\documentclass[11 pt,xcolor={dvipsnames,svgnames,x11names,table}]{beamer} \usepackage[english]{babel} \usepackage{polski} \usetheme[ bullet=circle, % Other option: square bigpagenumber, % circled page number on lower right topline=true, % colored bar at the top of the frame shadow=false, % Shading for beamer blocks watermark=BG_lower, % png file for the watermark ]{Flip} %\logo{\kern+1.em\includegraphics[height=1cm]{SHiP-3_LightCharcoal}} \usepackage[lf]{berenis} \usepackage[LY1]{fontenc} \usepackage[utf8]{inputenc} \usefonttheme{professionalfonts} \usepackage[no-math]{fontspec} \defaultfontfeatures{Mapping=tex-text} % This seems to be important for mapping glyphs properly \setmainfont{Gillius ADF} % Beamer ignores "main font" in favor of sans font \setsansfont{Gillius ADF} % This is the font that beamer will use by default % \setmainfont{Gill Sans Light} % Prettier, but harder to read \setbeamerfont{title}{family=\fontspec{Gillius ADF}} \input t1augie.fd %\newcommand{\handwriting}{\fontspec{augie}} % From Emerald City, free font %\newcommand{\handwriting}{\usefont{T1}{fau}{m}{n}} % From Emerald City, free font % \newcommand{\handwriting}{} % If you prefer no special handwriting font or don't have augie %% Gill Sans doesn't look very nice when boldfaced %% This is a hack to use Helvetica instead %% Usage: \textbf{\forbold some stuff} %\newcommand{\forbold}{\fontspec{Arial}} \usepackage{graphicx} \usepackage[export]{adjustbox} \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{colortbl} \usepackage{mathrsfs} % For Weinberg-esque letters \usepackage{cancel} % For "SUSY-breaking" symbol \usepackage{slashed} % for slashed characters in math mode \usepackage{bbm} % for \mathbbm{1} (unit matrix) \usepackage{amsthm} % For theorem environment \usepackage{multirow} % For multi row cells in table \usepackage{arydshln} % For dashed lines in arrays and tables \usepackage{siunitx} \usepackage{xhfill} \usepackage{grffile} \usepackage{textpos} \usepackage{subfigure} \usepackage{tikz} %\usepackage{hepparticles} \usepackage[italic]{hepparticles} \usepackage{hepnicenames} % Drawing a line \tikzstyle{lw} = [line width=20pt] \newcommand{\topline}{% \tikz[remember picture,overlay] {% \draw[crimsonred] ([yshift=-23.5pt]current page.north west) -- ([yshift=-23.5pt,xshift=\paperwidth]current page.north west);}} % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % \usepackage{tikzfeynman} % For Feynman diagrams \usetikzlibrary{arrows,shapes} \usetikzlibrary{trees} \usetikzlibrary{matrix,arrows} % For commutative diagram % http://www.felixl.de/commu.pdf \usetikzlibrary{positioning} % For "above of=" commands \usetikzlibrary{calc,through} % For coordinates \usetikzlibrary{decorations.pathreplacing} % For curly braces % http://www.math.ucla.edu/~getreuer/tikz.html \usepackage{pgffor} % For repeating patterns \usetikzlibrary{decorations.pathmorphing} % For Feynman Diagrams \usetikzlibrary{decorations.markings} \tikzset{ % >=stealth', %% Uncomment for more conventional arrows vector/.style={decorate, decoration={snake}, draw}, provector/.style={decorate, decoration={snake,amplitude=2.5pt}, draw}, antivector/.style={decorate, decoration={snake,amplitude=-2.5pt}, draw}, fermion/.style={draw=gray, postaction={decorate}, decoration={markings,mark=at position .55 with {\arrow[draw=gray]{>}}}}, fermionbar/.style={draw=gray, postaction={decorate}, decoration={markings,mark=at position .55 with {\arrow[draw=gray]{<}}}}, fermionnoarrow/.style={draw=gray}, gluon/.style={decorate, draw=black, decoration={coil,amplitude=4pt, segment length=5pt}}, scalar/.style={dashed,draw=black, postaction={decorate}, decoration={markings,mark=at position .55 with {\arrow[draw=black]{>}}}}, scalarbar/.style={dashed,draw=black, postaction={decorate}, decoration={markings,mark=at position .55 with {\arrow[draw=black]{<}}}}, scalarnoarrow/.style={dashed,draw=black}, electron/.style={draw=black, postaction={decorate}, decoration={markings,mark=at position .55 with {\arrow[draw=black]{>}}}}, bigvector/.style={decorate, decoration={snake,amplitude=4pt}, draw}, } % TIKZ - for block diagrams, % from http://www.texample.net/tikz/examples/control-system-principles/ % \usetikzlibrary{shapes,arrows} \tikzstyle{block} = [draw, rectangle, minimum height=3em, minimum width=6em] \usetikzlibrary{backgrounds} \usetikzlibrary{mindmap,trees} % For mind map \newcommand{\degree}{\ensuremath{^\circ}} \newcommand{\E}{\mathrm{E}} \newcommand{\TeV}{\mathrm{TeV}} \newcommand{\Var}{\mathrm{Var}} \newcommand{\Cov}{\mathrm{Cov}} \newcommand\Ts{\rule{0pt}{2.6ex}} % Top strut \newcommand\Bs{\rule[-1.2ex]{0pt}{0pt}} % Bottom strut \graphicspath{{images/}} % Put all images in this directory. Avoids clutter. % SOME COMMANDS THAT I FIND HANDY % \renewcommand{\tilde}{\widetilde} % dinky tildes look silly, dosn't work with fontspec \newcommand{\comment}[1]{\textcolor{comment}{\footnotesize{#1}\normalsize}} % comment mil \newcommand{\Comment}[1]{\textcolor{Comment}{\footnotesize{#1}\normalsize}} % comment bold \newcommand{\COMMENT}[1]{\textcolor{COMMENT}{\footnotesize{#1}\normalsize}} % comment crazy bold \newcommand{\Alert}[1]{\textcolor{Alert}{#1}} % louder alert \newcommand{\ALERT}[1]{\textcolor{ALERT}{#1}} % loudest alert %% "\alert" is already a beamer pre-defined \newcommand*{\Scale}[2][4]{\scalebox{#1}{$#2$}}% \def\Put(#1,#2)#3{\leavevmode\makebox(0,0){\put(#1,#2){#3}}} \usepackage{gmp} \usepackage[final]{feynmp-auto} \usepackage[backend=bibtex,style=numeric-comp,firstinits=true]{biblatex} \bibliography{bib} \setbeamertemplate{bibliography item}[text] \makeatletter\let\frametextheight\beamer@frametextheight\makeatother % suppress frame numbering for backup slides % you always need the appendix for this! \newcommand{\backupbegin}{ \newcounter{framenumberappendix} \setcounter{framenumberappendix}{\value{framenumber}} } \newcommand{\backupend}{ \addtocounter{framenumberappendix}{-\value{framenumber}} \addtocounter{framenumber}{\value{framenumberappendix}} } \definecolor{links}{HTML}{2A1B81} %\hypersetup{colorlinks,linkcolor=,urlcolor=links} % For shapo's formulas: \def\lsi{\raise0.3ex\hbox{$<$\kern-0.75em\raise-1.1ex\hbox{$\sim$}}} \def\gsi{\raise0.3ex\hbox{$>$\kern-0.75em\raise-1.1ex\hbox{$\sim$}}} \newcommand{\lsim}{\mathop{\lsi}} \newcommand{\gsim}{\mathop{\gsi}} \newcommand{\wt}{\widetilde} %\newcommand{\ol}{\overline} \newcommand{\Tr}{\rm{Tr}} \newcommand{\tr}{\rm{tr}} \newcommand{\eqn}[1]{&\hspace{-0.7em}#1\hspace{-0.7em}&} \newcommand{\vev}[1]{\rm{$\langle #1 \rangle$}} \newcommand{\abs}[1]{\rm{$\left| #1 \right|$}} \newcommand{\eV}{\rm{eV}} \newcommand{\keV}{\rm{keV}} \newcommand{\GeV}{\rm{GeV}} \newcommand{\im}{\rm{Im}} \newcommand{\disp}{\displaystyle} \def\be{\begin{equation}} \def\ee{\end{equation}} \def\ba{\begin{eqnarray}} \def\ea{\end{eqnarray}} \def\d{\partial} \def\l{\left(} \def\r{\right)} \def\la{\langle} \def\ra{\rangle} \def\e{{\rm e}} \def\Br{{\rm Br}} \def\fixme{FIXME} \def\ARROW{{\color{JungleGreen}{$\Rrightarrow$}}\xspace} \def\ARROWR{{\color{WildStrawberry}{$\Rrightarrow$}}\xspace} \author{ {Marcin Chrzaszcz} (CERN)} \institute{UZH} \title[Special LHC run for Magnet Stations]{Special LHC run for Magnet Stations} \begin{document} \tikzstyle{every picture}+=[remember picture] { \setbeamertemplate{sidebar right}{\llap{\includegraphics[width=\paperwidth,height=\paperheight]{bubble2}}} \begin{frame}[c]%{\phantom{title page}} \begin{center} \begin{center} \begin{columns} \begin{column}{0.75\textwidth} \flushright \bfseries \Huge {Special LHC run for \\Magnet Stations} \end{column} \begin{column}{0.02\textwidth} {~} \end{column} \begin{column}{0.23\textwidth} % \hspace*{-1.cm} \vspace*{-3mm} \includegraphics[width=0.6\textwidth]{lhcb-logo} \end{column} \end{columns} \end{center} \quad \vspace{3em} \begin{columns} \begin{column}{0.99\textwidth} \center \vspace{-1.8em} {M. Bettler$^1$, J. Bhom$^2$ , P. Billoir$^3$, M. Chrzaszcz$^4$, C. Da Silva$^5$, M.Durham$^5$, R.Greim$^6$, W.Karpinskig$^6$, T.Kiring$^6$, M. Martinelli$^4$, M. Pikies$^2$\\~\\ $^1$ Cambridge, $^2$ IFJ PAN, $^3$ LPNHE, $^4$ CERN, $^5$ LANL, $^6$ Aachen} \end{column} %\begin{column}{0.53\textwidth} %\includegraphics[height=1.3cm]{uzh-transp} %\end{column} \end{columns} \vspace{1em} % \footnotesize\textcolor{gray}{With N. Serra, B. Storaci\\Thanks to the theory support from M. Shaposhnikov, D. Gorbunov}\normalsize\\ \vspace{0.5em} \textcolor{normal text.fg!50!Comment}{OPG, CERN, September 13, 2018} \end{center} \end{frame} } \begin{frame}\frametitle{Where our tracks are?} \begin{columns} \column{0.1in} {~}\\ \column{3in} \ARROW The upstream tracks have rather poor momentum resolution: $\frac{\Delta p}{p} \sim 15\%$. \\ \ARROW The particles die after short and sad (for physics) life in the magnet yoke. \\ \ARROW If one put chambers in the magnet stations, one could record the particles before they death.\\ \ARROW This will not increase the material budget of the rest of the detector.\\ \begin{center} \includegraphics[width=0.7\textwidth]{images/joke.png} \end{center} \column{2in} \includegraphics[width=0.95\textwidth]{images/sketch.png}\\ \includegraphics[width=0.95\textwidth]{images/magnet.png} \end{columns} \end{frame} \begin{frame}\frametitle{Studies done so far} \ARROW We have performed studies: \begin{itemize} \item Radiation: Dosimeters have been put in the magnet region to measure the radiation dose. \item For sensitivity studies the MC was used. \end{itemize} \ARROW These of course are important studies but having a data driven method is the best. \begin{columns} \column{0.5\textwidth} \ARROW Often our MC prediction are wrong ;) \column{0.5\textwidth} \includegraphics[width=0.9\textwidth]{images/ATLAS.png} \end{columns} \end{frame} \begin{frame}\frametitle{The proposal} \ARROW We would like to propose of obtaining a sample of lower $p_T$ tracks from data.\\ \ARROW There are essentially two possibilities: (many thanks to Niels for discussion and guidance): \begin{itemize} \item Make a run with a $50~\%$ of magnetic field. \begin{itemize} \item {\color{green}{Direct access to particles that would be swapped by magnet.}} \item {\color{green}{Not much work on our side}} \item {\color{red}{Needs additional 10-12h for machine to understand our magnetic field.}} \end{itemize} \item Run with nominal magnet and open the OT. \begin{itemize} \item {\color{green}{No work for the LHC people.}} \item {\color{red}{Needs some extrapolation on our side.}} \item {\color{red}{Needs 1-2h access to open the OT.}} \end{itemize} \end{itemize} \end{frame} \begin{frame}\frametitle{The golden question} \begin{alertblock}{} How much to open the OT, how much coverage/gain you get? \end{alertblock} \ARROW This is a hard one ;) and took a bit of time to answer.\\ \ARROW We made two types of simulation: \begin{enumerate} \item Open the OT fully. \item Make a half magnetic field \end{enumerate} \end{frame} \begin{frame}\frametitle{Opened OT} \begin{columns} \column{0.5\textwidth} \ARROW Efficiency gain:\\ \includegraphics[width=0.99\textwidth]{OpenOT_zoom.eps} \column{0.5\textwidth} \ARROW Slow pions from $\PDstar$:\\ \includegraphics[angle=-90,width=0.99\textwidth]{out.pdf} \end{columns} \end{frame} \begin{frame}\frametitle{Half magnetic field, closed OT} \begin{columns} \column{0.5\textwidth} \ARROW Efficiency gain:\\ \includegraphics[width=0.99\textwidth]{ClosedOT_halffield.eps} \column{0.5\textwidth} \ARROW Slow pions from $\PDstar$:\\ \includegraphics[angle=-90,width=0.99\textwidth]{out.pdf} \end{columns} \end{frame} \begin{frame}\frametitle{Conclusions} \ARROW The half magnetic field is more expensive but buys us more phase space. \\ \ARROW The open OT is ''cheaper'' but doesn't dig in the most sensitive region. \end{frame} \backupbegin \begin{frame}\frametitle{Backup} \topline \end{frame} \backupend \end{document}