{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import os\n", "import re\n", "import numpy as np" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "Ctt = []\n", "Ctt_err = []\n", "\n", "NrOfSets = 0\n", "\n", "for filename in os.listdir('prelim_results/full_q2/'):\n", " if filename.endswith(\".out\"):\n", " with open('./prelim_results/full_q2/' + filename) as file: \n", " data = file.read() \n", " _ = data.partition('value = ')[-1]\n", "# print(_)\n", " _ = _.partition('Mean Ctt error = ')\n", "# print(_[-1])\n", " err = _[0][:-2]\n", " Ctt.append(float(err))\n", "# print(err)\n", " _ = _[-1].partition('\\nSimulation ended\\n')[0]\n", "# print(_)\n", " Ctt_err.append(float(_))\n", " \n", " NrOfSets+= 1\n", " \n", "Ctt_mean = np.mean(Ctt)\n", "Ctt_err_mean = np.mean(Ctt_err)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Full q2 fit:\n", "Ctt_mean = -0.14959437421626456\n", "Ctt_err_mean = 0.1386346922697338\n", "Evaluated toys: 1090\n" ] } ], "source": [ "print(\"Full q2 fit:\")\n", "print('Ctt_mean = ', Ctt_mean)\n", "print('Ctt_err_mean = ', Ctt_err_mean)\n", "print('Evaluated toys: ', NrOfSets*10)" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "slurm-2216601.out\n", "slurm-2216602.out\n", "slurm-2216607.out\n", "slurm-2216610.out\n", "slurm-2216611.out\n" ] } ], "source": [ "Ctt = []\n", "Ctt_err = []\n", "\n", "NrOfSets = 0\n", "\n", "for filename in os.listdir('prelim_results/jpsi-psi2s/'):\n", " if filename.endswith(\".out\"):\n", " print(filename)\n", " with open('./prelim_results/jpsi-psi2s/' + filename) as file: \n", " data = file.read() \n", " _ = data.partition('value = ')[-1]\n", "# print(_)\n", " _ = _.partition('Mean Ctt error = ')\n", "# print(_[-1])\n", " err = _[0][:-2]\n", " Ctt.append(float(err))\n", "# print(err)\n", " _ = _[-1].partition('\\nSimulation ended\\n')[0]\n", "# print(_)\n", " Ctt_err.append(float(_))\n", " \n", " NrOfSets+= 1\n", " \n", "Ctt_mean = np.mean(Ctt)\n", "Ctt_err_mean = np.mean(Ctt_err)" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Jpsi - Psi2s fit:\n", "Ctt_mean = -0.1183385892203999\n", "Ctt_err_mean = 0.7175790414956408\n", "Evaluated toys: 500\n" ] } ], "source": [ "print(\"Jpsi - Psi2s fit:\")\n", "print('Ctt_mean = ', Ctt_mean)\n", "print('Ctt_err_mean = ', Ctt_err_mean)\n", "print('Evaluated toys: ', NrOfSets*100)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.3" } }, "nbformat": 4, "nbformat_minor": 2 }