Newer
Older
Presentations / B2Kemu / Col_aproval / mchrzasz.tex
@Marcin Chrzaszcz Marcin Chrzaszcz on 30 Apr 2019 53 KB aproval talk
\documentclass[11 pt,xcolor={dvipsnames,svgnames,x11names,table}]{beamer}

\usepackage[english]{babel}
\usepackage{polski}


\usetheme[
	bullet=circle,		% Other option: square
	bigpagenumber,		% circled page number on lower right
	topline=true,			% colored bar at the top of the frame
	shadow=false,			% Shading for beamer blocks
	watermark=BG_lower,	% png file for the watermark
	]{Flip}

%\logo{\kern+1.em\includegraphics[height=1cm]{SHiP-3_LightCharcoal}}


\usepackage[lf]{berenis}
\usepackage[LY1]{fontenc}
\usepackage[utf8]{inputenc}

\usefonttheme{professionalfonts}
\usepackage[no-math]{fontspec}
\defaultfontfeatures{Mapping=tex-text}	% This seems to be important for mapping glyphs properly

\setmainfont{Gillius ADF}			% Beamer ignores "main font" in favor of sans font
\setsansfont{Gillius ADF}			% This is the font that beamer will use by default
% \setmainfont{Gill Sans Light}		% Prettier, but harder to read

\setbeamerfont{title}{family=\fontspec{Gillius ADF}}

\input t1augie.fd

%\newcommand{\handwriting}{\fontspec{augie}} % From Emerald City, free font
%\newcommand{\handwriting}{\usefont{T1}{fau}{m}{n}} % From Emerald City, free font
% \newcommand{\handwriting}{}	% If you prefer no special handwriting font or don't have augie

%% Gill Sans doesn't look very nice when boldfaced
%% This is a hack to use Helvetica instead
%% Usage: \textbf{\forbold some stuff}
%\newcommand{\forbold}{\fontspec{Arial}}

\usepackage{graphicx}
\usepackage[export]{adjustbox}

\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{bm}
\usepackage{colortbl}
\usepackage{mathrsfs} 			% For Weinberg-esque letters
\usepackage{cancel}				% For "SUSY-breaking" symbol
\usepackage{slashed}            % for slashed characters in math mode
\usepackage{bbm}                % for \mathbbm{1} (unit matrix)
\usepackage{amsthm}				% For theorem environment
\usepackage{multirow}			% For multi row cells in table
\usepackage{arydshln} 			% For dashed lines in arrays and tables
\usepackage{siunitx}
\usepackage{xhfill}
\usepackage{grffile}
\usepackage{textpos}
\usepackage{subfigure}
\usepackage{tikz}

%\usepackage{hepparticles}
\usepackage[italic]{hepparticles}

\usepackage{hepnicenames}

% Drawing a line
\tikzstyle{lw} = [line width=20pt]
\newcommand{\topline}{%
  \tikz[remember picture,overlay] {%
    \draw[crimsonred] ([yshift=-23.5pt]current page.north west)
             -- ([yshift=-23.5pt,xshift=\paperwidth]current page.north west);}}



% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
\usepackage{tikzfeynman}		% For Feynman diagrams
\usetikzlibrary{arrows,shapes}
\usetikzlibrary{trees}
\usetikzlibrary{matrix,arrows} 				% For commutative diagram
% http://www.felixl.de/commu.pdf
\usetikzlibrary{positioning}				% For "above of=" commands
\usetikzlibrary{calc,through}				% For coordinates
\usetikzlibrary{decorations.pathreplacing}  % For curly braces
% http://www.math.ucla.edu/~getreuer/tikz.html
\usepackage{pgffor}							% For repeating patterns

\usetikzlibrary{decorations.pathmorphing}	% For Feynman Diagrams
\usetikzlibrary{decorations.markings}
\tikzset{
	% >=stealth', %%  Uncomment for more conventional arrows
	vector/.style={decorate, decoration={snake}, draw},
	provector/.style={decorate, decoration={snake,amplitude=2.5pt}, draw},
	antivector/.style={decorate, decoration={snake,amplitude=-2.5pt}, draw},
	fermion/.style={draw=gray, postaction={decorate},
		decoration={markings,mark=at position .55 with {\arrow[draw=gray]{>}}}},
	fermionbar/.style={draw=gray, postaction={decorate},
		decoration={markings,mark=at position .55 with {\arrow[draw=gray]{<}}}},
	fermionnoarrow/.style={draw=gray},
	gluon/.style={decorate, draw=black,
		decoration={coil,amplitude=4pt, segment length=5pt}},
	scalar/.style={dashed,draw=black, postaction={decorate},
		decoration={markings,mark=at position .55 with {\arrow[draw=black]{>}}}},
	scalarbar/.style={dashed,draw=black, postaction={decorate},
		decoration={markings,mark=at position .55 with {\arrow[draw=black]{<}}}},
	scalarnoarrow/.style={dashed,draw=black},
	electron/.style={draw=black, postaction={decorate},
		decoration={markings,mark=at position .55 with {\arrow[draw=black]{>}}}},
	bigvector/.style={decorate, decoration={snake,amplitude=4pt}, draw},
}

% TIKZ - for block diagrams,
% from http://www.texample.net/tikz/examples/control-system-principles/
% \usetikzlibrary{shapes,arrows}
\tikzstyle{block} = [draw, rectangle,
minimum height=3em, minimum width=6em]




\usetikzlibrary{backgrounds}
\usetikzlibrary{mindmap,trees}	% For mind map
\newcommand{\degree}{\ensuremath{^\circ}}
\newcommand{\E}{\mathrm{E}}
\newcommand{\TeV}{\mathrm{TeV}}
\newcommand{\Var}{\mathrm{Var}}
\newcommand{\Cov}{\mathrm{Cov}}
\newcommand\Ts{\rule{0pt}{2.6ex}}       % Top strut
\newcommand\Bs{\rule[-1.2ex]{0pt}{0pt}} % Bottom strut

\graphicspath{{images/}}	% Put all images in this directory. Avoids clutter.

% SOME COMMANDS THAT I FIND HANDY
% \renewcommand{\tilde}{\widetilde} % dinky tildes look silly, dosn't work with fontspec
\newcommand{\comment}[1]{\textcolor{comment}{\footnotesize{#1}\normalsize}} % comment mil	
\newcommand{\Comment}[1]{\textcolor{Comment}{\footnotesize{#1}\normalsize}} % comment bold
\newcommand{\COMMENT}[1]{\textcolor{COMMENT}{\footnotesize{#1}\normalsize}} % comment crazy bold
\newcommand{\Alert}[1]{\textcolor{Alert}{#1}} % louder alert
\newcommand{\ALERT}[1]{\textcolor{ALERT}{#1}} % loudest alert
%% "\alert" is already a beamer pre-defined
\newcommand*{\Scale}[2][4]{\scalebox{#1}{$#2$}}%

\def\Put(#1,#2)#3{\leavevmode\makebox(0,0){\put(#1,#2){#3}}}

\usepackage{gmp}
\usepackage[final]{feynmp-auto}

\usepackage[backend=bibtex,style=numeric-comp,firstinits=true]{biblatex}
\bibliography{bib}
\setbeamertemplate{bibliography item}[text]

\makeatletter\let\frametextheight\beamer@frametextheight\makeatother

% suppress frame numbering for backup slides
% you always need the appendix for this!
\newcommand{\backupbegin}{
	\newcounter{framenumberappendix}
	\setcounter{framenumberappendix}{\value{framenumber}}
}
\newcommand{\backupend}{
	\addtocounter{framenumberappendix}{-\value{framenumber}}
	\addtocounter{framenumber}{\value{framenumberappendix}}
}


\definecolor{links}{HTML}{2A1B81}
%\hypersetup{colorlinks,linkcolor=,urlcolor=links}

% For shapo's formulas:
\def\lsi{\raise0.3ex\hbox{$<$\kern-0.75em\raise-1.1ex\hbox{$\sim$}}}
\def\gsi{\raise0.3ex\hbox{$>$\kern-0.75em\raise-1.1ex\hbox{$\sim$}}}
\newcommand{\lsim}{\mathop{\lsi}}
\newcommand{\gsim}{\mathop{\gsi}}
\newcommand{\wt}{\widetilde}
%\newcommand{\ol}{\overline}
\newcommand{\Tr}{\rm{Tr}}
\newcommand{\tr}{\rm{tr}}
\newcommand{\eqn}[1]{&\hspace{-0.7em}#1\hspace{-0.7em}&}
\newcommand{\vev}[1]{\rm{$\langle #1 \rangle$}}
\newcommand{\abs}[1]{\rm{$\left| #1 \right|$}}
\newcommand{\eV}{\rm{eV}}
\newcommand{\keV}{\rm{keV}}
\newcommand{\GeV}{\rm{GeV}}
\newcommand{\im}{\rm{Im}}
\newcommand{\disp}{\displaystyle}
\def\be{\begin{equation}}
\def\ee{\end{equation}}
\def\ba{\begin{eqnarray}}
\def\ea{\end{eqnarray}}
\def\d{\partial}
\def\l{\left(}
\def\r{\right)}
\def\la{\langle}
\def\ra{\rangle}
\def\e{{\rm e}}
\def\Br{{\rm Br}}
\def\fixme{FIXME}
\def\ep{e^+}
\def\en{e^-}
\def\Lb {\Lambda_b}
\newcommand{\BToKemu}{\ensuremath{\PB^+ \to \PK^+ \mu^{\pm} e^{\mp}}}
\newcommand{\BToKem}{\ensuremath{\PB^+ \to \PK^+ \mu^{\pm} e^{\mp}}}
\newcommand{\BToKemm}{\ensuremath{\PB^+ \to \PK^+ \mu^- e^+}}                    
\newcommand{\BToKemp}{\ensuremath{\PB^+ \to \PK^+ \mu^+ e^-}}            
\newcommand{\BTJpsiK }{\ensuremath{\PB^+ \to \PK^+ \PJpsi (\mu^+  \mu^-)}}
\newcommand{\BToKmumu }{\ensuremath{\PB^+ \to \PK^+ \mu^+  \mu^-}}
\newcommand{\BToKee }{\ensuremath{\PB^+ \to \PK^+ e^+  e^-}}
\newcommand{\BToJpsiK }{\ensuremath{\PB^+ \to \PK^+ \PJpsi (\mu^+  \mu^-)}}  
\newcommand{\BToJpsieeK   }{\ensuremath{\PB^+ \to \PK^+ \PJpsi (e^+  e^-)}}                                         
\newcommand{\mev}{\ensuremath{\mathrm{\,Me\kern -0.1em V}}\xspace}
\newcommand{\mevc}{\ensuremath{{\mathrm{\,Me\kern -0.1em V\!/}c}}\xspace}
\newcommand{\mevcc}{\ensuremath{{\mathrm{\,Me\kern -0.1em V\!/}c^2}}\xspace}
\newcommand{\chisq}{\ensuremath{\chi^2}\xspace}
\newcommand{\chisqndf}{\ensuremath{\chi^2/\mathrm{ndf}}\xspace}
\newcommand{\chisqip}{\ensuremath{\chi^2_{\text{IP}}}\xspace}
\newcommand{\chisqvs}{\ensuremath{\chi^2_{\text{VS}}}\xspace}
\newcommand{\chisqvtx}{\ensuremath{\chi^2_{\text{vtx}}}\xspace}
\newcommand{\chisqvtxndf}{\ensuremath{\chi^2_{\text{vtx}}/\mathrm{ndf}}\xspace}



\def\ARROW{{\color{JungleGreen}{$\Rrightarrow$}}\xspace}
\def\ARROWR{{\color{WildStrawberry}{$\Rrightarrow$}}\xspace}

\author{ {Marcin Chrzaszcz} (CERN)}
\institute{UZH}
\title[\BToKemu approval]{\BToKemu approval}


\begin{document}
\tikzstyle{every picture}+=[remember picture]

{
\setbeamertemplate{sidebar right}{\llap{\includegraphics[width=\paperwidth,height=\paperheight]{bubble2}}}
\begin{frame}[c]%{\phantom{title page}}
\begin{center}
\begin{center}
	\begin{columns}
		\begin{column}{0.65\textwidth}
			\flushright \bfseries \Huge {Search for the lepton-flavour violating decays \BToKem}
		\end{column}
                \begin{column}{0.02\textwidth}
                  {~}
                  \end{column}
                \begin{column}{0.33\textwidth}
                 % \hspace*{-1.cm}
                  \vspace*{-3mm}
            %      \includegraphics[width=0.45\textwidth]{lhcb-logo}~~
            \includegraphics[width=0.45\textwidth]{cern}

                  \end{column}

	\end{columns}
\end{center}
	\quad
	\vspace{3em}
\begin{columns}
\begin{column}{0.99\textwidth}
J.~Albrecht$^1$, J.~Bhom$^2$, M.~Chrzaszcz$^{4}$, G.Meier$^{1}$,                                                                                               
%V.~Gligorov$^{5}$,                                                                                                                                            
T~.Momb\"acher$^{1}$, M.~Pikies$^{2}$, F.~Polci$^{5}$, S.~Reichert$^{1}$, N.~Serra$^{3}$                                                                       
\bigskip\\                                                                                                                                                     
$^1$ Dortmund , $^2$ Krakow, $^3$ Z\"{u}rich, $^4$CERN, $^5$LPNHE
\end{column}
%\begin{column}{0.53\textwidth}
%\includegraphics[height=1.3cm]{uzh-transp}
%\end{column}
\end{columns}

%		\footnotesize\textcolor{gray}{With N. Serra, B. Storaci\\Thanks to the theory support from M. Shaposhnikov, D. Gorbunov}\normalsize\\
\vspace{1.5em}

	\textcolor{normal text.fg!50!Comment}{Tue meeting, April 30, 2019}
\end{center}
\end{frame}
}





\begin{frame}\frametitle{Yellow Pages}

\ARROW Twiki:\\
{\small \url{https://twiki.cern.ch/twiki/bin/viewauth/LHCbPhysics/B2hemu} }
\ARROW Time scale:\\
\begin{itemize}
\item WG approval $21^{st}$ Nov. 2018
\item Unblinding $25^{th}$ Apr. 2019
\end{itemize}
\ARROW Journal target: PRL\\
\ARROW Contact authors: \\J.Bhom (Krakow), T. Momb\"acher (Dortmund), F. Polci (LPNHE)



\end{frame}




\begin{frame}\frametitle{Motivation}

\ARROW Good ,,old'' anomalies: $P_5^{\prime}$, $R_{\PK}$, $R_{\PKstar}$ can implicate the existence of $\Pbeauty \to \Pstrange \mu e$.\\
\ARROW LQ, neutrino CP violation, $\PZ^{\prime}$: $\mathcal{B}(\PB \to \PK e \mu) =10^{-8}-10^{-10}$.\\
\ARROW Particularly interesting in LQ: $\mathcal{B}(\PB \to \PK e \mu) = \frac{1-R_{\PK}}{0.23} \times 10^{-8}$ should be accessible within analysis sensitivity.\\
\ARROW Current best UL are from Babar (90\% CL) [PR D73 (2006) 092001]:
\begin{itemize}
\item $\mathcal{B}(\PB^+ \to \PK^+ e^+ \mu^-) < 9.1 \times 10^{-8} $
\item $\mathcal{B}(\PB^+ \to \PK^+ e^- \mu^+) < 13 \times 10^{-8} $
\end{itemize}
\pause
\ARROW Recently Belle also put its 5 cents [PRD 98 (2018) 071101]:
\begin{itemize}
\item $\mathcal{B}(\PB \to \PKstar e^+ \mu^-) < 1.6 \times 10^{-7} $
\item $\mathcal{B}(\PB \to \PKstar e^- \mu^+) < 1.2 \times 10^{-7} $
\end{itemize}

\begin{footnotesize}
\ARROWR NP predictions: 1503.01084, 1504.07928, 1503.07099, 1507.01412
\end{footnotesize}
\end{frame}

\begin{frame}\frametitle{Analysis Strategy}

\ARROW Blind analysis: signal window looked at after finalizing analysis procedure.\\
\ARROW Analysis strategy:
\begin{itemize}
\item Stripping
\item Loose preselection
\item Target vetos 
\item Hard MVA and PID selection
\item Upper limit setting
\item Book airplane ticket to Stockholm (optional ;) )
\end{itemize}
\ARROW Dataset: $3~\rm fb^{-1}$, Run1.


\end{frame}



\begin{frame}\frametitle{Normalization}
\ARROW Typically the $\Pbeauty \APbeauty$ cross section has large uncertainty.\\
\ARROW It is more beneficial to normalize the decay rate to well know branching fraction \ARROWR reduce systematics:
\begin{align*}                                                                                                                                                  
\mathcal{B}(\BToKem) =   N_{\tiny \BToKem}   \times \frac{ { \mathcal{B}(\BToJpsiK) }}{\varepsilon_{ \BToKem}}\\  \frac{\varepsilon_{\tiny \BToJpsiK}}{N_{\tiny \BToJpsiK}} \nonumber  = N_{\tiny \BToKem}  \times \alpha
\end{align*}    
\ARROW Some systematic cancel in the efficiency ratio.

\end{frame}



\begin{frame}\frametitle{Stripping}
\begin{center}
\begin{tiny}
\begin{tabular}{lcc}                                                                                                                             
    \hline \hline                                                                                                                                              
   Particle or event & Variable  & Cut \\                                                                                                                      
   \hline                                                                                                                                                      
   Event & $n_{\rm SPD} $   & $<600$ \\                                                                                                                        
   \hline                                                                                                                                                      
                                                                                                                                                               
   \multirow{5}{*}{$B$} & $|m-m_{\rm PDG}|$ & $< 1500 \mev$\\                                                                                                  
         & $\chisq_{\rm vtx}/\rm{dof}$ & $<9$\\                                                                                                                
                   & $\chisq_{\rm FD}$ wrt. PV & $>100$\\                                                                                                      
                   & $\chisqip$ wrt. PV & $<25$\\                                                                                                              
                   & DIRA wrt. PV & $> 0.9995$\\                                                                                                               
   \hline                                                                                                                                                      
   \multirow{3}{*}{$K$} & $p_T$ & $>  400 \mev$\\                                                                                                              
                    %& $m$ & $< 2600 \mev$\\                                                                                                                   
                    & $\chisqip$ & $>9$\\                                                                                                                      
   \hline                                                                                                                                                      
   \multirow{3}{*}{$e$} & $p_T$ & $>  300 \mev$ \\                                                                                                             
                        & $\chisqip$ wrt. PV & $>9$ \\                                                                                                         
                        & $PIDe$ & $>0$ \\                                                                                                                     
   \hline                                                                                                                                                      
   \multirow{4}{*}{$\mu$} & $p_T$ & $> 300 \mev$\\                                                                                                             
                   & $\chisqip$ wrt.PV & $>9$\\                                                                                                                
                   & ISMUON & True\\                                                                                                                           
                   & HASMUON & True\\                                                                                                                          
   \hline                                                                                                                                                      
   \multirow{2}{*}{$e\mu$ pair} & $m(e\mu)$ & $>100\mev$ \\                                                                                                    
       & $\chisq_{\rm vtx}(e\mu)/{\rm{dof}}$ & $< 9$\\                                                                                                         
   \hline                                                                                                                                                      
   \multirow{5}{*}{Dimuon} & $p_T$ & $>  0 \mev$\\                                                                                                             
                                   & $m$ &  $< 5500 \mev$\\                                                                                                    
           & $\chisq_{\rm vtx}/\rm{dof}$ & $<9$\\                                                                                                              
                           & $\chisq_{\rm FD}$ wrt. PV & $>16$\\                                                                                               
                           & $\chisqip$ wrt. PV & $>0$\\                                                                                                       
        \hline                                                                                                                                                 
        \multirow{5}{*}{Dielectron} & $p_T$ & $>  0 \mev$ \\                                                                                                   
                                        & $m$ & $< 5500 \mev$ \\                                                                                               
          & $\chisq_{\rm vtx}/\rm{dof}$ & $<9$ \\                                                                                                              
                                        & $\chisq_{\rm FD}$ wrt. PV & $>16$ \\                                                                                 
                                        & $\chisqip$ wrt. PV & $>0$ \\                                                                                         
            \hline \hline                                                                                                                                      
  \end{tabular}
            \end{tiny}                                                                            

\end{center}
\end{frame}


\begin{frame}\frametitle{Preselection: veto peaking backgrounds}

\begin{columns}
\column{0.7\textwidth}

\begin{small}

\ARROW Double semileptonic decays:\\
$\PB \to e \nu \PD X$, $\PD \to \mu \nu \PK X$ or $\PB \to \mu \nu \PD X$, $\PD \to e \nu \PK X$\\
Efficiently removed by: $m_{\PK \ell} > 1885\mevcc$\\

\ARROW Charmonium decays:\\
$\PB \to \PJpsi /\Ppsi(2S) \PK^+$, with missID daughters.
\begin{tabular}{lc}                                                                                                                      
                        \hline \hline                                                                                                                          
                        mass swap  & mass region vetoed (\mev)\\                                                                                               
                        \hline \hline                                                                                                                          
                        \multirow{2}{*}{$K$ with $\mu$ mass} & $3000<m_{K^-\mu^+}<3200$\\                                                                      
                        & $3630<m_{K^-\mu^+}<3740$\\                                                                                                           
                        \hline                                                                                                                                 
                        \multirow{2}{*}{ $e$ with $\mu$ mass} & $2950<m_{e^-\mu^+}<3200$\\                                                                     
                        & $3630<m_{e^-\mu^+}<3740$\\                                                                                                           
                        \hline                                                                                                                                 
                        \multirow{2}{*}{$K$ with $e$ mass}        & $3000<m_{K^+ e^-}<3200$\\                                                                  
                        & $3630<m_{K^+ e^-}<3740$\\                                                                                                            
                        \hline                                                                                                                                 
                        \multirow{2}{*}{$\mu$ with $e$ mass} & $3000<m_{\mu^+ e^-}<3200$\\                                                                     
                        & $3630<m_{\mu^+ e^-}<3740$\\                                                                                                          
                        \hline \hline                                                                                                                          
\end{tabular}
\end{small}                
 
\column{0.3\textwidth}
\includegraphics[angle=-90,width=1.1\textwidth]{figs/vetos/B2KJpsimumu_MC_2012_4000_Pythia8_Sim08e_12143001_background_all_vetos}\\
\includegraphics[angle=-90,width=1.1\textwidth]{figs/vetos/Bpl_enuD0_piK_MC_2012_Pythia8_Sim08h_12583013_all_vetos}      
                
\end{columns}                


\end{frame}


\begin{frame}\frametitle{Signal/Control Channel Model}

%\begin{columns}
%\column{0.7\textwidth}
\ARROW The MC models that have been used in the analysis needs to be updated:
\begin{itemize}
\item \BToKee decay was generated with PHSP model. Needs to be BTOSBALL.
\item \BToKemu decay was generated with BTOSBALL model. Needs to be PHSP.
\end{itemize}      

%\column{0.3\textwidth}

\begin{columns}
\column{0.5\textwidth}

\begin{exampleblock}{Signal mode}
\includegraphics[angle=-90,width=0.99\linewidth]{figs/model_weights/B2Kemu_weights_restricted.pdf}
\end{exampleblock}

\column{0.5\textwidth}
\begin{alertblock}{Control mode}
\includegraphics[angle=-90,width=0.99\linewidth]{figs/model_weights/B2Kee_weights.pdf}                                                                                    
\end{alertblock}

\end{columns}  
\end{frame}

\begin{frame}\frametitle{Trigger lines}
\begin{footnotesize}



\begin{center}
                \begin{tabular}{lcc}\hline                                                                                                                     
                        Channel & Particle & L0 trigger\\                                                                                                      
                        \hline\hline                                                                                                                           
                        $B \to K e \mu$                          & $\mu$ & L0MuonDecision\\                                                                    
                        \hline                                                                                                                                 
                        $B \to K \PJpsi(\to \mu \mu)$ & $\mu^{\pm}$ & L0MuonDecision\\                                                                          
                        \hline                                                                                                                                 
                        $B \to K \PJpsi(\to ee)$ & $e^{\pm}$ & L0ElectronDecision\\                                                                     
                   \hline\hline                                                                                                                                
                \end{tabular}
\begin{tabular}{lll}\hline                                                                                                                     
                        Channel & Hlt1 trigger & Hlt2 trigger\\                                                                                                
                        \hline\hline                                                                                                                           
                        \multirow{4}{*}{$\BToKem$} & {}                   & {TopoMu[2,3]BodyBBDTDecision}\\                                                    
                                                                       & {TrackMuonDecision}  & {Topo[2,3]BodyBBDTDecision}\\                                  
                                                                   & {TrackAllL0Decision} & {SingleMuonDecision}\\                                             
                                                                                   & {}                                   & {SingleMuonLowPTDecision}\\        
                        \hline                                                                                                                                 
                        \multirow{4}{*}{$\BToJpsiK$} & {}                   & {TopoMu[2,3]BodyBBDTDecision}\\                                                  
                                                                       & {TrackMuonDecision}  & {Topo[2,3]BodyBBDTDecision}\\                                  
                                                                   & {TrackAllL0Decision} & {SingleMuonDecision}\\                                             
                                                                                   & {}                                   & {SingleMuonLowPTDecision}\\        
                        \hline                                                                                                                                 
                        $\BToJpsieeK$ & {TrackAllL0Decision} & {Topo[2,3]BodyBBDTDecision}\\                                                                   
%                                                                                       &                                                                     \
    & {TopoE[2,3]BodyBBDTDecision}\\                                                                                                                           
                        \hline \hline                                                                                                                          
                \end{tabular} 
                
\end{center}                                                                                                                                                  
\end{footnotesize}

\end{frame}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%


\begin{frame}\frametitle{Data/MC differences}

\begin{columns}
\column{0.6\textwidth}
\ARROW MC reweighted to correct for data/simulation differences.\\
\ARROW Weights extracted from binned distributions of nTracks, $p_T(B)$ and Vtx~$\chisq$ from \BToJpsiK.


\column{0.4\textwidth}
\includegraphics[width=0.99\linewidth]{images/splot/Jpsi_mumu_fit_2012.png} 

\end{columns}
\ARROW Splotted data \BToJpsiK: double Crystal-Ball and exp function.

\end{frame}

\begin{frame}\frametitle{Data/MC differences}

\ARROW Iterative procedure to correct one variable at a time.\\
\ARROW Convergence after first iteration of variables.\\
\includegraphics[width=0.33\textwidth]{images/nTracksw.png}
\includegraphics[width=0.33\textwidth]{images/B_PTw.png}
\includegraphics[width=0.33\textwidth]{images/B_ENDVERTEX_CHI2w.png}\\

\includegraphics[width=0.33\textwidth]{images/nTracks.png}
\includegraphics[width=0.33\textwidth]{images/B_PT.png}
\includegraphics[width=0.33\textwidth]{images/B_ENDVERTEX_CHI2.png}\\


\end{frame}




\begin{frame}\frametitle{Electron - Muon difference}

\ARROW The weights are determined from the muon mode.\\
\ARROWR The question is the VTX \chisq the same for electrons?\\
\includegraphics[width=0.49\textwidth]{images/Patrick_comments_06_04_2019_mumu_ee_B_ENDVERTEX_CHI2.jpg}
\includegraphics[width=0.49\textwidth]{images/Patrick_comments_06_04_2019_mumu_emu_B_ENDVERTEX_CHI2.jpg}\\

\ARROW Assign $1.4\%$ as systematic as change of normalisation constant.

\end{frame}





\begin{frame}\frametitle{PID Resampling}
\begin{center}
\includegraphics[width=1.\textwidth]{figs/PID1.png}
\end{center}


\end{frame}

\begin{frame}\frametitle{PID Resampling}
\begin{center}
\includegraphics[width=1.\textwidth]{figs/PID2.png}
\end{center}


\end{frame}










\begin{frame}\frametitle{BDT strategy}


\begin{columns}
\column{0.5\textwidth}
\ARROW Combinatorial background suppression via BDT using upper sideband as background proxy

\column{0.5\textwidth}
\ARROW Partially reconstructed background rejected via BDTHOP using lower sideband as background proxy


\end{columns}
\begin{center}
\includegraphics[width=0.55\textwidth]{{images/B_m}.png}                                                                                            

\end{center}
\ARROW k-Folding technique used, with $k=10$ folds.

\end{frame}



\begin{frame}\frametitle{BDT training and results}



\begin{columns}
\column{0.6\textwidth}
\begin{footnotesize}
\begin{itemize}                                                                                                                                                
\item the transverse momentum $p_T$ of the B candidate,                                                                                                         
\item the momentum $p$ of the B candidate,                                                                                                                    
\item the impact parameter \chisq, $\chisqip$, of the B candidate,                                                                                            
\item the direction angle (DIRA) of the B candidate,                                                                                                          
\item the quality of the $K e \mu$ vertex \chisq,                                                                                                              
\item the B flight distance \chisq                                                                                                                            
\item the impact parameter \chisq, $\chisqip$, of the kaon                                                                                                     
\item the minimum and maximum of electron and muon IP candidates                                                                                               
\item the cut based isolation variables from $B_s \to \mu \mu$                                                                                                 
  analysis: \texttt{B\_relinfo\_BSMUMUTRACKPLUSISOTWO\_L1,2} and \texttt{B\_relinfo\_cone\_pt\_asym\_H}.                                   
\end{itemize} 
\end{footnotesize}
      
\column{0.4\textwidth}
\only<1>{
\includegraphics[width=0.8\textwidth]{{figs/mva1}.png}                                                                                            \\
\includegraphics[width=0.8\textwidth]{{figs/mva3}.png}                                                                                            
}
\only<2>{
\includegraphics[angle=-90,width=0.99\textwidth]{{images/BDTG.pdf}}\\
\includegraphics[angle=-90,width=0.99\textwidth]{{images/ROC_BDTG.pdf}}
}
\end{columns}


\end{frame}



\begin{frame}\frametitle{BDTHOP strategy}
\begin{columns}
\column{0.05\textwidth}
~~
\column{0.4\textwidth}
\ARROW Apply a cut: $BDT>0.98$ prior to training\\
\ARROW Use same inputs and strategy as for BDT with additional input of HOP\\
\ARROW Reminder: background proxy is lower mass sideband.
\column{0.6\textwidth}
\includegraphics[width=0.8\textwidth]{{figs/HOP}.png}                                                                                            

\end{columns}


\end{frame}

\begin{frame}\frametitle{BDTHOP results}

\ARROW Clearly discriminating power remains. \\

\begin{columns}

\column{0.5\textwidth}
\includegraphics[width=0.95\textwidth]{{images/ROC_BDTG_HOP.png}}
\column{0.5\textwidth}

  \includegraphics[angle=-90,width=0.95\textwidth]{{images/BDTGHOP_overtrain}.pdf}                                                                                   


\end{columns}


\end{frame}





\begin{frame}\frametitle{Optimization}
\ARROWR Standard question in RD: How to optimize the selection?\\
\ARROW We used $\rm CL_s$ method for optimization [Read:451614].\\
\ARROWR What dataset do you use?\\
\ARROW We split the datasets for \BToKemm and \BToKemp and optimize separately.\\
\only<1>{
  \includegraphics[width=0.99\textwidth]{{figs/opt1}.png}                                                                                   
}
\only<2>{
  \includegraphics[width=0.99\textwidth]{{figs/opt2}.png}                                                                                   
}
\end{frame}

\begin{frame}\frametitle{Optimization - PID}
\begin{small}
\ARROW After the BDT and BDTHOP cuts there isn't much events left to perform PID optimization.\\
\ARROW Decided to put a conservative cuts.
\end{small}

\begin{columns}

\column{0.5\textwidth}


\includegraphics[width=0.9\textwidth]{images/PID/PIDmu.png} \\                 
\includegraphics[width=0.9\textwidth]{images/PID/PIDe.png}\\~\\

\column{0.5\textwidth}
           
\includegraphics[width=0.9\textwidth]{images/PID/PIDK.png}  \\                 
  \ARROW  Conservative cuts:
              \begin{eqnarray}                   
\label{eqn:PIDcuts}                
{\rm ProbNNmu} & >& 0.7 \, ,\\     
{\rm ProbNNe}   &>& 0.65 \, ,\\    
{\rm ProbNNk}  &>&0.65.            
\end{eqnarray}          

\end{columns}



\end{frame}

\begin{frame}\frametitle{Optimization summary}

\ARROW After the full selection this is how our blinded data set looks like:
\begin{columns}

\column{0.5\textwidth}

\includegraphics[angle=-90,width=\linewidth]{images/UL/{fit_mumu_Ke_BDT}.pdf}                                                                                              

\column{0.5\textwidth}
    \includegraphics[angle=-90,width=\linewidth]{images/UL/{fit_mumu_Kmu_BDT}.pdf}                                                                                             


\end{columns}

                                                                                                                                                              \begin{center}
                                                                                                                                                              \begin{tabular}{lc}                                                                                                                                            
\hline                                                                                                                                                         
Mode &  Expected background\\ \hline                                                                                                                           
 \BToKemp & $3.94 \pm 1.15 $\\                                                                                                                                 
 \BToKemm& $0.88 \pm 0.64$ \\ \hline                                                                                                                           
                                                                                                                                                               
\end{tabular}                                                                                                                                                  

                                                                                                                                                               
                                                                                                                                                              \end{center}

                                                                                                 

\end{frame}





\begin{frame}\frametitle{Signal Mass Model}
\ARROW We need to know the signal model.\\
\ARROW We used a data-driven procedure to correct the parameters $P$:
\begin{align}                                                                                                                                                  
P_{\mu e}^{\rm pred} = P_{ee}^{\rm data} + (P_{\mu e}^{\rm MC} - P_{ee}^{\rm MC}) \cdot \frac{ P_{ee}^{\rm data} - P_{\mu\mu}^{\rm data} }{  P_{ee}^{\rm MC} -\
 P_{\mu\mu}^{\rm MC} }.                                                                                                                                        
\end{align}  
\includegraphics[angle=-90,width=0.49\linewidth]{images/predict_brem0}\includegraphics[angle=-90,width=0.49\linewidth]{images/predict_brem1}                                           
                    
\ARROW Cross-checked with the $\PB \to e \mu$ analysis method
\end{frame}






\begin{frame}\frametitle{Normalization}

\begin{columns}

\column{0.5\textwidth}
\ARROW The normalization factor:
\begin{align*}
\alpha=\frac{ { \mathcal{B}(\BToJpsiK) }}{\varepsilon_{ \BToKem}}\\  \frac{\varepsilon_{\tiny \BToJpsiK}}{N_{\tiny \BToJpsiK}}
\end{align*}
\ARROW Control channel yields:
\begin{footnotesize}
\begin{itemize}
\item 2011: $N_{\tiny \BToJpsiK}= 26940 \pm 170$
\item 2012: $N_{\tiny \BToJpsiK}= 59220 \pm 250$
\end{itemize}

\end{footnotesize}



\column{0.5\textwidth}
\includegraphics[width=0.99\linewidth]{images/B_M_data_mm_both_years_brem1_logy.png}\\
\begin{tiny}
\begin{align*}
\mathcal{B}(\BToJpsiK) = (6.021 \pm 0.174) \times 10^{-5}~\rm PDG
\end{align*}
\end{tiny}



\end{columns}

\ARROW Combined alpha:
        \begin{tabular}{lccc}\hline                                                                                                                            
                Decay  & $\alpha / 10^{-9}$\\                                                                                                                  
                \hline \hline                                                                                                                                  
                \BToKemm      &  $1.97 \pm 0.18$ \\                                                                                                          
                 \BToKemp         &  $2.21 \pm 0.19$ \\                                                                                                          
%               \BToKem         & $6.90 \pm 0.26$ & $3.08 \pm 0.11$ & $2.13 \pm 0.13$ \\                                                                       
                \end{tabular} 


\end{frame}







\begin{frame}\frametitle{Peaking backgrounds}

\begin{center}


 \begin{tabular}{l|c|c}\hline                                                                                                                     
                {Monte Carlo samples} & full mass region & signal region \\                                                         
                \hline\hline                                                                                                                                   
%$\Bp \to \Kp \mu e$ &  5.45 $\pm$ 1.0       &  0.908 $\pm$0.004         & 0.91 & 1 & 4.96 $\pm$ 0.91 \\                                                       
$\PB^+ \to \PK^+ \mu^+ \mu^-$ &   0.12 $\pm$  0.05        & 0.10$\pm$ 0.04\\                                                  
$\PB^+ \to \PK^+ \ep \en$ &   0.0080 $\pm$ 0.0071         & 0.0068 $\pm$ 0.0060\\                                             
$\PB^+ \to \PK^+ \PJpsi (\to \mu \mu)$ &  $ < $ 0.53              & $<$ 0.053\\                                                   
$\PB^+ \to \PK^+ \PJpsi (\to \ep \en)$ &   $<$ 1.05             & $<$ 0.21\\                                                  
$\PB^0 \to K^{*0} \ep \en$ & $<$ 0.0014                         & $<$ 0.00014\\                                                 
$\Lb \to p \PK^- \mu \mu$ &   0.0072$\pm$ 0.0030               & 0.0029 $\pm$ 0.0014\\                                        
$\Lb \to p \PK^- \ep \en$ &   $<$ 0.0012                             & $<$ 0.00048\\                                       
$\Lb \to p \PK^- \PJpsi ( \to \mu \mu)$ &   $<$ 0.26                  & $<$ 0.013\\                                           
$\Lb \to p \PK^- \PJpsi (\to \ep \en)$ &    $<$ 1.08                   & $<$ 0.054\\                                    
$\PB^- \to \PD(\to \PK^- \mu \nu) \nu \mu$ &   $<$ 2.5   & $<$ 0.050\\                                                
$\PB^+ \to \PD (\to \PK^+ \en \nu) \ep \mu$ &    $<$ 0.50       & $<$ 0.010\\                                          
$\PB^+ \to \PD (\to \PK^+ \pi^-) \ep \nu$ &   $<$ 2.8                 & $<$ 0.056\\                                     
$\PB^+ \to \PK^+ \pi^+  \pi^-$ &   1.8 $\pm$ 3.2                                 & 0.049 $\pm$ 0.82  \\                      
                                                                                                                                                               
                                                                                                                                                               
                \hline \hline                                                                                                                                  
                \end{tabular}    
\end{center}
\ARROW All backgrounds are suppressed to a negligible level.
\end{frame}








\begin{frame}\frametitle{Systematics}
\begin{center}
  \begin{tabular}{ccc}                                                                                                                                   
                \hline                                                                                                                                         
                {Effect} &  \BToKemp & \BToKemm \\                                                                                                             
                \hline \hline                                                                                                                                  
                Data-MC corrections & {$1.0$} & {$1.0$} \\                                                                                                     
                Electron-muon differences & {$1.4$} & {$1.4$} \\                                                                                               
                MC model weights & {$0.2$} & {$0.2$} \\                                                                                                        
                Fitting model & {$2.1$} & {$2.1$} \\                                                                                                           
                PID resampling - binning & {$3.3$} & {$4.6$} \\                                                                                                
                PID resampling - sWeighting & {$3$} & {$3$} \\                                                                                                 
                Background (not in $\%$) & {$0.68$} & {$1.67$} \\                                                                                              
                Trigger  & {$1.0$} & {$1.0$} \\                                                                                                                
           {   \color{JungleGreen}  Normalisation} & {   \color{JungleGreen} $6.8$} & { \color{JungleGreen} $6.6$} \\                                                                                                           
    \hline                                                                                                                                                     
    Total & {$8.6$} & {$9.1$} \\                                                                                                                               
                \hline \hline                                                                                                                                  
        \end{tabular}                                                       
        
\end{center}


\end{frame}

\begin{frame}\frametitle{Systematics, PID - binning}
\ARROW To perform resampling we bin the PID efficiency in nTracks, $p$ and $\eta$.\\
\ARROW To access the systematics the finner and coarser binnings are applied.

\begin{center}
\includegraphics[width=0.37\textwidth]{images/eta1.png}
\includegraphics[width=0.37\textwidth]{images/eta2.png}
\end{center}





\end{frame}



\begin{frame}\frametitle{Systematics, Background model}

\only<1>{
\ARROW In the nominal fit we assume exponential shape of the background.\\
\ARROW The alternative model is determined with a loose selection:
\includegraphics[angle=-90,width=0.45\textwidth]{images/bg_sys/{fit_mumu_Kmu_BDT0.8_HOP-0.3}.pdf}   
\includegraphics[angle=-90,width=0.45\textwidth]{images/bg_sys/{fit_mumu_Ke_BDT0.8_HOP-0.3}.pdf}   
}
\only<2>{
\ARROW Now compared to previous fit:
\includegraphics[angle=-90,width=0.45\textwidth]{images/bg_sys/{fixed_fit_mumu_Ke_BDT}.pdf}                                                                                                                                                                                                                                                    
\includegraphics[angle=-90,width=0.45\textwidth]{images/bg_sys/{fixed_fit_mumu_Kmu_BDT}.pdf}                                                                                                                                                                                                                                                    

        \begin{tabular}{| c | c | c | c |}\hline                                                                                                                                                                                                                                                                               
Channel & Background systematic & Nominal fit & Alternative fit \\\hline                                                                                                                                                                                                                                                       
\BToKemp & $0.60$ & $3.93 \pm 1.14$ & $3.33 \pm 0.69$\\                                                                                                                                                                                                                                                                        
\hline                                                                                                                                                                                                                                                                                                                         
\BToKemm &  $0.43$ & $0.88 \pm 0.63$ & $1.30 \pm 0.43$\\                                                                                                                                                                                                                                                                       
 \hline                                                                                                                                                                                                                                                                                                                        
        \end{tabular}%} 
}



\end{frame}



\begin{frame}\frametitle{Systematics, Efficiency maps}

\ARROW The upper limits are set assuming PHSP model.\\
\ARROW We will also provide the efficiency maps so theorists can interpret the results in their favorite model:
\includegraphics[angle=-90,width=0.45\linewidth]{figs/dalitz_KeSS_Run1_total.pdf}
\includegraphics[angle=-90,width=0.45\linewidth]{figs/dalitz_KmuSS_Run1_total.pdf}




\end{frame}



\begin{frame}\frametitle{Upper limits}

\ARROW Upper limits set with $\rm CL_s$ method in GammaCombo.\\
\ARROW This version of $\rm CL_s$ takes into account the signal and background shape information.\\
\ARROW This gains the better expected upper limits by $25\%$. wrt. counting method\\


\includegraphics[angle=-90,width=0.49\linewidth]{{images/B2Kemu_branchingRatio_plugin_cls_cls_KmuSS_noobserved}.pdf}     
\includegraphics[angle=-90,width=0.49\linewidth]{{images/B2Kemu_branchingRatio_plugin_cls_cls_KeSS_noobserved}.pdf}    



\end{frame}

\begin{frame}\frametitle{Unblinded results}

\ARROW On the $25^{th}$ April we have unblinded our dataset.\\~\\
        \begin{tabular}{| c | c | c |}\hline                                                                                                                   
Channel &  Expected background events & Observed \\\hline                                                                                                       
\BToKemp &  $3.93 \pm 1.14$ & $2$  \\ \hline                                                                                                                   
\BToKemm &  $0.88 \pm 0.63$ & $1$\\ \hline                                                                                                                     
        \end{tabular}\\%}   \\
 \only<1>{
 \includegraphics[angle=-90,width=0.45\linewidth]{{images/data_massfits_Ke_SS}.pdf}                                                                                         
\includegraphics[angle=-90,width=0.45\linewidth]{{images/data_massfits_Kmu_SS}.pdf}        
 }       
\only<2>{
\includegraphics[angle=-90,width=0.49\linewidth]{{images/B2Kemu_branchingRatio_plugin_cls_cls_KmuSS}.pdf}     
\includegraphics[angle=-90,width=0.49\linewidth]{{images/B2Kemu_branchingRatio_plugin_cls_cls_KeSS}.pdf}          
 }        
  \only<3>{
\ARROW At 90\% (95\%) confidence level, the observed upper limits for the branching fractions are found to be                                                         
\begin{eqnarray*}                                                                                                                                               
 \mathcal{B} (B^+ \to K^+ e^+ \mu^-) <6.3 (8.2) \times 10^{-9},                                                                                                
 \end{eqnarray*}                                                                                                                                                
\begin{eqnarray*}                                                                                                                                               
 \mathcal{B} (B^+ \to K^+ e^- \mu^+) < 5.7 (7.6)  \times 10^{-9}.                                                                                              
\end{eqnarray*}                                                                                                                                                 
\begin{eqnarray*}                                                                                                                                               
 \mathcal{B} (B^+ \to K^+ e^\pm \mu^\mp) < 5.7 (7.8) \times 10^{-9}.                                                                                           
\end{eqnarray*}    
  
      } 
\end{frame}



\begin{frame}\frametitle{Summary}

\ARROW Search for \BToKemu decays has been performed\\
\ARROW Over a order of magnitude improvement wrt. to BaBar results\\
\ARROW We target PRL.\\
\ARROW No significant excess of events has been observed\\
\ARROW Proponents ask the collaboration to approve this analysis.\\

\pause 
\begin{exampleblock}{}
Many thanks to the RC for their hard work and comments!\\
Many thanks to Stephane for fast reading the draft.
\end{exampleblock}



\end{frame}



\backupbegin

\begin{frame}\frametitle{Backup}
\topline

\end{frame}

\begin{frame}\frametitle{Combined banana}
\centering
\includegraphics[angle=-90,width=0.65\linewidth]{{images/B2Kemu_branchingRatio_plugin_cls_cls_combined}.pdf}     
\end{frame}



\begin{frame}\frametitle{So large errors}
\ARROW $BR=4.2 \times 10^{-9}$ and $BR=4.5 \times 10^{-9}$.

\centering
\includegraphics[angle=-90,width=0.45\linewidth]{{images/p_values 4}.pdf}     
\includegraphics[angle=-90,width=0.45\linewidth]{{images/p_values 5}.pdf}     

\end{frame}





\backupend

\end{document}