% This program can be redistributed and/or modified under the terms % of the GNU Public License, version 3. % % Seth Brown, Ph.D. % sethbrown@drbunsen.org % % Compiled with XeLaTeX % Dependencies: % Fontin Sans font (http://www.exljbris.com/fontinsans.fsrtml) % \documentclass{beamer} \usepackage{pgf} \usepackage{tikz} \usepackage{times} \usepackage[T1]{fontenc} %\usepackage[mathscr]{eucal} %\usepackage{mathptmx} %\usepackage{mathrsfs} \usepackage{hyperref} \usepackage{color} \usepackage{graphicx} \usepackage{wasysym} % \usepackage{pgfpagfes} % \setbeameroption{show notes on second screen} %\pgfpagesuselayout{4 on 1}[a4paper,border shrink=5mm,landscape] \usepackage{xcolor} \usepackage{xcolor,multirow} %\usepackage[table]{xcolor} %\usepackage[dvipsnames]{xcolor} %\usepackage{amsfonts} %\usepackage{amsmath} % \usepackage[amssymb]{SIunits} %\usepackage{natbib} %\usepackage{amssymb} \usepackage{hepparticles} \usepackage{hepnicenames} \usepackage{hepunits} \usepackage{tikz} \usepackage[english]{babel} %%\usepackage{lmodern} %\usepackage{feynmp} % suppress navigation bar \beamertemplatenavigationsymbolsempty \usepackage[mathscr]{eucal} \usepackage{mathrsfs} \mode<presentation> { \usetheme{bunsen} \setbeamercovered{transparent} \setbeamertemplate{items}[circle] } \newcommand{\Simley}[1]{% \begin{tikzpicture}[scale=0.15] \newcommand*{\SmileyRadius}{1.0}% \draw [fill=brown!10] (0,0) circle (\SmileyRadius)% outside circle %node [yshift=-0.22*\SmileyRadius cm] {\tiny #1}% uncomment this to see the smile factor ; \pgfmathsetmacro{\eyeX}{0.5*\SmileyRadius*cos(30)} \pgfmathsetmacro{\eyeY}{0.5*\SmileyRadius*sin(30)} \draw [fill=cyan,draw=none] (\eyeX,\eyeY) circle (0.15cm); \draw [fill=cyan,draw=none] (-\eyeX,\eyeY) circle (0.15cm); \pgfmathsetmacro{\xScale}{2*\eyeX/180} \pgfmathsetmacro{\yScale}{1.0*\eyeY} \draw[color=red, domain=-\eyeX:\eyeX] plot ({\x},{ -0.1+#1*0.15 % shift the smiley as smile decreases -#1*1.75*\yScale*(sin((\x+\eyeX)/\xScale))-\eyeY}); \end{tikzpicture}% }% % set fonts \usepackage{amsfonts} \usepackage{amsmath} \usepackage{verbatim} \usepackage{fancyvrb} \DefineVerbatimEnvironment{code}{Verbatim}{fontsize=\small} \DefineVerbatimEnvironment{example}{Verbatim}{fontsize=\small} \usepackage{listings} \usepackage{courier} \lstset{ basicstyle=\footnotesize\ttfamily, % Standardschrift %numbers=left, % Ort der Zeilennummern numberstyle=\tiny, % Stil der Zeilennummern %stepnumber=2, % Abstand zwischen den Zeilennummern numbersep=5pt, % Abstand der Nummern zum Text tabsize=2, % Groesse von Tabs extendedchars=true, % breaklines=true, % Zeilen werden Umgebrochen keywordstyle=\color{red}, frame=b, % keywordstyle=[1]\textbf, % Stil der Keywords % keywordstyle=[2]\textbf, % % keywordstyle=[3]\textbf, % % keywordstyle=[4]\textbf, \sqrt{\sqrt{}} % stringstyle=\color{white}\ttfamily, % Farbe der String showspaces=false, % Leerzeichen anzeigen ? showtabs=false, % Tabs anzeigen ? xleftmargin=17pt, framexleftmargin=17pt, framexrightmargin=5pt, framexbottommargin=4pt, %backgroundcolor=\color{lightgray}, showstringspaces=false % Leerzeichen in Strings anzeigen ? } %\DeclareCaptionFont{blue}{\color{blue}} %\captionsetup[lstlisting]{singlelinecheck=false, labelfont={blue}, textfont={blue}} \usepackage{caption} \DeclareCaptionFont{white}{\color{white}} \DeclareCaptionFormat{listing}{\colorbox[cmyk]{0.43, 0.35, 0.35,0.01}{\parbox{\textwidth}{\hspace{15pt}#1#2#3}}} \captionsetup[lstlisting]{format=listing,labelfont=white,textfont=white, singlelinecheck=false, margin=0pt, font={bf,footnotesize}} \usetikzlibrary{arrows} \usetikzlibrary{shapes} %\usepackage{gfsartemisia-euler} %\usepackage[T1]{fontenc} \setbeamerfont{frametitle}{size=\LARGE,series=\bfseries} \tikzstyle{decision} = [diamond, draw, fill=gray!20, text width=4.5em, text badly centered, node distance=3cm, inner sep=0pt] \tikzstyle{block} = [rectangle, draw, fill=blue!10, text width=5em, text centered, rounded corners, minimum height=2em] \tikzstyle{line} = [draw, -latex'] \tikzstyle{cloud} = [draw, ellipse,fill=red!10, node distance=3cm, minimum height=2em] \tikzstyle{every picture}+=[remember picture] \renewcommand{\PKs}{{\HepParticle{K}{S}{}\xspace}} % color definitions \usepackage{color} \definecolor{uipoppy}{RGB}{225, 64, 5} \definecolor{uipaleblue}{RGB}{96,123,139} \definecolor{uiblack}{RGB}{0, 0, 0} % caption styling %\DeclareCaptionFont{uiblack}{\color{uiblack}} %\DeclareCaptionFont{uipoppy}{\color{uipoppy}} %\captionsetup{labelfont={uipoppy},textfont=uiblack} % see the macros.tex file for definitions \include{macros } % title slide definition \title{Updates on activities.} %\subtitle{a bias report} \author{ Marcin Chrz\k{a}szcz$^{1,2}$ , Nicola Serra$^{1}$ } \institute[UTH, IFJ] { %\begin{tiny} $ ^1$ University of Zurich , $ ^2$ Institute of Nuclear Physics, Krakow, %\end{tiny}smallsmall } \date{ \begin{small} $9^{th}$ July 2013 \end{small}} %-------------------------------------------------------------------- % Introduction %-------------------------------------------------------------------- \begin{document} \setbeamertemplate{background} {\includegraphics[width=\paperwidth,height=\paperheight]{frontpage_bg_mine}} \setbeamertemplate{footline}[default] \begin{frame} \vspace{1.1cm} \begin{columns} \column{2.75in} \titlepage \begin{center} \includegraphics[height=1.0cm ]{pic/uzh.jpg} % \hspace{0.5cm} % \includegraphics[height=1.5cm]{pic/babar.jpg} \hspace{1cm} \includegraphics[height=1.0cm]{pic/ifj.png} \hspace{1cm} %\includegraphics[height=1.0cm]{pic/SNS.jpg} \end{center} \vspace{10cm} \column{2.0in} \end{columns} \end{frame} %-------------------------------------------------------------------- % OUTLINE %-------------------------------------------------------------------- \section[Outline]{} \begin{frame} \tableofcontents \end{frame} %------------------------------------------------------------------- % Introduction %------------------------------------------------------------------- % % Set the background for the rest of the slides. % Insert infoline \setbeamertemplate{background} {\includegraphics[width=\paperwidth,height=\paperheight]{slide_bg}} \setbeamertemplate{footline}[bunsentheme] \title{Update on analysis} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \setbeamertemplate{background} {\includegraphics[width=\paperwidth,height=\paperheight]{slide_bg}} \setbeamertemplate{footline}[bunsentheme] %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%2>%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Inflaton analysis} \subsection{Introduction} \begin{frame}\frametitle{Inflaton analysis} Motivation: \begin{small} \begin{itemize} \item Probing low energy particle physics. \end{itemize} $ \mathcal{L}_{XSM} = \int\sqrt{-g}d^{4}x (\mathcal{L}_{SM} + \mathcal{L}_{X} + \mathcal{L}_{grav})$ \\ \begin{itemize} \item Coupling to SM via scalar potential. \item Solves cosmological problems. \item Long lived particles. Life time $10^{-9}-10^{-10} s$ \item Mass $1-2 GeV$. \item Reheats the early universe.\footnote{arXiv:0912.0390, arXiv:1303.4395} \end{itemize} \end{small} \textref {M.Chrz\k{a}szcz, N.Serra 2013} \end{frame} %\section{Work done so far} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%55 \begin{frame} \subsection{Simulation} \frametitle{Work done so far} {~} Work done: \begin{itemize} \item Prepare a decfile. v27r8 released \item Simulated $1.3M$ events, pythia8, siom08. \item Implemented isolation parameters in DecayTreeTuple package(extrnal c++ module). \item Started looking at signal efficiency. \item Signal is split into two samples: Downstream $\mu$ and "normal" $\mu$. \end{itemize} \textref {M.Chrz\k{a}szcz, N.Serra 2013} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5 \begin{frame} \frametitle{Flight distance of Inflaton} {~} \begin{columns} \column{2.5in} Reconstructed \includegraphics[scale=0.25]{pic2/FD_XI_reco_down.png} \column{2.5in} Truth Matched \includegraphics[scale=0.25]{pic2/FD_XI_true_down.png} \end{columns} \textref {M.Chrz\k{a}szcz, N.Serra 2013} \end{frame} \begin{frame} \frametitle{Flight distance of Inflaton, "normal" $\mu$} {~} \begin{columns} \column{2.5in} Reconstructed \includegraphics[scale=0.4]{pic2/FD_XI_reco.png} \column{2.5in} Truth Matched \includegraphics[scale=0.4]{pic2/FD_XI_true.png} \end{columns} \textref {M.Chrz\k{a}szcz, N.Serra 2013} \end{frame} \begin{frame} \frametitle{Life time of Inflaton, "normal" $\mu$} {~} \begin{columns} \column{2.5in} Reconstructed \includegraphics[scale=0.4]{pic2/time_XI_reco.png} \column{2.5in} Truth Matched \includegraphics[scale=0.4]{pic2/time_XI_true.png} \end{columns} \textref {M.Chrz\k{a}szcz, N.Serra 2013} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame} \frametitle{Flight distance of Inflaton, downstream $\mu$} {~} \begin{columns} \column{2.5in} Reconstructed \includegraphics[scale=0.25]{pic2/FD_XI_reco_down.png} \column{2.5in} Truth Matched \includegraphics[scale=0.25]{pic2/FD_XI_true_down.png} \end{columns} \textref {M.Chrz\k{a}szcz, N.Serra 2013} \end{frame} \begin{frame} \frametitle{Life time of Inflaton, downstream $\mu$} {~} \begin{columns} \column{2.5in} Reconstructed \includegraphics[scale=0.25]{pic2/time_XI_reco_down.png} \column{2.5in} Truth Matched \includegraphics[scale=0.25]{pic2/time_XI_true_down.png} \end{columns} \textref {M.Chrz\k{a}szcz, N.Serra 2013} \end{frame} \subsection{Resolution} \begin{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5 \frametitle{Mass Resolution } {~} \begin{itemize} \item Fitted separately for $\PB0$ and $\chi$ \item Fitting model: Double Gauss. \item Single Gauss didn't work. \item We will account for MC/DATA difference. \end{itemize} \textref {M.Chrz\k{a}szcz, N.Serra 2013} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5 \begin{frame} \frametitle{Mass Resolution } {~} \begin{columns} \column{2.5in} StdMuons \includegraphics[scale=0.25]{pic2/B0_mass.png} \begin{tiny} $mean_1= 5.288\times 10^{+03} \pm 0.21 MeV$, $mean_2= 5.27\times 10^{+03} \pm 1.56 MeV$\\ $\sigma_1=58.8 \pm 2.24 $, $\sigma_2= 15.5\pm 0.23$\\ $f= 0.79 \pm 0.01 $ \end{tiny} \column{2.5in} Downstream \includegraphics[scale=0.25]{pic2/B0_mass_d.png} \begin{tiny} $mean_1=5.28\times 10^{+03} \pm 4.18 MeV$, $mean_2= 5.28\times 10^{+03} \pm 0.56 MeV$\\ $\sigma_1=66.6 \pm 7.56 $, $\sigma_2= 18.7\pm 0.65$\\ $f= 0.21 \pm 0.02 $ \end{tiny} \end{columns} \textref {M.Chrz\k{a}szcz, N.Serra 2013} \end{frame} \begin{frame} \frametitle{Mass Resolution } {~} \begin{columns} \column{2.5in} StdMuons \includegraphics[scale=0.25]{pic2/inflaton.png} \begin{tiny} $mean_1=1.48893\times 10^{+03} \pm 1.1 MeV$, $mean_2= 1.50046\times 10^{+03} \pm 0.09 MeV$\\ $\sigma_1=25.7 \pm 0.83 $, $\sigma_2= 7.63\pm 0.01$\\ $f= 0.104 \pm 0.007 $ \end{tiny} \column{2.5in} Downstream \includegraphics[scale=0.25]{pic2/inflaton_d.png} \\ \begin{tiny} $mean_1=1.49880\times 10^{+03} \pm 1.41 MeV$, $mean_2= 1.49743\times 10^{+03} \pm 0.51 MeV$\\ $\sigma_1=27.3 \pm 2.57 $, $\sigma_2= 11.34\pm 0.88$\\ $f= 0.28 \pm 0.075 $ \end{tiny} \end{columns} \textref {M.Chrz\k{a}szcz, N.Serra 2013} \end{frame} \begin{frame}\frametitle{First look into data} {~} \begin{columns} \column{2.5in} UpStream \includegraphics[scale=0.25]{pic2/normall_mass.png} \column{2.5in} DownStream \includegraphics[scale=0.25]{pic2/down_mass.png} \end{columns} Blinded: $[5200,5350]$ \textref {M.Chrz\k{a}szcz, N.Serra 2013} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame} \frametitle{What do we have in the Inflaton mass; UPSTREAM} {~} \includegraphics[scale=0.35]{pic2/inflaton_mass.png} Let's look closer. \textref {M.Chrz\k{a}szcz, N.Serra 2013} \end{frame} \begin{frame} \frametitle{$K_s$} {~} \includegraphics[scale=0.4]{pic2/KS_mass.png} \textref {M.Chrz\k{a}szcz, N.Serra 2013} \end{frame} \begin{frame} \frametitle{$J/ \Psi$} {~} \includegraphics[scale=0.4]{pic2/jpsi_mass.png} \textref {M.Chrz\k{a}szcz, N.Serra 2013} \end{frame} \begin{frame} \frametitle{$\Psi(2S)$} {~} \includegraphics[scale=0.4]{pic2/psi2_mass.png} \textref {M.Chrz\k{a}szcz, N.Serra 2013} \end{frame} \begin{frame} \frametitle{What do we have in the Inflaton mass; DOWNSTREAM} {~} \includegraphics[scale=0.35]{pic2/inflaton_mass_d.png} \textref {M.Chrz\k{a}szcz, N.Serra 2013} \end{frame} \begin{frame} \frametitle{$K_s$} {~} \includegraphics[scale=0.35]{pic2/KS_mass_d.png} \textref {M.Chrz\k{a}szcz, N.Serra 2013} \end{frame} \subsection{$K_s$ FD} \begin{frame} \frametitle{$K_s$ FD} {~} \includegraphics[scale=0.35]{pic2/KS_flight_distance.png} looks normal \Simley{-1} \textref {M.Chrz\k{a}szcz, N.Serra 2013} \end{frame} %\subsection{$K_s$ FD} \begin{frame} \frametitle{Let's make our inflaton more $K_s$ like.} {~} \includegraphics[scale=0.15]{pic2/FD_XI_short_lifetime.png} No bumps.Are we unlucky? \textref {M.Chrz\k{a}szcz, N.Serra 2013} \end{frame} \begin{frame}\frametitle{First look into data} {~} \begin{itemize} \item We see big difference depending on life time of the inflaton. \item Since normalization channel is $B \to J/ \psi K_s$ we need to reweigh depending on mass and life-time. \item We changed the stripping line. This should buy us some efficiency. \item Mayby put a BDT for next stripping. \item It's getting old but mayby again blending would work? \end{itemize} \textref {M.Chrz\k{a}szcz, N.Serra 2013} \end{frame} \end{document}