{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Import" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\util\\execution.py:57: UserWarning: Not running on Linux. Determining available cpus for thread can failand be overestimated. Workaround (only if too many cpus are used):`zfit.run.set_n_cpu(your_cpu_number)`\n", " warnings.warn(\"Not running on Linux. Determining available cpus for thread can fail\"\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\n", "WARNING: The TensorFlow contrib module will not be included in TensorFlow 2.0.\n", "For more information, please see:\n", " * https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md\n", " * https://github.com/tensorflow/addons\n", "If you depend on functionality not listed there, please file an issue.\n", "\n" ] } ], "source": [ "import os\n", "\n", "# os.environ[\"CUDA_VISIBLE_DEVICES\"] = \"-1\"\n", "\n", "import numpy as np\n", "from pdg_const import pdg\n", "import matplotlib\n", "import matplotlib.pyplot as plt\n", "import pickle as pkl\n", "import sys\n", "import time\n", "from helperfunctions import display_time, prepare_plot\n", "import cmath as c\n", "import scipy.integrate as integrate\n", "from scipy.optimize import fminbound\n", "from array import array as arr\n", "import collections\n", "from itertools import compress\n", "import tensorflow as tf\n", "import zfit\n", "from zfit import ztf\n", "# from IPython.display import clear_output\n", "import os\n", "import tensorflow_probability as tfp\n", "tfd = tfp.distributions" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "# chunksize = 10000\n", "# zfit.run.chunking.active = True\n", "# zfit.run.chunking.max_n_points = chunksize" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Build model and graphs\n", "## Create graphs" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "def formfactor(q2, subscript, b0_0, b0_1, b0_2, bplus_0, bplus_1, bplus_2, bT_0, bT_1, bT_2): #returns real value\n", " #check if subscript is viable\n", "\n", " if subscript != \"0\" and subscript != \"+\" and subscript != \"T\":\n", " raise ValueError('Wrong subscript entered, choose either 0, + or T')\n", "\n", " #get constants\n", "\n", " mK = ztf.constant(pdg['Ks_M'])\n", " mbstar0 = ztf.constant(pdg[\"mbstar0\"])\n", " mbstar = ztf.constant(pdg[\"mbstar\"])\n", "\n", "\n", " mmu = ztf.constant(pdg['muon_M'])\n", " mb = ztf.constant(pdg['bquark_M'])\n", " ms = ztf.constant(pdg['squark_M'])\n", " mB = ztf.constant(pdg['Bplus_M'])\n", "\n", " #N comes from derivation in paper\n", "\n", " N = 3\n", "\n", " #some helperfunctions\n", "\n", " tpos = (mB - mK)**2\n", " tzero = (mB + mK)*(ztf.sqrt(mB)-ztf.sqrt(mK))**2\n", "\n", " z_oben = ztf.sqrt(tpos - q2) - ztf.sqrt(tpos - tzero)\n", " z_unten = ztf.sqrt(tpos - q2) + ztf.sqrt(tpos - tzero)\n", " z = tf.divide(z_oben, z_unten)\n", "\n", " #calculate f0\n", "\n", " if subscript == \"0\":\n", " prefactor = 1/(1 - q2/(mbstar0**2))\n", " _sum = 0\n", " b0 = [b0_0, b0_1, b0_2]\n", "\n", " for i in range(N):\n", " _sum += b0[i]*(tf.pow(z,i))\n", "\n", " return ztf.to_complex(prefactor * _sum)\n", "\n", " #calculate f+ or fT\n", "\n", " else:\n", " prefactor = 1/(1 - q2/(mbstar**2))\n", " _sum = 0\n", "\n", " if subscript == \"T\":\n", " bT = [bT_0, bT_1, bT_2]\n", " for i in range(N):\n", " _sum += bT[i] * (tf.pow(z, i) - ((-1)**(i-N)) * (i/N) * tf.pow(z, N))\n", " else:\n", " bplus = [bplus_0, bplus_1, bplus_2]\n", " for i in range(N):\n", " _sum += bplus[i] * (tf.pow(z, i) - ((-1)**(i-N)) * (i/N) * tf.pow(z, N))\n", "\n", " return ztf.to_complex(prefactor * _sum)\n", "\n", "def resonance(q, _mass, width, phase, scale):\n", "\n", " q2 = tf.pow(q, 2)\n", "\n", " mmu = ztf.constant(pdg['muon_M'])\n", "\n", " p = 0.5 * ztf.sqrt(q2 - 4*(mmu**2))\n", "\n", " p0 = 0.5 * ztf.sqrt(_mass**2 - 4*mmu**2)\n", "\n", " gamma_j = tf.divide(p, q) * _mass * width / p0\n", "\n", " #Calculate the resonance\n", "\n", " _top = tf.complex(_mass * width, ztf.constant(0.0))\n", "\n", " _bottom = tf.complex(_mass**2 - q2, -_mass*gamma_j)\n", "\n", " com = _top/_bottom\n", "\n", " #Rotate by the phase\n", "\n", " r = ztf.to_complex(scale*tf.abs(com))\n", "\n", " _phase = tf.angle(com)\n", "\n", " _phase += phase\n", "\n", " com = r * tf.exp(tf.complex(ztf.constant(0.0), _phase))\n", "\n", " return com\n", "\n", "\n", "def axiv_nonres(q, b0_0, b0_1, b0_2, bplus_0, bplus_1, bplus_2, bT_0, bT_1, bT_2):\n", "\n", " GF = ztf.constant(pdg['GF'])\n", " alpha_ew = ztf.constant(pdg['alpha_ew'])\n", " Vtb = ztf.constant(pdg['Vtb'])\n", " Vts = ztf.constant(pdg['Vts'])\n", " C10eff = ztf.constant(pdg['C10eff'])\n", "\n", " mmu = ztf.constant(pdg['muon_M'])\n", " mb = ztf.constant(pdg['bquark_M'])\n", " ms = ztf.constant(pdg['squark_M'])\n", " mK = ztf.constant(pdg['Ks_M'])\n", " mB = ztf.constant(pdg['Bplus_M'])\n", "\n", " q2 = tf.pow(q, 2)\n", "\n", " #Some helperfunctions\n", "\n", " beta = 1. - 4. * mmu**2. / q2\n", "\n", " kabs = ztf.sqrt(mB**2. + tf.pow(q2, 2)/mB**2. + mK**4./mB**2. - 2. * (mB**2. * mK**2. + mK**2. * q2 + mB**2. * q2) / mB**2.)\n", "\n", " #prefactor in front of whole bracket\n", "\n", " prefactor1 = GF**2. *alpha_ew**2. * (tf.abs(Vtb*Vts))**2. * kabs * beta / (128. * np.pi**5.)\n", "\n", " #left term in bracket\n", "\n", " bracket_left = 2./3. * tf.pow(kabs,2) * tf.pow(beta,2) * tf.pow(tf.abs(ztf.to_complex(C10eff)*formfactor(q2, \"+\", b0_0, b0_1, b0_2, bplus_0, bplus_1, bplus_2, bT_0, bT_1, bT_2)),2)\n", "\n", " #middle term in bracket\n", "\n", " _top = 4. * mmu**2. * (mB**2. - mK**2.) * (mB**2. - mK**2.)\n", "\n", " _under = q2 * mB**2.\n", "\n", " bracket_middle = _top/_under *tf.pow(tf.abs(ztf.to_complex(C10eff) * formfactor(q2, \"0\", b0_0, b0_1, b0_2, bplus_0, bplus_1, bplus_2, bT_0, bT_1, bT_2)), 2)\n", " \n", " #Note sqrt(q2) comes from derivation as we use q2 and plot q\n", "\n", " return prefactor1 * (bracket_left + bracket_middle) * 2 * q\n", "\n", "def vec(q, funcs, b0_0, b0_1, b0_2, bplus_0, bplus_1, bplus_2, bT_0, bT_1, bT_2):\n", " \n", " q2 = tf.pow(q, 2)\n", "\n", " GF = ztf.constant(pdg['GF'])\n", " alpha_ew = ztf.constant(pdg['alpha_ew'])\n", " Vtb = ztf.constant(pdg['Vtb'])\n", " Vts = ztf.constant(pdg['Vts'])\n", " C7eff = ztf.constant(pdg['C7eff'])\n", "\n", " mmu = ztf.constant(pdg['muon_M'])\n", " mb = ztf.constant(pdg['bquark_M'])\n", " ms = ztf.constant(pdg['squark_M'])\n", " mK = ztf.constant(pdg['Ks_M'])\n", " mB = ztf.constant(pdg['Bplus_M'])\n", "\n", " #Some helperfunctions\n", "\n", " beta = 1. - 4. * mmu**2. / q2\n", "\n", " kabs = ztf.sqrt(mB**2. + tf.pow(q2, 2)/mB**2. + mK**4./mB**2. - 2 * (mB**2 * mK**2 + mK**2 * q2 + mB**2 * q2) / mB**2)\n", " \n", " #prefactor in front of whole bracket\n", "\n", " prefactor1 = GF**2. *alpha_ew**2. * (tf.abs(Vtb*Vts))**2 * kabs * beta / (128. * np.pi**5.)\n", "\n", " #right term in bracket\n", "\n", " prefactor2 = tf.pow(kabs,2) * (1. - 1./3. * beta)\n", "\n", " abs_bracket = tf.pow(tf.abs(c9eff(q, funcs) * formfactor(q2, \"+\", b0_0, b0_1, b0_2, bplus_0, bplus_1, bplus_2, bT_0, bT_1, bT_2) + ztf.to_complex(2.0 * C7eff * (mb + ms)/(mB + mK)) * formfactor(q2, \"T\", b0_0, b0_1, b0_2, bplus_0, bplus_1, bplus_2, bT_0, bT_1, bT_2)),2)\n", "\n", " bracket_right = prefactor2 * abs_bracket\n", "\n", " #Note sqrt(q2) comes from derivation as we use q2 and plot q\n", "\n", " return prefactor1 * bracket_right * 2 * q\n", "\n", "def c9eff(q, funcs):\n", "\n", " C9eff_nr = ztf.to_complex(ztf.constant(pdg['C9eff']))\n", "\n", " c9 = C9eff_nr + funcs\n", "\n", " return c9" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "def G(y):\n", " \n", " def inner_rect_bracket(q):\n", " return tf.log(ztf.to_complex((1+tf.sqrt(q))/(1-tf.sqrt(q)))-tf.complex(ztf.constant(0), -1*ztf.constant(np.pi))) \n", " \n", " def inner_right(q):\n", " return ztf.to_complex(2 * tf.atan(1/tf.sqrt(tf.math.real(-q))))\n", " \n", " big_bracket = tf.where(tf.math.real(y) > ztf.constant(0.0), inner_rect_bracket(y), inner_right(y))\n", " \n", " return ztf.to_complex(tf.sqrt(tf.abs(y))) * big_bracket\n", "\n", "def h_S(m, q):\n", " \n", " return ztf.to_complex(2) - G(ztf.to_complex(1) - ztf.to_complex(4*tf.pow(m, 2)) / ztf.to_complex(tf.pow(q, 2)))\n", "\n", "def h_P(m, q):\n", " \n", " return ztf.to_complex(2/3) + (ztf.to_complex(1) - ztf.to_complex(4*tf.pow(m, 2)) / ztf.to_complex(tf.pow(q, 2))) * h_S(m,q)\n", "\n", "def two_p_ccbar(mD, m_D_bar, m_D_star, q):\n", " \n", " \n", " #Load constants\n", " nu_D_bar = ztf.to_complex(pdg[\"nu_D_bar\"])\n", " nu_D = ztf.to_complex(pdg[\"nu_D\"])\n", " nu_D_star = ztf.to_complex(pdg[\"nu_D_star\"])\n", " \n", " phase_D_bar = ztf.to_complex(pdg[\"phase_D_bar\"])\n", " phase_D = ztf.to_complex(pdg[\"phase_D\"])\n", " phase_D_star = ztf.to_complex(pdg[\"phase_D_star\"])\n", " \n", " #Calculation\n", " left_part = nu_D_bar * tf.exp(tf.complex(ztf.constant(0.0), phase_D_bar)) * h_S(m_D_bar, q) \n", " \n", " right_part_D = nu_D * tf.exp(tf.complex(ztf.constant(0.0), phase_D)) * h_P(m_D, q) \n", " \n", " right_part_D_star = nu_D_star * tf.exp(tf.complex(ztf.constant(0.0), phase_D_star)) * h_P(m_D_star, q) \n", "\n", " return left_part + right_part_D + right_part_D_star" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Build pdf" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "class total_pdf(zfit.pdf.ZPDF):\n", " _N_OBS = 1 # dimension, can be omitted\n", " _PARAMS = ['b0_0', 'b0_1', 'b0_2', \n", " 'bplus_0', 'bplus_1', 'bplus_2', \n", " 'bT_0', 'bT_1', 'bT_2', \n", " 'rho_mass', 'rho_scale', 'rho_phase', 'rho_width',\n", " 'jpsi_mass', 'jpsi_scale', 'jpsi_phase', 'jpsi_width',\n", " 'psi2s_mass', 'psi2s_scale', 'psi2s_phase', 'psi2s_width',\n", " 'p3770_mass', 'p3770_scale', 'p3770_phase', 'p3770_width',\n", " 'p4040_mass', 'p4040_scale', 'p4040_phase', 'p4040_width',\n", " 'p4160_mass', 'p4160_scale', 'p4160_phase', 'p4160_width',\n", " 'p4415_mass', 'p4415_scale', 'p4415_phase', 'p4415_width',\n", " 'omega_mass', 'omega_scale', 'omega_phase', 'omega_width',\n", " 'phi_mass', 'phi_scale', 'phi_phase', 'phi_width',\n", " 'Dbar_mass', 'Dbar_scale', 'Dbar_phase',\n", " 'Dstar_mass', 'DDstar_scale', 'DDstar_phase', 'D_mass',\n", " 'tau_mass', 'C_tt']\n", "# the name of the parameters\n", "\n", " def _unnormalized_pdf(self, x):\n", " \n", " x = x.unstack_x()\n", " \n", " b0 = [self.params['b0_0'], self.params['b0_1'], self.params['b0_2']]\n", " bplus = [self.params['bplus_0'], self.params['bplus_1'], self.params['bplus_2']]\n", " bT = [self.params['bT_0'], self.params['bT_1'], self.params['bT_2']]\n", " \n", " def rho_res(q):\n", " return resonance(q, _mass = self.params['rho_mass'], scale = self.params['rho_scale'],\n", " phase = self.params['rho_phase'], width = self.params['rho_width'])\n", " \n", " def omega_res(q):\n", " return resonance(q, _mass = self.params['omega_mass'], scale = self.params['omega_scale'],\n", " phase = self.params['omega_phase'], width = self.params['omega_width'])\n", " \n", " def phi_res(q):\n", " return resonance(q, _mass = self.params['phi_mass'], scale = self.params['phi_scale'],\n", " phase = self.params['phi_phase'], width = self.params['phi_width'])\n", "\n", " def jpsi_res(q):\n", " return ztf.to_complex(tf.pow(q, 2) / tf.pow(self.params['jpsi_mass'], 2)) * resonance(q, _mass = self.params['jpsi_mass'], \n", " scale = self.params['jpsi_scale'],\n", " phase = self.params['jpsi_phase'], \n", " width = self.params['jpsi_width'])\n", " def psi2s_res(q):\n", " return ztf.to_complex(tf.pow(q, 2) / tf.pow(self.params['psi2s_mass'], 2)) * resonance(q, _mass = self.params['psi2s_mass'], \n", " scale = self.params['psi2s_scale'],\n", " phase = self.params['psi2s_phase'], \n", " width = self.params['psi2s_width'])\n", " def p3770_res(q):\n", " return ztf.to_complex(tf.pow(q, 2) / tf.pow(self.params['p3770_mass'], 2)) * resonance(q, _mass = self.params['p3770_mass'], \n", " scale = self.params['p3770_scale'],\n", " phase = self.params['p3770_phase'], \n", " width = self.params['p3770_width'])\n", " \n", " def p4040_res(q):\n", " return ztf.to_complex(tf.pow(q, 2) / tf.pow(self.params['p4040_mass'], 2)) * resonance(q, _mass = self.params['p4040_mass'], \n", " scale = self.params['p4040_scale'],\n", " phase = self.params['p4040_phase'], \n", " width = self.params['p4040_width'])\n", " \n", " def p4160_res(q):\n", " return ztf.to_complex(tf.pow(q, 2) / tf.pow(self.params['p4160_mass'], 2)) * resonance(q, _mass = self.params['p4160_mass'], \n", " scale = self.params['p4160_scale'],\n", " phase = self.params['p4160_phase'], \n", " width = self.params['p4160_width'])\n", " \n", " def p4415_res(q):\n", " return ztf.to_complex(tf.pow(q, 2) / tf.pow(self.params['p4415_mass'], 2)) * resonance(q, _mass = self.params['p4415_mass'], \n", " scale = self.params['p4415_scale'],\n", " phase = self.params['p4415_phase'], \n", " width = self.params['p4415_width'])\n", " \n", " def P2_D(q):\n", " Dbar_contrib = ztf.to_complex(self.params['Dbar_scale'])*tf.exp(tf.complex(ztf.constant(0.0), self.params['Dbar_phase']))*ztf.to_complex(h_S(self.params['Dbar_mass'], q))\n", " DDstar_contrib = ztf.to_complex(self.params['DDstar_scale'])*tf.exp(tf.complex(ztf.constant(0.0), self.params['DDstar_phase']))*(ztf.to_complex(h_P(self.params['Dstar_mass'], q)) + ztf.to_complex(h_P(self.params['D_mass'], q)))\n", " return Dbar_contrib + DDstar_contrib\n", " \n", " def ttau_cusp(q):\n", " return ztf.to_complex(self.params['C_tt'])*(ztf.to_complex((h_S(self.params['tau_mass'], q))) - ztf.to_complex(h_P(self.params['tau_mass'], q)))\n", " \n", "\n", " funcs = rho_res(x) + omega_res(x) + phi_res(x) + jpsi_res(x) + psi2s_res(x) + p3770_res(x) + p4040_res(x)+ p4160_res(x) + p4415_res(x) + P2_D(x) + ttau_cusp(x)\n", "\n", " vec_f = vec(x, funcs, b0_0, b0_1, b0_2, bplus_0, bplus_1, bplus_2, bT_0, bT_1, bT_2)\n", "\n", " axiv_nr = axiv_nonres(x, b0_0, b0_1, b0_2, bplus_0, bplus_1, bplus_2, bT_0, bT_1, bT_2)\n", "\n", " tot = vec_f + axiv_nr\n", "\n", " return tot" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Setup parameters" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "WARNING:tensorflow:From C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\ops\\resource_variable_ops.py:435: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.\n", "Instructions for updating:\n", "Colocations handled automatically by placer.\n" ] } ], "source": [ "# formfactors\n", "\n", "b0_0 = zfit.Parameter(\"b0_0\", ztf.constant(0.292), floating = False) #, lower_limit = -2.0, upper_limit= 2.0)\n", "b0_1 = zfit.Parameter(\"b0_1\", ztf.constant(0.281), floating = False) #, lower_limit = -2.0, upper_limit= 2.0)\n", "b0_2 = zfit.Parameter(\"b0_2\", ztf.constant(0.150), floating = False) #, lower_limit = -2.0, upper_limit= 2.0)\n", "\n", "bplus_0 = zfit.Parameter(\"bplus_0\", ztf.constant(0.466), lower_limit = -2.0, upper_limit= 2.0)\n", "bplus_1 = zfit.Parameter(\"bplus_1\", ztf.constant(-0.885), lower_limit = -2.0, upper_limit= 2.0)\n", "bplus_2 = zfit.Parameter(\"bplus_2\", ztf.constant(-0.213), lower_limit = -2.0, upper_limit= 2.0)\n", "\n", "bT_0 = zfit.Parameter(\"bT_0\", ztf.constant(0.460), floating = False) #, lower_limit = -2.0, upper_limit= 2.0)\n", "bT_1 = zfit.Parameter(\"bT_1\", ztf.constant(-1.089), floating = False) #, lower_limit = -2.0, upper_limit= 2.0)\n", "bT_2 = zfit.Parameter(\"bT_2\", ztf.constant(-1.114), floating = False) #, lower_limit = -2.0, upper_limit= 2.0)\n", "\n", "\n", "#rho\n", "\n", "rho_mass, rho_width, rho_phase, rho_scale = pdg[\"rho\"]\n", "\n", "rho_m = zfit.Parameter(\"rho_m\", ztf.constant(rho_mass), floating = False) #lower_limit = rho_mass - rho_width, upper_limit = rho_mass + rho_width)\n", "rho_w = zfit.Parameter(\"rho_w\", ztf.constant(rho_width), floating = False)\n", "rho_p = zfit.Parameter(\"rho_p\", ztf.constant(rho_phase), floating = False) #, lower_limit=-2*np.pi, upper_limit=2*np.pi)\n", "rho_s = zfit.Parameter(\"rho_s\", ztf.constant(rho_scale), floating = False) #, lower_limit=rho_scale-np.sqrt(rho_scale), upper_limit=rho_scale+np.sqrt(rho_scale))\n", "\n", "#omega\n", "\n", "omega_mass, omega_width, omega_phase, omega_scale = pdg[\"omega\"]\n", "\n", "omega_m = zfit.Parameter(\"omega_m\", ztf.constant(omega_mass), floating = False)\n", "omega_w = zfit.Parameter(\"omega_w\", ztf.constant(omega_width), floating = False)\n", "omega_p = zfit.Parameter(\"omega_p\", ztf.constant(omega_phase), floating = False) #, lower_limit=-2*np.pi, upper_limit=2*np.pi)\n", "omega_s = zfit.Parameter(\"omega_s\", ztf.constant(omega_scale), floating = False) #, lower_limit=omega_scale-np.sqrt(omega_scale), upper_limit=omega_scale+np.sqrt(omega_scale))\n", "\n", "\n", "#phi\n", "\n", "phi_mass, phi_width, phi_phase, phi_scale = pdg[\"phi\"]\n", "\n", "phi_m = zfit.Parameter(\"phi_m\", ztf.constant(phi_mass), floating = False)\n", "phi_w = zfit.Parameter(\"phi_w\", ztf.constant(phi_width), floating = False)\n", "phi_p = zfit.Parameter(\"phi_p\", ztf.constant(phi_phase), floating = False) #, lower_limit=-2*np.pi, upper_limit=2*np.pi)\n", "phi_s = zfit.Parameter(\"phi_s\", ztf.constant(phi_scale), floating = False) #, lower_limit=phi_scale-np.sqrt(phi_scale), upper_limit=phi_scale+np.sqrt(phi_scale))\n", "\n", "#jpsi\n", "\n", "jpsi_mass, jpsi_width, jpsi_phase, jpsi_scale = pdg[\"jpsi\"]\n", "\n", "jpsi_m = zfit.Parameter(\"jpsi_m\", ztf.constant(jpsi_mass), floating = False)\n", "jpsi_w = zfit.Parameter(\"jpsi_w\", ztf.constant(jpsi_width), floating = False)\n", "jpsi_p = zfit.Parameter(\"jpsi_p\", ztf.constant(jpsi_phase), lower_limit=-2*np.pi, upper_limit=2*np.pi)\n", "jpsi_s = zfit.Parameter(\"jpsi_s\", ztf.constant(jpsi_scale), floating = False) #, lower_limit=jpsi_scale-np.sqrt(jpsi_scale), upper_limit=jpsi_scale+np.sqrt(jpsi_scale))\n", "\n", "#psi2s\n", "\n", "psi2s_mass, psi2s_width, psi2s_phase, psi2s_scale = pdg[\"psi2s\"]\n", "\n", "psi2s_m = zfit.Parameter(\"psi2s_m\", ztf.constant(psi2s_mass), floating = False)\n", "psi2s_w = zfit.Parameter(\"psi2s_w\", ztf.constant(psi2s_width), floating = False)\n", "psi2s_p = zfit.Parameter(\"psi2s_p\", ztf.constant(psi2s_phase), lower_limit=-2*np.pi, upper_limit=2*np.pi)\n", "psi2s_s = zfit.Parameter(\"psi2s_s\", ztf.constant(psi2s_scale), floating = False) #, lower_limit=psi2s_scale-np.sqrt(psi2s_scale), upper_limit=psi2s_scale+np.sqrt(psi2s_scale))\n", "\n", "#psi(3770)\n", "\n", "p3770_mass, p3770_width, p3770_phase, p3770_scale = pdg[\"p3770\"]\n", "\n", "p3770_m = zfit.Parameter(\"p3770_m\", ztf.constant(p3770_mass), floating = False)\n", "p3770_w = zfit.Parameter(\"p3770_w\", ztf.constant(p3770_width), floating = False)\n", "p3770_p = zfit.Parameter(\"p3770_p\", ztf.constant(p3770_phase), lower_limit=-2*np.pi, upper_limit=2*np.pi)\n", "p3770_s = zfit.Parameter(\"p3770_s\", ztf.constant(p3770_scale), lower_limit=p3770_scale-np.sqrt(p3770_scale), upper_limit=p3770_scale+np.sqrt(p3770_scale))\n", "\n", "#psi(4040)\n", "\n", "p4040_mass, p4040_width, p4040_phase, p4040_scale = pdg[\"p4040\"]\n", "\n", "p4040_m = zfit.Parameter(\"p4040_m\", ztf.constant(p4040_mass), floating = False)\n", "p4040_w = zfit.Parameter(\"p4040_w\", ztf.constant(p4040_width), floating = False)\n", "p4040_p = zfit.Parameter(\"p4040_p\", ztf.constant(p4040_phase), lower_limit=-2*np.pi, upper_limit=2*np.pi)\n", "p4040_s = zfit.Parameter(\"p4040_s\", ztf.constant(p4040_scale), lower_limit=p4040_scale-np.sqrt(p4040_scale), upper_limit=p4040_scale+np.sqrt(p4040_scale))\n", "\n", "#psi(4160)\n", "\n", "p4160_mass, p4160_width, p4160_phase, p4160_scale = pdg[\"p4160\"]\n", "\n", "p4160_m = zfit.Parameter(\"p4160_m\", ztf.constant(p4160_mass), floating = False)\n", "p4160_w = zfit.Parameter(\"p4160_w\", ztf.constant(p4160_width), floating = False)\n", "p4160_p = zfit.Parameter(\"p4160_p\", ztf.constant(p4160_phase), lower_limit=-2*np.pi, upper_limit=2*np.pi)\n", "p4160_s = zfit.Parameter(\"p4160_s\", ztf.constant(p4160_scale), lower_limit=p4160_scale-np.sqrt(p4160_scale), upper_limit=p4160_scale+np.sqrt(p4160_scale))\n", "\n", "#psi(4415)\n", "\n", "p4415_mass, p4415_width, p4415_phase, p4415_scale = pdg[\"p4415\"]\n", "\n", "p4415_m = zfit.Parameter(\"p4415_m\", ztf.constant(p4415_mass), floating = False)\n", "p4415_w = zfit.Parameter(\"p4415_w\", ztf.constant(p4415_width), floating = False)\n", "p4415_p = zfit.Parameter(\"p4415_p\", ztf.constant(p4415_phase), lower_limit=-2*np.pi, upper_limit=2*np.pi)\n", "p4415_s = zfit.Parameter(\"p4415_s\", ztf.constant(p4415_scale), lower_limit=p4415_scale-np.sqrt(p4415_scale), upper_limit=p4415_scale+np.sqrt(p4415_scale))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Dynamic generation of 2 particle contribution" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "m_c = 1300\n", "\n", "Dbar_phase = 0.0\n", "DDstar_phase = 0.0\n", "Dstar_mass = pdg['Dst_M']\n", "Dbar_mass = pdg['D0_M']\n", "D_mass = pdg['D0_M']\n", "\n", "Dbar_s = zfit.Parameter(\"Dbar_s\", ztf.constant(0.0), lower_limit=-0.3, upper_limit=0.3)\n", "Dbar_m = zfit.Parameter(\"Dbar_m\", ztf.constant(Dbar_mass), floating = False)\n", "Dbar_p = zfit.Parameter(\"Dbar_p\", ztf.constant(Dbar_phase), lower_limit=-2*np.pi, upper_limit=2*np.pi)#, floating = False)\n", "DDstar_s = zfit.Parameter(\"DDstar_s\", ztf.constant(0.0), lower_limit=-0.3, upper_limit=0.3)#, floating = False)\n", "Dstar_m = zfit.Parameter(\"Dstar_m\", ztf.constant(Dstar_mass), floating = False)\n", "D_m = zfit.Parameter(\"D_m\", ztf.constant(D_mass), floating = False)\n", "DDstar_p = zfit.Parameter(\"DDstar_p\", ztf.constant(DDstar_phase), lower_limit=-2*np.pi, upper_limit=2*np.pi)#, floating = False)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Tau parameters" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "tau_m = zfit.Parameter(\"tau_m\", ztf.constant(pdg['tau_M']), floating = False)\n", "Ctt = zfit.Parameter(\"Ctt\", ztf.constant(0.0), lower_limit=-0.5, upper_limit=0.5)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Load data" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "x_min = 2*pdg['muon_M']\n", "x_max = (pdg[\"Bplus_M\"]-pdg[\"Ks_M\"]-0.1)\n", "\n", "epsilon = 0.3\n", "\n", "# # Full spectrum\n", "\n", "# obs = zfit.Space('q', limits = (x_min, x_max))\n", "\n", "# Jpsi and Psi2s cut out\n", "\n", "obs1 = zfit.Space('q', limits = (x_min + epsilon, jpsi_mass - 50. - epsilon))\n", "obs2 = zfit.Space('q', limits = (jpsi_mass + 50. + epsilon, psi2s_mass - 50. - epsilon))\n", "obs3 = zfit.Space('q', limits = (psi2s_mass + 50. + epsilon, x_max - epsilon))\n", "\n", "obs = obs1 + obs2 + obs3\n", "\n", "# with open(r\"./data/slim_points/slim_points_toy_0_range({0}-{1}).pkl\".format(int(x_min), int(x_max)), \"rb\") as input_file:\n", "# part_set = pkl.load(input_file)\n", "\n", "# x_part = part_set['x_part']\n", "\n", "# x_part = x_part.astype('float64')\n", "\n", "# data = zfit.data.Data.from_numpy(array=x_part, obs=obs)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Setup pdf" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "total_f = total_pdf(obs=obs, jpsi_mass = jpsi_m, jpsi_scale = jpsi_s, jpsi_phase = jpsi_p, jpsi_width = jpsi_w,\n", " psi2s_mass = psi2s_m, psi2s_scale = psi2s_s, psi2s_phase = psi2s_p, psi2s_width = psi2s_w,\n", " p3770_mass = p3770_m, p3770_scale = p3770_s, p3770_phase = p3770_p, p3770_width = p3770_w,\n", " p4040_mass = p4040_m, p4040_scale = p4040_s, p4040_phase = p4040_p, p4040_width = p4040_w,\n", " p4160_mass = p4160_m, p4160_scale = p4160_s, p4160_phase = p4160_p, p4160_width = p4160_w,\n", " p4415_mass = p4415_m, p4415_scale = p4415_s, p4415_phase = p4415_p, p4415_width = p4415_w,\n", " rho_mass = rho_m, rho_scale = rho_s, rho_phase = rho_p, rho_width = rho_w,\n", " omega_mass = omega_m, omega_scale = omega_s, omega_phase = omega_p, omega_width = omega_w,\n", " phi_mass = phi_m, phi_scale = phi_s, phi_phase = phi_p, phi_width = phi_w,\n", " Dstar_mass = Dstar_m, DDstar_scale = DDstar_s, DDstar_phase = DDstar_p, D_mass = D_m,\n", " Dbar_mass = Dbar_m, Dbar_scale = Dbar_s, Dbar_phase = Dbar_p,\n", " tau_mass = tau_m, C_tt = Ctt, b0_0 = b0_0, b0_1 = b0_1, b0_2 = b0_2,\n", " bplus_0 = bplus_0, bplus_1 = bplus_1, bplus_2 = bplus_2,\n", " bT_0 = bT_0, bT_1 = bT_1, bT_2 = bT_2)\n", " \n", " \n", "# print(total_pdf.obs)\n", "\n", "# print(calcs_test)\n", "\n", "# for param in total_f.get_dependents():\n", "# print(zfit.run(param))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Test if graphs actually work and compute values" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "# def total_test_tf(xq):\n", "\n", "# def jpsi_res(q):\n", "# return resonance(q, jpsi_m, jpsi_s, jpsi_p, jpsi_w)\n", "\n", "# def psi2s_res(q):\n", "# return resonance(q, psi2s_m, psi2s_s, psi2s_p, psi2s_w)\n", "\n", "# def cusp(q):\n", "# return bifur_gauss(q, cusp_m, sig_L, sig_R, cusp_s)\n", "\n", "# funcs = jpsi_res(xq) + psi2s_res(xq) + cusp(xq)\n", "\n", "# vec_f = vec(xq, funcs)\n", "\n", "# axiv_nr = axiv_nonres(xq)\n", "\n", "# tot = vec_f + axiv_nr\n", " \n", "# return tot\n", "\n", "# def jpsi_res(q):\n", "# return resonance(q, jpsi_m, jpsi_s, jpsi_p, jpsi_w)\n", "\n", "# calcs = zfit.run(total_test_tf(x_part))\n", "\n", "test_q = np.linspace(x_min, x_max, int(2e6))\n", "\n", "probs = total_f.pdf(test_q, norm_range=False)\n", "\n", "calcs_test = zfit.run(probs)\n", "# res_y = zfit.run(jpsi_res(test_q))\n", "# b0 = [b0_0, b0_1, b0_2]\n", "# bplus = [bplus_0, bplus_1, bplus_2]\n", "# bT = [bT_0, bT_1, bT_2]\n", "# f0_y = zfit.run(tf.math.real(formfactor(test_q,\"0\", b0, bplus, bT)))\n", "# fplus_y = zfit.run(tf.math.real(formfactor(test_q,\"+\", b0, bplus, bT)))\n", "# fT_y = zfit.run(tf.math.real(formfactor(test_q,\"T\", b0, bplus, bT)))" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\ipykernel_launcher.py:12: UserWarning: Creating legend with loc=\"best\" can be slow with large amounts of data.\n", " if sys.path[0] == '':\n", "C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\IPython\\core\\pylabtools.py:128: UserWarning: Creating legend with loc=\"best\" can be slow with large amounts of data.\n", " fig.canvas.print_figure(bytes_io, **kw)\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaUAAAD4CAYAAABMtfkzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO29eXzc1XX3/z4zo92WZG3eZCPZFjYyGBMcGzBhsQmYbOZpoTF5SElCS9qGX54kXYAnTfI0CW1o0tCmIQuFJCQlGELS4hIHQ7CBsNkYDBgvsuVdeNEuWfss9/fH9440Gs8qS5rR6LxfL780c+d+z73ztTSfOeeee64YY1AURVGUdMCV6gkoiqIoShAVJUVRFCVtUFFSFEVR0gYVJUVRFCVtUFFSFEVR0gZPqieQbpSVlZmqqqpUT0NR0p59p06Tm+Vmbkn+sPaOXi9HW3uoqZhCbpY7RbNz2N/YRbbbxTml+fgChj0nOplVnEdpQXZK55WJvPHGG83GmPKztaOiFEZVVRXbt29P9TQUJe25+jvPc8HsIr5380XD2p9+9yR/8Z9v8NjnL2fxrKIUzc5hzb++yJySfP7jT5fR1j3ARd94lq9+tJZPr6xO6bwyERE5Mhp2NHynKMqI8AcMLjmz3W0bA4FxnlAUglN02Xn5A7o3M51RUVIUZUQEjBn8oA/FE/zwT4ON+caA2CkOimUazEuJjoqSoigjIhAwuORMURrySFLvKhkMYn0ltwTnlcoZKfHQNSVFUUZEwAx90IeSTh/+oZ6Sy34FH29Pyev10tDQQF9f37iOO1bk5uZSWVlJVlbWmNhXUVIUZUT4jRn8oA/FnUZrN4aQ8J2kZl4NDQ1MnTqVqqoqJIKITySMMbS0tNDQ0EB19dgki2j4TlGUEWFM5PBdWomSMYNCkKp59fX1UVpaOuEFCUBEKC0tHVOvT0VJUZQRETBEESXnZ9okOtjHIoJIahIdMkGQgoz1e1FRUhRlRERPCXc+VgLp4Ckx/EPULZIWHpwSHRUlRVFGRLSU8ODajS8NPvyNMYTO0OWStPDg0pHnn3+ej3zkIwD09/dzzTXXsHTpUh577LFxnYcmOiiKMiKip4Q7P9PBIwlNdABHMNPBg0t3duzYgdfr5a233hr3sRPylERkjYjUiUi9iNwV4fUcEXnMvr5VRKpCXrvbtteJyHXxbIpItbWx39rMjjWGiJSKyBYR6RKR70eZ/wYReTexW6IoSiIEzFDyQCjptEk1dE0JnLmlQ6r6eHP48GEWLVrErbfeypIlS7jxxhvp6enh6aefZtGiRVx++eX85je/AaCxsZFbbrmFt956i6VLl3LgwIFxnWtcT0lE3MD9wAeBBuB1EdlgjNkd0u02oM0Ys0BE1gH3Ah8XkVpgHbAYmAX8XkTOtddEs3kvcJ8xZr2I/Mja/mG0MYA+4CvA+fZf+Pz/COhK6q4oihIXvzFEWvMOVnRIi/AdZtiakitFiQ5B/uF/drH7eOeo2qydVcjXPro4br+6ujoeeughVq5cyWc+8xm++93v8uMf/5jNmzezYMECPv7xjwNQUVHBgw8+yHe+8x2eeuqpUZ1rIiTiKS0H6o0xB40xA8B6YG1Yn7XAw/bxE8BqcX4T1gLrjTH9xphDQL21F9GmvWaVtYG1eUOsMYwx3caYl3DEaRgiMgX4EvDNBN6noihJYIyJuHk2GNJLhzBZZE8p9fNKBXPmzGHlypUA3HLLLWzfvp3q6mpqamoQEW655ZYUz9AhkTWl2cCxkOcNwIpofYwxPhHpAEpt+2th1862jyPZLAXajTG+CP2jjdEcY+7fAP4F6In1BkXkduB2gLlz58bqqiiKxR9lTSm99imFZd+lONEhEY9mrAhP5e7o6EjLVPVEPKVIsw7/X43WZ7TaE53H0IRElgILjDH/Fa3PoBFjHjDGLDPGLCsvP+vjQBQl4zHG2H1KZ77mTquCrMNDjG6X4Penfl6p4OjRo7z66qsAPProo1xzzTUcOnRocM3o0UcfTeX0BklElBqAOSHPK4Hj0fqIiAcoAlpjXButvRkotjbCx4o2RjQuBS4WkcPAS8C5IvJ8zHeqKEpCBJ0gd4Q6Q2nlKREWvpPJmxJ+3nnn8fDDD7NkyRJaW1v54he/yAMPPMCHP/xhLr/8cs4555xUTxFILHz3OlAjItXAeziJC58I67MBuBV4FbgR2GyMMSKyAfiliHwXJ9GhBtiG83tyhk17zRZrY721+WSsMaJN2hjzQ5wECWym3lPGmKsSeL+KosQhKDjuSLXvUlRjLhKhBVnB2aeUDmtdqcDlcvGjH/1oWNuaNWvYu3fvGX2vuuoqrrrqqnGa2XDiipJdv7kD2AS4gZ8YY3aJyNeB7caYDcBDwC9EpB7He1lnr90lIo8DuwEf8DljjB8gkk075J3AehH5JrDD2ibaGNbWYaAQyBaRG4Brw7IDFUUZRYIZbLE8pbRICQ85ugJSv6akxCehzbPGmI3AxrC2r4Y87gNuinLtPcA9idi07QdxsvPC22ONURVn/oeJkC6uKMrI8MXylIIp4WmwdhPuKU3WMkNVVVW8++7E2KqpZYYURUma4Ad7rEP+0sNTihC+S8G8Yqw0TDjG+r2oKCmKkjRBUfLEOg49DTySM1LCU+Ap5ebm0tLSkhHCFDxPKTc3d8zG0Np3iqIkzVCiQ/TNs2lR0SFSQdZxLjNUWVlJQ0MDTU1N4zvwGBE8eXasUFFSFCVpEkp0SAdRImxNyTX+YcWsrKwxO6U1E9HwnaIoSRMz0UHSbPMsqQ3fKcmhoqQoStIE4iQ6iKTJmhLpkeigJI6KkqIoSRP0lDzuyLXT0sUjOaMga5rMS4mOipKiKEkTKyUc0ueEV6f2XcjRFZO4SvhEQUVJUZSkCYbAPBESHZz29CjnEz4Dt2j4Lt1RUVIUJWmC1RoiJTqA8+GfDinhmOHe3GQ+T2mioKKkKErSxEoJh/QpfBoIO7rCCSumbj5KfFSUFEVJmlgp4eCE79JiTYnhiQ4el+APOLtnO/u8vLQ/1hmhSipQUVIUJWkSSnRIA0/pjIKsLhkMPf7dr97hloe20nS6P0WzUyKhoqQoStLES3RIl9Rrw/Dsuyz30FrXW8faAejo9aZkbkpkVJQURUmaoLcRRZMcjyQdRMmEh+9c+Gzxu9wsZ/Kn+1SU0gkVJUVRkiZuSrg7XTwlhqmSxy14BwXVeaHfN84VWpWYqCgpipI0iSQ6pMMhf+Ep4VkuFz6b6BBsHVBRSitUlBRFSZpYte8AstwuvON9RkQEAmFHV2R5hsQyuNakopReqCgpipI0Q4f8Rf4ISRdRCi/I6nENzSt4FNRAGsxTGUJFSVGUpAmG76IlOnjc6ZLoMPzoiqyQNaVgu3pK6UVCoiQia0SkTkTqReSuCK/niMhj9vWtIlIV8trdtr1ORK6LZ1NEqq2N/dZmdqwxRKRURLaISJeIfD/ETr6I/FZE9orILhH5VvK3R1GUSMRLdMhypamn5A5ZUwp6SipKaUVcURIRN3A/cD1QC9wsIrVh3W4D2owxC4D7gHvttbXAOmAxsAb4gYi449i8F7jPGFMDtFnbUccA+oCvAH8TYfrfMcYsAi4CVorI9fHer6Io8Ymb6OBOj0SH8JTwLJfjKYVWD+9PA/FUhkjEU1oO1BtjDhpjBoD1wNqwPmuBh+3jJ4DV4vyPrwXWG2P6jTGHgHprL6JNe80qawNr84ZYYxhjuo0xL+GI0yDGmB5jzBb7eAB4Exi7g+UVZRIRL9HB43bhTYPwHTDMVfJYFfUHjGbfpSmJiNJs4FjI8wbbFrGPMcYHdAClMa6N1l4KtFsb4WNFGyMuIlIMfBR4Lsrrt4vIdhHZ3tTUlIhJRZnUxE10cMngJtVUYUxw7WiILCtKvoAZXA/r9/nHeWZKLBIRpUhfhcK/AkXrM1rtic7jDETEAzwKfM8YczBSH2PMA8aYZcaYZeXl5fFMKsqkx59IokOKw3fBerCusDJDAF5/YDDRwetLE49OARITpQZgTsjzSuB4tD5WBIqA1hjXRmtvBoqtjfCxoo0RjweA/caYf02gr6IoCeCPW9HBhTeQWk8pmIwxPCXceeLzm0FhHfCrp5ROJCJKrwM1NisuGydxYUNYnw3ArfbxjcBm4/jOG4B1NnOuGqgBtkWzaa/ZYm1gbT4ZZ4yoiMg3ccTrCwm8T0VREiReSnhWGlR0iBRiCa4pef2BwexAXVNKLzzxOhhjfCJyB7AJcAM/McbsEpGvA9uNMRuAh4BfiEg9jveyzl67S0QeB3YDPuBzxhg/QCSbdsg7gfVWUHZY20Qbw9o6DBQC2SJyA3At0Al8GdgLvGkzbb5vjHkw+dukKEoowUQHd4xEh9SvKTk/Q6c4GL4LmEFh9aZBlqAyRFxRAjDGbAQ2hrV9NeRxH3BTlGvvAe5JxKZtP4iTnRfeHmuMqihTj/wXoyjKWRG/ooMwkHJPaXg5IRiar88fGPSQtCBreqEVHRRFSZp4iQ5ZIZtUU0Wk4H6WJxi+Mxq+S1NUlBRFSZq4iQ4uV8rXlIIMC98FEx0CgcHwnda+Sy9UlBRFSZr4npKkvMzQ4JoSZ26e9fkNXushedVTSitUlBRFSZqg4GTFOOQv1QVZg2tKrtCU8JB9SkEPST2l9EJFSVGUpPH5DS4ZOr01HI/LhT9giLNrY0wJRMq+cw2tKQ2G79RTSitUlBRFSRpvIDAYCovEUOWE1IlSUBAjVXQY8AVCNs+qKKUTKkqKoiSNz28GkwYiMbh2k8IMvCFP6cw1pV7vUBUH9ZTSCxUlRVGSxueP7SkFy/mkh6c01Bb0lFSU0hcVJUVRksYbMIMf8JEYrMadwtBY0FNyRdg82zvgG2zT8F16oaKkKErS+PyBqHuUIDTLLZWJDmd6SjlZzpy7+4c8pVSnrivDUVFSYtLR4x1cEFaUID6/GRSeSGSFFD5NFUNVwofmmWMrOnT1h3hKGr5LK1SUlKj0DPi48OvP8I2ndqd6Kkqa4YTv4mffpXKvUqTzlHKz3MCQKOVmuVSU0gwVJSUqwRDHU++EH5+lTHac8F2M7DtXOqwpRQjfWU/pdJ8jSgXZHhWlNENFSVGUpPH6TdrvUxoshRTBU+q2nlJ+jlsTHdIMFSVFUZLGFwjEzL4b9JRSuE8p0nlKHpfgkqHwXUG2hwF/IKWVJ5ThqCgpipI0Pr+JGb4LHhGRytBYMHznDpmniJCb5R4UpbxsN8akdu1LGY6KkqIoSeONs3k2Jy1EyfnpCjsdN8fjoitkTQk0LTydUFFSFCVpvP7Y4bugKPWnQaJD+IntOZ4hTyk/21lj0mSH9EFFSVGUpPEFTMzNs9lBUfKmck3pzEQHcNLAg6I0JcfxlFSU0gcVJUVRksbrj71PKcfjeCD9Pn/UPmNN9PDd8DUlgH4VpbQhIVESkTUiUici9SJyV4TXc0TkMfv6VhGpCnntbtteJyLXxbMpItXWxn5rMzvWGCJSKiJbRKRLRL4fNq+LRWSnveZ7IuGOvKIoI8GXYPguHRIdwvMxQjfMFuTomlK6EVeURMQN3A9cD9QCN4tIbVi324A2Y8wC4D7gXnttLbAOWAysAX4gIu44Nu8F7jPG1ABt1nbUMYA+4CvA30SY/g+B24Ea+29NvPerKEp8fIHY+5SCNeZS6YEEs9HDv4sGvTgIWVNSUUobEvGUlgP1xpiDxpgBYD2wNqzPWuBh+/gJYLX1StYC640x/caYQ0C9tRfRpr1mlbWBtXlDrDGMMd3GmJdwxGkQEZkJFBpjXjVOcPnnIbYURTkLvP5AzPOUctypD4tF85SCggma6JCOJCJKs4FjIc8bbFvEPsYYH9ABlMa4Nlp7KdBubYSPFW2MWPNuiDNvAETkdhHZLiLbm5qaYphUFAXiF2Qd8pRSt6YUqfYdDPeUpuZmARq+SycSEaVIv3nhO82i9Rmt9kTnkciczmw05gFjzDJjzLLy8vIYJhVFAadSQ6zwXbY7jdaUwqYZTG4AKLSiNB4e3Yv7mvj0T7fRO5A6oZ4IJCJKDcCckOeVQHiFzsE+IuIBioDWGNdGa28Giq2N8LGijRFr3pVx5q0oygjwxjkO3eUSstySFuG78DWlqbmewceFeeOXEv7tTXVsqWti2+FYH1tKIqL0OlBjs+KycRIXNoT12QDcah/fCGy26zgbgHU2c64aJ9lgWzSb9pot1gbW5pNxxoiIMeYEcFpELrFrVX8aYktRlLMg3nHo4ITJUrlPKVpKeNA7gqHw3XiI0omOXgAONnWN+VgTGU+8DsYYn4jcAWwC3MBPjDG7ROTrwHZjzAbgIeAXIlKP472ss9fuEpHHgd2AD/icMcYPEMmmHfJOYL2IfBPYYW0TbQxr6zBQCGSLyA3AtcaY3cBfAj8D8oDf2X+Kopwl3kDsNSVw0sIH/KlcU4qc6BDqKeXZquFjXc3cGDN4XMbx9t4xHWuiE1eUAIwxG4GNYW1fDXncB9wU5dp7gHsSsWnbD+Jk54W3xxqjKkr7duD8SK8p8TExl+yUyYzPHyArRkUHcEQpLT2lvCFPKVh5YqzFs9frHwxlHm/vi9N7cqMVHZTo2D9qreqvhOLzBwiYoQ/0aGR7XGmypjS8vTDEUxqvckgdvd7Bxy3d/WM61kRHRUmJi9bBUEIJCk1OHFHK8bhTW2YowiF/MDx8l2/Dd73esZ1nZ69v8HFbtzdGT0VFSYmKOkhKJIJJAfE8pZyQcj6pIBi+c4ctKpUU5Aw+zs9xRKlnjNO0g55S5bQ8WnsGxnSsiY6KkhIVDdspkQiW5AndhBqJbHd6hO/CEx3mlxcAcE5pPtluFx6XDB6PPlYERam6rIC27gE96TYGCSU6KJMTTXRQIhFcf0nEU+pLaaJDtH1KWXxj7WKWzpmGiJCf7R43T6mqtIA/7G/mdL9vWGq6MoSKkqIoSRHMVEtkTSl0gX+8iVZmCOCTl1YNPs7P9tAzMLaeUmdQlMocL621a0BFKQoavlOiohEGJRL9ia4ppTwlPHL4Lpz8HDfd4+Yp5QPoulIMVJSUqAxpkqbfKUMkKkq5WW760vCQv3AKsj1jXo+uo9fL1BwPZVOcJIt2FaWoqCgpURlajFWXSRliIMGU8Lxsd0qLj0bbpxROfrZ7zBMdOvu8FOZlUVKQDUCrpoVHRUVJUZSkSHSfUn6Wm+7+dCgzFMdTyvGMeaJDZ6+XorwspllRautWTykaKkpKVIbWlDR8pwwx5CnFTgnPz/HQ6/UPbmIdbxIN3+Vlu+ke40SHDitKBdlustyia0oxUFFSFCUpEt08GzzVNVXrSokmOhSMQ5ixs9dHYZ4HEWFafrZ6SjFQUVIUJSmCpYOy4xxdERSlVIXwgp5S+D6lcPKzPXSNx5qSTQEvKcimVUUpKipKSlSGwnea6KAMMRi+y4onSs42yFQlO0Q7uiKcorwsuvp9+McwzHi6zzd4dtO0/GzaNHwXFRUlJSom5kn0ymQlWGYoUU+pxzu2Xkg0/FEKsoZTnJ+FMUMbXMdiHl39vsFTbksKsmnr0ey7aKgoKYqSFMENsTlZsRMd8lIcvguKUnhB1nCK8x0Ppn2MRKnLHu436CkVZOmaUgxUlJSoaEUHJRIJe0rBYyFSFL5LWJTybJr2GIXUOvscsQue4xQM36UqKzHdUVFSoqJ/Mkok+u3ZQ1lxjkMvyHE+hMe6rlw0/PZblSdBT6ljjEJqQVEKXVMKmKF2ZTgqSoqiJEW/P0COxxU3qy0YvhvrA/SikXj4zvGU2nvHyFOyB/yFrikBmoEXBRUlJSp65osSib4B/6DgxCLVKeE+f6LhO8eDGasTYYfCd8E1pbENF050EhIlEVkjInUiUi8id0V4PUdEHrOvbxWRqpDX7rbtdSJyXTybIlJtbey3NrPPYowvisguEXlXRB4Vkdzkbs/kZjD3TpPvlBB6BvyD60WxyM9KbfguuHk2nigV5mUhMnaJDqdtosPgPqX8YKkhDd9FIq4oiYgbuB+4HqgFbhaR2rButwFtxpgFwH3AvfbaWmAdsBhYA/xARNxxbN4L3GeMqQHarO2RjDEb+DywzBhzPuC2/ZQkUYdJCaXH6yc3AU9pMHyXokQHXyC4phT7Y87tEorzsmju6h+TeQRTzYPhu+AalpYaikwintJyoN4Yc9AYMwCsB9aG9VkLPGwfPwGsFifgvBZYb4zpN8YcAuqtvYg27TWrrA2szRtGOAY4hxjmiYgHyAeOJ/B+FYuKkRKJvgH/YGguFtkeF9ke15hXS4jG4D6lBD7lphfm0tjZNybzCHpKU3KGrylpWnhkEhGl2cCxkOcNti1iH2OMD+gASmNcG629FGi3NsLHSmoMY8x7wHeAo8AJoMMY80ykNygit4vIdhHZ3tTUFPVGTD4SK/2vTC56BvzkJRC+AydklaosM3+CnhLAjKJcTo6RKHX0einIduOxKfT52W6yPS71lKKQiChF+kgK/w4drc9otSc9hohMw/GiqoFZQIGI3BKhL8aYB4wxy4wxy8rLyyN1mdSox6SE0uv1k2dLCMWjMM8zmH023vgCiZUZAphRmMvJjrEJ37X1DAwmN4BTi69Ei7JGJRFRagDmhDyv5Mww2GAfGyorAlpjXButvRkotjbCx0p2jGuAQ8aYJmOMF/gNcFkC71exqBgpkegd8JMXp+5dkNR6SgHcLombug5O+K6lux+vf/SPb2/pHqA0RJTACeE1d6koRSKR36zXgRqbFZeNkyywIazPBuBW+/hGYLNx8ok3AOts5lw1UANsi2bTXrPF2sDafHKEYxwFLhGRfLv2tBrYk9htUUCz75TI9Hh9g8VW41GUlzVmNeXi4Q/Ez7wLMqMoF2Og8fToe0ut3f3DPCWAmUW5nOwYm3DhRCeuKNn1mzuATTgf6o8bY3aJyNdF5GO220NAqYjUA18C7rLX7gIeB3YDTwOfM8b4o9m0tu4EvmRtlVrbIxljK05CxJvATvteHxjBPVIUJYTegQC5ia4p5WXR2ZeqRIcA7gS/Uc0scnaLHG/vHfV5tHYNDCY3BBnLNayJTkJfd4wxG4GNYW1fDXncB9wU5dp7gHsSsWnbDzKUPRfaPpIxvgZ8LdI1Snw0fKdEonfAl1D2HTj13lLlKfkCJm6JoSDVZQUAHGru5v1VJaM2B2NMxPDdzKJcWrsH6PP6Exb4yYJWdFCiYrT6nRKGMcZJdEjKU/KmpDpIIGBwx6nPF2R2cR5ZbuFgU/eIx4pEz4Cffl+AkoKcYe0zivIAOKXe0hmoKClRUU9JCaffFyBgSKjMEDiJDl6/oc87+gkE8fAFTMLhO4/bxdySfA41dyU9zv5Tp1n69Wf4p41nLlm32GSG0ilnekoAJ3Rd6QxUlBRFSZg+W1w1cU/JWSFIRQaeP2ASTnQAmFc+hUPNyXtKv3jtCJ19Pn784kFawqpCHO9w1qhmWc8oyAwrSprscCYqSkpU1FNSwumxJYOS8ZRg7E51jYU/iTUlgAUVjij1+5Iri7TreCdT7VlJT+86Oey1YOLErOLhZTdnFNrEio7RT6yY6KgoKVEJrilpRrgSJFgyKFgyJx7BOm+pOP7bHzC4khClC2YX4fUb6k6eTvgaYwz1jV189MJZVJXm8/S70URpuKdUkOOhpCCbY609CY81WVBRUuKiDpMS5PTggXWJiVKpXeAPD2uNB8lk34EjSgBvN3QkfE1z1wAdvV4WlE/husUzePVACx0hXuF77b2UFGRHzLCrLisYUbgw01FRUqKi4TslnOCeo+ApqvEoswv8zSkoqeM3ya0pVU7Lo6Qgm50N7QlfU9/oJEYsqJjCtYtn4AsYnq9rHPb6/PKCiNdWlaooRUJFSYmLhu+UIF2DZwMl5ikFN402j0GlhHj4/cmJkoiwdE4x2w61JnxNfdOQKF00p5iKqTlssutKxjihwHOnT4147bzyAk519qfsvKl0RUVJiYs6TEqQwWMYEhQlj9vFtPwsWrpTE75zJ3JuRQiXLyjjcEtPwms9Bxq7KMh2M7MoF5dL+GDtdJ6va6LP66ehrZfOPh+LZkQWpapSx4M63KzrSqGoKClR0fCdEs7QmlJi4TuAsik5NJ9OQfguEEhqTQnginPLAPjD/uaE+tc3djG/Yspg0ddrF8+gZ8DPH/Y388oBx8aKeaURrw1WkTjQlPzeqExGRUmJimbfKeF09ftwCRQkmBIOzsbRsTrVNRZevyHbk9xH3PzyKcwqyuW5PacS6l/f2MWC8imDzy+dV8r0why+99x+Htl6lNnFedRUTIl47fyKAjwuYc+JzqTmmOmoKCmKkjCn+3xMyfEkdBxEkLIpObSkINFhwBcgK8EyQ0FEhA8vmckL+5rinnd0us/Lyc4+5oeITrbHxZc/XMvO9zp4p6GDv7hqftR7leNxUzN9KruOqyiFklhgWJmUaPhOCaezz5tU6A6C4bvx95QG/AEKs5ObK8ANF83mP/5wiN/uPMEtl5wTtV9o5l0oH7twFmVTsjnd5+Pa2ukxxzp/ViGb9zZijElK6DMZ9ZSUqKgmKeF09fkS3qMUZGZRLqf7fYPrUeOF1x8gO0lPCaB2ZiGLZkzlP187ErOQ7P5TjihFyq67bH4Z1y2eEVdoFs8qpKV7gFOdsUW7u9/Hd5+pmxRliVSUFEVJGMdTSk6UZk9zqhm8NwZnFcXCCd8l/xEnIvzZB+ax9+TpmAkP+06dJsfjFHIdKRdUFgPw1rG2mP1+/WYD39tczzd/u3vEY00UVJSUqKTiuAElvWnr9jItPzt+xxBm2xI7Da3jK0pe/8hECZwQ3PTCHP7tuf1R/w72NXYxv3xKUnuhwrlgdhF5WW5eOxh7b9SOo86G3nffS7zaxERFRUmJikqSEk5rz8AZxzDEI1We0kiy74Jke1x88ZpzeeNIG0+9c+KM1wMBw86GdhbPKjyrOWZ7XCyrmsZrB1ti9jtoKz8cbe0ZrNSeqagoKYqSEMYY2roHkvaUygpyyPa4xj98dxaeEsBNy+ZQO7OQbzy1m9awTLwDTV209Xh5f/XZn1J7ybxS9p48fcYYQYwxHGrqoigvi4CBwy2ZXZpIRUmJikbvlFA6+3z4AmawdFCiuFzC7OI83msb/zWlkcwu7xIAACAASURBVCQ6BHG7hG/ftIT2Hi9/+6u38YecLvt8XRMAl1RH3hibDJfNd2y8uK8p4uut3QN09vn4oM3kO9CooqRMWlSVlCGC+3aSFSWAOSX54/4N/2zWlIIsnlXElz98Hs/tbeTv//td/AGDP2D41RvHuGB2EXNLR57kEOTCyuE188IJFm29emEFoJ4SACKyRkTqRKReRO6K8HqOiDxmX98qIlUhr91t2+tE5Lp4NkWk2trYb21mn8UYxSLyhIjsFZE9InJpcrdHUZQgrT2OKE0bgSjVVEzhQFMXgcD4fdHx+gMjXlMK5dbLqvirq+bz6LajfPzHr/L59TvYd6qLP79i3ijMksGaeS/sa4q4XnS4xamNVzurkOmFORxsmuSiJCJu4H7geqAWuFlEasO63Qa0GWMWAPcB99pra4F1wGJgDfADEXHHsXkvcJ8xpgZos7aTHsNe82/A08aYRcCFwJ5Eb4yi4TtlOK1d1lNKck0JHFHq8wbGbV3JGIPXb87aUwryt9ct5Ns3LqGhrZdN757ks1fM46NLZo6KbYDrbM28YFgwlCMt3bhtCLSqtEA9JWA5UG+MOWiMGQDWA2vD+qwFHraPnwBWi7NrbC2w3hjTb4w5BNRbexFt2mtWWRtYmzeMZAwRKQSuAB4CMMYMGGMSPyhF0eCdMozWswjf1Ux3qh7sb0z8VNezYcAfABgVTwmcvUs3LZvDq3evYu831nD3h84b1QoMl80vpWJqDr/afuyM14609DCrOJdsj4vqsgIOZ/gZTIn8j80GQu9Ug22L2McY4wM6gNIY10ZrLwXarY3wsZIdYx7QBPxURHaIyIMiEvG0LRG5XUS2i8j2pqbIi42KMtlpPO1UEyifmpP0tQvKnaoHwSoIY82AzxGlZGvfxUNE8IyS9xWKx+3ixosr2VLXeEbVhiMt3ZxT4nx0VZcV0NI9MOx020wjkbsb6X81/Et0tD6j1T6SMTzA+4AfGmMuArqBM9bDAIwxDxhjlhljlpWXl0fqMinR8J0SyomOPqblZ0U82jseRflZzCzKHbfio31eR5TyRjDXVPHx988hYODRbUcH24wxHGzu5hybUFFVFjyDKXO9pUREqQGYE/K8EjgerY+IeIAioDXGtdHam4FiayN8rJGM0WCM2Wrbn8ARKSVBgjvZtU6kAnCqs48ZRXkjvn7pnGJ2xCmnM1r0DjgJA3nZE6fm9DmlBVxz3nQefvUwXf1OsKihrZfTfT4WzyoChs5gyuR1pURE6XWgxmbFZeMkFWwI67MBuNU+vhHYbJxPtA3AOps5Vw3UANui2bTXbLE2sDafHMkYxpiTwDERWWivWQ1kfuGoMUA9JgUcT2lGYfKhuyAXzS3mWGsvTeNQMbzXZrFNJE8J4I5VC2jv8fLzVw8D8E6DU1YoWDlibkk+IkNp4plIXFGy6zd3AJtwstceN8bsEpGvi8jHbLeHgFIRqQe+hA2TGWN2AY/jiMHTwOeMMf5oNq2tO4EvWVul1nbSY9hr/j/gERF5B1gK/GOyN2gyo1qkhHK2ntL75k4DYMfRsfeWegYcTyM/icMI04Glc4pZvaiC72+u51hrDy/sa2RqrodaK0q5WW5mFeVltCgl5NsaYzYCG8PavhryuA+4Kcq19wD3JGLTth/Eyc4Lbx/JGG8ByyJdo8Qn6CFp+E7p9/lp7hpgRmHuiG2cP7uIHI+LVw+2cO3iGaM4uzMZ9JQmmCgB/MPaxVx334t88qGtnOjo46MXzhqW2p7pGXha0UGJi4bvlBPtTkbYzOKRi1JulptL55eyZW/jaE0rKoNrShMsfAdQOS2fH39yGZ19PqYX5vKFa2qGvV5dVsCh5u6MreI/cVYBlXHHaABPsRyyC+vBhfaRcvXCCr5Wt4tDzd1nbSsWQU9pooXvglxeU8Ybf38NwBn7oarKCujs89HaPUDplJGv8aUr6ikp0dHwnWI5YsNFVaVnJySrFjn12zbuPPM4iNGkx3pKI0lfTxdEJOIG3eoyJz08UzPwVJQURYnL4ZYeCrLdlCV5llI4c0ryWVFdwq+2HxvT8FMwfDdRPaVYVJc51TEONfekeCZjg4qSEhUN3ilBDjV3U1VWMCqldW5aNofDLT28Gudgu7Oh01Y8mJqbNWZjpIrKaXlkuWXcSjaNNypKSlQydB1VGQEHmrpGbQ3oI0tmUjYlh/u31I+KvUh09HrJy3KPWu27dCLL7eK8mYW8cywzj0bPvP8xRVFGlY5eLw1tvZw38+yO/g6Sm+Xms1fM4+X6Fl49MDbeUkevl+L8zPOSgiypLOLd9zrG9SiQ8UJFSYmKZt8pAHtOOPXqglUFRoNbLjmHyml5fPm/d0Y8Q+hsae/1UpSXyaJUzOl+HwczcL+SipISFQ3fKQC7bRHV2lEUpbxsN//4vy7gYFM333hq9Kt/dfR6KcxgUbqwshiAt49l3mk8KkqKosTk3fc6KJ+aQ8XUkW+cjcQV55bz2Svn8cjWozzw4oFRtd3eM0BxBovSgoopFGS7x63A7Xiim2eVqKijpABsPdTKsnOmjYntv7tuEcdae/jHjXs53efjC9eci9t19hl+pzr7uWRe6SjMMD1xu4RlVSW8drA11VMZddRTUqKSqWVMlMQ51trDe+29rKguGRP7bpfwvXUXcdPFlfz75nr+9CdbOdZ6dvtvegZ8dPR6mVE0up5dunHJvFLqG7sGD1/MFFSUFEWJytZDzjfxFWPodXjcLv75xiV8648u4M0j7az+7gt8e9PewePXkyV4cuvMDBelS+c7/ydbM8xbUlFSoqJ+kvLcnlOUT81h4fSpYzqOiLBu+Vye++srWbN4BvdvOcBl33qOrz75LgeakjtC/UiL42nNLs4fi6mmDefPKmRKjmdMNyGnAhUlJTqqSpOaPq+fF/Y1cW3tdFyjsM6TCLOK8/jezRfx7Bev4KNLZvHotqOs/pcX+MR/vMbGnSfw+gNxbdSdciodjLWQphqP28Xy6hJeqW9O9VRGFRUlJSrBfUqCVmSdjLywr4meAT/XjfHZR5GomT6Vb990IS/ftYq/ufZcjrT08FePvMnKb23mu8/Ucby9N+q1777XwcyiXIoyePNskCtqyjjc0pNR5yupKClRCdgvpeP0JVlJMx57/RgVU3MG1y5SQcXUXO5YVcOLf3c1D926jMWzCvn3LfVcfu9m/vzn23lhX9OwqgY+f4CX65u5bH5ZyuY8nly10Km6/nzd2J9RNV5oSrgSlYDNvhuNIpzKxOK99l6er2vkc1cvGHbqaapwu4TV501n9XnTOdbawy+3HeXx14/x7O5TzC3J5xMr5vIny+awaddJ2nq8XH/++Ht3qaCqrIB5ZQVsqWviUyurUz2dUUFFSYlKBpbVUhLkxy8cwGWTD9KNOSX53LlmEV+4poZNu07xn68d4Vu/28s/P72XgIHlVSWD5zZNBq5eVMEvXjtC74B/Qh7/Ho6KkhKV4D4lV+q/KCvjyHvtvazfdoybls1hdnFeqqcTlRyPm49dOIuPXTiL/adO85sd7zElx8Otl1WNW2JGOnD1wgoeeukQrx5sZtWi6amezlmT0MeNiKwRkToRqReRuyK8niMij9nXt4pIVchrd9v2OhG5Lp5NEam2NvZbm9kjHcO+5haRHSLyVOK3RYEhT0kTHSYX3/if3YjAHasWpHoqCVMzfSp3rlnE565ewJScyfVd+/3V08jPdrN5b2asK8UVJRFxA/cD1wO1wM0iUhvW7TagzRizALgPuNdeWwusAxYDa4AfWJGIZfNe4D5jTA3QZm0nPUbI3P4PsCex26GEMrSmlOKJKOPGxp0neHrXSb5wzblp7SUpQ+R43KxcUMaWvU0ZUYUlEU9pOVBvjDlojBkA1gNrw/qsBR62j58AVouzOr4WWG+M6TfGHALqrb2INu01q6wNrM0bRjgGIlIJfBh4MLHboYQSFCWXqtKk4EBTF3c+8Q5LKov4sw9kxqL5ZGHVogrea+9l36nkNhqnI4mI0mzgWMjzBtsWsY8xxgd0AKUxro3WXgq0WxvhYyU7BsC/An8HxNxxJyK3i8h2Edne1NQUq+ukwgyG75RMp+l0P3/+8HayPC5+eMvFaZFxpyTO1TY1PBNCeIn85kX6TAr3EaP1Ga32pMcQkY8AjcaYNyK8PryzMQ8YY5YZY5aVl5fH6z5pGDzkT1Upo2nu6ud/P/gaJzr6+PEnL9aw3QRkRlEui2cVsnnvqVRP5axJRJQagDkhzyuB49H6iIgHKAJaY1wbrb0ZKLY2wsdKdoyVwMdE5DBOeHCViPxnAu9XsQQ3z6omZS57T3ay9vsvc7S1h4c+tYz3V41NNXBl7Fm9qII3jrTR3jOyQrbpQiKi9DpQY7PisnGSCjaE9dkA3Gof3whsNs6K2wZgnc2cqwZqgG3RbNprtlgbWJtPjmQMY8zdxphKY0yVtb/ZGHNLgvdFQTfPZjLGGJ54o4E//sEr+AIBHv/spZOmCkKmcvWiCgLGKQ81kYmbO2mM8YnIHcAmwA38xBizS0S+Dmw3xmwAHgJ+ISL1ON7LOnvtLhF5HNgN+IDPGWP8AJFs2iHvBNaLyDeBHdY2IxlDOTuCa0qTaMvHpKCxs4+//+93eWb3KZZXl/C9dRdl/NlDk4ELK4spLchm895G1i4NX/afOCSU0G+M2QhsDGv7asjjPuCmKNfeA9yTiE3bfhCbPRfWnvQYIa8/Dzwf7XUlMoOekgbwMoI+r5+HXjrED7bU4/Ubvvyh87jt8upJtdE0k3G5hKsWVvD7Pafw+QN4JmiyyuTaZaYkxeDmWf3MmtB4/QH+a8d7fO+5/TS09XJt7XT+74fOo6qsINVTU0aZ1edV8Os3G9hxrH3Crg+qKClR0TWliU2/z88TbzTww+cP0NDWy/mzC/nnP17CZQt07ShTubymDI9LeG5Po4qSknmYwfCdMpFoOt3Po9uO8sjWI5zq7GfpnGK+sfZ8rlpYrl8wMpzC3CyWV5ewZW8jd12/KNXTGREqSkpUNHw3sXj7WDsPv3KYp945wYA/wAdqyvj2jRfygZoyFaNJxKpFFXzzt3toaOuhctrEOxJeRUmJitHad2nP6T4vv33nBOtfP8Zbx9opyHZz8/I5/OllVcwvn5Lq6Skp4GorSlv2NvLJS6tSPZ2kUVFSoqJVwtMTYwzbDrXy+PYGNu48Qa/Xz4KKKfy/j9byxxdXMjU3848BV6Izr6yAqtJ8nlNRUjKNoYKsKZ6IAsDJjj5+/WYDv9p+jMMtPUzJ8XDDRbP5k2WVLJ1TrCE6BXASk65eVMEjW4/SM+AjP3tifcxPrNkq48pgFXz9sEsZp/u8PLPrFE++fZyX9jcRMLCiuoTPr65hzfkzJtwHjjI+rF40nZ++fJhX6lu4pnZiHfynv9FKVAKafZcS+n1+Xqhr4sm3j/P73afo9wWonJbHX121gBsvrtT9RUpclleXUJDtZnNdo4qSkjn47KKSR+N3Y04gYNh6qJUNb7/Hxp0n6ej1UlKQzcffP4e1S2fzvrkanlMSJ9vj4gM15WzZ24gxZkL97qgoKVHx+R1RcqsojQnGGHYd72TD28fZ8NZxTnb2kZ/t5rrFM/jY0llcvqBMzzVSRsyqRRU8veske06cpnZWYaqnkzAqSkpUfPbsCj15dvQICtHGnSfYuPMEh1t68LiEK88t5+4PLeKDtdN1nUgZFa5c6JwN91J9k4qSkhkEw3fmjDMdlWQICtFvd57gd1aI3C7h0nml/PkV87j+/JmUFGSneppKhjG9MJcFFVN4qb6F26+Yn+rpJIyKkhIVn9/xlIxqUtKECtHGnSc4YoXosvmlfPbK+VxbO53SKTmpnqaS4Vy+oIz1rx+l3+cnx+NO9XQSQkVJiYrXr2qUDMYY3n1vSIiOtg4J0V9eOZ9rF89Qj0gZV1YuKONnrxxmx9F2LplXmurpJISKkhIV/2D4TomGP2DYcbSNTbtOsmnXKY62OmtEly0o43NXz+fa2hlMUyFSUsSKeSW4XcLL9c0qSsrEJ5jooAyn3+fnlfoWntl9kmd3n6K5a4Bst4tL55dyx9UL+GDtdBUiJS0ozM3iwsoiXqpv5q+vXZjq6SSEipISlcHwnbpKnO7zsqWuiWd2neT5uia6+n1MyfFw1cJyrls8g6sWlmvNOSUtWbmgjPu31NPZ56VwAvyOqihlODuOtlE5LZ/yqckvqvsnefZd4+k+fr+7kU27TvLKgWa8fkPZlGw+euFMrl08g8vml06YxWNl8rJyQRn/vrme1w60cO3iGameTlxUlDKc//WDV6iYmsO2L1+T9LVe/+QL3x1q7ubZ3c760JtH2zAG5pbk86nLqrhu8QwumjtNNxMrE4qL5haTl+Xm5frmzBElEVkD/BvgBh40xnwr7PUc4OfAxUAL8HFjzGH72t3AbYAf+LwxZlMsmyJSDawHSoA3gU8aYwaSHUNE5tj+M4AA8IAx5t+SvUETmYD1dBpP94/o+n5f5qeE9/v8bDvUypa9TWypa+RQczcAi2cV8sVrzuXaxdNZOH3qhCrToiih5HjcLK8u4eUDLameSkLEFSURcQP3Ax8EGoDXRWSDMWZ3SLfbgDZjzAIRWQfcC3xcRGqBdcBiYBbwexE5114Tzea9wH3GmPUi8iNr+4cjGMMH/LUx5k0RmQq8ISLPhs07o+nx+s/q+t6Bs7s+XTnV2ceWvY1s3tvIy/XNdA/4yfa4uHReKZ+6rIpViyqYUzLxTuxUlGhcOr+Ub/1uL81d/ZSl+f64RDyl5UC9MeYggIisB9YCoR/ua4H/Zx8/AXxfnK+Wa4H1xph+4JCI1Ft7RLIpInuAVcAnbJ+Hrd0fJjuGMeZV4ASAMea0tT07bN4ZTXe/76yu77WiNtEdJX/A8HZD+6AQ7TreCcCsolxuuGg2qxZVcNn8MvKydX1IyUyWV5cAsO1QKx+6YGaKZxObRERpNnAs5HkDsCJaH2OMT0Q6gFLb/lrYtbPt40g2S4F2Y4wvQv+RjAGAiFQBFwFbI71BEbkduB1g7ty5kbpMSLrOUpR6rKdkJmD8rqPXy4v7mtiyt5Hn9zXR2j2AS+Dic6bxd2sWsmpRhYbllEnDBbOLyMtys/VgS0aIUqS/2vBPqWh9orVHKn0cq/9IxnAuEpkC/Br4gjGmM0JfjDEPAA8ALFu2bOJ9AkfhbD2lvrMM/40nxhj2nepi895GttQ18saRNvwBw7T8LK5aWMFVC8u58txyivN1/5Ay+chyu7j4nGlsPdSa6qnEJRFRagDmhDyvBI5H6dMgIh6gCGiNc22k9magWEQ81lsK7Z/0GCKShSNIjxhjfpPAe80oTvc5opTtGdnxBz0DzvXpqtK9A35ePdjsCNHeJt5r7wWgdmYhf3nlfK5eVMHSOcWaLacoOCcWf/f3+2jvGUjrL2eJiNLrQI3NinsPJ6ngE2F9NgC3Aq8CNwKbjTFGRDYAvxSR7+IkIdQA23C8mzNs2mu2WBvrrc0nRzKGXW96CNhjjPlusjcmE+js9QKQP8K1kg57fTpF7xraegbXhl450EK/L0B+tpuVC8q4Y9UCrl5YwYyi3FRPU1HSjuXVJRgDrx9u44NpfBptXFGy6zd3AJtw0rd/YozZJSJfB7YbYzbgfPj/wiYZtOKIDLbf4zjJBT7gc8YYP0Akm3bIO4H1IvJNYIe1TbJjiMjlwCeBnSLylrXxf40xG0d2qyYeQU8pPyt5UeoZ8NHnTf0+JZ8/wBtH2thc18iWvY3sO9UFwDml+dy8fC6rFlWwYl6JbmJVlDhcOKeYbI+LrQdbJrYoAdgP8o1hbV8NedwH3BTl2nuAexKxadsPMpShF9qe1BjGmJeIvN40aejsczyd3BF4Si1dA4OPx9tRaunq5/m6JjbXNfLiviZO9/nIcgvLq0v4k2VzuHpRBfPKCjRJQVGSIDfLzdI5xWw7nN7rSlrRIYNp7XaEZSRexEg33I6E4NlDm21Y7u2GdoyB8qk5XH/+DFYtqmDlgjKtLacoZ8kl1SV8f0s9p/u8afv3pKKUwRy3C//Byg7JcNhWNphbkj8mi0pd/T5e2t/MFpst13i6HxFYUlnMF1afy6pFFSyeVYhLkxQUZdRYXl1KYHM9bxxp46qFFameTkRUlDKY4+19AHhHcARFfVMXbpcwtyR/MAx4thxr7eH3e06xeW8jrx1swes3TM3xcMW55Vy9yEnbTvfd5ooykXnfOcV4XMLWQ60qSsr4EggY9pxwtmX5R+ApbT/cyvmzi8hyj9xT8fkD7DjWznN7Gnluzyn2NzpJCvPLC/j0ymquXljBsqppZLlHlrKuKEpy5Gd7WFJZxNaD6VsHT0UpQ9l1vJPT/T5cAr4kjzVv7OzjzaPt/MWV89h9vDOp6F2f18/zdY1s2nWKLXWNtPd48biEFfNKWLd8LqsXVVBVVpDku1EUZbRYXl3Kg384SO+APy1La6koZSg/feUQ2W4X19RWsP1wW1LXPvDiQfwBw40Xz+EbJ3bHPU+pd8ARot/uPMHmvY30DPiZlp/FqkUVrF40nQ+cWzYhDhdTlMnAinkl/OiFA7x5tI2VC8pSPZ0zUFHKQB7ddpTfvPkef3HlfLr7ffiSCN89u/sUP3n5EDcvn0N1WQFul0T1tHY2dLD+9aNseOs4p/t9lBZkc8NFs/nwBTNZUV2CR8NyipJ2LDtnGi6BrQdbVJSUsaXf5+efNu7lZ68c5spzy/niB2v41u/2JnRYnz9gePAPB/n2pjouqCzmyx+uBSDH42LAN/z6l+ub+bfn9rPtUCs5HhcfXjKTG99XyYp5pVrSR1HSnKm5WSyeVcRraVoHT0UpQ3i+rpF/+J/dHGru5jMrq7nr+kVke1x4Yng64OwRemFfE/+0cS91p05z/fkzuPfGJUzJcX41cjzuwcP+WrsH+Mp/v8tvd55gemEOX/lILTdeXElRnobmFGUisaK6hJ+/doQ+r5/cEVR8GUtUlCY42w+38u+b63lhXxPzygr4+WeWc8W55YOve9wufBFSwvu8fv7n7eP89OXD7D7RydySfO7/xPv40AUzhlVKyPa46PcFONnRxyf+4zUa2nr5m2vP5c8+MC/tfpkVRUmMFfNKefClQ7x9rJ0V80pTPZ1hqChNQLz+AM/taeSnLx9i66FWSgqyufv6RXx6ZfUZFcGzXILXbzDGICI0nu7jkdeO8sjWIzR3DXDu9Cl8648u4I/eVxmxmniOx0XvgI+/fOQNTnX28cs/X8GyqpLxequKoowBy6tKEIGth1pVlJSRU9/Yxa/eOMav32iguWuAmUW5fOUjtdy8fA752ZH/K4PJBq3dA/zLs/v41fZjeP2GVYsq+MzKalYuKI1ZQy4ny0X3gJ8dR9v5148vVUFSlAygKD+LhdOnsvVQC87BCumDilIaY4zhnYYONu06yTO7T1Hf6FRZWLWogpuXz+GKmvK4GW4eu/n1j3/4Csfaerl5+Rw+s7KaeeVTEppDsG5eTcUU1i6ddXZvSFGUtOGSeaWsf/0oA77AiM9cGwtUlNIMrz/A1oOtPLP7JM/sOsXJzj7cLmFFdQmfvOQcrj9/BhWFiZ8XlOVyftkOt/Scsd6UCO+bWwzA51fXaFVuRckgVlSX8LNXDrPzvQ4uPmdaqqcziIpSGtAz4OPFfU1s2nWK5/acorPPR26WiyvPLedvaxey+ryKEZ8UGdyxfWFlUdKCBHDVwgq2fXk1FVP14DxFySSWVzuh+K2HWlSUFGjrHuD3e06xadcp/rC/iX5fgOL8LD5YO4PrFk/nAzXlo1ICZOWCMiqn5fG1jy0esQ0VJEXJPEqn5LCgYgpbD7byV1elejZDqCiNI42dfWzadZKnd53ktYOt+AOGWUW53Lx8Ltcuns7yqtGvglBdVsBLd64aVZuKomQGK6pLePKt4/j8gbSpwKKiNMb0ef1s2nWSX21v4OUDzRgD88oL+Isr53Hd4hlcMLtI12oURUkJK+aV8sjWo+w+0cmSyuJUTwdQURoz2nsG+Nkrh/nZK4dp7/FSOS2Pz6+q4SNLZlIzfWqqp6coisIldl3p1QMtKkqZij9g+OXWI/zzpjpO9/m45rzpfHplFZfOK9VTVBVFSSsqCnOpnVnIs7tP8dkr56d6OgAkFEQUkTUiUici9SJyV4TXc0TkMfv6VhGpCnntbtteJyLXxbMpItXWxn5rM3u0xxgr2nsG+NRPt/GVJ3dxYWUxT3/hAzx46zJWLihTQVIUJS1Zc/4M3jjaRuPpvlRPBUhAlETEDdwPXA/UAjeLSG1Yt9uANmPMAuA+4F57bS2wDlgMrAF+ICLuODbvBe4zxtQAbdb2aI8x6rR1D3DTj15l68FW/umPLuAXty1n0YzCsRpOURRlVLhu8QyMgafePpHqqQCJeUrLgXpjzEFjzACwHlgb1mct8LB9/ASwWpzV+7XAemNMvzHmEFBv7UW0aa9ZZW1gbd4wmmMkdluSY8AX4FM/e50jrT387NPv5+blczV5QVGUCcG506ewvKqE723ez/H23lRPJ6E1pdnAsZDnDcCKaH2MMT4R6QBKbftrYdfOto8j2SwF2o0xvgj9R2uMMxCR24Hb7dMuEWkBmiP1jcfKe0ZyVdpSxgjvQwai92IIvRcOGXcfZn9txJeWAeeMxhwSEaVIX/nDD+iJ1idaeyQPLVb/0RzjzEZjHgAeCD4Xke3GmGWR+k4m9D4MofdiCL0XDnofhrD3omo0bCUSvmsA5oQ8rwSOR+sjIh6gCGiNcW209mag2NoIH2u0xlAURVHSlERE6XWgxmbFZeMkFWwI67MBuNU+vhHYbIwxtn2dzZyrxqmRvi2aTXvNFmsDa/PJ0RwjsduiKIqipIK44Tu7fnMHsAlwAz8xxuwSka8D240xG4CHgF+ISD2O97LOXrtLRB4HdgM+4HPGGD9AJJt2yDuB9SLyTWCHtc0ojxGPTCcqJAAAA8RJREFUB+J3mRTofRhC78UQei8c9D4MMWr3QhxnQ1EURVFST3pU4FMURVEUVJQURVGUNEJFKYTxLkuUCkTkJyLSKCLvhrSViMiztrTTsyIyzbaLiHzP3o93ROR9IdfcavvvF5FbI42VzojIHBHZIiJ7RGSXiPwf2z4Z70WuiGwTkbftvfgH2z5qJb8mErYizA4Reco+n6z34bCI7BSRt0Rku20b+78PY4z+c9bV3MABYB6QDbwN1KZ6XmPwPq8A3ge8G9L2z8Bd9vFdwL328YeA3+HsBbsE2GrbS4CD9uc0+3haqt9bkvdhJvA++3gqsA+nHNVkvBcCTLGPs4Ct9j0+Dqyz7T8C/tI+/ivgR/bxOuAx+7jW/t3kANX278md6vc3gvvxJeCXwFP2+WS9D4eBsrC2Mf/7UE9piHErS5RKjDEv4mQvhhJawim8tNPPjcNrOHvIZgLXAc8aY1qNMW3Aszh1BycMxpgTxpg37ePTwB6cSiCT8V4YY0yXfZpl/xlGr+TXhEFEKoEPAw/a56NZ+iwTGPO/DxWlISKVU5odpW+mMd0YcwKcD2ugwrZHuycZda9s2OUiHA9hUt4LG7J6C2jE+eA4QIIlv4DQkl8T/V78K/B3QMA+T7j0GZl1H8D5YvKMiLwhTik2GIe/Dz1PaYhEyilNNpIt7TThEJEpwK+BLxhjOiV6Id2MvhfG2du3VESKgf8CzovUzf7MyHshIh8BGo0xb4jIVcHmCF0z+j6EsNIYc1xEKoBnRWRvjL6jdi/UUxpiMpclOmVdbezPRtue0SWcRCQLR5AeMcb8xjZPynsRxBjTDjyPsy4wWiW/JgorgY+JyGGc8P0qHM9pst0HAIwxx+3PRpwvKssZh78PFaUhJnNZotASTuGlnf7UZtZcAnRYl30TcK2ITLPZN9fatgmDjf0/BOwxxnw35KXJeC/KrYeEiOQB1+CssY1Wya8JgTHmbmNMpXEKi67DeV//m0l2HwBEpEBEpgYf4/xev8t4/H2kOsMjnf7hZJDsw4mnfznV8xmj9/gocALw4nyLuQ0nDv4csN/+LLF9BeegxAPATmBZiJ3P4Czg1gOfTvX7GsF9uBwnjPAO8Jb996FJei+W4JT0esd+8HzVts/D+TCtB34F5Nj2XPu83r4+L8TWl+09qgOuT/V7O4t7chVD2XeT7j7Y9/y2/bcr+Hk4Hn8fWmZIURRFSRs0fKcoiqKkDSpKiqIoStqgoqQoiqKkDSpKiqIoStqgoqQoiqKkDSpKiqIoStqgoqQoiqKkDf8/Z+T2JUHicG0AAAAASUVORK5CYII=\n", "text/plain": [ "<Figure size 432x288 with 1 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.clf()\n", "# plt.plot(x_part, calcs, '.')\n", "plt.plot(test_q, calcs_test, label = 'pdf')\n", "# plt.plot(test_q, f0_y, label = '0')\n", "# plt.plot(test_q, fT_y, label = 'T')\n", "# plt.plot(test_q, fplus_y, label = '+')\n", "# plt.plot(test_q, res_y, label = 'res')\n", "plt.legend()\n", "plt.ylim(0.0, 1.5e-6)\n", "# plt.yscale('log')\n", "# plt.xlim(770, 785)\n", "plt.savefig('test.png')\n", "# print(jpsi_width)" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [], "source": [ "\n", "\n", "# probs = mixture.prob(test_q)\n", "# probs_np = zfit.run(probs)\n", "# probs_np *= np.max(calcs_test) / np.max(probs_np)\n", "# plt.figure()\n", "# plt.semilogy(test_q, probs_np,label=\"importance sampling\")\n", "# plt.semilogy(test_q, calcs_test, label = 'pdf')\n" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [], "source": [ "# 0.213/(0.00133+0.213+0.015)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Adjust scaling of different parts" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [], "source": [ "total_f.update_integration_options(draws_per_dim=200000, mc_sampler=None)\n", "# inte = total_f.integrate(limits = (x_min, x_max), norm_range=False)\n", "# inte_fl = zfit.run(inte)\n", "# print(inte_fl/4500)\n", "# print(pdg[\"jpsi_BR\"]/pdg[\"NR_BR\"], inte_fl*pdg[\"psi2s_auc\"]/pdg[\"NR_auc\"])" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [], "source": [ "# # print(\"jpsi:\", inte_fl)\n", "# # print(\"Increase am by factor:\", np.sqrt(pdg[\"jpsi_BR\"]/pdg[\"NR_BR\"]*pdg[\"NR_auc\"]/inte_fl))\n", "# # print(\"New amp:\", pdg[\"jpsi\"][3]*np.sqrt(pdg[\"jpsi_BR\"]/pdg[\"NR_BR\"]*pdg[\"NR_auc\"]/inte_fl))\n", "\n", "# # print(\"psi2s:\", inte_fl)\n", "# # print(\"Increase am by factor:\", np.sqrt(pdg[\"psi2s_BR\"]/pdg[\"NR_BR\"]*pdg[\"NR_auc\"]/inte_fl))\n", "# # print(\"New amp:\", pdg[\"psi2s\"][3]*np.sqrt(pdg[\"psi2s_BR\"]/pdg[\"NR_BR\"]*pdg[\"NR_auc\"]/inte_fl))\n", "\n", "# name = \"phi\"\n", "\n", "# print(name+\":\", inte_fl)\n", "# print(\"Increase am by factor:\", np.sqrt(pdg[name+\"_BR\"]/pdg[\"NR_BR\"]*pdg[\"NR_auc\"]/inte_fl))\n", "# print(\"New amp:\", pdg[name][3]*np.sqrt(pdg[name+\"_BR\"]/pdg[\"NR_BR\"]*pdg[\"NR_auc\"]/inte_fl))\n", "\n", "\n", "# # print(x_min)\n", "# # print(x_max)\n", "# # # total_f.update_integration_options(draws_per_dim=2000000, mc_sampler=None)\n", "# # total_f.update_integration_options(mc_sampler=lambda dim, num_results,\n", "# # dtype: tf.random_uniform(maxval=1., shape=(num_results, dim), dtype=dtype),\n", "# # draws_per_dim=1000000)\n", "# # # _ = []\n", "\n", "# # # for i in range(10):\n", "\n", "# # # inte = total_f.integrate(limits = (x_min, x_max))\n", "# # # inte_fl = zfit.run(inte)\n", "# # # print(inte_fl)\n", "# # # _.append(inte_fl)\n", "\n", "# # # print(\"mean:\", np.mean(_))\n", "\n", "# # _ = time.time()\n", "\n", "# # inte = total_f.integrate(limits = (x_min, x_max))\n", "# # inte_fl = zfit.run(inte)\n", "# # print(inte_fl)\n", "# # print(\"Time taken: {}\".format(display_time(int(time.time() - _))))\n", "\n", "# print(pdg['NR_BR']/pdg['NR_auc']*inte_fl)\n", "# print(0.25**2*4.2/1000)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Sampling\n", "## Mixture distribution for sampling" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [], "source": [ "\n", " \n", "# print(list_of_borders[:9])\n", "# print(list_of_borders[-9:])\n", "\n", "\n", "class UniformSampleAndWeights(zfit.util.execution.SessionHolderMixin):\n", " def __call__(self, limits, dtype, n_to_produce):\n", " # n_to_produce = tf.cast(n_to_produce, dtype=tf.int32)\n", " low, high = limits.limit1d\n", " low = tf.cast(low, dtype=dtype)\n", " high = tf.cast(high, dtype=dtype)\n", "# uniform = tfd.Uniform(low=low, high=high)\n", "# uniformjpsi = tfd.Uniform(low=tf.constant(3080, dtype=dtype), high=tf.constant(3112, dtype=dtype))\n", "# uniformpsi2s = tfd.Uniform(low=tf.constant(3670, dtype=dtype), high=tf.constant(3702, dtype=dtype))\n", "\n", "# list_of_borders = []\n", "# _p = []\n", "# splits = 10\n", "\n", "# _ = np.linspace(x_min, x_max, splits)\n", "\n", "# for i in range(splits):\n", "# list_of_borders.append(tf.constant(_[i], dtype=dtype))\n", "# _p.append(tf.constant(1/splits, dtype=dtype))\n", " \n", "# mixture = tfd.MixtureSameFamily(mixture_distribution=tfd.Categorical(probs=_p[:(splits-1)]),\n", "# components_distribution=tfd.Uniform(low=list_of_borders[:(splits-1)], \n", "# high=list_of_borders[-(splits-1):]))\n", " mixture = tfd.MixtureSameFamily(mixture_distribution=tfd.Categorical(probs=[tf.constant(0.05, dtype=dtype),\n", " tf.constant(0.93, dtype=dtype),\n", " tf.constant(0.05, dtype=dtype),\n", " tf.constant(0.065, dtype=dtype),\n", " tf.constant(0.04, dtype=dtype),\n", " tf.constant(0.05, dtype=dtype)]),\n", " components_distribution=tfd.Uniform(low=[tf.constant(x_min, dtype=dtype), \n", " tf.constant(3090, dtype=dtype),\n", " tf.constant(3681, dtype=dtype), \n", " tf.constant(3070, dtype=dtype),\n", " tf.constant(1000, dtype=dtype),\n", " tf.constant(3660, dtype=dtype)], \n", " high=[tf.constant(x_max, dtype=dtype),\n", " tf.constant(3102, dtype=dtype), \n", " tf.constant(3691, dtype=dtype),\n", " tf.constant(3110, dtype=dtype),\n", " tf.constant(1040, dtype=dtype),\n", " tf.constant(3710, dtype=dtype)]))\n", "# dtype = tf.float64\n", "# mixture = tfd.MixtureSameFamily(mixture_distribution=tfd.Categorical(probs=[tf.constant(0.04, dtype=dtype),\n", "# tf.constant(0.90, dtype=dtype),\n", "# tf.constant(0.02, dtype=dtype),\n", "# tf.constant(0.07, dtype=dtype),\n", "# tf.constant(0.02, dtype=dtype)]),\n", "# components_distribution=tfd.Uniform(low=[tf.constant(x_min, dtype=dtype), \n", "# tf.constant(3089, dtype=dtype),\n", "# tf.constant(3103, dtype=dtype), \n", "# tf.constant(3681, dtype=dtype),\n", "# tf.constant(3691, dtype=dtype)], \n", "# high=[tf.constant(3089, dtype=dtype),\n", "# tf.constant(3103, dtype=dtype), \n", "# tf.constant(3681, dtype=dtype),\n", "# tf.constant(3691, dtype=dtype), \n", "# tf.constant(x_max, dtype=dtype)]))\n", "# mixture = tfd.Uniform(tf.constant(x_min, dtype=dtype), tf.constant(x_max, dtype=dtype))\n", "# sample = tf.random.uniform((n_to_produce, 1), dtype=dtype)\n", " sample = mixture.sample((n_to_produce, 1))\n", "# sample = tf.random.uniform((n_to_produce, 1), dtype=dtype)\n", " weights = mixture.prob(sample)[:,0]\n", "# weights = tf.broadcast_to(tf.constant(1., dtype=dtype), shape=(n_to_produce,))\n", " # sample = tf.expand_dims(sample, axis=-1)\n", "# print(sample, weights)\n", " \n", "# weights = tf.ones(shape=(n_to_produce,), dtype=dtype)\n", " weights_max = None\n", " thresholds = tf.random_uniform(shape=(n_to_produce,), dtype=dtype)\n", " return sample, thresholds, weights, weights_max, n_to_produce" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [], "source": [ "# total_f._sample_and_weights = UniformSampleAndWeights" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [], "source": [ "# 0.00133/(0.00133+0.213+0.015)*(x_max-3750)/(x_max-x_min)" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [], "source": [ "# zfit.settings.set_verbosity(10)" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "scrolled": false }, "outputs": [], "source": [ "# # zfit.run.numeric_checks = False \n", "\n", "# nr_of_toys = 1\n", "# nevents = int(pdg[\"number_of_decays\"])\n", "# nevents = pdg[\"number_of_decays\"]\n", "# event_stack = 1000000\n", "# # zfit.settings.set_verbosity(10)\n", "# calls = int(nevents/event_stack + 1)\n", "\n", "# total_samp = []\n", "\n", "# start = time.time()\n", "\n", "# sampler = total_f.create_sampler(n=event_stack)\n", "\n", "# for toy in range(nr_of_toys):\n", " \n", "# dirName = 'data/zfit_toys/toy_{0}'.format(toy)\n", " \n", "# if not os.path.exists(dirName):\n", "# os.mkdir(dirName)\n", "# print(\"Directory \" , dirName , \" Created \")\n", "\n", "# for call in range(calls):\n", "\n", "# sampler.resample(n=event_stack)\n", "# s = sampler.unstack_x()\n", "# sam = zfit.run(s)\n", "# # clear_output(wait=True)\n", "\n", "# c = call + 1\n", " \n", "# print(\"{0}/{1} of Toy {2}/{3}\".format(c, calls, toy+1, nr_of_toys))\n", "# print(\"Time taken: {}\".format(display_time(int(time.time() - start))))\n", "# print(\"Projected time left: {}\".format(display_time(int((time.time() - start)/(c+calls*(toy))*((nr_of_toys-toy)*calls-c)))))\n", "\n", "# with open(\"data/zfit_toys/toy_{0}/{1}.pkl\".format(toy, call), \"wb\") as f:\n", "# pkl.dump(sam, f, pkl.HIGHEST_PROTOCOL)" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [], "source": [ "# with open(r\"data/zfit_toys/toy_0/0.pkl\", \"rb\") as input_file:\n", "# sam = pkl.load(input_file)\n", "# print(sam[:10])\n", "\n", "# with open(r\"data/zfit_toys/toy_0/1.pkl\", \"rb\") as input_file:\n", "# sam2 = pkl.load(input_file)\n", "# print(sam2[:10])\n", "\n", "# print(np.sum(sam-sam2))" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [], "source": [ "# print(\"Time to generate full toy: {} s\".format(int(time.time()-start)))\n", "\n", "# total_samp = []\n", "\n", "# for call in range(calls):\n", "# with open(r\"data/zfit_toys/toy_0/{}.pkl\".format(call), \"rb\") as input_file:\n", "# sam = pkl.load(input_file)\n", "# total_samp = np.append(total_samp, sam)\n", "\n", "# total_samp = total_samp.astype('float64')\n", "\n", "# data2 = zfit.data.Data.from_numpy(array=total_samp[:int(nevents)], obs=obs)\n", "\n", "# data3 = zfit.data.Data.from_numpy(array=total_samp, obs=obs)\n", "\n", "# print(total_samp[:nevents].shape)" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [], "source": [ "# plt.clf()\n", "\n", "# bins = int((x_max-x_min)/7)\n", "\n", "# # calcs = zfit.run(total_test_tf(samp))\n", "# print(total_samp[:nevents].shape)\n", "\n", "# plt.hist(total_samp[:nevents], bins = bins, range = (x_min,x_max), label = 'data')\n", "# # plt.plot(test_q, calcs_test*nevents , label = 'pdf')\n", "\n", "# # plt.plot(sam, calcs, '.')\n", "# # plt.plot(test_q, calcs_test)\n", "# # plt.yscale('log')\n", "# plt.ylim(0, 200)\n", "# # plt.xlim(3080, 3110)\n", "\n", "# plt.legend()\n", "\n", "# plt.savefig('test2.png')" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [], "source": [ "# sampler = total_f.create_sampler(n=nevents)\n", "# nll = zfit.loss.UnbinnedNLL(model=total_f, data=sampler, fit_range = (x_min, x_max))\n", "\n", "# # for param in pdf.get_dependents():\n", "# # param.set_value(initial_value)\n", "\n", "# sampler.resample(n=nevents)\n", "\n", "# # Randomise initial values\n", "# # for param in pdf.get_dependents():\n", "# # param.set_value(random value here)\n", "\n", "# # Minimise the NLL\n", "# minimizer = zfit.minimize.MinuitMinimizer(verbosity = 10)\n", "# minimum = minimizer.minimize(nll)" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [], "source": [ "# jpsi_width" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [], "source": [ "# plt.hist(sample, weights=1 / prob(sample))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Fitting" ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [], "source": [ "# start = time.time()\n", "\n", "# for param in total_f.get_dependents():\n", "# param.randomize()\n", " \n", "# # for param in total_f.get_dependents():\n", "# # print(zfit.run(param))\n", " \n", "# nll = zfit.loss.UnbinnedNLL(model=total_f, data=data2, fit_range = (x_min, x_max))\n", "\n", "# minimizer = zfit.minimize.MinuitMinimizer(verbosity = 5)\n", "# # minimizer._use_tfgrad = False\n", "# result = minimizer.minimize(nll)\n", "\n", "# # param_errors = result.error()\n", "\n", "# # for var, errors in param_errors.items():\n", "# # print('{}: ^{{+{}}}_{{{}}}'.format(var.name, errors['upper'], errors['lower']))\n", "\n", "# print(\"Function minimum:\", result.fmin)\n", "# # print(\"Results:\", result.params)\n", "# print(\"Hesse errors:\", result.hesse())" ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [], "source": [ "# print(\"Time taken for fitting: {}\".format(display_time(int(time.time()-start))))\n", "\n", "# # probs = total_f.pdf(test_q)\n", "\n", "# calcs_test = zfit.run(probs)\n", "# res_y = zfit.run(jpsi_res(test_q))" ] }, { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [], "source": [ "# plt.clf()\n", "# # plt.plot(x_part, calcs, '.')\n", "# plt.plot(test_q, calcs_test, label = 'pdf')\n", "# # plt.plot(test_q, res_y, label = 'res')\n", "# plt.legend()\n", "# plt.ylim(0.0, 10e-6)\n", "# # plt.yscale('log')\n", "# # plt.xlim(3080, 3110)\n", "# plt.savefig('test3.png')\n", "# # print(jpsi_width)" ] }, { "cell_type": "code", "execution_count": 31, "metadata": {}, "outputs": [], "source": [ "# _tot = 4.37e-7+6.02e-5+4.97e-6\n", "# _probs = []\n", "# _probs.append(6.02e-5/_tot)\n", "# _probs.append(4.97e-6/_tot)\n", "# _probs.append(4.37e-7/_tot)\n", "# print(_probs)" ] }, { "cell_type": "code", "execution_count": 32, "metadata": {}, "outputs": [], "source": [ "# dtype = 'float64'\n", "# # mixture = tfd.Uniform(tf.constant(x_min, dtype=dtype), tf.constant(x_max, dtype=dtype))\n", "# mixture = tfd.MixtureSameFamily(mixture_distribution=tfd.Categorical(probs=[tf.constant(0.007, dtype=dtype),\n", "# tf.constant(0.917, dtype=dtype),\n", "# tf.constant(0.076, dtype=dtype)]),\n", "# components_distribution=tfd.Uniform(low=[tf.constant(x_min, dtype=dtype), \n", "# tf.constant(3080, dtype=dtype),\n", "# tf.constant(3670, dtype=dtype)], \n", "# high=[tf.constant(x_max, dtype=dtype),\n", "# tf.constant(3112, dtype=dtype), \n", "# tf.constant(3702, dtype=dtype)]))\n", "# # for i in range(10):\n", "# # print(zfit.run(mixture.prob(mixture.sample((10, 1)))))" ] }, { "cell_type": "code", "execution_count": 33, "metadata": {}, "outputs": [], "source": [ "# print((zfit.run(jpsi_p)%(2*np.pi))/np.pi)\n", "# print((zfit.run(psi2s_p)%(2*np.pi))/np.pi)" ] }, { "cell_type": "code", "execution_count": 34, "metadata": {}, "outputs": [], "source": [ "# def jpsi_res(q):\n", "# return resonance(q, _mass = jpsi_mass, scale = jpsi_scale,\n", "# phase = jpsi_phase, width = jpsi_width)\n", "\n", "# def psi2s_res(q):\n", "# return resonance(q, _mass = psi2s_mass, scale = psi2s_scale,\n", "# phase = psi2s_phase, width = psi2s_width)\n", " \n", "# def p3770_res(q):\n", "# return resonance(q, _mass = p3770_mass, scale = p3770_scale,\n", "# phase = p3770_phase, width = p3770_width)\n", " \n", "# def p4040_res(q):\n", "# return resonance(q, _mass = p4040_mass, scale = p4040_scale,\n", "# phase = p4040_phase, width = p4040_width)\n", " \n", "# def p4160_res(q):\n", "# return resonance(q, _mass = p4160_mass, scale = p4160_scale,\n", "# phase = p4160_phase, width = p4160_width)\n", " \n", "# def p4415_res(q):\n", "# return resonance(q, _mass = p4415_mass, scale = p4415_scale,\n", "# phase = p4415_phase, width = p4415_width)" ] }, { "cell_type": "code", "execution_count": 35, "metadata": {}, "outputs": [], "source": [ "# 0.15**2*4.2/1000\n", "# result.hesse()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Constraints" ] }, { "cell_type": "code", "execution_count": 36, "metadata": {}, "outputs": [], "source": [ "# 1. Constraint - Real part of sum of Psi contrib and D contribs\n", "\n", "sum_list = []\n", "\n", "sum_list.append(ztf.to_complex(jpsi_s) * tf.exp(tf.complex(ztf.constant(0.0), jpsi_p)) * ztf.to_complex(jpsi_w / (tf.pow(jpsi_m,3))))\n", "sum_list.append(ztf.to_complex(psi2s_s) * tf.exp(tf.complex(ztf.constant(0.0), psi2s_p)) * ztf.to_complex(psi2s_w / (tf.pow(psi2s_m,3))))\n", "sum_list.append(ztf.to_complex(p3770_s) * tf.exp(tf.complex(ztf.constant(0.0), p3770_p)) * ztf.to_complex(p3770_w / (tf.pow(p3770_m,3))))\n", "sum_list.append(ztf.to_complex(p4040_s) * tf.exp(tf.complex(ztf.constant(0.0), p4040_p)) * ztf.to_complex(p4040_w / (tf.pow(p4040_m,3))))\n", "sum_list.append(ztf.to_complex(p4160_s) * tf.exp(tf.complex(ztf.constant(0.0), p4160_p)) * ztf.to_complex(p4160_w / (tf.pow(p4160_m,3))))\n", "sum_list.append(ztf.to_complex(p4415_s) * tf.exp(tf.complex(ztf.constant(0.0), p4415_p)) * ztf.to_complex(p4415_w / (tf.pow(p4415_m,3))))\n", "sum_list.append(ztf.to_complex(DDstar_s) * tf.exp(tf.complex(ztf.constant(0.0), DDstar_p)) * (ztf.to_complex(1.0 / (10.0*tf.pow(Dstar_m,2)) + 1.0 / (10.0*tf.pow(D_m,2)))))\n", "sum_list.append(ztf.to_complex(Dbar_s) * tf.exp(tf.complex(ztf.constant(0.0), Dbar_p)) * ztf.to_complex(1.0 / (6.0*tf.pow(Dbar_m,2))))\n", "\n", "sum_ru_1 = ztf.to_complex(ztf.constant(0.0))\n", "\n", "for part in sum_list:\n", " sum_ru_1 += part\n", "\n", "sum_1 = tf.math.real(sum_ru_1)\n", "constraint1 = zfit.constraint.GaussianConstraint(params = sum_1, mu = ztf.constant(1.7*10**-8), \n", " sigma = ztf.constant(2.2*10**-8))\n", "\n", "# 2. Constraint - Abs. of sum of Psi contribs and D contribs\n", "\n", "sum_2 = tf.abs(sum_ru_1)\n", "constraint2 = tf.cond(tf.greater_equal(sum_2, 5.0e-8), lambda: 100000., lambda: 0.)\n", "\n", "# 3. Constraint - Maximum eta of D contribs\n", "\n", "constraint3_0 = tf.cond(tf.greater_equal(tf.abs(Dbar_s), 0.2), lambda: 100000., lambda: 0.)\n", "\n", "constraint3_1 = tf.cond(tf.greater_equal(tf.abs(DDstar_s), 0.2), lambda: 100000., lambda: 0.)\n", "\n", "# 4. Constraint - Formfactor multivariant gaussian covariance fplus\n", "\n", "Cov_matrix = [[ztf.constant( 1.), ztf.constant( 0.45), ztf.constant( 0.19), ztf.constant(0.857), ztf.constant(0.598), ztf.constant(0.531), ztf.constant(0.752), ztf.constant(0.229), ztf.constant(0,117)],\n", " [ztf.constant( 0.45), ztf.constant( 1.), ztf.constant(0.677), ztf.constant(0.708), ztf.constant(0.958), ztf.constant(0.927), ztf.constant(0.227), ztf.constant(0.443), ztf.constant(0.287)],\n", " [ztf.constant( 0.19), ztf.constant(0.677), ztf.constant( 1.), ztf.constant(0.595), ztf.constant(0.770), ztf.constant(0.819),ztf.constant(-0.023), ztf.constant( 0.07), ztf.constant(0.196)],\n", " [ztf.constant(0.857), ztf.constant(0.708), ztf.constant(0.595), ztf.constant( 1.), ztf.constant( 0.83), ztf.constant(0.766), ztf.constant(0.582), ztf.constant(0.237), ztf.constant(0.192)],\n", " [ztf.constant(0.598), ztf.constant(0.958), ztf.constant(0.770), ztf.constant( 0.83), ztf.constant( 1.), ztf.constant(0.973), ztf.constant(0.324), ztf.constant(0.372), ztf.constant(0.272)],\n", " [ztf.constant(0.531), ztf.constant(0.927), ztf.constant(0.819), ztf.constant(0.766), ztf.constant(0.973), ztf.constant( 1.), ztf.constant(0.268), ztf.constant(0.332), ztf.constant(0.269)],\n", " [ztf.constant(0.752), ztf.constant(0.227),ztf.constant(-0.023), ztf.constant(0.582), ztf.constant(0.324), ztf.constant(0.268), ztf.constant( 1.), ztf.constant( 0.59), ztf.constant(0.515)],\n", " [ztf.constant(0.229), ztf.constant(0.443), ztf.constant( 0.07), ztf.constant(0.237), ztf.constant(0.372), ztf.constant(0.332), ztf.constant( 0.59), ztf.constant( 1.), ztf.constant(0.897)],\n", " [ztf.constant(0.117), ztf.constant(0.287), ztf.constant(0.196), ztf.constant(0.192), ztf.constant(0.272), ztf.constant(0.269), ztf.constant(0.515), ztf.constant(0.897), ztf.constant( 1.)]]\n", "\n", "def triGauss(val1,val2,val3,m = Cov_matrix):\n", "\n", " mean1 = ztf.constant(0.466)\n", " mean2 = ztf.constant(-0.885)\n", " mean3 = ztf.constant(-0.213)\n", " sigma1 = ztf.constant(0.014)\n", " sigma2 = ztf.constant(0.128)\n", " sigma3 = ztf.constant(0.548)\n", " x1 = (val1-mean1)/sigma1\n", " x2 = (val2-mean2)/sigma2\n", " x3 = (val3-mean3)/sigma3\n", " rho12 = m[0][1]\n", " rho13 = m[0][2]\n", " rho23 = m[1][2]\n", " w = x1*x1*(rho23*rho23-1) + x2*x2*(rho13*rho13-1)+x3*x3*(rho12*rho12-1)+2*(x1*x2*(rho12-rho13*rho23)+x1*x3*(rho13-rho12*rho23)+x2*x3*(rho23-rho12*rho13))\n", " d = 2*(rho12*rho12+rho13*rho13+rho23*rho23-2*rho12*rho13*rho23-1)\n", " \n", " fcn = -w/d\n", " chisq = -2*fcn\n", " return chisq*10000.\n", "\n", "constraint4 = triGauss(bplus_0, bplus_1, bplus_2)\n", "\n", "# 5. Constraint - Abs. of sum of light contribs\n", "\n", "sum_list_5 = []\n", "\n", "sum_list_5.append(rho_s*rho_w/rho_m)\n", "sum_list_5.append(omega_s*omega_w/omega_m)\n", "sum_list_5.append(phi_s*phi_w/phi_m)\n", "\n", "\n", "sum_ru_5 = ztf.constant(0.0)\n", "\n", "for part in sum_list_5:\n", " sum_ru_5 += part\n", "\n", "constraint5 = tf.cond(tf.greater_equal(tf.abs(sum_ru_5), 0.02), lambda: 100000., lambda: 0.)\n", "\n", "# 6. Constraint on phases of Jpsi and Psi2s for cut out fit\n", "\n", "constraint6_0 = zfit.constraint.GaussianConstraint(params = jpsi_p, mu = ztf.constant(pdg[\"jpsi_phase_unc\"]),\n", " sigma = ztf.constant(jpsi_phase))\n", "\n", "constraint6_1 = zfit.constraint.GaussianConstraint(params = psi2s_p, mu = ztf.constant(pdg[\"psi2s_phase_unc\"]), \n", " sigma = ztf.constant(psi2s_phase))\n", "\n", "#List of all constraints\n", "\n", "constraints = [constraint1, constraint2, constraint3_0, constraint3_1, constraint4, constraint6_0, constraint6_1]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Analysis" ] }, { "cell_type": "code", "execution_count": 37, "metadata": { "scrolled": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "WARNING:tensorflow:From C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\core\\sample.py:163: to_int32 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.\n", "Instructions for updating:\n", "Use tf.cast instead.\n", "Toy 0: Generating data...\n" ] }, { "ename": "InvalidArgumentError", "evalue": "Incompatible shapes: [799998] vs. [800000]\n\t [[node create_sampler/while/truediv_1 (defined at C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\core\\sample.py:270) ]]\n\t [[node create_sampler/while/LoopCond (defined at C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\core\\sample.py:355) ]]\n\nCaused by op 'create_sampler/while/truediv_1', defined at:\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\runpy.py\", line 193, in _run_module_as_main\n \"__main__\", mod_spec)\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\runpy.py\", line 85, in _run_code\n exec(code, run_globals)\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\ipykernel_launcher.py\", line 16, in <module>\n app.launch_new_instance()\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\traitlets\\config\\application.py\", line 658, in launch_instance\n app.start()\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\ipykernel\\kernelapp.py\", line 505, in start\n self.io_loop.start()\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tornado\\platform\\asyncio.py\", line 148, in start\n self.asyncio_loop.run_forever()\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\asyncio\\base_events.py\", line 539, in run_forever\n self._run_once()\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\asyncio\\base_events.py\", line 1775, in _run_once\n handle._run()\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\asyncio\\events.py\", line 88, in _run\n self._context.run(self._callback, *self._args)\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tornado\\ioloop.py\", line 690, in <lambda>\n lambda f: self._run_callback(functools.partial(callback, future))\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tornado\\ioloop.py\", line 743, in _run_callback\n ret = callback()\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tornado\\gen.py\", line 781, in inner\n self.run()\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tornado\\gen.py\", line 742, in run\n yielded = self.gen.send(value)\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\ipykernel\\kernelbase.py\", line 378, in dispatch_queue\n yield self.process_one()\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tornado\\gen.py\", line 225, in wrapper\n runner = Runner(result, future, yielded)\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tornado\\gen.py\", line 708, in __init__\n self.run()\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tornado\\gen.py\", line 742, in run\n yielded = self.gen.send(value)\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\ipykernel\\kernelbase.py\", line 365, in process_one\n yield gen.maybe_future(dispatch(*args))\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tornado\\gen.py\", line 209, in wrapper\n yielded = next(result)\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\ipykernel\\kernelbase.py\", line 272, in dispatch_shell\n yield gen.maybe_future(handler(stream, idents, msg))\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tornado\\gen.py\", line 209, in wrapper\n yielded = next(result)\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\ipykernel\\kernelbase.py\", line 542, in execute_request\n user_expressions, allow_stdin,\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tornado\\gen.py\", line 209, in wrapper\n yielded = next(result)\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\ipykernel\\ipkernel.py\", line 294, in do_execute\n res = shell.run_cell(code, store_history=store_history, silent=silent)\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\ipykernel\\zmqshell.py\", line 536, in run_cell\n return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\IPython\\core\\interactiveshell.py\", line 2848, in run_cell\n raw_cell, store_history, silent, shell_futures)\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\IPython\\core\\interactiveshell.py\", line 2874, in _run_cell\n return runner(coro)\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\IPython\\core\\async_helpers.py\", line 67, in _pseudo_sync_runner\n coro.send(None)\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\IPython\\core\\interactiveshell.py\", line 3049, in run_cell_async\n interactivity=interactivity, compiler=compiler, result=result)\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\IPython\\core\\interactiveshell.py\", line 3214, in run_ast_nodes\n if (yield from self.run_code(code, result)):\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\IPython\\core\\interactiveshell.py\", line 3296, in run_code\n exec(code_obj, self.user_global_ns, self.user_ns)\n File \"<ipython-input-37-cb6da38b83d8>\", line 17, in <module>\n sampler = total_f.create_sampler(n=event_stack)\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\core\\basemodel.py\", line 821, in create_sampler\n limits=limits, n=n, name=name)\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\core\\basemodel.py\", line 841, in _create_sampler_tensor\n sample = self._single_hook_sample(n=n, limits=limits, name=name)\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\core\\basemodel.py\", line 884, in _single_hook_sample\n return self._hook_sample(n=n, limits=limits, name=name)\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\core\\basepdf.py\", line 491, in _hook_sample\n samples = super()._hook_sample(limits=limits, n=n, name=name)\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\core\\basemodel.py\", line 887, in _hook_sample\n return self._norm_sample(n=n, limits=limits, name=name)\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\core\\basemodel.py\", line 891, in _norm_sample\n return self._limits_sample(n=n, limits=limits, name=name)\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\core\\basemodel.py\", line 895, in _limits_sample\n return self._call_sample(n=n, limits=limits, name=name)\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\core\\basemodel.py\", line 905, in _call_sample\n return self._fallback_sample(n=n, limits=limits)\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\core\\basemodel.py\", line 938, in _fallback_sample\n sample_and_weights_factory=self._sample_and_weights)\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\core\\sample.py\", line 355, in accept_reject_sample\n back_prop=False)[1] # backprop not needed here\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\ops\\control_flow_ops.py\", line 3556, in while_loop\n return_same_structure)\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\ops\\control_flow_ops.py\", line 3087, in BuildLoop\n pred, body, original_loop_vars, loop_vars, shape_invariants)\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\ops\\control_flow_ops.py\", line 3022, in _BuildLoop\n body_result = body(*packed_vars_for_body)\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\core\\sample.py\", line 270, in sample_body\n prob_weights_ratio = probabilities / weights_clipped\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\ops\\math_ops.py\", line 812, in binary_op_wrapper\n return func(x, y, name=name)\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\ops\\math_ops.py\", line 920, in _truediv_python3\n return gen_math_ops.real_div(x, y, name=name)\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\ops\\gen_math_ops.py\", line 6897, in real_div\n \"RealDiv\", x=x, y=y, name=name)\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\framework\\op_def_library.py\", line 788, in _apply_op_helper\n op_def=op_def)\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\util\\deprecation.py\", line 507, in new_func\n return func(*args, **kwargs)\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\framework\\ops.py\", line 3300, in create_op\n op_def=op_def)\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\framework\\ops.py\", line 1801, in __init__\n self._traceback = tf_stack.extract_stack()\n\nInvalidArgumentError (see above for traceback): Incompatible shapes: [799998] vs. [800000]\n\t [[node create_sampler/while/truediv_1 (defined at C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\core\\sample.py:270) ]]\n\t [[node create_sampler/while/LoopCond (defined at C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\core\\sample.py:355) ]]\n", "output_type": "error", "traceback": [ "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[1;31mInvalidArgumentError\u001b[0m Traceback (most recent call last)", "\u001b[1;32m~\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\client\\session.py\u001b[0m in \u001b[0;36m_do_call\u001b[1;34m(self, fn, *args)\u001b[0m\n\u001b[0;32m 1333\u001b[0m \u001b[1;32mtry\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1334\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mfn\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m*\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 1335\u001b[0m \u001b[1;32mexcept\u001b[0m \u001b[0merrors\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mOpError\u001b[0m \u001b[1;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32m~\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\client\\session.py\u001b[0m in \u001b[0;36m_run_fn\u001b[1;34m(feed_dict, fetch_list, target_list, options, run_metadata)\u001b[0m\n\u001b[0;32m 1318\u001b[0m return self._call_tf_sessionrun(\n\u001b[1;32m-> 1319\u001b[1;33m options, feed_dict, fetch_list, target_list, run_metadata)\n\u001b[0m\u001b[0;32m 1320\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32m~\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\client\\session.py\u001b[0m in \u001b[0;36m_call_tf_sessionrun\u001b[1;34m(self, options, feed_dict, fetch_list, target_list, run_metadata)\u001b[0m\n\u001b[0;32m 1406\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_session\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0moptions\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfeed_dict\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfetch_list\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mtarget_list\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1407\u001b[1;33m run_metadata)\n\u001b[0m\u001b[0;32m 1408\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;31mInvalidArgumentError\u001b[0m: Incompatible shapes: [799998] vs. [800000]\n\t [[{{node create_sampler/while/truediv_1}}]]\n\t [[{{node create_sampler/while/LoopCond}}]]", "\nDuring handling of the above exception, another exception occurred:\n", "\u001b[1;31mInvalidArgumentError\u001b[0m Traceback (most recent call last)", "\u001b[1;32m<ipython-input-37-cb6da38b83d8>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m\u001b[0m\n\u001b[0;32m 31\u001b[0m \u001b[1;32mfor\u001b[0m \u001b[0mcall\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mcalls\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 32\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 33\u001b[1;33m \u001b[0msampler\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mresample\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mn\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mevent_stack\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 34\u001b[0m \u001b[0ms\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0msampler\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0munstack_x\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 35\u001b[0m \u001b[0msam\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mzfit\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mrun\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0ms\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32m~\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\core\\data.py\u001b[0m in \u001b[0;36mresample\u001b[1;34m(self, param_values, n)\u001b[0m\n\u001b[0;32m 640\u001b[0m \u001b[1;32mraise\u001b[0m \u001b[0mRuntimeError\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m\"Cannot set a new `n` if not a Tensor-like object was given\"\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 641\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mn_samples\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mload\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mvalue\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mn\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0msession\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0msess\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 642\u001b[1;33m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0msess\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mrun\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0msample_holder\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0minitializer\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 643\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_initial_resampled\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;32mTrue\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 644\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32m~\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\client\\session.py\u001b[0m in \u001b[0;36mrun\u001b[1;34m(self, fetches, feed_dict, options, run_metadata)\u001b[0m\n\u001b[0;32m 927\u001b[0m \u001b[1;32mtry\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 928\u001b[0m result = self._run(None, fetches, feed_dict, options_ptr,\n\u001b[1;32m--> 929\u001b[1;33m run_metadata_ptr)\n\u001b[0m\u001b[0;32m 930\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mrun_metadata\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 931\u001b[0m \u001b[0mproto_data\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mtf_session\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mTF_GetBuffer\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mrun_metadata_ptr\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32m~\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\client\\session.py\u001b[0m in \u001b[0;36m_run\u001b[1;34m(self, handle, fetches, feed_dict, options, run_metadata)\u001b[0m\n\u001b[0;32m 1150\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mfinal_fetches\u001b[0m \u001b[1;32mor\u001b[0m \u001b[0mfinal_targets\u001b[0m \u001b[1;32mor\u001b[0m \u001b[1;33m(\u001b[0m\u001b[0mhandle\u001b[0m \u001b[1;32mand\u001b[0m \u001b[0mfeed_dict_tensor\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1151\u001b[0m results = self._do_run(handle, final_targets, final_fetches,\n\u001b[1;32m-> 1152\u001b[1;33m feed_dict_tensor, options, run_metadata)\n\u001b[0m\u001b[0;32m 1153\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1154\u001b[0m \u001b[0mresults\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;33m[\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32m~\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\client\\session.py\u001b[0m in \u001b[0;36m_do_run\u001b[1;34m(self, handle, target_list, fetch_list, feed_dict, options, run_metadata)\u001b[0m\n\u001b[0;32m 1326\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mhandle\u001b[0m \u001b[1;32mis\u001b[0m \u001b[1;32mNone\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1327\u001b[0m return self._do_call(_run_fn, feeds, fetches, targets, options,\n\u001b[1;32m-> 1328\u001b[1;33m run_metadata)\n\u001b[0m\u001b[0;32m 1329\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1330\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_do_call\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0m_prun_fn\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mhandle\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfeeds\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfetches\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32m~\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\client\\session.py\u001b[0m in \u001b[0;36m_do_call\u001b[1;34m(self, fn, *args)\u001b[0m\n\u001b[0;32m 1346\u001b[0m \u001b[1;32mpass\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1347\u001b[0m \u001b[0mmessage\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0merror_interpolation\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0minterpolate\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mmessage\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_graph\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1348\u001b[1;33m \u001b[1;32mraise\u001b[0m \u001b[0mtype\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0me\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mnode_def\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mop\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mmessage\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 1349\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1350\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0m_extend_graph\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;31mInvalidArgumentError\u001b[0m: Incompatible shapes: [799998] vs. [800000]\n\t [[node create_sampler/while/truediv_1 (defined at C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\core\\sample.py:270) ]]\n\t [[node create_sampler/while/LoopCond (defined at C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\core\\sample.py:355) ]]\n\nCaused by op 'create_sampler/while/truediv_1', defined at:\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\runpy.py\", line 193, in _run_module_as_main\n \"__main__\", mod_spec)\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\runpy.py\", line 85, in _run_code\n exec(code, run_globals)\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\ipykernel_launcher.py\", line 16, in <module>\n app.launch_new_instance()\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\traitlets\\config\\application.py\", line 658, in launch_instance\n app.start()\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\ipykernel\\kernelapp.py\", line 505, in start\n self.io_loop.start()\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tornado\\platform\\asyncio.py\", line 148, in start\n self.asyncio_loop.run_forever()\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\asyncio\\base_events.py\", line 539, in run_forever\n self._run_once()\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\asyncio\\base_events.py\", line 1775, in _run_once\n handle._run()\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\asyncio\\events.py\", line 88, in _run\n self._context.run(self._callback, *self._args)\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tornado\\ioloop.py\", line 690, in <lambda>\n lambda f: self._run_callback(functools.partial(callback, future))\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tornado\\ioloop.py\", line 743, in _run_callback\n ret = callback()\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tornado\\gen.py\", line 781, in inner\n self.run()\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tornado\\gen.py\", line 742, in run\n yielded = self.gen.send(value)\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\ipykernel\\kernelbase.py\", line 378, in dispatch_queue\n yield self.process_one()\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tornado\\gen.py\", line 225, in wrapper\n runner = Runner(result, future, yielded)\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tornado\\gen.py\", line 708, in __init__\n self.run()\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tornado\\gen.py\", line 742, in run\n yielded = self.gen.send(value)\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\ipykernel\\kernelbase.py\", line 365, in process_one\n yield gen.maybe_future(dispatch(*args))\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tornado\\gen.py\", line 209, in wrapper\n yielded = next(result)\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\ipykernel\\kernelbase.py\", line 272, in dispatch_shell\n yield gen.maybe_future(handler(stream, idents, msg))\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tornado\\gen.py\", line 209, in wrapper\n yielded = next(result)\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\ipykernel\\kernelbase.py\", line 542, in execute_request\n user_expressions, allow_stdin,\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tornado\\gen.py\", line 209, in wrapper\n yielded = next(result)\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\ipykernel\\ipkernel.py\", line 294, in do_execute\n res = shell.run_cell(code, store_history=store_history, silent=silent)\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\ipykernel\\zmqshell.py\", line 536, in run_cell\n return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\IPython\\core\\interactiveshell.py\", line 2848, in run_cell\n raw_cell, store_history, silent, shell_futures)\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\IPython\\core\\interactiveshell.py\", line 2874, in _run_cell\n return runner(coro)\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\IPython\\core\\async_helpers.py\", line 67, in _pseudo_sync_runner\n coro.send(None)\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\IPython\\core\\interactiveshell.py\", line 3049, in run_cell_async\n interactivity=interactivity, compiler=compiler, result=result)\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\IPython\\core\\interactiveshell.py\", line 3214, in run_ast_nodes\n if (yield from self.run_code(code, result)):\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\IPython\\core\\interactiveshell.py\", line 3296, in run_code\n exec(code_obj, self.user_global_ns, self.user_ns)\n File \"<ipython-input-37-cb6da38b83d8>\", line 17, in <module>\n sampler = total_f.create_sampler(n=event_stack)\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\core\\basemodel.py\", line 821, in create_sampler\n limits=limits, n=n, name=name)\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\core\\basemodel.py\", line 841, in _create_sampler_tensor\n sample = self._single_hook_sample(n=n, limits=limits, name=name)\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\core\\basemodel.py\", line 884, in _single_hook_sample\n return self._hook_sample(n=n, limits=limits, name=name)\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\core\\basepdf.py\", line 491, in _hook_sample\n samples = super()._hook_sample(limits=limits, n=n, name=name)\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\core\\basemodel.py\", line 887, in _hook_sample\n return self._norm_sample(n=n, limits=limits, name=name)\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\core\\basemodel.py\", line 891, in _norm_sample\n return self._limits_sample(n=n, limits=limits, name=name)\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\core\\basemodel.py\", line 895, in _limits_sample\n return self._call_sample(n=n, limits=limits, name=name)\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\core\\basemodel.py\", line 905, in _call_sample\n return self._fallback_sample(n=n, limits=limits)\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\core\\basemodel.py\", line 938, in _fallback_sample\n sample_and_weights_factory=self._sample_and_weights)\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\core\\sample.py\", line 355, in accept_reject_sample\n back_prop=False)[1] # backprop not needed here\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\ops\\control_flow_ops.py\", line 3556, in while_loop\n return_same_structure)\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\ops\\control_flow_ops.py\", line 3087, in BuildLoop\n pred, body, original_loop_vars, loop_vars, shape_invariants)\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\ops\\control_flow_ops.py\", line 3022, in _BuildLoop\n body_result = body(*packed_vars_for_body)\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\core\\sample.py\", line 270, in sample_body\n prob_weights_ratio = probabilities / weights_clipped\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\ops\\math_ops.py\", line 812, in binary_op_wrapper\n return func(x, y, name=name)\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\ops\\math_ops.py\", line 920, in _truediv_python3\n return gen_math_ops.real_div(x, y, name=name)\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\ops\\gen_math_ops.py\", line 6897, in real_div\n \"RealDiv\", x=x, y=y, name=name)\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\framework\\op_def_library.py\", line 788, in _apply_op_helper\n op_def=op_def)\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\util\\deprecation.py\", line 507, in new_func\n return func(*args, **kwargs)\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\framework\\ops.py\", line 3300, in create_op\n op_def=op_def)\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\framework\\ops.py\", line 1801, in __init__\n self._traceback = tf_stack.extract_stack()\n\nInvalidArgumentError (see above for traceback): Incompatible shapes: [799998] vs. [800000]\n\t [[node create_sampler/while/truediv_1 (defined at C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\core\\sample.py:270) ]]\n\t [[node create_sampler/while/LoopCond (defined at C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\core\\sample.py:355) ]]\n" ] } ], "source": [ "# zfit.run.numeric_checks = False \n", "\n", "Ctt_list = []\n", "Ctt_error_list = []\n", "\n", "nr_of_toys = 2\n", "nevents = int(pdg[\"number_of_decays\"])\n", "nevents = pdg[\"number_of_decays\"]\n", "event_stack = 1000000\n", "# zfit.settings.set_verbosity(10)\n", "calls = int(nevents/event_stack + 1)\n", "\n", "total_samp = []\n", "\n", "start = time.time()\n", "\n", "sampler = total_f.create_sampler(n=event_stack)\n", "\n", "for toy in range(nr_of_toys):\n", " \n", " ### Generate data\n", " \n", " print(\"Toy {}: Generating data...\".format(toy))\n", " \n", " dirName = 'data/zfit_toys/toy_{0}'.format(toy)\n", " \n", " if not os.path.exists(dirName):\n", " os.mkdir(dirName)\n", " print(\"Directory \" , dirName , \" Created \")\n", "\n", " for call in range(calls):\n", "\n", " sampler.resample(n=event_stack)\n", " s = sampler.unstack_x()\n", " sam = zfit.run(s)\n", "# clear_output(wait=True)\n", "\n", " c = call + 1\n", " \n", " with open(\"data/zfit_toys/toy_{0}/{1}.pkl\".format(toy, call), \"wb\") as f:\n", " pkl.dump(sam, f, pkl.HIGHEST_PROTOCOL)\n", " \n", " print(\"Toy {}: Data generation finished\".format(toy))\n", " \n", " ### Load data\n", " \n", " print(\"Toy {}: Loading data...\".format(toy))\n", "\n", " for call in range(calls):\n", " with open(r\"data/zfit_toys/toy_0/{}.pkl\".format(call), \"rb\") as input_file:\n", " sam = pkl.load(input_file)\n", " total_samp = np.append(total_samp, sam)\n", "\n", " total_samp = total_samp.astype('float64')\n", "\n", " data = zfit.data.Data.from_numpy(array=total_samp[:int(nevents)], obs=obs)\n", " \n", " print(\"Toy {}: Loading data finished\".format(toy))\n", "\n", " ### Fit data\n", " \n", " print(\"Toy {}: Fitting pdf...\".format(toy))\n", "\n", " for param in total_f.get_dependents():\n", " param.randomize()\n", "\n", " nll = zfit.loss.UnbinnedNLL(model=total_f, data=data, fit_range = (x_min, x_max), constraints = constraints)\n", "\n", " minimizer = zfit.minimize.MinuitMinimizer(verbosity = 5)\n", " # minimizer._use_tfgrad = False\n", " result = minimizer.minimize(nll)\n", " \n", " print(\"Toy {}: Fitting finished\".format(toy))\n", "\n", " print(\"Function minimum:\", result.fmin)\n", " print(\"Hesse errors:\", result.hesse())\n", " \n", " params = result.params\n", " Ctt_list.append(params[Ctt]['value'])\n", " Ctt_error_list.append(params[Ctt]['minuit_hesse']['error'])\n", " \n", " #plotting the result\n", " \n", " plotdirName = 'data/plots'.format(toy)\n", " \n", " if not os.path.exists(plotdirName):\n", " os.mkdir(plotdirName)\n", "# print(\"Directory \" , dirName , \" Created \")\n", " calcs_test = zfit.run(probs)\n", " res_y = zfit.run(jpsi_res(test_q))\n", " plt.clf()\n", " plt.plot(test_q, calcs_test, label = 'pdf')\n", " plt.legend()\n", " plt.ylim(0.0, 6e-6)\n", " plt.savefig(plotdirName + '/toy_fit{}.png'.format(toy))\n", "\n", " print(\"Toy {0}/{1}\".format(toy+1, nr_of_toys))\n", " print(\"Time taken: {}\".format(display_time(int(time.time() - start))))\n", " print(\"Projected time left: {}\".format(display_time(int((time.time() - start)/(c+calls*(toy))*((nr_of_toys-toy)*calls-c)))))\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "print('Mean Ctt value = {}'.format(np.mean(Ctt_list)))\n", "print('Mean Ctt error = {}'.format(np.mean(Ctt_error_list)))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.3" } }, "nbformat": 4, "nbformat_minor": 2 }