mu m$} \\                                                                                                                                                                                                                                                                                         
Lifetime fit $\chi^2$  & {$<225 $} \\                                                                                                                                                                                                                                                                                         
%\hline                                                                                                                                                                                                                                                                                                                       
%$m_{\mu^+\mu^-}$ & $> 450\mevcc$ \\                                                                                                                                                                                                                                                                                          
%$m_{\mu^+\mu^+}$ & $> 250\mevcc$ \\                                                                                                                                                                                                                                                                                          
\hline                                                                                                                                                                                                                                                                                                                        
\end{tabular}                                                                                                                                                                                                                                                                                                                 
\end{center}

\end{frame}

\begin{frame}\frametitle{Futher preselection}

\begin{center}\begin{tabular}{|c|}                                  
    \hline                                                          
    Common cuts  \\                                                 
    \hline                                                          
    $m_{\mu\mu}$    $> 250~\rm MeV/c^2$       \\                          
    proton $ProbNNp  > 0.1 $    \\    %     Podzielic te ciecia i op
    $\mu^+,\mu^-$ $ ProbNNmu > 0.1 $    \\                          
    $ 10~\rm GeV/c < p_{proton} < 100~\rm GeV/c $  \\                       
     \hline                                                         
    Signal channel  \\                                              
     \hline                                                         
    $\vert m_{\mu\mu}-m_{\omega} \vert$   $> 40~\rm MeV/c^2$       \\               
    $\vert m_{\mu\mu}-m_{\phi} \vert$     $> 40~\rm MeV/c^2$       \\               
     \hline                                                         
    Normalization channel  \\                                       
     \hline                                                         
    $\vert m_{\mu\mu}-m_{\phi}\vert$             $< 35~\rm MeV/c^2$       \\       
     \hline                                                         
  \end{tabular}\end{center}                                         


\end{frame}





\begin{frame}\frametitle{MVA Selection 1/2}

\ARROW The BDT1 uses a small set of available variables related to $\PLambdac$ candidate:
\begin{itemize}
\item $\rm Lambda\_cplus\_IP\_OWNPV$
\item $\rm Lambda\_cplus\_IPCHI2\_OWNPV$
\item $\rm TMath::Exp(-1000*Lambda\_cplus\_TAU)$
\item $\rm Lambda\_cplus\_ENDVERTEX\_CHI2$
\item $\rm Lambda\_cplus\_PT$
\item $\rm Lambda\_cplus\_FD\_OWNPV$
\item $\rm Lambda\_cplus\_FDCHI2\_OWNPV$ 
\end{itemize}


\begin{center}
\includegraphics[angle=-90,width=0.45\textwidth]{{images/TMVA_2011_0_overtrain_BDT}.pdf}
%\includegraphics[angle=-90,width=0.45\textwidth]{{images/BDT_pre_bkg}.pdf}
\end{center}


\end{frame}

\begin{frame}\frametitle{MVA Selection 2/2}


\begin{center}
\begin{columns}
\column{0.5\textwidth}
\includegraphics[angle=-90,width=0.9\textwidth]{{images/BDT_pre_history}.pdf}
\column{0.5\textwidth}
\includegraphics[width=0.7\textwidth]{images/foldBDT1.png}
\end{columns}
\end{center}


\ARROW We have choose a loose cut ($\rm BDT1>-0.1$) to clean up the sample:
\begin{center}
\includegraphics[width=0.8\textwidth]{images/BDT1norm.png}\\
$\PLambda_c \to \Pproton \Pphi(\mu\mu)$~~~~~~~~~~Blinded data.
\end{center}
\end{frame}


\begin{frame}\frametitle{Normalization}
\begin{columns}

\column{0.5\textwidth}
\ARROW $\PLambda_c \to \Pproton \Pphi(\mu\mu)$:
\begin{itemize}
\item Same final state!
\item Most of the systematics cancel in the ratio.
\item Kinematics difference will only remain.
\item Low Br: $Br(\PLambda_c \to \Pproton \Pphi(\mu\mu)) = (2.98 \pm 0.63) \times 10^{-7}$
\end{itemize}

\column{0.5\textwidth}
\ARROW $\PLambda_c \to \Pproton \pi \pi$:
\begin{itemize}
\item Different final state!
\item The systematics will not cancel in the ratio.
\item Need to understand the $\pi \pi$ spectrum.
\item High branching fraction: $Br(\PLambda_c \to \Pproton \pi \pi) = (4.3 \pm 2.3) \times 10^{-3}$
\end{itemize}
\end{columns}
\begin{exampleblock}{}
We have chosen the $\PLambda_c \to \Pproton \Pphi(\mu\mu)$ as normalization channel.
\end{exampleblock}


\end{frame}


\begin{frame}\frametitle{MVA Selection II}
\begin{itemize}
\item Added variables related to the daughter tracks.
\end{itemize}
\begin{center}
\begin{columns}
\column{0.5\textwidth}
\includegraphics[angle=-90,width=0.8\textwidth]{{images/Comparison_BDT_data_mc}.pdf}
\column{0.5\textwidth}
\includegraphics[width=0.7\textwidth]{images/BDT2folds.png}
\end{columns}
\end{center}



\begin{center}
\begin{columns}
\column{0.5\textwidth}
\includegraphics[angle=-90,width=0.8\textwidth]{{images/BDT_check_3mu_bkg_3}.pdf}
\column{0.5\textwidth}
\ARROW The BDT was checked against the correlation with mass on MC background.\\
\ARROW All cross-checks passed.
\end{columns}
\end{center}



\end{frame}




\begin{frame}\frametitle{PID}

\ARROW The PID in this analysis is done using re sampling the PID distributions. 
\begin{columns}
\column{0.5\textwidth}
\begin{footnotesize}

\begin{itemize}
\item PIDCalib for muons does not cover the low $p_T$ muons $(10~\%)$ of the sample.
\item We used the $\PDs \to \pi \Pphi(\mu\mu)$.
\item The same procedure was used in the different analysis with this problem.
\item The sample is currently being included to the standard sample PID sample by PID WG.
\end{itemize}

\end{footnotesize}

\column{0.5\textwidth}
\includegraphics[width=0.95\textwidth]{images/PID.png}

\end{columns}

\includegraphics[width=0.9\textwidth]{images/splot.png}

\end{frame}

\begin{frame}\frametitle{Optimization}

\begin{columns}
\column{0.6\textwidth}


\ARROW Optimization was performed on a TOY MC sample.\\
\ARROW The toys were generated using PDF from signal MC and sideband sample.\\
\ARROW Optimization was done on grid of points, using 100 TOYs peer point.\\
\ARROW $\rm CL_s$ was used as FOM.\\
\vspace{0.4em}

%\includegraphics[width=0.95\textwidth]{images/opt2.png}\\
\includegraphics[angle=-90,width=0.45\textwidth]{{images/Lc2pPhi5}.pdf}
\includegraphics[angle=-90,width=0.45\textwidth]{{images/expected_bck5}.pdf}
\begin{center}
\begin{tabular}{|c|c|}
\hline 
Variable & Cut \\ \hline
BDT2 & $>0.0$\\
ProbNNp & $>0.68$\\
ProbNNmu & $>0.38$\\ \hline


\end{tabular}
\end{center}


\column{0.4\textwidth}

\includegraphics[width=0.95\textwidth]{{images/scan_ul}.pdf}


\end{columns}




\end{frame}


\begin{frame}\frametitle{Peaking backgrounds 1/2}

\ARROW There are several sources of peaking background:


\begin{footnotesize}
\begin{center}\begin{tabular}{|l|c|c|c|}                                                                                        
    \hline                                                                                                                      
    \hline                                                                                                                      
    Resonance  & BF$(\PLambdac \to \Pproton X)$  & BF$(X \to \mu\mu)$  & Total BF   \\                                                         
    \hline                                                                                                                      
    \hline                                                                                                                      
    $\eta$       & - &  $(5.8 \pm 0.8)\times 10^{-6}$   &  -  \\                                                                
    \hline                                                                                                                      
    $\rho$       & - &  $(4.55 \pm 0.28) \times 10^{-5}$  &   -     \\                                                          
    \hline                                                                                                                      
    $\omega$     & - &  $(9.0 \pm 3.1) \times 10^{-5}$  &   -     \\                                                            
%    \hline                                                                                                                     
%    $f_{0}(980)$    &  $ (3.8 \pm 2.5) \times 10^{-3}$  &   -  & -    \\                                                       
    \hline                                                                                                                      
    $\phi$       & $(1.04 \pm 0.21)\times10^{-3}$ & $(2.87 \pm 0.19)\times 10^{-4}$   &   $(2.98 \pm 0.63)\times 10^{-7}$   \\  
%    & & & \\                                                                                                                   
    \hline                                                                                                                      
    \hline                                                                                                                      
    Resonance  & BF$(\PLambdac \to \Pproton X)$  & BF$(X \to \mu\mu\gamma)$  & Total BF   \\                                                   
    \hline                                                                                                                      
    \hline                                                                                                                      
    $\eta$       & - &  $(3.1 \pm 0.4)\times 10^{-4} $  &  -  \\                                                                
    \hline                                                                                                                      
    $\eta^{,}$   & - &  $ (1.08 \pm 0.27)\times 10^{-4}$  &  -    \\                                                            
    \hline                                                                                                                      
    \hline                                                                                                                      
  \end{tabular}                                                                                                                 
\end{center}                                                                                                                    
\end{footnotesize}

\ARROW Unfortunately not all of the BF are known...\\
\ARROW We took the adequate decay of $\PD$ mesons. We ended up with BF $\mathcal{O}(10^{-9})$ for not vetoed decays, which is much below our sensitivity (see further slides). \\

\end{frame}


\begin{frame}\frametitle{Peaking backgrounds 2/2}

\ARROW The other peaking background is a harmonic decay $\PLambdac \to \Pproton \pi \pi$.\\
\begin{columns}


\column{0.6\textwidth}
\ARROW Estimated from MC sample\\
\ARROW Used the resampled PID response.\\
\ARROW Observed number of events in the signal window.
\includegraphics[angle=-90,width=0.9\textwidth]{{images/mass_bkg_p2pi}.pdf}


\column{0.4\textwidth}


\includegraphics[width=0.9\textwidth]{images/ppipi.png}

\end{columns}
\vspace{0.4em}

\ARROW Estimated: $N_{\PLambdac \to \Pproton \pi \pi}=1.96 \pm 1.13$\\
\ARROW Took into account in background estimation.


\end{frame}



\begin{frame}\frametitle{Normalization}
\ARROW Master equation:
\begin{equation}                                                                                                                                                                                                                                                                                                              
{\frac{Br(\PLambda_c \to \Pproton \mu\mu)}{BR(\PLambda_c \to \Pproton \Pphi(\mu\mu))}  =                                                                                                                                                                                                                                                                                    
\frac{\rm                                                                                                                                                                                                                                                                                                                     
{\epsilon\mathstrut_{norm}}^{TOT}                                                                                                                                                                                                                                                                                             
}{\rm                                                                                                                                                                                                                                                                                                                         
{\epsilon\mathstrut_{sig}}^{TOT}                                                                                                                                                                                                                                                                                              
}                                                                                                                                                                                                                                                                                                                             
\times\frac{N_{\rm sig}}{N_{\rm norm}}, }                                                                                                                                                                                                                                                                                      \nonumber
\label{eq:normalization}                                                                                                                                                                                                                                                                                                      
\end{equation}     
where 
\begin{equation}                                                                                                                                                                                                                                                                                                              
{\frac{\rm {\epsilon\mathstrut_{norm}}^{TOT} }{\rm {\epsilon\mathstrut_{sig}}^{TOT}}}                                                                                                                                                                                                                                         
=                                                                                                                                                                                                                                                                                                                             
{\frac{\rm {\epsilon\mathstrut_{norm}}^{STRIP}}{\rm {\epsilon\mathstrut_{sig}}^{STRIP}}}                                                                                                                                                                                                                                      
\times                                                                                                                                                                                                                                                                                                                        
{\frac{\rm {\epsilon\mathstrut_{norm}}^{COMM}}{\rm {\epsilon\mathstrut_{sig}}^{COMM}}}                                                                                                                                                                                                                                        
\times                                                                                                                                                                                                                                                                                                                        
{\frac{\rm {\epsilon\mathstrut_{norm}}^{SPEC}}{\rm {\epsilon\mathstrut_{sig}}^{SPEC}}}\nonumber
\end{equation}   
\begin{columns}      
      \column{0.8\textwidth}
  \ARROW Signal window divided in 6 equal bins ($7~\rm MeV/c^2$)\\
  \ARROW Many of the ratios close to one: 
      \column{0.2\textwidth}     
      \includegraphics[width=0.95\textwidth]{images/bins.png}

\end{columns}
\end{frame}




\begin{frame}\frametitle{Systematics}

%\ARROW The analysis is statistically dominated:

\begin{center}\begin{tabular}{lc}                                         
    \hline                                                                
    Uncertainty source             &   Value       \\                     
    \hline                                                                
    Efficiency ratio $R_{strip}$ (statistical)           &  0.2  \%   \\    
    Efficiency ratio $R_{comm}$ (statistical)            &  3.37 \%   \\    
    Efficiency ratio $R_{comm}$ (BDT2 cut)               &  0.4  \%   \\    
    Efficiency ratio $R_{comm}$ (PIDCalib samples)       &  0.71 \%   \\    
    Width of the signal peak                           &  0.55 \%   \\    
    Yield of normalization channel                     & 11.8  \%   \\    
    Dedicated PID resampling                           & 0.26  \%   \\    
    ${\PLambda_c \to \Pproton \Pphi(\mu\mu)}$                                 & 21.5  \%   \\    
    Variation of signal decay model                    & 15.3  \%   \\    
    \hline                                                                
  \end{tabular}\end{center}                                               


\end{frame}




\begin{frame}\frametitle{Expected limits}

\ARROW Putting all together one gets:
\begin{center}
\includegraphics[angle=-90,width=0.45\textwidth]{images/br90rel.pdf}
\includegraphics[angle=-90,width=0.45\textwidth]{images/br90abs.pdf}\\

\begin{exampleblock}{The expected limits:}
$Br(\PLambda_c \to \Pproton \mu\mu) < 5.9  \times 10^{-8}$ at $90\%$ CL
\end{exampleblock}
\ARROW The RC started looking at the ANA note.



\end{center}                                               


\end{frame}




\begin{frame}\frametitle{Run 2 plans}
\begin{columns}
\column{0.6\textwidth}
\ARROW We already started working on Run2 analysis.\\
\ARROW The program is expanding:
\begin{itemize}
\item $Br(\PLambdac \to \Pproton \Pphi$
\item $Br(\PLambdac \to \Pproton \mu \mu)$
\item $R(\PLambdac)=\frac{Br(\PLambdac \to \Pproton \mu \mu)}{Br(\PLambdac \to \Pproton e e)}$
\item LFV: $\PLambda_c \to \Pproton \mu e$
\item and maybe more ideas?
\end{itemize}
\column{0.4\textwidth}
\includegraphics[angle=-90,width=0.9\textwidth]{images/EPFL1.pdf}\\
\includegraphics[angle=-90,width=0.9\textwidth]{images/EPFL2.pdf}
                          
\end{columns}

\begin{exampleblock}{}
\ARROWR $\PLambdac$ is a exciting system that is not fully explored!\\
\ARROWR We have a reach physics program to be studied with Run2 data.

\end{exampleblock}


\end{frame}




\backupbegin

\begin{frame}\frametitle{Backup}
\topline

\end{frame}

\backupend

\end{document}