{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Import" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\util\\execution.py:57: UserWarning: Not running on Linux. Determining available cpus for thread can failand be overestimated. Workaround (only if too many cpus are used):`zfit.run.set_n_cpu(your_cpu_number)`\n", " warnings.warn(\"Not running on Linux. Determining available cpus for thread can fail\"\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\n", "WARNING: The TensorFlow contrib module will not be included in TensorFlow 2.0.\n", "For more information, please see:\n", " * https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md\n", " * https://github.com/tensorflow/addons\n", "If you depend on functionality not listed there, please file an issue.\n", "\n" ] } ], "source": [ "import os\n", "\n", "# os.environ[\"CUDA_VISIBLE_DEVICES\"] = \"-1\"\n", "\n", "import numpy as np\n", "from pdg_const import pdg\n", "import matplotlib\n", "import matplotlib.pyplot as plt\n", "import pickle as pkl\n", "import sys\n", "import time\n", "from helperfunctions import display_time, prepare_plot\n", "import cmath as c\n", "import scipy.integrate as integrate\n", "from scipy.optimize import fminbound\n", "from array import array as arr\n", "import collections\n", "from itertools import compress\n", "import tensorflow as tf\n", "import zfit\n", "from zfit import ztf\n", "# from IPython.display import clear_output\n", "import os\n", "import tensorflow_probability as tfp\n", "tfd = tfp.distributions" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "# chunksize = 10000\n", "# zfit.run.chunking.active = True\n", "# zfit.run.chunking.max_n_points = chunksize" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Build model and graphs\n", "## Create graphs" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "def formfactor(q2, subscript, b0_0, b0_1, b0_2, bplus_0, bplus_1, bplus_2, bT_0, bT_1, bT_2): #returns real value\n", " #check if subscript is viable\n", "\n", " if subscript != \"0\" and subscript != \"+\" and subscript != \"T\":\n", " raise ValueError('Wrong subscript entered, choose either 0, + or T')\n", "\n", " #get constants\n", "\n", " mK = ztf.constant(pdg['Ks_M'])\n", " mbstar0 = ztf.constant(pdg[\"mbstar0\"])\n", " mbstar = ztf.constant(pdg[\"mbstar\"])\n", "\n", "\n", " mmu = ztf.constant(pdg['muon_M'])\n", " mb = ztf.constant(pdg['bquark_M'])\n", " ms = ztf.constant(pdg['squark_M'])\n", " mB = ztf.constant(pdg['Bplus_M'])\n", "\n", " #N comes from derivation in paper\n", "\n", " N = 3\n", "\n", " #some helperfunctions\n", "\n", " tpos = (mB - mK)**2\n", " tzero = (mB + mK)*(ztf.sqrt(mB)-ztf.sqrt(mK))**2\n", "\n", " z_oben = ztf.sqrt(tpos - q2) - ztf.sqrt(tpos - tzero)\n", " z_unten = ztf.sqrt(tpos - q2) + ztf.sqrt(tpos - tzero)\n", " z = tf.divide(z_oben, z_unten)\n", "\n", " #calculate f0\n", "\n", " if subscript == \"0\":\n", " prefactor = 1/(1 - q2/(mbstar0**2))\n", " _sum = 0\n", " b0 = [b0_0, b0_1, b0_2]\n", "\n", " for i in range(N):\n", " _sum += b0[i]*(tf.pow(z,i))\n", "\n", " return ztf.to_complex(prefactor * _sum)\n", "\n", " #calculate f+ or fT\n", "\n", " else:\n", " prefactor = 1/(1 - q2/(mbstar**2))\n", " _sum = 0\n", "\n", " if subscript == \"T\":\n", " bT = [bT_0, bT_1, bT_2]\n", " for i in range(N):\n", " _sum += bT[i] * (tf.pow(z, i) - ((-1)**(i-N)) * (i/N) * tf.pow(z, N))\n", " else:\n", " bplus = [bplus_0, bplus_1, bplus_2]\n", " for i in range(N):\n", " _sum += bplus[i] * (tf.pow(z, i) - ((-1)**(i-N)) * (i/N) * tf.pow(z, N))\n", "\n", " return ztf.to_complex(prefactor * _sum)\n", "\n", "def resonance(q, _mass, width, phase, scale):\n", "\n", " q2 = tf.pow(q, 2)\n", "\n", " mmu = ztf.constant(pdg['muon_M'])\n", "\n", " p = 0.5 * ztf.sqrt(q2 - 4*(mmu**2))\n", "\n", " p0 = 0.5 * ztf.sqrt(_mass**2 - 4*mmu**2)\n", "\n", " gamma_j = tf.divide(p, q) * _mass * width / p0\n", "\n", " #Calculate the resonance\n", "\n", " _top = tf.complex(_mass * width, ztf.constant(0.0))\n", "\n", " _bottom = tf.complex(_mass**2 - q2, -_mass*gamma_j)\n", "\n", " com = _top/_bottom\n", "\n", " #Rotate by the phase\n", "\n", " r = ztf.to_complex(scale*tf.abs(com))\n", "\n", " _phase = tf.angle(com)\n", "\n", " _phase += phase\n", "\n", " com = r * tf.exp(tf.complex(ztf.constant(0.0), _phase))\n", "\n", " return com\n", "\n", "\n", "def axiv_nonres(q, b0_0, b0_1, b0_2, bplus_0, bplus_1, bplus_2, bT_0, bT_1, bT_2):\n", "\n", " GF = ztf.constant(pdg['GF'])\n", " alpha_ew = ztf.constant(pdg['alpha_ew'])\n", " Vtb = ztf.constant(pdg['Vtb'])\n", " Vts = ztf.constant(pdg['Vts'])\n", " C10eff = ztf.constant(pdg['C10eff'])\n", "\n", " mmu = ztf.constant(pdg['muon_M'])\n", " mb = ztf.constant(pdg['bquark_M'])\n", " ms = ztf.constant(pdg['squark_M'])\n", " mK = ztf.constant(pdg['Ks_M'])\n", " mB = ztf.constant(pdg['Bplus_M'])\n", "\n", " q2 = tf.pow(q, 2)\n", "\n", " #Some helperfunctions\n", "\n", " beta = 1. - 4. * mmu**2. / q2\n", "\n", " kabs = ztf.sqrt(mB**2. + tf.pow(q2, 2)/mB**2. + mK**4./mB**2. - 2. * (mB**2. * mK**2. + mK**2. * q2 + mB**2. * q2) / mB**2.)\n", "\n", " #prefactor in front of whole bracket\n", "\n", " prefactor1 = GF**2. *alpha_ew**2. * (tf.abs(Vtb*Vts))**2. * kabs * beta / (128. * np.pi**5.)\n", "\n", " #left term in bracket\n", "\n", " bracket_left = 2./3. * tf.pow(kabs,2) * tf.pow(beta,2) * tf.pow(tf.abs(ztf.to_complex(C10eff)*formfactor(q2, \"+\", b0_0, b0_1, b0_2, bplus_0, bplus_1, bplus_2, bT_0, bT_1, bT_2)),2)\n", "\n", " #middle term in bracket\n", "\n", " _top = 4. * mmu**2. * (mB**2. - mK**2.) * (mB**2. - mK**2.)\n", "\n", " _under = q2 * mB**2.\n", "\n", " bracket_middle = _top/_under *tf.pow(tf.abs(ztf.to_complex(C10eff) * formfactor(q2, \"0\", b0_0, b0_1, b0_2, bplus_0, bplus_1, bplus_2, bT_0, bT_1, bT_2)), 2)\n", " \n", " #Note sqrt(q2) comes from derivation as we use q2 and plot q\n", "\n", " return prefactor1 * (bracket_left + bracket_middle) * 2 * q\n", "\n", "def vec(q, funcs, b0_0, b0_1, b0_2, bplus_0, bplus_1, bplus_2, bT_0, bT_1, bT_2):\n", " \n", " q2 = tf.pow(q, 2)\n", "\n", " GF = ztf.constant(pdg['GF'])\n", " alpha_ew = ztf.constant(pdg['alpha_ew'])\n", " Vtb = ztf.constant(pdg['Vtb'])\n", " Vts = ztf.constant(pdg['Vts'])\n", " C7eff = ztf.constant(pdg['C7eff'])\n", "\n", " mmu = ztf.constant(pdg['muon_M'])\n", " mb = ztf.constant(pdg['bquark_M'])\n", " ms = ztf.constant(pdg['squark_M'])\n", " mK = ztf.constant(pdg['Ks_M'])\n", " mB = ztf.constant(pdg['Bplus_M'])\n", "\n", " #Some helperfunctions\n", "\n", " beta = 1. - 4. * mmu**2. / q2\n", "\n", " kabs = ztf.sqrt(mB**2. + tf.pow(q2, 2)/mB**2. + mK**4./mB**2. - 2 * (mB**2 * mK**2 + mK**2 * q2 + mB**2 * q2) / mB**2)\n", " \n", " #prefactor in front of whole bracket\n", "\n", " prefactor1 = GF**2. *alpha_ew**2. * (tf.abs(Vtb*Vts))**2 * kabs * beta / (128. * np.pi**5.)\n", "\n", " #right term in bracket\n", "\n", " prefactor2 = tf.pow(kabs,2) * (1. - 1./3. * beta)\n", "\n", " abs_bracket = tf.pow(tf.abs(c9eff(q, funcs) * formfactor(q2, \"+\", b0_0, b0_1, b0_2, bplus_0, bplus_1, bplus_2, bT_0, bT_1, bT_2) + ztf.to_complex(2.0 * C7eff * (mb + ms)/(mB + mK)) * formfactor(q2, \"T\", b0_0, b0_1, b0_2, bplus_0, bplus_1, bplus_2, bT_0, bT_1, bT_2)),2)\n", "\n", " bracket_right = prefactor2 * abs_bracket\n", "\n", " #Note sqrt(q2) comes from derivation as we use q2 and plot q\n", "\n", " return prefactor1 * bracket_right * 2 * q\n", "\n", "def c9eff(q, funcs):\n", "\n", " C9eff_nr = ztf.to_complex(ztf.constant(pdg['C9eff']))\n", "\n", " c9 = C9eff_nr + funcs\n", "\n", " return c9" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "def G(y):\n", " \n", " def inner_rect_bracket(q):\n", " return tf.log(ztf.to_complex((1+tf.sqrt(q))/(1-tf.sqrt(q)))-tf.complex(ztf.constant(0), -1*ztf.constant(np.pi))) \n", " \n", " def inner_right(q):\n", " return ztf.to_complex(2 * tf.atan(1/tf.sqrt(tf.math.real(-q))))\n", " \n", " big_bracket = tf.where(tf.math.real(y) > ztf.constant(0.0), inner_rect_bracket(y), inner_right(y))\n", " \n", " return ztf.to_complex(tf.sqrt(tf.abs(y))) * big_bracket\n", "\n", "def h_S(m, q):\n", " \n", " return ztf.to_complex(2) - G(ztf.to_complex(1) - ztf.to_complex(4*tf.pow(m, 2)) / ztf.to_complex(tf.pow(q, 2)))\n", "\n", "def h_P(m, q):\n", " \n", " return ztf.to_complex(2/3) + (ztf.to_complex(1) - ztf.to_complex(4*tf.pow(m, 2)) / ztf.to_complex(tf.pow(q, 2))) * h_S(m,q)\n", "\n", "def two_p_ccbar(mD, m_D_bar, m_D_star, q):\n", " \n", " \n", " #Load constants\n", " nu_D_bar = ztf.to_complex(pdg[\"nu_D_bar\"])\n", " nu_D = ztf.to_complex(pdg[\"nu_D\"])\n", " nu_D_star = ztf.to_complex(pdg[\"nu_D_star\"])\n", " \n", " phase_D_bar = ztf.to_complex(pdg[\"phase_D_bar\"])\n", " phase_D = ztf.to_complex(pdg[\"phase_D\"])\n", " phase_D_star = ztf.to_complex(pdg[\"phase_D_star\"])\n", " \n", " #Calculation\n", " left_part = nu_D_bar * tf.exp(tf.complex(ztf.constant(0.0), phase_D_bar)) * h_S(m_D_bar, q) \n", " \n", " right_part_D = nu_D * tf.exp(tf.complex(ztf.constant(0.0), phase_D)) * h_P(m_D, q) \n", " \n", " right_part_D_star = nu_D_star * tf.exp(tf.complex(ztf.constant(0.0), phase_D_star)) * h_P(m_D_star, q) \n", "\n", " return left_part + right_part_D + right_part_D_star" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Build pdf" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "class total_pdf_cut(zfit.pdf.ZPDF):\n", " _N_OBS = 1 # dimension, can be omitted\n", " _PARAMS = ['b0_0', 'b0_1', 'b0_2', \n", " 'bplus_0', 'bplus_1', 'bplus_2', \n", " 'bT_0', 'bT_1', 'bT_2', \n", " 'rho_mass', 'rho_scale', 'rho_phase', 'rho_width',\n", " 'jpsi_mass', 'jpsi_scale', 'jpsi_phase', 'jpsi_width',\n", " 'psi2s_mass', 'psi2s_scale', 'psi2s_phase', 'psi2s_width',\n", " 'p3770_mass', 'p3770_scale', 'p3770_phase', 'p3770_width',\n", " 'p4040_mass', 'p4040_scale', 'p4040_phase', 'p4040_width',\n", " 'p4160_mass', 'p4160_scale', 'p4160_phase', 'p4160_width',\n", " 'p4415_mass', 'p4415_scale', 'p4415_phase', 'p4415_width',\n", " 'omega_mass', 'omega_scale', 'omega_phase', 'omega_width',\n", " 'phi_mass', 'phi_scale', 'phi_phase', 'phi_width',\n", " 'Dbar_mass', 'Dbar_scale', 'Dbar_phase',\n", " 'Dstar_mass', 'DDstar_scale', 'DDstar_phase', 'D_mass',\n", " 'tau_mass', 'C_tt']\n", "# the name of the parameters\n", "\n", " def _unnormalized_pdf(self, x):\n", " \n", " x = x.unstack_x()\n", " \n", " b0 = [self.params['b0_0'], self.params['b0_1'], self.params['b0_2']]\n", " bplus = [self.params['bplus_0'], self.params['bplus_1'], self.params['bplus_2']]\n", " bT = [self.params['bT_0'], self.params['bT_1'], self.params['bT_2']]\n", " \n", " def rho_res(q):\n", " return resonance(q, _mass = self.params['rho_mass'], scale = self.params['rho_scale'],\n", " phase = self.params['rho_phase'], width = self.params['rho_width'])\n", " \n", " def omega_res(q):\n", " return resonance(q, _mass = self.params['omega_mass'], scale = self.params['omega_scale'],\n", " phase = self.params['omega_phase'], width = self.params['omega_width'])\n", " \n", " def phi_res(q):\n", " return resonance(q, _mass = self.params['phi_mass'], scale = self.params['phi_scale'],\n", " phase = self.params['phi_phase'], width = self.params['phi_width'])\n", "\n", " def jpsi_res(q):\n", " return ztf.to_complex(tf.pow(q, 2) / tf.pow(self.params['jpsi_mass'], 2)) * resonance(q, _mass = self.params['jpsi_mass'], \n", " scale = self.params['jpsi_scale'],\n", " phase = self.params['jpsi_phase'], \n", " width = self.params['jpsi_width'])\n", " def psi2s_res(q):\n", " return ztf.to_complex(tf.pow(q, 2) / tf.pow(self.params['psi2s_mass'], 2)) * resonance(q, _mass = self.params['psi2s_mass'], \n", " scale = self.params['psi2s_scale'],\n", " phase = self.params['psi2s_phase'], \n", " width = self.params['psi2s_width'])\n", " def p3770_res(q):\n", " return ztf.to_complex(tf.pow(q, 2) / tf.pow(self.params['p3770_mass'], 2)) * resonance(q, _mass = self.params['p3770_mass'], \n", " scale = self.params['p3770_scale'],\n", " phase = self.params['p3770_phase'], \n", " width = self.params['p3770_width'])\n", " \n", " def p4040_res(q):\n", " return ztf.to_complex(tf.pow(q, 2) / tf.pow(self.params['p4040_mass'], 2)) * resonance(q, _mass = self.params['p4040_mass'], \n", " scale = self.params['p4040_scale'],\n", " phase = self.params['p4040_phase'], \n", " width = self.params['p4040_width'])\n", " \n", " def p4160_res(q):\n", " return ztf.to_complex(tf.pow(q, 2) / tf.pow(self.params['p4160_mass'], 2)) * resonance(q, _mass = self.params['p4160_mass'], \n", " scale = self.params['p4160_scale'],\n", " phase = self.params['p4160_phase'], \n", " width = self.params['p4160_width'])\n", " \n", " def p4415_res(q):\n", " return ztf.to_complex(tf.pow(q, 2) / tf.pow(self.params['p4415_mass'], 2)) * resonance(q, _mass = self.params['p4415_mass'], \n", " scale = self.params['p4415_scale'],\n", " phase = self.params['p4415_phase'], \n", " width = self.params['p4415_width'])\n", " \n", " def P2_D(q):\n", " Dbar_contrib = ztf.to_complex(self.params['Dbar_scale'])*tf.exp(tf.complex(ztf.constant(0.0), self.params['Dbar_phase']))*ztf.to_complex(h_S(self.params['Dbar_mass'], q))\n", " DDstar_contrib = ztf.to_complex(self.params['DDstar_scale'])*tf.exp(tf.complex(ztf.constant(0.0), self.params['DDstar_phase']))*(ztf.to_complex(h_P(self.params['Dstar_mass'], q)) + ztf.to_complex(h_P(self.params['D_mass'], q)))\n", " return Dbar_contrib + DDstar_contrib\n", " \n", " def ttau_cusp(q):\n", " return ztf.to_complex(self.params['C_tt'])*(ztf.to_complex((h_S(self.params['tau_mass'], q))) - ztf.to_complex(h_P(self.params['tau_mass'], q)))\n", " \n", "\n", " funcs = rho_res(x) + omega_res(x) + phi_res(x) + jpsi_res(x) + psi2s_res(x) + p3770_res(x) + p4040_res(x)+ p4160_res(x) + p4415_res(x) + P2_D(x) + ttau_cusp(x)\n", "\n", " vec_f = vec(x, funcs, b0_0, b0_1, b0_2, bplus_0, bplus_1, bplus_2, bT_0, bT_1, bT_2)\n", "\n", " axiv_nr = axiv_nonres(x, b0_0, b0_1, b0_2, bplus_0, bplus_1, bplus_2, bT_0, bT_1, bT_2)\n", "\n", " tot = vec_f + axiv_nr\n", " \n", " #Cut out jpsi and psi2s\n", " \n", " tot = tf.where(tf.math.logical_or(x < ztf.constant(jpsi_mass-60.), x > ztf.constant(jpsi_mass+70.)), tot, 0.0*tot)\n", " \n", " tot = tf.where(tf.math.logical_or(x < ztf.constant(psi2s_mass-50.), x > ztf.constant(psi2s_mass+50.)), tot, 0.0*tot)\n", " \n", " return tot\n", " \n", "class total_pdf_full(zfit.pdf.ZPDF):\n", " _N_OBS = 1 # dimension, can be omitted\n", " _PARAMS = ['b0_0', 'b0_1', 'b0_2', \n", " 'bplus_0', 'bplus_1', 'bplus_2', \n", " 'bT_0', 'bT_1', 'bT_2', \n", " 'rho_mass', 'rho_scale', 'rho_phase', 'rho_width',\n", " 'jpsi_mass', 'jpsi_scale', 'jpsi_phase', 'jpsi_width',\n", " 'psi2s_mass', 'psi2s_scale', 'psi2s_phase', 'psi2s_width',\n", " 'p3770_mass', 'p3770_scale', 'p3770_phase', 'p3770_width',\n", " 'p4040_mass', 'p4040_scale', 'p4040_phase', 'p4040_width',\n", " 'p4160_mass', 'p4160_scale', 'p4160_phase', 'p4160_width',\n", " 'p4415_mass', 'p4415_scale', 'p4415_phase', 'p4415_width',\n", " 'omega_mass', 'omega_scale', 'omega_phase', 'omega_width',\n", " 'phi_mass', 'phi_scale', 'phi_phase', 'phi_width',\n", " 'Dbar_mass', 'Dbar_scale', 'Dbar_phase',\n", " 'Dstar_mass', 'DDstar_scale', 'DDstar_phase', 'D_mass',\n", " 'tau_mass', 'C_tt']\n", "# the name of the parameters\n", "\n", " def _unnormalized_pdf(self, x):\n", " \n", " x = x.unstack_x()\n", " \n", " b0 = [self.params['b0_0'], self.params['b0_1'], self.params['b0_2']]\n", " bplus = [self.params['bplus_0'], self.params['bplus_1'], self.params['bplus_2']]\n", " bT = [self.params['bT_0'], self.params['bT_1'], self.params['bT_2']]\n", " \n", " def rho_res(q):\n", " return resonance(q, _mass = self.params['rho_mass'], scale = self.params['rho_scale'],\n", " phase = self.params['rho_phase'], width = self.params['rho_width'])\n", " \n", " def omega_res(q):\n", " return resonance(q, _mass = self.params['omega_mass'], scale = self.params['omega_scale'],\n", " phase = self.params['omega_phase'], width = self.params['omega_width'])\n", " \n", " def phi_res(q):\n", " return resonance(q, _mass = self.params['phi_mass'], scale = self.params['phi_scale'],\n", " phase = self.params['phi_phase'], width = self.params['phi_width'])\n", "\n", " def jpsi_res(q):\n", " return ztf.to_complex(tf.pow(q, 2) / tf.pow(self.params['jpsi_mass'], 2)) * resonance(q, _mass = self.params['jpsi_mass'], \n", " scale = self.params['jpsi_scale'],\n", " phase = self.params['jpsi_phase'], \n", " width = self.params['jpsi_width'])\n", " def psi2s_res(q):\n", " return ztf.to_complex(tf.pow(q, 2) / tf.pow(self.params['psi2s_mass'], 2)) * resonance(q, _mass = self.params['psi2s_mass'], \n", " scale = self.params['psi2s_scale'],\n", " phase = self.params['psi2s_phase'], \n", " width = self.params['psi2s_width'])\n", " def p3770_res(q):\n", " return ztf.to_complex(tf.pow(q, 2) / tf.pow(self.params['p3770_mass'], 2)) * resonance(q, _mass = self.params['p3770_mass'], \n", " scale = self.params['p3770_scale'],\n", " phase = self.params['p3770_phase'], \n", " width = self.params['p3770_width'])\n", " \n", " def p4040_res(q):\n", " return ztf.to_complex(tf.pow(q, 2) / tf.pow(self.params['p4040_mass'], 2)) * resonance(q, _mass = self.params['p4040_mass'], \n", " scale = self.params['p4040_scale'],\n", " phase = self.params['p4040_phase'], \n", " width = self.params['p4040_width'])\n", " \n", " def p4160_res(q):\n", " return ztf.to_complex(tf.pow(q, 2) / tf.pow(self.params['p4160_mass'], 2)) * resonance(q, _mass = self.params['p4160_mass'], \n", " scale = self.params['p4160_scale'],\n", " phase = self.params['p4160_phase'], \n", " width = self.params['p4160_width'])\n", " \n", " def p4415_res(q):\n", " return ztf.to_complex(tf.pow(q, 2) / tf.pow(self.params['p4415_mass'], 2)) * resonance(q, _mass = self.params['p4415_mass'], \n", " scale = self.params['p4415_scale'],\n", " phase = self.params['p4415_phase'], \n", " width = self.params['p4415_width'])\n", " \n", " def P2_D(q):\n", " Dbar_contrib = ztf.to_complex(self.params['Dbar_scale'])*tf.exp(tf.complex(ztf.constant(0.0), self.params['Dbar_phase']))*ztf.to_complex(h_S(self.params['Dbar_mass'], q))\n", " DDstar_contrib = ztf.to_complex(self.params['DDstar_scale'])*tf.exp(tf.complex(ztf.constant(0.0), self.params['DDstar_phase']))*(ztf.to_complex(h_P(self.params['Dstar_mass'], q)) + ztf.to_complex(h_P(self.params['D_mass'], q)))\n", " return Dbar_contrib + DDstar_contrib\n", " \n", " def ttau_cusp(q):\n", " return ztf.to_complex(self.params['C_tt'])*(ztf.to_complex((h_S(self.params['tau_mass'], q))) - ztf.to_complex(h_P(self.params['tau_mass'], q)))\n", " \n", "\n", " funcs = rho_res(x) + omega_res(x) + phi_res(x) + jpsi_res(x) + psi2s_res(x) + p3770_res(x) + p4040_res(x)+ p4160_res(x) + p4415_res(x) + P2_D(x) + ttau_cusp(x)\n", "\n", " vec_f = vec(x, funcs, b0_0, b0_1, b0_2, bplus_0, bplus_1, bplus_2, bT_0, bT_1, bT_2)\n", "\n", " axiv_nr = axiv_nonres(x, b0_0, b0_1, b0_2, bplus_0, bplus_1, bplus_2, bT_0, bT_1, bT_2)\n", "\n", " tot = vec_f + axiv_nr\n", " \n", " #Cut out jpsi and psi2s\n", " \n", "# tot = tf.where(tf.math.logical_or(x < ztf.constant(jpsi_mass-60.), x > ztf.constant(jpsi_mass+70.)), tot, 0.0*tot)\n", " \n", "# tot = tf.where(tf.math.logical_or(x < ztf.constant(psi2s_mass-50.), x > ztf.constant(psi2s_mass+50.)), tot, 0.0*tot)\n", " \n", " return tot" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Setup parameters" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "WARNING:tensorflow:From C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\ops\\resource_variable_ops.py:435: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.\n", "Instructions for updating:\n", "Colocations handled automatically by placer.\n" ] } ], "source": [ "# formfactors\n", "\n", "b0_0 = zfit.Parameter(\"b0_0\", ztf.constant(0.292), floating = False) #, lower_limit = -2.0, upper_limit= 2.0)\n", "b0_1 = zfit.Parameter(\"b0_1\", ztf.constant(0.281), floating = False) #, lower_limit = -2.0, upper_limit= 2.0)\n", "b0_2 = zfit.Parameter(\"b0_2\", ztf.constant(0.150), floating = False) #, lower_limit = -2.0, upper_limit= 2.0)\n", "\n", "bplus_0 = zfit.Parameter(\"bplus_0\", ztf.constant(0.466), floating = False)#, lower_limit = -2.0, upper_limit= 2.0)\n", "bplus_1 = zfit.Parameter(\"bplus_1\", ztf.constant(-0.885), floating = False)#, lower_limit = -2.0, upper_limit= 2.0)\n", "bplus_2 = zfit.Parameter(\"bplus_2\", ztf.constant(-0.213), floating = False)#, lower_limit = -2.0, upper_limit= 2.0)\n", "\n", "bT_0 = zfit.Parameter(\"bT_0\", ztf.constant(0.460), floating = False) #, lower_limit = -2.0, upper_limit= 2.0)\n", "bT_1 = zfit.Parameter(\"bT_1\", ztf.constant(-1.089), floating = False) #, lower_limit = -2.0, upper_limit= 2.0)\n", "bT_2 = zfit.Parameter(\"bT_2\", ztf.constant(-1.114), floating = False) #, lower_limit = -2.0, upper_limit= 2.0)\n", "\n", "\n", "#rho\n", "\n", "rho_mass, rho_width, rho_phase, rho_scale = pdg[\"rho\"]\n", "\n", "rho_m = zfit.Parameter(\"rho_m\", ztf.constant(rho_mass), floating = False) #lower_limit = rho_mass - rho_width, upper_limit = rho_mass + rho_width)\n", "rho_w = zfit.Parameter(\"rho_w\", ztf.constant(rho_width), floating = False)\n", "rho_p = zfit.Parameter(\"rho_p\", ztf.constant(rho_phase), lower_limit=-2*np.pi, upper_limit=2*np.pi)\n", "rho_s = zfit.Parameter(\"rho_s\", ztf.constant(rho_scale), lower_limit=rho_scale-np.sqrt(rho_scale), upper_limit=rho_scale+np.sqrt(rho_scale))\n", "\n", "#omega\n", "\n", "omega_mass, omega_width, omega_phase, omega_scale = pdg[\"omega\"]\n", "\n", "omega_m = zfit.Parameter(\"omega_m\", ztf.constant(omega_mass), floating = False)\n", "omega_w = zfit.Parameter(\"omega_w\", ztf.constant(omega_width), floating = False)\n", "omega_p = zfit.Parameter(\"omega_p\", ztf.constant(omega_phase), lower_limit=-2*np.pi, upper_limit=2*np.pi)\n", "omega_s = zfit.Parameter(\"omega_s\", ztf.constant(omega_scale), lower_limit=omega_scale-np.sqrt(omega_scale), upper_limit=omega_scale+np.sqrt(omega_scale))\n", "\n", "\n", "#phi\n", "\n", "phi_mass, phi_width, phi_phase, phi_scale = pdg[\"phi\"]\n", "\n", "phi_m = zfit.Parameter(\"phi_m\", ztf.constant(phi_mass), floating = False)\n", "phi_w = zfit.Parameter(\"phi_w\", ztf.constant(phi_width), floating = False)\n", "phi_p = zfit.Parameter(\"phi_p\", ztf.constant(phi_phase), lower_limit=-2*np.pi, upper_limit=2*np.pi)\n", "phi_s = zfit.Parameter(\"phi_s\", ztf.constant(phi_scale), lower_limit=phi_scale-np.sqrt(phi_scale), upper_limit=phi_scale+np.sqrt(phi_scale))\n", "\n", "#jpsi\n", "\n", "jpsi_mass, jpsi_width, jpsi_phase, jpsi_scale = pdg[\"jpsi\"]\n", "\n", "jpsi_m = zfit.Parameter(\"jpsi_m\", ztf.constant(jpsi_mass), floating = False)\n", "jpsi_w = zfit.Parameter(\"jpsi_w\", ztf.constant(jpsi_width), floating = False)\n", "jpsi_p = zfit.Parameter(\"jpsi_p\", ztf.constant(jpsi_phase), lower_limit=-2*np.pi, upper_limit=2*np.pi)\n", "jpsi_s = zfit.Parameter(\"jpsi_s\", ztf.constant(jpsi_scale), floating = False) #, lower_limit=jpsi_scale-np.sqrt(jpsi_scale), upper_limit=jpsi_scale+np.sqrt(jpsi_scale))\n", "\n", "#psi2s\n", "\n", "psi2s_mass, psi2s_width, psi2s_phase, psi2s_scale = pdg[\"psi2s\"]\n", "\n", "psi2s_m = zfit.Parameter(\"psi2s_m\", ztf.constant(psi2s_mass), floating = False)\n", "psi2s_w = zfit.Parameter(\"psi2s_w\", ztf.constant(psi2s_width), floating = False)\n", "psi2s_p = zfit.Parameter(\"psi2s_p\", ztf.constant(psi2s_phase), lower_limit=-2*np.pi, upper_limit=2*np.pi)\n", "psi2s_s = zfit.Parameter(\"psi2s_s\", ztf.constant(psi2s_scale), floating = False) #, lower_limit=psi2s_scale-np.sqrt(psi2s_scale), upper_limit=psi2s_scale+np.sqrt(psi2s_scale))\n", "\n", "#psi(3770)\n", "\n", "p3770_mass, p3770_width, p3770_phase, p3770_scale = pdg[\"p3770\"]\n", "\n", "p3770_m = zfit.Parameter(\"p3770_m\", ztf.constant(p3770_mass), floating = False)\n", "p3770_w = zfit.Parameter(\"p3770_w\", ztf.constant(p3770_width), floating = False)\n", "p3770_p = zfit.Parameter(\"p3770_p\", ztf.constant(p3770_phase), lower_limit=-2*np.pi, upper_limit=2*np.pi)\n", "p3770_s = zfit.Parameter(\"p3770_s\", ztf.constant(p3770_scale), lower_limit=p3770_scale-np.sqrt(p3770_scale), upper_limit=p3770_scale+np.sqrt(p3770_scale))\n", "\n", "#psi(4040)\n", "\n", "p4040_mass, p4040_width, p4040_phase, p4040_scale = pdg[\"p4040\"]\n", "\n", "p4040_m = zfit.Parameter(\"p4040_m\", ztf.constant(p4040_mass), floating = False)\n", "p4040_w = zfit.Parameter(\"p4040_w\", ztf.constant(p4040_width), floating = False)\n", "p4040_p = zfit.Parameter(\"p4040_p\", ztf.constant(p4040_phase), lower_limit=-2*np.pi, upper_limit=2*np.pi)\n", "p4040_s = zfit.Parameter(\"p4040_s\", ztf.constant(p4040_scale), lower_limit=p4040_scale-np.sqrt(p4040_scale), upper_limit=p4040_scale+np.sqrt(p4040_scale))\n", "\n", "#psi(4160)\n", "\n", "p4160_mass, p4160_width, p4160_phase, p4160_scale = pdg[\"p4160\"]\n", "\n", "p4160_m = zfit.Parameter(\"p4160_m\", ztf.constant(p4160_mass), floating = False)\n", "p4160_w = zfit.Parameter(\"p4160_w\", ztf.constant(p4160_width), floating = False)\n", "p4160_p = zfit.Parameter(\"p4160_p\", ztf.constant(p4160_phase), lower_limit=-2*np.pi, upper_limit=2*np.pi)\n", "p4160_s = zfit.Parameter(\"p4160_s\", ztf.constant(p4160_scale), lower_limit=p4160_scale-np.sqrt(p4160_scale), upper_limit=p4160_scale+np.sqrt(p4160_scale))\n", "\n", "#psi(4415)\n", "\n", "p4415_mass, p4415_width, p4415_phase, p4415_scale = pdg[\"p4415\"]\n", "\n", "p4415_m = zfit.Parameter(\"p4415_m\", ztf.constant(p4415_mass), floating = False)\n", "p4415_w = zfit.Parameter(\"p4415_w\", ztf.constant(p4415_width), floating = False)\n", "p4415_p = zfit.Parameter(\"p4415_p\", ztf.constant(p4415_phase), lower_limit=-2*np.pi, upper_limit=2*np.pi)\n", "p4415_s = zfit.Parameter(\"p4415_s\", ztf.constant(p4415_scale), lower_limit=p4415_scale-np.sqrt(p4415_scale), upper_limit=p4415_scale+np.sqrt(p4415_scale))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Dynamic generation of 2 particle contribution" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "m_c = 1300\n", "\n", "Dbar_phase = 0.0\n", "DDstar_phase = 0.0\n", "Dstar_mass = pdg['Dst_M']\n", "Dbar_mass = pdg['D0_M']\n", "D_mass = pdg['D0_M']\n", "\n", "Dbar_s = zfit.Parameter(\"Dbar_s\", ztf.constant(0.0), lower_limit=-0.3, upper_limit=0.3)\n", "Dbar_m = zfit.Parameter(\"Dbar_m\", ztf.constant(Dbar_mass), floating = False)\n", "Dbar_p = zfit.Parameter(\"Dbar_p\", ztf.constant(Dbar_phase), lower_limit=-2*np.pi, upper_limit=2*np.pi)#, floating = False)\n", "DDstar_s = zfit.Parameter(\"DDstar_s\", ztf.constant(0.0), lower_limit=-0.3, upper_limit=0.3)#, floating = False)\n", "Dstar_m = zfit.Parameter(\"Dstar_m\", ztf.constant(Dstar_mass), floating = False)\n", "D_m = zfit.Parameter(\"D_m\", ztf.constant(D_mass), floating = False)\n", "DDstar_p = zfit.Parameter(\"DDstar_p\", ztf.constant(DDstar_phase), lower_limit=-2*np.pi, upper_limit=2*np.pi)#, floating = False)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Tau parameters" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "tau_m = zfit.Parameter(\"tau_m\", ztf.constant(pdg['tau_M']), floating = False)\n", "Ctt = zfit.Parameter(\"Ctt\", ztf.constant(0.0), lower_limit=-1.5, upper_limit=1.5)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Load data" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "x_min = 2*pdg['muon_M']\n", "x_max = (pdg[\"Bplus_M\"]-pdg[\"Ks_M\"]-0.1)\n", "\n", "# # Full spectrum\n", "\n", "obs_toy = zfit.Space('q', limits = (x_min, x_max))\n", "\n", "# Jpsi and Psi2s cut out\n", "\n", "obs1 = zfit.Space('q', limits = (x_min, jpsi_mass - 60.))\n", "obs2 = zfit.Space('q', limits = (jpsi_mass + 70., psi2s_mass - 50.))\n", "obs3 = zfit.Space('q', limits = (psi2s_mass + 50., x_max))\n", "\n", "obs_fit = obs1 + obs2 + obs3\n", "\n", "# with open(r\"./data/slim_points/slim_points_toy_0_range({0}-{1}).pkl\".format(int(x_min), int(x_max)), \"rb\") as input_file:\n", "# part_set = pkl.load(input_file)\n", "\n", "# x_part = part_set['x_part']\n", "\n", "# x_part = x_part.astype('float64')\n", "\n", "# data = zfit.data.Data.from_numpy(array=x_part, obs=obs)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Setup pdf" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "total_f = total_pdf_cut(obs=obs_toy, jpsi_mass = jpsi_m, jpsi_scale = jpsi_s, jpsi_phase = jpsi_p, jpsi_width = jpsi_w,\n", " psi2s_mass = psi2s_m, psi2s_scale = psi2s_s, psi2s_phase = psi2s_p, psi2s_width = psi2s_w,\n", " p3770_mass = p3770_m, p3770_scale = p3770_s, p3770_phase = p3770_p, p3770_width = p3770_w,\n", " p4040_mass = p4040_m, p4040_scale = p4040_s, p4040_phase = p4040_p, p4040_width = p4040_w,\n", " p4160_mass = p4160_m, p4160_scale = p4160_s, p4160_phase = p4160_p, p4160_width = p4160_w,\n", " p4415_mass = p4415_m, p4415_scale = p4415_s, p4415_phase = p4415_p, p4415_width = p4415_w,\n", " rho_mass = rho_m, rho_scale = rho_s, rho_phase = rho_p, rho_width = rho_w,\n", " omega_mass = omega_m, omega_scale = omega_s, omega_phase = omega_p, omega_width = omega_w,\n", " phi_mass = phi_m, phi_scale = phi_s, phi_phase = phi_p, phi_width = phi_w,\n", " Dstar_mass = Dstar_m, DDstar_scale = DDstar_s, DDstar_phase = DDstar_p, D_mass = D_m,\n", " Dbar_mass = Dbar_m, Dbar_scale = Dbar_s, Dbar_phase = Dbar_p,\n", " tau_mass = tau_m, C_tt = Ctt, b0_0 = b0_0, b0_1 = b0_1, b0_2 = b0_2,\n", " bplus_0 = bplus_0, bplus_1 = bplus_1, bplus_2 = bplus_2,\n", " bT_0 = bT_0, bT_1 = bT_1, bT_2 = bT_2)\n", "\n", "total_f_fit = total_pdf_full(obs=obs_fit, jpsi_mass = jpsi_m, jpsi_scale = jpsi_s, jpsi_phase = jpsi_p, jpsi_width = jpsi_w,\n", " psi2s_mass = psi2s_m, psi2s_scale = psi2s_s, psi2s_phase = psi2s_p, psi2s_width = psi2s_w,\n", " p3770_mass = p3770_m, p3770_scale = p3770_s, p3770_phase = p3770_p, p3770_width = p3770_w,\n", " p4040_mass = p4040_m, p4040_scale = p4040_s, p4040_phase = p4040_p, p4040_width = p4040_w,\n", " p4160_mass = p4160_m, p4160_scale = p4160_s, p4160_phase = p4160_p, p4160_width = p4160_w,\n", " p4415_mass = p4415_m, p4415_scale = p4415_s, p4415_phase = p4415_p, p4415_width = p4415_w,\n", " rho_mass = rho_m, rho_scale = rho_s, rho_phase = rho_p, rho_width = rho_w,\n", " omega_mass = omega_m, omega_scale = omega_s, omega_phase = omega_p, omega_width = omega_w,\n", " phi_mass = phi_m, phi_scale = phi_s, phi_phase = phi_p, phi_width = phi_w,\n", " Dstar_mass = Dstar_m, DDstar_scale = DDstar_s, DDstar_phase = DDstar_p, D_mass = D_m,\n", " Dbar_mass = Dbar_m, Dbar_scale = Dbar_s, Dbar_phase = Dbar_p,\n", " tau_mass = tau_m, C_tt = Ctt, b0_0 = b0_0, b0_1 = b0_1, b0_2 = b0_2,\n", " bplus_0 = bplus_0, bplus_1 = bplus_1, bplus_2 = bplus_2,\n", " bT_0 = bT_0, bT_1 = bT_1, bT_2 = bT_2)\n", " \n", "# print(total_pdf.obs)\n", "\n", "# print(calcs_test)\n", "\n", "# for param in total_f.get_dependents():\n", "# print(zfit.run(param))" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "<tf.Tensor 'normalization/hook_integrate/hook_numeric_integrate/mul_1:0' shape=() dtype=float64>" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "total_f_fit.normalization(obs_toy)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Test if graphs actually work and compute values" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [], "source": [ "# def total_test_tf(xq):\n", "\n", "# def jpsi_res(q):\n", "# return resonance(q, jpsi_m, jpsi_s, jpsi_p, jpsi_w)\n", "\n", "# def psi2s_res(q):\n", "# return resonance(q, psi2s_m, psi2s_s, psi2s_p, psi2s_w)\n", "\n", "# def cusp(q):\n", "# return bifur_gauss(q, cusp_m, sig_L, sig_R, cusp_s)\n", "\n", "# funcs = jpsi_res(xq) + psi2s_res(xq) + cusp(xq)\n", "\n", "# vec_f = vec(xq, funcs)\n", "\n", "# axiv_nr = axiv_nonres(xq)\n", "\n", "# tot = vec_f + axiv_nr\n", " \n", "# return tot\n", "\n", "# def jpsi_res(q):\n", "# return resonance(q, jpsi_m, jpsi_s, jpsi_p, jpsi_w)\n", "\n", "# calcs = zfit.run(total_test_tf(x_part))\n", "\n", "test_q = np.linspace(x_min, x_max, int(2e6))\n", "\n", "probs = total_f_fit.pdf(test_q, norm_range=False)\n", "\n", "calcs_test = zfit.run(probs)\n", "# res_y = zfit.run(jpsi_res(test_q))\n", "# b0 = [b0_0, b0_1, b0_2]\n", "# bplus = [bplus_0, bplus_1, bplus_2]\n", "# bT = [bT_0, bT_1, bT_2]\n", "# f0_y = zfit.run(tf.math.real(formfactor(test_q,\"0\", b0, bplus, bT)))\n", "# fplus_y = zfit.run(tf.math.real(formfactor(test_q,\"+\", b0, bplus, bT)))\n", "# fT_y = zfit.run(tf.math.real(formfactor(test_q,\"T\", b0, bplus, bT)))" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\ipykernel_launcher.py:12: UserWarning: Creating legend with loc=\"best\" can be slow with large amounts of data.\n", " if sys.path[0] == '':\n", "C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\IPython\\core\\pylabtools.py:128: UserWarning: Creating legend with loc=\"best\" can be slow with large amounts of data.\n", " fig.canvas.print_figure(bytes_io, **kw)\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaUAAAD4CAYAAABMtfkzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO29eXzc1XX3/z4zo9Eu2dq825JtGSMbsxmbHWM2k5CYJqRxElJSaMmTkrZJnjxNaJukTeH3lLZPaNKsvGISsmEoIcEhBIdgUwIYY4MNeMWyvMmbVkvWrpm5vz++d0bj0ayypBlJ5/16+eWZO/d77p2vre9H59xzzxVjDIqiKIqSCbjSPQFFURRFCaKipCiKomQMKkqKoihKxqCipCiKomQMKkqKoihKxuBJ9wQyjbKyMlNZWZnuaShKxrP35BkKsj3MnJx7Vvvprj6OtnazYEoh2Z70/t6781gbZYXZTC3KoaWzj2Onuzl/WhEel6R1XuORN998s8kYU36udlSUIqisrGTbtm3pnoaiZDzLHvwDKxdW8K8fXnJW+zM7jvG363bwqy9cx/yKgjTNzmHe3z/H/7puLv/nloX8YssR/v5X77Lh729gSlFOWuc1HhGRw8NhR8N3iqIMiYABVxSPw23bAhmwB9IYg0uc+QSn6g+kf15KbFSUFEUZEgFjiBYFc1sRyISHf8BAcIquDBJLJTYqSoqiDImAMSEBCifoKaVblILVaiTkKYltT9uUlCTQNSVFUYaEP2BCD/xwMkeUnL+DU0xX+K6/v5/6+np6enpGddyRIicnh5kzZ5KVlTUi9lWUFEUZEsYMCFA4wTCZP80uSXB0sQG8dK111dfXU1hYSGVlZVQRH0sYY2hubqa+vp6qqqoRGUPDd4qiDAl/IP6aUiDtnpIzfnCOQUEY7Wn19PRQWlo65gUJnHtYWlo6ol6fipKiKEMiYEzU7DtPhoTvAjHCd+lIdBgPghRkpL+LipKiKEMiEJZuHY4rQ0TJcHaiQ8iD00yHjEZFSVGUIeEPJMi+S/eaUoSnJBmUqp6JvPTSS9x2220A9Pb2cuONN3LRRRfxxBNPjOo8NNFBUZQhEWvzrCtDHv4hUYpIdFBHKTHbt2+nv7+fHTt2jPrYSXlKIrJKRPaJSK2IfDnK59ki8oT9fIuIVIZ9dr9t3ycitySyKSJV1sZ+a9MbbwwRKRWRTSLSISLfjjH/9SKyM7lboihKIoJJDNESHTwZskk1GL5zZcCaUro5dOgQCxcu5K677mLJkiXccccddHV18fzzz7Nw4UKuvvpqnn76aQAaGhq488472bFjBxdddBEHDhwY1bkm9JRExA18B7gJqAe2ish6Y8zusG73AK3GmPkisgZ4CPioiNQAa4BFwHTgDyKywF4Ty+ZDwMPGmHUi8n1r+3uxxgB6gK8Ai+2fyPl/COhI6a4oihKX4IM9XvjO58+0RIf0e3D//Jtd7D7ePqw2a6YX8bUPLErYb9++faxdu5arrrqKu+++m2984xv84Ac/YOPGjcyfP5+PfvSjAFRUVPDDH/6Q//iP/+DZZ58d1rkmQzKe0jKg1hhTZ4zpA9YBqyP6rAYes6+fAm4QJ4C7GlhnjOk1xhwEaq29qDbtNSutDazN2+ONYYzpNMa8giNOZyEiBcAXgAeS+J6KoiRJcL0oXvgu3R7JQEq4regQ8uDSNqW0MmvWLK666ioA7rzzTrZt20ZVVRXV1dWICHfeeWeaZ+iQzJrSDOBo2Pt6YHmsPsYYn4i0AaW2/fWIa2fY19FslgKnjTG+KP1jjdEUZ+7/Avw/oCveFxSRe4F7AWbPnh2vq6IoDKzLRMu+G6joMJozGkyk+AT106RRLJPxaEaKyFTutra2jExVT8ZTijbryH/VWH2Gqz3ZeQxMSOQiYL4x5lex+oSMGPOIMWapMWZpefk5HweiKOMef5w1pUzJviMUvju79l26EzDSxZEjR9i8eTMAjz/+ODfeeCMHDx4MrRk9/vjj6ZxeiGREqR6YFfZ+JnA8Vh8R8QDFQEuca2O1NwGTrI3IsWKNEYsrgEtF5BDwCrBARF6K+00VRUkKn32wRyszNOAppddVGpzoMLHDd+effz6PPfYYS5YsoaWlhc9//vM88sgjvP/97+fqq69mzpw56Z4ikFz4bitQLSJVwDGcxIWPR/RZD9wFbAbuADYaY4yIrAd+ISLfwEl0qAbewPF6Btm012yyNtZZm8/EGyPWpI0x38NJkMBm6j1rjFmRxPdVFCUBwey7aCe4DhxdMapTGkQo0cG+n8jZdwAul4vvf//7Z7WtWrWKvXv3Duq7YsUKVqxYMUozO5uEomTXbz4LbADcwKPGmF0i8nVgmzFmPbAW+KmI1OJ4L2vstbtE5ElgN+AD7jPG+AGi2bRDfglYJyIPANutbWKNYW0dAooAr4jcDtwckR2oKMowEs9Tctn4S8bUvnOltyCrkhpJbZ41xjwHPBfR9tWw1z3AR2Jc+yDwYDI2bXsdTnZeZHu8MSoTzP8QUdLFFUUZGqGUcNfgFQCPbUv3mlKkp5SugqyZQGVlJTt3jo2tmlpmSFGUlBnwlAZ/FtQpX7o9pYFMByAsfJeGeaUz42+4GenvoqKkKErKBAKxPaVMOboiqElBMUpX+C4nJ4fm5uZxIUzB85RycnJGbAytfacoSsrE85Qy5eTZgfDd2Snhoz2tmTNnUl9fT2Nj4+gOPEIET54dKVSUFEVJGX88TylDEgoiU8KD+0RHWyyzsrJG7JTW8YiG7xRFSZmQKMWrfZcpnlJE+G48hNHGMypKiqKkjD9eSniGVE4Iik9k+C7dWYFKfFSUFEVJmXiiFArfpV2UnL8jq4SnO/9CiY+KkqIoKRP0NuJWdEj3mtKg2nfBdlWlTEZFSVGUlAnWtYt6dIVLEMmA8F2M2nfpnpcSHxUlRVFSJljXLlqiQ7A93Q//WIkOqkmZjYqSoigp47OeUrQ1JXC8pfSH785OdAiKU7pT1ZX4qCgpipIywVMpYomSxyXpT3Swfw9KdFBXKaNRUVIUJWUSeUpukbTvUwp5ShJZJTxtU1KSQEVJUZSUGagSHjt8l26PZODIdufvUEUHDd9lNCpKiqKkTDDRIVpKODhile6Hf2Ttu2BShqaEZzYqSoqipEwoJTxW9p0r/dl3MY9D1/hdRqOipChKyoQ8JXd0UcpyCf3+NHtKdo6RiQ5pnpaSABUlRVFSxpfAU/K4XfiCypUmzED+HTBw+KCG7zIbFSVFUVImEKfMEECWW+hPd/guItFhoPadilImo6KkKErK+Pzxs++y3C76fWn2lAbVvguWGUrXjJRkSEqURGSViOwTkVoR+XKUz7NF5An7+RYRqQz77H7bvk9EbklkU0SqrI391qY33hgiUioim0SkQ0S+HWYnT0R+KyJ7RWSXiPxr6rdHUZRoJEoJ97gzYJ9SZKKDfdqpp5TZJBQlEXED3wFuBWqAj4lITUS3e4BWY8x84GHgIXttDbAGWASsAr4rIu4ENh8CHjbGVAOt1nbMMYAe4CvAF6NM/z+MMQuBi4GrROTWRN9XUZTE+OIcXQHgcbnoT7NLEln7zmNVyaeZDhlNMp7SMqDWGFNnjOkD1gGrI/qsBh6zr58CbhDHZ14NrDPG9BpjDgK11l5Um/aaldYG1ubt8cYwxnQaY17BEacQxpguY8wm+7oPeAsYuYPlFWUCEUggSlluSfvDP7L2nTtUvVzjd5lMMqI0Azga9r7etkXtY4zxAW1AaZxrY7WXAqetjcixYo2REBGZBHwAeDHG5/eKyDYR2dbY2JiMSUWZ0PjiHIcOjlfiS/PDP7L2HTiJGekOKyrxSUaUov2vi/xXjdVnuNqTnccgRMQDPA58yxhTF62PMeYRY8xSY8zS8vLyRCYVZcITOnk2xj4ljzv9+5Qia99BZmzqVeKTjCjVA7PC3s8EjsfqY0WgGGiJc22s9iZgkrUROVasMRLxCLDfGPOfSfRVFCUJ/Ak8pSx3BnhKoTJDAzgenIpSJpOMKG0Fqm1WnBcncWF9RJ/1wF329R3ARuP8mrIeWGMz56qAauCNWDbtNZusDazNZxKMERMReQBHvD6XxPdUFCVJ/Imy71zpX1PyR1n3Uk8p8/Ek6mCM8YnIZ4ENgBt41BizS0S+DmwzxqwH1gI/FZFaHO9ljb12l4g8CewGfMB9xhg/QDSbdsgvAeusoGy3tok1hrV1CCgCvCJyO3Az0A78A7AXeMu68N82xvww9dukKEo4/mT2KWVI9l141QlnTUkTHTKZhKIEYIx5Dnguou2rYa97gI/EuPZB4MFkbNr2OpzsvMj2eGNUxph69J8YRVHOiZCnFLPMUPoTCoL7kcJ1Uz2lzEcrOiiKkjL+gEHEOTcpGh6XK+3hu2gbfDMhrKjER0VJUZSU8QdMTC8JbO27NIfvgh7RWdl3GeDBKfFRUVIUJWV8ARPz2ArIjPBdMA3qbE9Js+8yHRUlRVFSpt8fIMsd+/GRCWWGgp6SK2LzrFZ0yGxUlBRFSZlEouT1ZM6akiti82y656XER0VJUZSU8flNzLOUIDNSr6OJkset2XeZjoqSEpOTbT387PXD6Z6GkoH0+0388J3bRb/fpPWU10CUNSW3rillPEntU1ImJnf/eCu7T7RzU80UphTlpHs6SgbhCwTiJjpkuYIH6sVPiBhJYq8pqShlMuopKTFp7eoD0B9iZRAJw3fWi0qnVxIK30WUGUp3WFGJj4qSoigpkyjRIct6R+nMwIu6pqSeUsajoqQoSsokTgl3hCCdmW5Bh8gdmX1nRckYw7HT3emYmhIHFSVFUVIm8eZZ59HSn8ZQmT90ntJAW3iZoWffOcFV/7qRNw+3pmN6SgxUlJSEaLBDiaTfHyDLlTh8l05PyUSpfReefbdpXwMABxo6Rn9ySkxUlBRFSRmfP4GnZAUrnaIUXM4KX1PKcg9UdMj2uIH0enPKYFSUlITo+R9KJP0BEwrRRSMoWOl84Mc6uiLoKXnC0taVzEFFSUmI/sgqkfj8gdBepGh4g2tKacy+M1FSwsOz74JhvT6fekqZhIqSoigpkyh85/VYUfKlM3wXrfbdQE2+oKfU0+8f/ckpMVFRUhKi4TslkmQKsgL0+tL3wA+VGYqxTyn4eVefilImoaKkJETDd0ok/YH4ohRMIuhNY2gsuKYkYdMMP+Svz++IUbd6ShmFipKiKCmTqMxQtvWU0rleEzoOfZCn5MwpGFrU8F1mkZQoicgqEdknIrUi8uUon2eLyBP28y0iUhn22f22fZ+I3JLIpohUWRv7rU1vvDFEpFRENolIh4h8O2Jel4rIu/aab4nEOb9ZiYneNCWSfn/87LtMCN9FSwkPz77rsx16+jXRIZNIKEoi4ga+A9wK1AAfE5GaiG73AK3GmPnAw8BD9toaYA2wCFgFfFdE3AlsPgQ8bIypBlqt7ZhjAD3AV4AvRpn+94B7gWr7Z1Wi76sMRsN3SiS+QCC0QTYa2SFRSr+nFL7HN7yiQ1CUunVNKaNIxlNaBtQaY+qMMX3AOmB1RJ/VwGP29VPADdYrWQ2sM8b0GmMOArXWXlSb9pqV1gbW5u3xxjDGdBpjXsERpxAiMg0oMsZsNk5u6E/CbClJoB6SEgsnfJeMp5RGUYqSfedxu0JVwoOhRV1TyiySEaUZwNGw9/W2LWofY4wPaANK41wbq70UOG1tRI4Va4x4865PMG8AROReEdkmItsaGxvjmJxYqIekxMLJvovnKWVCooPzd/iaktcePhgImJAo6ZpSZpGMKEX7nxf5vIrVZ7jak51HMnMa3GjMI8aYpcaYpeXl5XFMTkzUY1IiSZQSnp1lPaU0PvCjFWQNenB9/kBoY6+KUmaRjCjVA7PC3s8EjsfqIyIeoBhoiXNtrPYmYJK1ETlWrDHizXtmgnkrSaAekxJOIGAIGOJvnnUPPPzThTEGl0B4flN2mCgNeEqa6JBJJCNKW4FqmxXnxUlcWB/RZz1wl319B7DRruOsB9bYzLkqnGSDN2LZtNdssjawNp9JMEZUjDEngDMicrldq/qzMFuKogyRYD27+PuUgp5SGo+uCJiz1pNgYM79vgFPSdeUMgtPog7GGJ+IfBbYALiBR40xu0Tk68A2Y8x6YC3wUxGpxfFe1thrd4nIk8BuwAfcZ4zxA0SzaYf8ErBORB4AtlvbxBrD2joEFAFeEbkduNkYsxv4DPBjIBf4nf2jpIiG75Rw+iPK9ERDRPC6XWlfU3JFzPHs8J3zPVSUMouEogRgjHkOeC6i7athr3uAj8S49kHgwWRs2vY6nOy8yPZ4Y1TGaN8GLI72maIoQyMY9gp6Q7HI9rjSvnk2UjdDYUVfIFRuSNeUMgut6KAkRNeUlHBCopTljtsvO8uV3tp3AXNW5h2EeUq+QCgMqaKUWagoKQmJs3SnTECCQuONs6YU/Dyd4Tu/ib2m1OcPhDbR9vsNvlFKyGjr6h+VccYyKkqKoqREb8hTShC+y3KnNXxnzNnp4HB2Tb5wIeoZhXn+7t0TXPj137OlrnnExxrLqCgpCVFHSQknKDTJeUrpC435olQyDw/f+cJOnB2NEN4f9jQA8OoBFaV4qCgpMVExUqIRFJrk1pTSmxLudsVICfcbfAFDjvX2RqP+3fHT3QAcbOoc8bHGMipKiqKkRG+SnlK6s++iHa8xkBLup98foCA7CxgdT6m9x1lPOtnWPeJjjWVUlJSYBOPx6jEp4SS7puT1ZICnFFF1Ijwl3Oc3FOU4u2JGo6pDW7cjSsdP9yToObFRUVJiomKkRCPZNaVsjzut6da+wOBK5uHVy/0BQ4EVpdHYQNtuRelUe49mtMZBRUlJiNGdSkoYQe8nJ4GnlOt1p7Vagi8QGLSm5A1bU+oPBCjIDnpKIzvPQMBwptdHvteNL2Bo7/YlvmiCoqKkKEpKDHhK8RMd8rLcaT1AL96aUk+/H2OgcJQ8pTO9PoyBqvJ8AJo7e0d0vLGMipKSEI00KOEMZN/Ff3zked109qbPI/AHzKBK5kFR6upz5jVaiQ7B0F1VWQEALZ19IzreWEZFSUmIapISTrK173K9njSH7wzuGGtKXdaDK8wZnfBdMMmhqjQPgGYVpZioKCmKkhKhlPAEopTvdTtrN2k6U8kfGBy+C56WGylKIx1mDHlKNnynnlJsVJSUhGimkBJOstl3uV5nzakrTetKsRIdROBMTzB8Zz2lEU5db4sI3zV36JpSLFSUFEVJiV6fH7dL8CQQpTyv88APrt+MNtESHUSE3Cw3HXatKz97lDwlu3G2rMBLQbZHw3dxUFFSEqJ+khJOny+QcD0JnEQHSKenZKIKZ57XzRkrEl63i2yPi54RrtEX9JSKc7Moyfdq+C4OKkpKQjR6p4TT6wskXE+CAVFKV1p4tDUlcMKKwTUej1vI9brpGfE1JR8ugXyvR0UpASpKiqKkRE+/P0lPKRi+S5+nFLmmBJCX5aHdril53C7ystx0jvAc27r7KcrNwuUSygq8NHWoKMVCRUlJAnWVlAG6+vwhwYlHMNGhM01rSv5AILGn5BKKcrNC4byRor2nn6IcZ09UaX62JjrEQUVJiYmWF1Ki0dPvJzfBsRWQ/vCdzx/DU/K6Q4kHHpdQlJMVWvMZKdq6+ynOdUSpvDCb5s4+AgH9+YpGUqIkIqtEZJ+I1IrIl6N8ni0iT9jPt4hIZdhn99v2fSJySyKbIlJlbey3Nr3nMMbnRWSXiOwUkcdFJCe126OArikpZ+N4SolFKT8DwnfRPKU8rztUFTw7y01RbhZtI1yLzgnfOfejrMCLP2Bo7dIQXjQSipKIuIHvALcCNcDHRKQmots9QKsxZj7wMPCQvbYGWAMsAlYB3xURdwKbDwEPG2OqgVZreyhjzAD+BlhqjFkMuG0/JUkE5wdaNUkJp6vPHwrNxWNgn1K6wnfRs+9yw0KP2R4XRbmeUDhvpGgP85TKCrMBdF0pBsl4SsuAWmNMnTGmD1gHrI7osxp4zL5+CrhBRMS2rzPG9BpjDgK11l5Um/aaldYG1ubtQxwDwAPkiogHyAOOJ/F9FYuG75RoJBu+y8+2a0q96ds8G9VTCpt7tsdFUU7WiItSW7cvtKZUVhAUJV1XikYyojQDOBr2vt62Re1jjPEBbUBpnGtjtZcCp62NyLFSGsMYcwz4D+AIcAJoM8b8PtoXFJF7RWSbiGxrbGyMeSMmKhq+U8JJNnyXm+XG7RI6ekf2gR+LaMehA2d5edkeN8W5WZzp9eEfwTWe9p4wT0lFKS7JiNLgf9XBEZ1YfYarPeUxRGQyjhdVBUwH8kXkzih9McY8YoxZaoxZWl5eHq2LoiiWZMN3IkJRjidtZwfFWlM6S5SyXBRZsRipDLyefj99vkBonHIrSo1nVJSikYwo1QOzwt7PZHAYLNTHhsqKgZY418ZqbwImWRuRY6U6xo3AQWNMozGmH3gauDKJ76tEoGE8JRwnfJc4JRygKDcrlOk22vT7AoOqhINTKDZItscV8mBGSjyDmX1BUSrK9eB1u3RNKQbJiNJWoNpmxXlxkgXWR/RZD9xlX98BbDROFc/1wBqbOVcFVANvxLJpr9lkbWBtPjPEMY4Al4tInl17ugHYk9xtUcLR8J0SxBhDV58vqfAdMCrrNbHo95uolSeK87yh19keN0W2Uvjp7pERiaAoTbKiJCKUFng1fBeDhL/uGGN8IvJZYANOBtujxphdIvJ1YJsxZj2wFvipiNTieC9r7LW7RORJYDfgA+4zxvgBotm0Q34JWCciDwDbrW2GMMYWEXkKeMu2bwceGeqNUhTFKTEUMCQVvgPHKxjpPUDRMMbQ549eDqkkXJSyXGHZcCMjEuF174KUFWSrKMUgKR/cGPMc8FxE21fDXvcAH4lx7YPAg8nYtO11DGTPhbcPZYyvAV+Ldo2SPOopKUGCG2GTyb4Dx1M61T76D98+f+yDCCfnD4hDvtdDReHIrvG0dUUTJS8NuqYUFa3ooMRExUiJJHiSbLLhu+Lc9ITv4p35VJI/4Cm5XRLKhmsYIfE8HQzf5Q2IUkVhTlrEeiygoqQkRBMdlCDB6gzJh+/Sk+jQF+d03PDwHUBOlpMWPlKeS7Tw3fRJuTR19I74MexjERUlJSHqMSlBgtUZkinIClCU46GnP0DvCJ9XFEkwfBdNlIKeUfAodHDq0Y1Y+M6KUmHOgCjNmJwLwIm2nhEZcyyT3P8sRVEUBo4RD3+gx2NgD5CP7ILkvKvhIF74zuUSfvGXy88K41UUZtNwZmQEoq2rj6Icz1kbeWdMckTp+OluqsryR2TcsYp6SoqiJE1wg2nSomS9g9HOwIsXvgO4cl4ZC6cWhd5PLcrh5Ah5LW3d/RSHrScBzLSe0rHW7hEZcyyjoqQoStIED8cryslK0NNhsvVGRvuk1d4EohTJ7NI8TrT3jMgaT2tXP5Mj1rGmFucgAvWnVZQiUVFSEqJrSkqQjhTDd2UFzsN4tA+164+zphSNOaV5GAP1rV3DPpfGM72h0kJBstwuphTmqKcUBRUlRVGSJrimVJCdnCiF6ryNckmdYPguO8qaUjTmlDrrOoebh1+UGs70UlGUPah95uTcERHBsY6KkpIQTQlXgpzp6SfP6456TlE0guG70faU4mXfRaPSitKhYRYlf8DQ0jnYUwKYW57PgcbOYR1vPKCipCREw3dKkDM9vqS9JHDCVJPzska9pE6iRIdIJudlUZTj4UBjx7DOo7mzl4BxUs4jmVdeQFNHb6jig+KgoqQoStKc6e1Pej0pSGlBNk1n0hO+S1aURISa6UXsOt6e8ljGGL74329z5w+30NF7dqXxYJWI8sKcQdfNrygAoHaYhXCso6KkJEQdJSXImR7fWZtAk6GswEtz5+h6Sj12s26OJ/m9UYunF7P3RDs+G/pLljcPt/LUm/W8UtvE2j8ePOuzoy1OOHBWSe6g6+aVO6J0oEFFKRwVJSUmKkZKJO09vpQ9Jaci9uh6SsEj2JOt0QewaEYRvb5Ayus82w63AnDpnMn89PVDZ1WvCK5RBRMpwplVkofX41JPKQIVJSUhRheVFEt7d/9ZNdySoaLQ2Zg6mv+PulOs0QdwwYxJAGw/0prSWLUNHZQXZvM3N1TT1NHH7949GfrscHMnZQXeqOtwbpcwr7yAPSdSDxmOZ1SUlJgEi6KoJClBmjt6Kc33Ju4YxozJuXT3+2kdxQX9YOHYZGv0Acwrz6e8MJvXDjSnNNb+hg6qKwq4Zn4ZVWX5/GTzodBne06eCYXporFkRjHvHmvTX/zCUFFSYqI/Jko4/f4A7T0+SvIHZ5LFI1jnbTQ3inb1+/B6XGfVm0uEiHDlvFJeO9CctEgYYzjQ0MH8igJcLuHOy+fw1pHT7DzWRq/Pz57j7Vw0e1LM65fMKuZ0Vz9HW3QTbRAVJSUh+kucAtDa5awLleSnFr4L1Xk7PXobRbv7/CmtJwW5an4ZTR297E4ypHaqvZeOXh/VNpPujktnkpvl5iebD7H5QDN9/gCXzSmJef0SGzJ859jplOc6XlFRUhQlKVo7nfBbqp5SUJTqR9NT6vOTl+TpuOHcsLACt0v47Tsnkuq/v+EMAPOsKBXnZnHHpTP55VvH+OozuyjOzeLq6rKY1583tRCv28U79W0pz3W8oqKkJIG6SgqhtO7JKXpKxblZ5HvdHBvF4qNdfb6UkhyClBZkc9X8Mn7zzvGkQni1Np27uqIw1PZ3q87jghnFnGjr5msfqCEnjjh6PS6WzCxmy8GWhGP9YfcpNu49lcS3GNuoKCkJ0fCdAgOeUmmKnpKIMHNyXmjPzmjQ1edPKckhnA9eOJ2jLd1srkuc8LC/oYPi3KxQ4VlwDvP71V9dyc5/voUPXTIzoY0r55Xybv3puCf0tnb28Rc/2cbdP94WOmhxvJKUKInIKhHZJyK1IvLlKJ9ni8gT9vMtIlIZ9tn9tn2fiNySyKaIVFkb+61N7zmMMUlEnhKRvSKyR0SuSO32KIoSpGWInhI41Qv2j+Im0a4+/5A8JYDblkyjJN/Lo68cSti31mbeiZydUCEiZCe5cfeKeWUEDLxRF9tbert+YM1p66HUUtbHGglFSUTcwHeAWx/S3TUAACAASURBVIEa4GMiUhPR7R6g1RgzH3gYeMheWwOsARYBq4Dviog7gc2HgIeNMdVAq7Wd8hj2mm8CzxtjFgIXAnuSvTHKAOooKQBNHX2IMOhsoGSonlLAkZauETmvKBrt3f1Jn/kUSU6Wm08sn82Le09Ra9eMYlFrM+/OhYtnTyLb4+LVA00x+4R7me/Wj++kiGQ8pWVArTGmzhjTB6wDVkf0WQ08Zl8/Bdwgzq8Oq4F1xpheY8xBoNbai2rTXrPS2sDavH0oY4hIEXAtsBbAGNNnjBnf/5rDjIbtlHBOtfdQVpBNVpIVwsOprijEmIE1mJGmvbufSXlDEyWAT11ZSb7Xw0PP74vZp6mjl5bOPhZMKYzZJxlystwsn1vKS/saY65jHW7uItvjorI0b9wnRSTzv2sGcDTsfb1ti9rHGOMD2oDSONfGai8FTlsbkWOlOsZcoBH4kYhsF5EfisjgWh+AiNwrIttEZFtjY2PsOzFBUXFSAE609TCteHBh0WRYMMXxJvYn8DyGi9NDqDwRTmlBNp9ZMY8Xdp9ic4zNtO+ddL7LeVPPTZQAbqqZwsGmzpiifaSli9kleSyaXsyek+O7AkQyohRt91nkYypWn+FqH8oYHuAS4HvGmIuBTmDQehiAMeYRY8xSY8zS8vLyaF0mJMEwue42VwBOtvUwpWhoolRZlo/X7WLPiZEXpX5/gK4+/zmJEsDdV1UxuySPLz/9TtTkgn2nnO9yrp4SwM01UwDYsOtk1M+PtHQxpzSP86cVcrSlO25SxFgnGVGqB2aFvZ8JHI/VR0Q8QDHQEufaWO1NwCRrI3KsoYxRb4zZYtufwhEpJUlUi5RwTrYP3VPKcrtYPKOItw6P/CJ9W7fzwD6X8B04dfP+/Y4lHG7u4oHfDl6O3nH0NBWF2Wdl3g2VKUU5XDRrEht2DU75NsZwpKWLWSV51EwvAmDvKIh7ukhGlLYC1TYrzouTVLA+os964C77+g5go3F+vV4PrLGZc1VANfBGLJv2mk3WBtbmM0MZwxhzEjgqIufZa24AdifxfZUIVJuUrj4fbd39TB2iKAFcMnsy7x5rC511NFIERelcPSWA5XNL+fS1c/nFliM8sfVIqN0Yw5a6FpZVlQzKvBsqty6eyrvH2qiLqBre3NlHV5+fOSV5nD/NEaXxXMQ1oSjZ9ZvPAhtwsteeNMbsEpGvi8gHbbe1QKmI1AJfwIbJjDG7gCdxxOB54D5jjD+WTWvrS8AXrK1SazvlMew1fw38XETeAS4C/r9Ub5CiKE7oDmDqEMN3AJfMmUyvLzDiD9TWTqcc0qQhZAlG4//cch7XVJfxj7/eyYt7HE9mx9HTnGzv4drq4Qv3337xDFwCT7917Kz2I6EzmfKYWpTDpLyscS1KSe0uM8Y8BzwX0fbVsNc9wEdiXPsg8GAyNm17HU52XmT7UMbYASyNdo2SPBrGU4IPxpmT84ZsY2nlZABePdDEhbNiFyk9V07Z016nFKW2yTcWHreLb3/sEj756BY+/dM3ue/6+Ww+0ExBtodVF0wdljHACeFdU13O02/V84WbFuCyxWSPhM5kynNOyJ1WlHRtvrGIVnRQEmI0gDfhOdTkHHxXWTZ0UaoozOGCGcVs3NMwXNOKysn2c/fqIinOy+Lnf7Gcm2qm8M0X97PtcAv/9MFFQ94LFYsPXzqT4209Zx2fcbi5C5GBXwjOn1bEvpNnUj4hd6wwtDociqJMKA41d5HvdVNecG7ex/ULK/j2xv20dPZRkuK5TMnS0N6D1+MaljWlcApzsvjenZdyuLkTr8fFtOLBR5yfKzfXTGFSXhY/2XwoVMj1SEsXU4tyQjX0zp/mnJB7qLmT+RXnnvmXaainpCRGHaUJz8GmTirL8s95Uf/mmikEDPz2ncgE3uHjZHsPU4tyhi0BIZI5pfkjIkjgbKS9c/kcXthzKuSd1jZ2UFU2sMWyxiY77Do+PkN4KkqKoiTkULMjSufK4hnFLJpexLqtRxN3HiKHm7uYVTIyojEa/NkVc8hyuVj7ykH6/U5iyOIZxaHP51cUkOWWUdnzlQ5UlJSEqKM0senu83O0pSvusd6psOayWew63s7WQ4mPa0iV4EmwwzXXdFBRlMOHL53J428cYd3Wo/T5Alwclhji9biYV14wbjPwVJSUhGj23cRm78l2AgYW2Y2b58odl86irCCbb/z+vWGxF07jmV7O9PrGtCgBfPHmBRTkePjKr3dSmO3huvPOTj2vmV6koqQoysQkmH4cXMs4V3K9bu67fh6b65p57t3kTnhNlnePOcVKFw5DPbp0UlqQzU/uXsb7L5jGtz528aCzoWqmFdFwppemjt40zXDkUFFSEqIp4ROb3cfbKcrxhI41Hw4+efkcLphRzD/+eicn2obvRNpth1vJcsuI7oMaLZbMnMR3PnEJ1y+sGPTZeK7soKKkxEHFSHEOmFs0vXhYs9k8bhff+NML6fMF+PMfbeV0V9+w2H35vUaWzJwU9wjy8cDi6cWIwPYj4+80HhUlJSG6pjRxae/pZ/fxdpZVlQy77eophXz3E5dQ19jJh7732jmftVTbcIZdx9u5dfHwVVnIVIrzslg4tYgtBxMf2T7WUFFS4uD8ZqyaNHF581ArAQPLR0CUAK5dUM5P71lGS2cf7/vWH/nGC+8N2Wv6r4215GS5WH1R5HFv45PlVSW8ebh1xAvcjjYqSkocVI4mOq/XNZPlFi6ePXnExlg+t5Tff/5abqqZwrde3M+V/7qRzz+xg+d3ngwVV42HMYYfv3qQZ3Yc5y+vmUt54fDUvMt0Lp9bQk9/gHePja8QnpYZUhKih/xNXF7Yc4rlVaXkekd2jaaiMIfvfPwS/nplOz965RDP7zrJr7Y71bIrS/OYX1HI7JI8pk/KoSDbQ67XTU+/nxNtPWza28Db9W3csLCCv7mhekTnmUksqyoF4PW6Fi6dMzKebDpQUVIUJSq1DR3UNXbyqSsrR23MhVOLeOiOJTzwJ4t583Arbx1p5e2jpznc3MVrB5ro6vMPuqZmWhEP3L6Yjy2bjds1MqWFMpGSfC8LphTwel0z910/P93TGTZUlJSYBKyDpH7SxOR3dg/RTfao7tEky+3i8rmlXD63NNRmjKG9x0dXn4/OXj85WS5K8r2D9vBMJK6eX87Ptxymp98/bjIOdU1JiUkobKeqNOEIBAxPbDvKFXNLR6z4aKqICMW5WUwrzmV+RQEzJ+dNaEECuO68cnp9AV6vGz9ZeCpKSkxUiyYuf6xtor61m48tn53uqShxWF5VQk6Wi/95rzHdUxk2VJSUmAw4SipPE43vv3SAsoJsblk0+qE7JXlystxcPreU/9mnoqRMADTrbmKypa6ZzXXNfGbFPLI942OdYjxz3YJy6po6Q8emj3VUlJSYhDwl1aYJg88f4F9+u5uKwmw+oaG7McF1C5wK4v+zf3x4S0mJkoisEpF9IlIrIl+O8nm2iDxhP98iIpVhn91v2/eJyC2JbIpIlbWx39r0DnUM+5lbRLaLyLPJ3xYFBtaUVJQmDj9+7RA7j7XztQ8sGjfZXOOdqrJ8ZpXk8j/7GtI9lWEhoSiJiBv4DnArUAN8TERqIrrdA7QaY+YDDwMP2WtrgDXAImAV8F0rEvFsPgQ8bIypBlqt7ZTHCJvb3wJ7krsdSjgavptYvFN/mn97fh83LKzgfReM//px4wUR4frzKni1tple3+B9XGONZDylZUCtMabOGNMHrANWR/RZDTxmXz8F3CBOSeHVwDpjTK8x5iBQa+1FtWmvWWltYG3ePsQxEJGZwPuBHyZ3O5RwdJ/SxKGhvYfP/Owtyguz+fePXDisFcGVkWfFeeV09/t54+Dwn+Y72iQjSjOAo2Hv621b1D7GGB/QBpTGuTZWeylw2tqIHCvVMQD+E/g7IG7FQhG5V0S2ici2xsbxEZcdDjTrbmLQ0tnHnWu30NrVx/fuvISSfG+6p6SkyBVzy/B6XGzaO/afX8mIUrRfmSKfVrH6DFd7ymOIyG1AgzHmzSifn93ZmEeMMUuNMUvLy8sTdZ8wDCQ6qDiNV+pbu1jzyGYON3fxw7uWsmTm2D8cbyKS63VzxdxSXnpv7K8rJSNK9cCssPczgeOx+oiIBygGWuJcG6u9CZhkbUSOleoYVwEfFJFDOOHBlSLysyS+r2IxEX8r44s3D7fyJ999jRNtPfzoU5dx5byydE9JOQeuP6+cusZODjd3pnsq50QyorQVqLZZcV6cpIL1EX3WA3fZ13cAG43z6/V6YI3NnKsCqoE3Ytm012yyNrA2nxnKGMaY+40xM40xldb+RmPMnUneFwVUjcYp/oDhWy/u509/sJmcLBdPf+ZKrpyvgjTWWXGec2z6S2N8I23CwlHGGJ+IfBbYALiBR40xu0Tk68A2Y8x6YC3wUxGpxfFe1thrd4nIk8BuwAfcZ4zxA0SzaYf8ErBORB4AtlvbDGUM5dwI2LCdRu/GD+/Wt/GPz+zk7aOnWX3RdP7l9sUU5WSle1rKMFBZlk9VWT6b9jVw1yhWdh9ukqpmaIx5Dnguou2rYa97gI/EuPZB4MFkbNr2Omz2XER7ymOEff4S8FKsz5XoqBaNH1o6+3j4hff42ZbDlOZn8801F02YE1onEivOK+cXW46M6arhE7vErhKXgQQHlaexSlt3P2v/WMfaVw7S3e/nU1dW8vmbFqh3NE65/rwKfvTqITbXNXO9DeeNNVSUlJhoRYexy+muPn6y+TA//GMd7T0+3n/BND53YzXVUwrTPTVlBFlWVUJulpuX9jaoKCnjDxWjscfh5k7WvnKQ/95WT3e/nxsWVvCFmxewaHpxuqemjAI5WW6unFfKpn2N/JMxY3ITtIqSkhDVpszGGMO2w62s/eNBNuw+icclrL5oBvdcXcX504rSPT1llFmxsIIX9zZQ19TJvPKCdE8nZVSUFGWM0tbVz9Pb6/nFliPsb+igODeLv1oxj7uuqKSiKCfd01PSxApbNfylfY0qSsr4RMN4mYMxhreOtPLzLUf47Tsn6PUFuHDWJP7tw0u47cJpE/54cAVmleRRXVHAS/sauOfqqnRPJ2X0f7CSEK2Bl34az/Sy/u3jPLn1KPtOnaEg28Mdl87k48tn63qRMojrF1bw41cP0dnrIz97bD3mx9ZsFWUC0dPv58U9DfzyrXr+571G/AHDkpnF/N8PXcAHL5w+5h42yuixYkE5j7xcx2sHmrmpZmwdaa//q5WEaPhu9AiG55568xjPvnOcMz0+phbl8JfXzOVDl8xggaZ0K0mwtLKEfK+bl/Y1qCgpipI6R5q7+NX2Yzy9vZ7DzV3kZrlZtXgqH7pkBlfOK8PtGnupvUr68HpcXF1dxkv7GjFjLDVcRUlJiDpKI8PJth6efec4v3nnBG8fPY0IXDG3lL9eWc2qxVMp0PCccg5cf14FG3adYn9Dx5jysPV/vZIQPU9p+Gju6OW5nSf5zdvH2XqoBWNg8Ywi7r91IbddOJ0Zk3LTPUVlnHDdeU5q+Ka9DSpKiqIM0Nbdz4ZdjhC9dqAZf8Awv6KAz9+4gNuWTGPuGNxLomQ+04pzWTi1kE37Gvj0dfPSPZ2kUVFSlBGgo9fHi3tO8Zu3T/Dye430+QPMLsnjf103lw9cOJ3zphSOqTi/Mja5bkE5j756kO4+P7nesVE1XEVJUYaJtq5+Xthziud3nuDl/U30+QJMLcrhz66YwwcunM6SmcUqRMqocuX8Mn7wch3bDrdwTXV5uqeTFCpKSlTC15F0SSk2TR29/H7XKX638wSbDzTjCximF+fwieWzuXXxNJbOmYxLM+eUNHFZ5WQ8LuG1A80qSsrYxh8IEyXNvzuLk209bNh1kt/tPMEbB1sIGJhTmsc911Rx6+JpXKgekZIh5Hk9XDx7Eq8daE73VJJGRUmJii+gQhTO0ZYunt/pCNFbR04DUF1RwGevn8+qxdM4f5quESmZyRXzyvj2xv209/SPicMdVZSUqPT7A6HXEzF85w8Y3q4/zaa9Dby4p4HdJ9oBWDS9iC/evIBVi6cxv0Kz5pTM58p5pXzrxf1sqWsZE9UdVJTGOZ9bt51rqsv58KUzU7qu3z/xlOhMTz9/3N/Ei3saeGlfA82dfbgEls4p4f5bF3Lr4mnMLs1L9zQVJSUunj2JbI+L1w40jR9REpFVwDcBN/BDY8y/RnyeDfwEuBRoBj5qjDlkP7sfuAfwA39jjNkQz6aIVAHrgBLgLeCTxpi+VMcQkVm2/1QgADxijPlmqjdorPPrHcf59Y7jKYtSd78/9Ho8e0p1jR1s3NvAxr0NvHGwBV/AUJybxYrzylm5sILrFpQzKc+b7mkqypDJ9ri5rLKEzWNkXSmhKImIG/gOcBNQD2wVkfXGmN1h3e4BWo0x80VkDfAQ8FERqQHWAIuA6cAfRGSBvSaWzYeAh40x60Tk+9b294Ywhg/438aYt0SkEHhTRF6ImPe4xhcWgkuV7j5/4k5jkD5fgG2HWnjRCtHBpk4AFkwp4C+umcvKhRVcMnsSHrcrzTNVlOHjinml/PuGfTR19FJWkJ3u6cQlGU9pGVBrjKkDEJF1wGog/OG+Gvgn+/op4NvirPquBtYZY3qBgyJSa+0RzaaI7AFWAh+3fR6zdr+X6hjGmM3ACQBjzBlre0bEvMc1necgLD3hntJwTCaNNHX08tK+RjbuPcXL7zXR0evD63ZxxbxSPnVlJSsXVjCrRMNyyvjlynmlALxe18xtS6aneTbxSUaUZgBHw97XA8tj9THG+ESkDSi17a9HXDvDvo5msxQ4bYzxRek/lDEAEJFK4GJgS7QvKCL3AvcCzJ49O1qXMUlnry9xpxh09YWH78aWLBlj2H2inY17Gti4r4EdR09jDFQUZnPbkmmsXFjBVfPL9DwiZcJwwYxiCrI9vHZgfIhStDzXyKdUrD6x2qPFRuL1H8oYzkUiBcAvgc8ZY9qj9MUY8wjwCMDSpUvH1hM4Dl19Qxel8DWlsUB3n59Xa5vYuK+BjXsaONneA8CFM4v53A0LuOH8CmqmFelGVmVC4nG7uHTOZLYebEn3VBKSjCjVA7PC3s8EjsfoUy8iHqAYaElwbbT2JmCSiHistxTeP+UxRCQLR5B+box5OonvOq7o6B26sHSFeVmZqtLHTnc7SQp7TvHagWZ6fQHyvW6uqS5n5fkVrDivnIrCnHRPU1EygmVVJfz7hn20dPZRkp+5yTvJiNJWoNpmxR3DSSr4eESf9cBdwGbgDmCjMcaIyHrgFyLyDZwkhGrgDRzvZpBNe80ma2OdtfnMUMaw601rgT3GmG+kemPGA13nEL5r6eobxpkMD/6AYcfRVl7c4yQp7D15BoDZJXl8fPlsVi6sYFlVCdmesVF4UlFGk2VVJQBsPdTCLYumpnk2sUkoSnb95rPABpz07UeNMbtE5OvANmPMepyH/09tkkELjshg+z2Jk1zgA+4zxvgBotm0Q34JWCciDwDbrW1SHUNErgY+CbwrIjusjb83xjw3tFs19uiwouT1pJ5J1toZJkppdJXauvt5+b1GNu519g61dvXjdgmXVU7mH953PtcvrGBeeb5WU1CUBCyZWYzX42LrwTEuSgD2Qf5cRNtXw173AB+Jce2DwIPJ2LTtdQxk6IW3pzSGMeYVoq83TRiCyQrZQxClls7+0OvRrH1njOFAYycb957ixT0NbDvcij9gmJyXxfXnVXD9wgquXVBOcW7ml0tRlEwi2+PmolmTeONQZq8rafrROKa9xxGWnKzUw1kn2rrJyXLR0z/0vU7J0uvz88bBltAm1sPNXQAsnFrIp6+dyw3nV3DRrMm4NUlBUc6J5VUlfPelA3T0+ijI0OzTzJyVMiw0nekFoHAI//kONnUyt6yA3SfaR6SiQ+OZXjbZTLk/7m+ks89PtsfFlfNKQ5tY9WhwRRleLqsswR+o5a3DrVy7IDOPslBRGsc0djiiFEhRVfp8AQ42dXJTzZRQIdJzxRjDruPtNknhFG/XtwEwtSiH1RfP4IaFFVw5r2zMnI6pKGORS+ZMxiVOsoOKkjLq1Ld2A6kXV32n/jS9vgCXVZbw7Dsnhryi1NPvZ3NdM3/Y7awPnWzvQQQumjWJL968gOsXOnuHNElBUUaHgmwPi2cU80YG71dSURrH7LMp075AautCz75zAq/bxeVzndIkqThaLZ19bNzbwB92n+Ll/Y109fnJ87q5prqML5y/gJULKzK+9paijGcuqyzhp68fptfnz8jtEypK45T9p87QYNeUUvGUTrR18+S2o9x6wVQm5SWX4dbW3c/vd53kN++c4NXaJvwBw5SibP7k4hncWDOFK+aWDinZQlGU4WdZVQlrXznIu/VtLK0sSfd0BqGiNA7p6ffz0PN78Xpc3FQzhZffa0zqus5eH3/187cIGMMXbz4vlE8fbU0qEDC8dqCZn285zIt7GujzB5hVksu9187l1sVTuWCGHgmuKJnIZVaIthxsUVFSRpauPh+/2HKEH7xcR+OZXr56Ww0n2rrxJeEp7T7ezuee2E5tQwff/cSlzCrJ47St6tDnGwj/+QOG9W8f47821lLX2MnkvCw+ecUcPnjhdJbMVCFSlEynJN9LdUUBWzN0v5KK0jigrbufx147xI9ePUhrVz9Xzivlvz52MZfPLeXfnt8bd03pQGMHD7/wHs++c4KSfC8/uXs5V1eXAYTizb1WlPafOsPnn9zBzmPtnD+tiIc/eiG3Lp6moTlFGWNcVlXCb3Ycxx8wGbf/T0VpDNN4ppe1rxzkZ68fpqPXxw0LK7hv5XwumT051MfjdtHvNxhjzvJijrZ08a0X9/PLt+rJyXJz3/XzuPeaeRSHrSMFyxP1+QJsqWvmz3+8lZwsN99ccxEfWDJdK24ryhhleVUJv9hyhN3H27lgZnG6p3MWKkpjkENNnax95SBPbDuKzx/gfRdM469WzKdmetGgvllWOHwBQ5ZbaDzTy39t3M/jbxxBRPjzq6r4zIp5UTPi3C7B4xIONXey9pU6pk/K5ed/sZwpRVp5W1HGMsHM2tfrmlWUlKHR6/OzYdcp1r1xhNcONON1u/jwpTP49LXzqCzLj3ldlvV2+v0Bfv76Yf5twz56fQE+etks/mZlNVOL4wtMtsfFr7YfI8/rZu1dS1WQFGUcMKUoh6qyfLYcbOYvr52b7umchYpSBtPr8/NabTPP7zzJht0nOd3Vz8zJuXzx5gX86dJZVCQhEB7rKX3l17v45Vv1rDivnK/eVsPc8oKk5hA8Uv0Ty2czpzS2+CmKMra4fK6zOT7T1pVUlDKMzl4fL+1r5PldJ9m0t4GOXh+F2R5Wnl/BHZfO5Kp5ZSmt5WS5HU/pl2/Vc/dVVXzltvOHlCH351dVpXyNoiiZy+VzS3n8jaPsOdHO4hmZE8JTUcoATnf18Yc9DTy/8yQv72+kzxegNN/LbUumccviqVw5r3TIO6+Dx1Z43S7uf9/ClAXp0U8tpbmjj+laHFVRxhXLqwbWlVSUFBrae9iw+xQbdp5kc10z/oBhenEOn1g+m1WLprK0smRYXOpL50wmyy383w9dEPKaUmHlwinnPAdFUTKPqcU5VJbm8XpdC39xTeasK6kojSLHTnfz/M6T/O7dE7x5pBVjYG55Pp++di6rRqgKQvWUQnZ/fdWQBElRlPHN5XNLee7dzFpXUlEaYbr7/Pxu5wme2HqULbYy78KphXz+xgXcungq1VMKR3wOKkiKokRj+dwS1m3NrHUlFaURorWzjx+9epAfv3aI9h4flaV5fPHmBdy2ZHrcFG5FUZTRIrhf6dXaJhWl8Yo/YPjZ64f59w376Oj1sWrRVD51VSXLq0q0LpyiKBnFtOJcFk0v4ve7T/Hp6+alezoAJBXXEZFVIrJPRGpF5MtRPs8WkSfs51tEpDLss/tt+z4RuSWRTRGpsjb2W5ve4R5jpDjd1cddj77B19bv4uLZk/j956/l+5+8lMvnlqogKYqSkdxcM5W3jrTScKYn3VMBkhAlEXED3wFuBWqAj4lITUS3e4BWY8x84GHgIXttDbAGWASsAr4rIu4ENh8CHjbGVAOt1vZwjzHstHb28ZHvb+aNgy089OEL+Mndy1gwCutFiqIo58LNi6ZgDPzm7RPpngqQnKe0DKg1xtQZY/qAdcDqiD6rgcfs66eAG8RxDVYD64wxvcaYg0CttRfVpr1mpbWBtXn7cI6R3G1JjT5fgE/9eCuHW7r48d2X8dHLZqtnpCjKmGDh1EKWVZbw7Y37OX66O93TSWpNaQZwNOx9PbA8Vh9jjE9E2oBS2/56xLUz7OtoNkuB08YYX5T+wzXGIETkXuBe+7ZDRJqBpmh9E3HVg0O5KmMpY4j3YRyi92IAvRcO4+4+zPjakC8tA+YMxxySEaVov/JHnhoXq0+s9mgeWrz+wznG4EZjHgEeCb4XkW3GmKXR+k4k9D4MoPdiAL0XDnofBrD3onI4bCUTvqsHZoW9nwkcj9VHRDxAMdAS59pY7U3AJGsjcqzhGkNRFEXJUJIRpa1Atc2K8+IkFayP6LMeuMu+vgPYaIwxtn2NzZyrAqqBN2LZtNdssjawNp8ZzjGSuy2KoihKOkgYvrPrN58FNgBu4FFjzC4R+TqwzRizHlgL/FREanG8lzX22l0i8iSwG/AB9xlj/ADRbNohvwSsE5EHgO3WNsM8RiIeSdxlQqD3YQC9FwPovXDQ+zDAsN0LcZwNRVEURUk/WhRNURRFyRhUlBRFUZSMQUUpjNEuS5QORORREWkQkZ1hbSUi8oIt7fSCiEy27SIi37L34x0RuSTsmrts//0icle0sTIZEZklIptEZI+I7BKRv7XtE/Fe5IjIGyLytr0X/2zbh63k11jCVoTZLiLP2vcT9T4cEpF3RWSHiGyzbSP/82GM0T/OupobOADMBbzA20BNuuc1At/zJNTnoQAAAw1JREFUWuASYGdY278BX7avvww8ZF+/D/gdzl6wy4Ettr0EqLN/T7avJ6f7u6V4H6YBl9jXhcB7OOWoJuK9EKDAvs4Cttjv+CSwxrZ/H/iMff1XwPft6zXAE/Z1jf25yQaq7M+TO93fbwj34wvAL4Bn7fuJeh8OAWURbSP+86Ge0gCjVpYonRhjXsbJXgwnvIRTZGmnnxiH13H2kE0DbgFeMMa0GGNagRdw6g6OGYwxJ4wxb9nXZ4A9OJVAJuK9MMaYDvs2y/4xDF/JrzGDiMwE3g/80L4fztJn44ER//lQURogWjmlGTH6jjemGGNOgPOwBipse6x7Mq7ulQ27XIzjIUzIe2FDVjuABpwHxwGSLPkFhJf8Guv34j+BvwMC9n3Spc8YX/cBnF9Mfi8ib4pTig1G4edDz1MaIJlyShONVEs7jTlEpAD4JfA5Y0y7xC6kO67vhXH29l0kIpOAXwHnR+tm/x6X90JEbgMajDFvisiKYHOUruP6PoRxlTHmuIhUAC+IyN44fYftXqinNMBELkt0yrra2L8bbPu4LuEkIlk4gvRzY8zTtnlC3osgxpjTwEs46wLDVfJrrHAV8EEROYQTvl+J4zlNtPsAgDHmuP27AecXlWWMws+HitIAE7ksUXgJp8jSTn9mM2suB9qsy74BuFlEJtvsm5tt25jBxv7XAnuMMd8I+2gi3oty6yEhIrnAjThrbMNV8mtMYIy53xgz0ziFRdfgfK9PMMHuA4CI5ItIYfA1zv/rnYzGz0e6Mzwy6Q9OBsl7OPH0f0j3fEboOz4OnAD6cX6LuQcnDv4isN/+XWL7Cs5BiQeAd4GlYXbuxlnArQX+PN3fawj34WqcMMI7wA77530T9F4swSnp9Y598HzVts/FeZjWAv8NZNv2HPu+1n4+N8zWP9h7tA+4Nd3f7RzuyQoGsu8m3H2w3/lt+2dX8Hk4Gj8fWmZIURRFyRg0fKcoiqJkDCpKiqIoSsagoqQoiqJkDCpKiqIoSsagoqQoiqJkDCpKiqIoSsagoqQoiqJkDP8/XqW/tC349s4AAAAASUVORK5CYII=\n", "text/plain": [ "<Figure size 432x288 with 1 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.clf()\n", "# plt.plot(x_part, calcs, '.')\n", "plt.plot(test_q, calcs_test, label = 'pdf')\n", "# plt.plot(test_q, f0_y, label = '0')\n", "# plt.plot(test_q, fT_y, label = 'T')\n", "# plt.plot(test_q, fplus_y, label = '+')\n", "# plt.plot(test_q, res_y, label = 'res')\n", "plt.legend()\n", "plt.ylim(0.0, 1.5e-6)\n", "# plt.yscale('log')\n", "# plt.xlim(770, 785)\n", "plt.savefig('test.png')\n", "# print(jpsi_width)" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [], "source": [ "\n", "\n", "# probs = mixture.prob(test_q)\n", "# probs_np = zfit.run(probs)\n", "# probs_np *= np.max(calcs_test) / np.max(probs_np)\n", "# plt.figure()\n", "# plt.semilogy(test_q, probs_np,label=\"importance sampling\")\n", "# plt.semilogy(test_q, calcs_test, label = 'pdf')\n" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [], "source": [ "# 0.213/(0.00133+0.213+0.015)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Adjust scaling of different parts" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [], "source": [ "total_f.update_integration_options(draws_per_dim=2000000, mc_sampler=None)\n", "# inte = total_f.integrate(limits = (950., 1050.), norm_range=False)\n", "# inte_fl = zfit.run(inte)\n", "# print(inte_fl/4500)\n", "# print(pdg[\"jpsi_BR\"]/pdg[\"NR_BR\"], inte_fl*pdg[\"psi2s_auc\"]/pdg[\"NR_auc\"])" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [], "source": [ "# # print(\"jpsi:\", inte_fl)\n", "# # print(\"Increase am by factor:\", np.sqrt(pdg[\"jpsi_BR\"]/pdg[\"NR_BR\"]*pdg[\"NR_auc\"]/inte_fl))\n", "# # print(\"New amp:\", pdg[\"jpsi\"][3]*np.sqrt(pdg[\"jpsi_BR\"]/pdg[\"NR_BR\"]*pdg[\"NR_auc\"]/inte_fl))\n", "\n", "# # print(\"psi2s:\", inte_fl)\n", "# # print(\"Increase am by factor:\", np.sqrt(pdg[\"psi2s_BR\"]/pdg[\"NR_BR\"]*pdg[\"NR_auc\"]/inte_fl))\n", "# # print(\"New amp:\", pdg[\"psi2s\"][3]*np.sqrt(pdg[\"psi2s_BR\"]/pdg[\"NR_BR\"]*pdg[\"NR_auc\"]/inte_fl))\n", "\n", "# name = \"phi\"\n", "\n", "# print(name+\":\", inte_fl)\n", "# print(\"Increase am by factor:\", np.sqrt(pdg[name+\"_BR\"]/pdg[\"NR_BR\"]*pdg[\"NR_auc\"]/inte_fl))\n", "# print(\"New amp:\", pdg[name][0]*np.sqrt(pdg[name+\"_BR\"]/pdg[\"NR_BR\"]*pdg[\"NR_auc\"]/inte_fl))\n", "\n", "\n", "# print(x_min)\n", "# print(x_max)\n", "# # total_f.update_integration_options(draws_per_dim=2000000, mc_sampler=None)\n", "# total_f.update_integration_options(mc_sampler=lambda dim, num_results,\n", "# dtype: tf.random_uniform(maxval=1., shape=(num_results, dim), dtype=dtype),\n", "# draws_per_dim=1000000)\n", "# # _ = []\n", "\n", "# # for i in range(10):\n", "\n", "# # inte = total_f.integrate(limits = (x_min, x_max))\n", "# # inte_fl = zfit.run(inte)\n", "# # print(inte_fl)\n", "# # _.append(inte_fl)\n", "\n", "# # print(\"mean:\", np.mean(_))\n", "\n", "# _ = time.time()\n", "\n", "# inte = total_f.integrate(limits = (x_min, x_max))\n", "# inte_fl = zfit.run(inte)\n", "# print(inte_fl)\n", "# print(\"Time taken: {}\".format(display_time(int(time.time() - _))))\n", "\n", "# print(pdg['NR_BR']/pdg['NR_auc']*inte_fl)\n", "# print(0.25**2*4.2/1000)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Sampling\n", "## Mixture distribution for sampling" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [], "source": [ "\n", " \n", "# print(list_of_borders[:9])\n", "# print(list_of_borders[-9:])\n", "\n", "\n", "class UniformSampleAndWeights(zfit.util.execution.SessionHolderMixin):\n", " def __call__(self, limits, dtype, n_to_produce):\n", " # n_to_produce = tf.cast(n_to_produce, dtype=tf.int32)\n", " low, high = limits.limit1d\n", " low = tf.cast(low, dtype=dtype)\n", " high = tf.cast(high, dtype=dtype)\n", "# uniform = tfd.Uniform(low=low, high=high)\n", "# uniformjpsi = tfd.Uniform(low=tf.constant(3080, dtype=dtype), high=tf.constant(3112, dtype=dtype))\n", "# uniformpsi2s = tfd.Uniform(low=tf.constant(3670, dtype=dtype), high=tf.constant(3702, dtype=dtype))\n", "\n", "# list_of_borders = []\n", "# _p = []\n", "# splits = 10\n", "\n", "# _ = np.linspace(x_min, x_max, splits)\n", "\n", "# for i in range(splits):\n", "# list_of_borders.append(tf.constant(_[i], dtype=dtype))\n", "# _p.append(tf.constant(1/splits, dtype=dtype))\n", " \n", "# mixture = tfd.MixtureSameFamily(mixture_distribution=tfd.Categorical(probs=_p[:(splits-1)]),\n", "# components_distribution=tfd.Uniform(low=list_of_borders[:(splits-1)], \n", "# high=list_of_borders[-(splits-1):]))\n", " mixture = tfd.MixtureSameFamily(mixture_distribution=tfd.Categorical(probs=[tf.constant(0.05, dtype=dtype),\n", " tf.constant(0.93, dtype=dtype),\n", " tf.constant(0.05, dtype=dtype),\n", " tf.constant(0.065, dtype=dtype),\n", " tf.constant(0.04, dtype=dtype),\n", " tf.constant(0.05, dtype=dtype)]),\n", " components_distribution=tfd.Uniform(low=[tf.constant(x_min, dtype=dtype), \n", " tf.constant(3090, dtype=dtype),\n", " tf.constant(3681, dtype=dtype), \n", " tf.constant(3070, dtype=dtype),\n", " tf.constant(1000, dtype=dtype),\n", " tf.constant(3660, dtype=dtype)], \n", " high=[tf.constant(x_max, dtype=dtype),\n", " tf.constant(3102, dtype=dtype), \n", " tf.constant(3691, dtype=dtype),\n", " tf.constant(3110, dtype=dtype),\n", " tf.constant(1040, dtype=dtype),\n", " tf.constant(3710, dtype=dtype)]))\n", "# dtype = tf.float64\n", "# mixture = tfd.MixtureSameFamily(mixture_distribution=tfd.Categorical(probs=[tf.constant(0.04, dtype=dtype),\n", "# tf.constant(0.90, dtype=dtype),\n", "# tf.constant(0.02, dtype=dtype),\n", "# tf.constant(0.07, dtype=dtype),\n", "# tf.constant(0.02, dtype=dtype)]),\n", "# components_distribution=tfd.Uniform(low=[tf.constant(x_min, dtype=dtype), \n", "# tf.constant(3089, dtype=dtype),\n", "# tf.constant(3103, dtype=dtype), \n", "# tf.constant(3681, dtype=dtype),\n", "# tf.constant(3691, dtype=dtype)], \n", "# high=[tf.constant(3089, dtype=dtype),\n", "# tf.constant(3103, dtype=dtype), \n", "# tf.constant(3681, dtype=dtype),\n", "# tf.constant(3691, dtype=dtype), \n", "# tf.constant(x_max, dtype=dtype)]))\n", "# mixture = tfd.Uniform(tf.constant(x_min, dtype=dtype), tf.constant(x_max, dtype=dtype))\n", "# sample = tf.random.uniform((n_to_produce, 1), dtype=dtype)\n", " sample = mixture.sample((n_to_produce, 1))\n", "# sample = tf.random.uniform((n_to_produce, 1), dtype=dtype)\n", " weights = mixture.prob(sample)[:,0]\n", "# weights = tf.broadcast_to(tf.constant(1., dtype=dtype), shape=(n_to_produce,))\n", " # sample = tf.expand_dims(sample, axis=-1)\n", "# print(sample, weights)\n", " \n", "# weights = tf.ones(shape=(n_to_produce,), dtype=dtype)\n", " weights_max = None\n", " thresholds = tf.random_uniform(shape=(n_to_produce,), dtype=dtype)\n", " return sample, thresholds, weights, weights_max, n_to_produce" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [], "source": [ "# total_f._sample_and_weights = UniformSampleAndWeights" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [], "source": [ "# 0.00133/(0.00133+0.213+0.015)*(x_max-3750)/(x_max-x_min)" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [], "source": [ "# zfit.settings.set_verbosity(10)" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "scrolled": false }, "outputs": [], "source": [ "# # zfit.run.numeric_checks = False \n", "\n", "# nr_of_toys = 1\n", "# nevents = int(pdg[\"number_of_decays\"])\n", "# nevents = pdg[\"number_of_decays\"]\n", "# event_stack = 1000000\n", "# # zfit.settings.set_verbosity(10)\n", "# calls = int(nevents/event_stack + 1)\n", "\n", "# total_samp = []\n", "\n", "# start = time.time()\n", "\n", "# sampler = total_f.create_sampler(n=event_stack)\n", "\n", "# for toy in range(nr_of_toys):\n", " \n", "# dirName = 'data/zfit_toys/toy_{0}'.format(toy)\n", " \n", "# if not os.path.exists(dirName):\n", "# os.mkdir(dirName)\n", "# print(\"Directory \" , dirName , \" Created \")\n", "\n", "# for call in range(calls):\n", "\n", "# sampler.resample(n=event_stack)\n", "# s = sampler.unstack_x()\n", "# sam = zfit.run(s)\n", "# # clear_output(wait=True)\n", "\n", "# c = call + 1\n", " \n", "# print(\"{0}/{1} of Toy {2}/{3}\".format(c, calls, toy+1, nr_of_toys))\n", "# print(\"Time taken: {}\".format(display_time(int(time.time() - start))))\n", "# print(\"Projected time left: {}\".format(display_time(int((time.time() - start)/(c+calls*(toy))*((nr_of_toys-toy)*calls-c)))))\n", "\n", "# with open(\"data/zfit_toys/toy_{0}/{1}.pkl\".format(toy, call), \"wb\") as f:\n", "# pkl.dump(sam, f, pkl.HIGHEST_PROTOCOL)" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [], "source": [ "# with open(r\"data/zfit_toys/toy_0/0.pkl\", \"rb\") as input_file:\n", "# sam = pkl.load(input_file)\n", "# print(sam[:10])\n", "\n", "# with open(r\"data/zfit_toys/toy_0/1.pkl\", \"rb\") as input_file:\n", "# sam2 = pkl.load(input_file)\n", "# print(sam2[:10])\n", "\n", "# print(np.sum(sam-sam2))" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [], "source": [ "# print(\"Time to generate full toy: {} s\".format(int(time.time()-start)))\n", "\n", "# total_samp = []\n", "\n", "# for call in range(calls):\n", "# with open(r\"data/zfit_toys/toy_0/{}.pkl\".format(call), \"rb\") as input_file:\n", "# sam = pkl.load(input_file)\n", "# total_samp = np.append(total_samp, sam)\n", "\n", "# total_samp = total_samp.astype('float64')\n", "\n", "# data2 = zfit.data.Data.from_numpy(array=total_samp[:int(nevents)], obs=obs)\n", "\n", "# data3 = zfit.data.Data.from_numpy(array=total_samp, obs=obs)\n", "\n", "# print(total_samp[:nevents].shape)" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [], "source": [ "# plt.clf()\n", "\n", "# bins = int((x_max-x_min)/7)\n", "\n", "# # calcs = zfit.run(total_test_tf(samp))\n", "# print(total_samp[:nevents].shape)\n", "\n", "# plt.hist(total_samp[:nevents], bins = bins, range = (x_min,x_max), label = 'data')\n", "# # plt.plot(test_q, calcs_test*nevents , label = 'pdf')\n", "\n", "# # plt.plot(sam, calcs, '.')\n", "# # plt.plot(test_q, calcs_test)\n", "# # plt.yscale('log')\n", "# plt.ylim(0, 200)\n", "# # plt.xlim(3080, 3110)\n", "\n", "# plt.legend()\n", "\n", "# plt.savefig('test2.png')" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [], "source": [ "# sampler = total_f.create_sampler(n=nevents)\n", "# nll = zfit.loss.UnbinnedNLL(model=total_f, data=sampler, fit_range = (x_min, x_max))\n", "\n", "# # for param in pdf.get_dependents():\n", "# # param.set_value(initial_value)\n", "\n", "# sampler.resample(n=nevents)\n", "\n", "# # Randomise initial values\n", "# # for param in pdf.get_dependents():\n", "# # param.set_value(random value here)\n", "\n", "# # Minimise the NLL\n", "# minimizer = zfit.minimize.MinuitMinimizer(verbosity = 10)\n", "# minimum = minimizer.minimize(nll)" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [], "source": [ "# jpsi_width" ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [], "source": [ "# plt.hist(sample, weights=1 / prob(sample))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Fitting" ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [], "source": [ "# start = time.time()\n", "\n", "# for param in total_f.get_dependents():\n", "# param.randomize()\n", " \n", "# # for param in total_f.get_dependents():\n", "# # print(zfit.run(param))\n", " \n", "# nll = zfit.loss.UnbinnedNLL(model=total_f, data=data2, fit_range = (x_min, x_max))\n", "\n", "# minimizer = zfit.minimize.MinuitMinimizer(verbosity = 5)\n", "# # minimizer._use_tfgrad = False\n", "# result = minimizer.minimize(nll)\n", "\n", "# # param_errors = result.error()\n", "\n", "# # for var, errors in param_errors.items():\n", "# # print('{}: ^{{+{}}}_{{{}}}'.format(var.name, errors['upper'], errors['lower']))\n", "\n", "# print(\"Function minimum:\", result.fmin)\n", "# # print(\"Results:\", result.params)\n", "# print(\"Hesse errors:\", result.hesse())" ] }, { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [], "source": [ "# print(\"Time taken for fitting: {}\".format(display_time(int(time.time()-start))))\n", "\n", "# # probs = total_f.pdf(test_q)\n", "\n", "# calcs_test = zfit.run(probs)\n", "# res_y = zfit.run(jpsi_res(test_q))" ] }, { "cell_type": "code", "execution_count": 31, "metadata": {}, "outputs": [], "source": [ "# plt.clf()\n", "# # plt.plot(x_part, calcs, '.')\n", "# plt.plot(test_q, calcs_test, label = 'pdf')\n", "# # plt.plot(test_q, res_y, label = 'res')\n", "# plt.legend()\n", "# plt.ylim(0.0, 10e-6)\n", "# # plt.yscale('log')\n", "# # plt.xlim(3080, 3110)\n", "# plt.savefig('test3.png')\n", "# # print(jpsi_width)" ] }, { "cell_type": "code", "execution_count": 32, "metadata": {}, "outputs": [], "source": [ "# _tot = 4.37e-7+6.02e-5+4.97e-6\n", "# _probs = []\n", "# _probs.append(6.02e-5/_tot)\n", "# _probs.append(4.97e-6/_tot)\n", "# _probs.append(4.37e-7/_tot)\n", "# print(_probs)" ] }, { "cell_type": "code", "execution_count": 33, "metadata": {}, "outputs": [], "source": [ "# dtype = 'float64'\n", "# # mixture = tfd.Uniform(tf.constant(x_min, dtype=dtype), tf.constant(x_max, dtype=dtype))\n", "# mixture = tfd.MixtureSameFamily(mixture_distribution=tfd.Categorical(probs=[tf.constant(0.007, dtype=dtype),\n", "# tf.constant(0.917, dtype=dtype),\n", "# tf.constant(0.076, dtype=dtype)]),\n", "# components_distribution=tfd.Uniform(low=[tf.constant(x_min, dtype=dtype), \n", "# tf.constant(3080, dtype=dtype),\n", "# tf.constant(3670, dtype=dtype)], \n", "# high=[tf.constant(x_max, dtype=dtype),\n", "# tf.constant(3112, dtype=dtype), \n", "# tf.constant(3702, dtype=dtype)]))\n", "# # for i in range(10):\n", "# # print(zfit.run(mixture.prob(mixture.sample((10, 1)))))" ] }, { "cell_type": "code", "execution_count": 34, "metadata": {}, "outputs": [], "source": [ "# print((zfit.run(jpsi_p)%(2*np.pi))/np.pi)\n", "# print((zfit.run(psi2s_p)%(2*np.pi))/np.pi)" ] }, { "cell_type": "code", "execution_count": 35, "metadata": {}, "outputs": [], "source": [ "# def jpsi_res(q):\n", "# return resonance(q, _mass = jpsi_mass, scale = jpsi_scale,\n", "# phase = jpsi_phase, width = jpsi_width)\n", "\n", "# def psi2s_res(q):\n", "# return resonance(q, _mass = psi2s_mass, scale = psi2s_scale,\n", "# phase = psi2s_phase, width = psi2s_width)\n", " \n", "# def p3770_res(q):\n", "# return resonance(q, _mass = p3770_mass, scale = p3770_scale,\n", "# phase = p3770_phase, width = p3770_width)\n", " \n", "# def p4040_res(q):\n", "# return resonance(q, _mass = p4040_mass, scale = p4040_scale,\n", "# phase = p4040_phase, width = p4040_width)\n", " \n", "# def p4160_res(q):\n", "# return resonance(q, _mass = p4160_mass, scale = p4160_scale,\n", "# phase = p4160_phase, width = p4160_width)\n", " \n", "# def p4415_res(q):\n", "# return resonance(q, _mass = p4415_mass, scale = p4415_scale,\n", "# phase = p4415_phase, width = p4415_width)" ] }, { "cell_type": "code", "execution_count": 36, "metadata": {}, "outputs": [], "source": [ "# 0.15**2*4.2/1000\n", "# result.hesse()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Constraints" ] }, { "cell_type": "code", "execution_count": 37, "metadata": {}, "outputs": [], "source": [ "# 1. Constraint - Real part of sum of Psi contrib and D contribs\n", "\n", "sum_list = []\n", "\n", "sum_list.append(ztf.to_complex(jpsi_s) * tf.exp(tf.complex(ztf.constant(0.0), jpsi_p)) * ztf.to_complex(jpsi_w / (tf.pow(jpsi_m,3))))\n", "sum_list.append(ztf.to_complex(psi2s_s) * tf.exp(tf.complex(ztf.constant(0.0), psi2s_p)) * ztf.to_complex(psi2s_w / (tf.pow(psi2s_m,3))))\n", "sum_list.append(ztf.to_complex(p3770_s) * tf.exp(tf.complex(ztf.constant(0.0), p3770_p)) * ztf.to_complex(p3770_w / (tf.pow(p3770_m,3))))\n", "sum_list.append(ztf.to_complex(p4040_s) * tf.exp(tf.complex(ztf.constant(0.0), p4040_p)) * ztf.to_complex(p4040_w / (tf.pow(p4040_m,3))))\n", "sum_list.append(ztf.to_complex(p4160_s) * tf.exp(tf.complex(ztf.constant(0.0), p4160_p)) * ztf.to_complex(p4160_w / (tf.pow(p4160_m,3))))\n", "sum_list.append(ztf.to_complex(p4415_s) * tf.exp(tf.complex(ztf.constant(0.0), p4415_p)) * ztf.to_complex(p4415_w / (tf.pow(p4415_m,3))))\n", "sum_list.append(ztf.to_complex(DDstar_s) * tf.exp(tf.complex(ztf.constant(0.0), DDstar_p)) * (ztf.to_complex(1.0 / (10.0*tf.pow(Dstar_m,2)) + 1.0 / (10.0*tf.pow(D_m,2)))))\n", "sum_list.append(ztf.to_complex(Dbar_s) * tf.exp(tf.complex(ztf.constant(0.0), Dbar_p)) * ztf.to_complex(1.0 / (6.0*tf.pow(Dbar_m,2))))\n", "\n", "sum_ru_1 = ztf.to_complex(ztf.constant(0.0))\n", "\n", "for part in sum_list:\n", " sum_ru_1 += part\n", "\n", "sum_1 = tf.math.real(sum_ru_1)\n", "# constraint1 = zfit.constraint.GaussianConstraint(params = sum_1, mu = ztf.constant(1.7*10**-8), \n", "# sigma = ztf.constant(2.2*10**-8))\n", "\n", "constraint1 = tf.pow((sum_1-ztf.constant(1.7*10**-8))/ztf.constant(2.2*10**-8),2)/ztf.constant(2.)\n", "\n", "# 2. Constraint - Abs. of sum of Psi contribs and D contribs\n", "\n", "sum_2 = tf.abs(sum_ru_1)\n", "constraint2 = tf.cond(tf.greater_equal(sum_2, 5.0e-8), lambda: 100000., lambda: 0.)\n", "\n", "# 3. Constraint - Maximum eta of D contribs\n", "\n", "constraint3_0 = tf.cond(tf.greater_equal(tf.abs(Dbar_s), 0.2), lambda: 100000., lambda: 0.)\n", "\n", "constraint3_1 = tf.cond(tf.greater_equal(tf.abs(DDstar_s), 0.2), lambda: 100000., lambda: 0.)\n", "\n", "# 4. Constraint - Formfactor multivariant gaussian covariance fplus\n", "\n", "Cov_matrix = [[ztf.constant( 1.), ztf.constant( 0.45), ztf.constant( 0.19), ztf.constant(0.857), ztf.constant(0.598), ztf.constant(0.531), ztf.constant(0.752), ztf.constant(0.229), ztf.constant(0,117)],\n", " [ztf.constant( 0.45), ztf.constant( 1.), ztf.constant(0.677), ztf.constant(0.708), ztf.constant(0.958), ztf.constant(0.927), ztf.constant(0.227), ztf.constant(0.443), ztf.constant(0.287)],\n", " [ztf.constant( 0.19), ztf.constant(0.677), ztf.constant( 1.), ztf.constant(0.595), ztf.constant(0.770), ztf.constant(0.819),ztf.constant(-0.023), ztf.constant( 0.07), ztf.constant(0.196)],\n", " [ztf.constant(0.857), ztf.constant(0.708), ztf.constant(0.595), ztf.constant( 1.), ztf.constant( 0.83), ztf.constant(0.766), ztf.constant(0.582), ztf.constant(0.237), ztf.constant(0.192)],\n", " [ztf.constant(0.598), ztf.constant(0.958), ztf.constant(0.770), ztf.constant( 0.83), ztf.constant( 1.), ztf.constant(0.973), ztf.constant(0.324), ztf.constant(0.372), ztf.constant(0.272)],\n", " [ztf.constant(0.531), ztf.constant(0.927), ztf.constant(0.819), ztf.constant(0.766), ztf.constant(0.973), ztf.constant( 1.), ztf.constant(0.268), ztf.constant(0.332), ztf.constant(0.269)],\n", " [ztf.constant(0.752), ztf.constant(0.227),ztf.constant(-0.023), ztf.constant(0.582), ztf.constant(0.324), ztf.constant(0.268), ztf.constant( 1.), ztf.constant( 0.59), ztf.constant(0.515)],\n", " [ztf.constant(0.229), ztf.constant(0.443), ztf.constant( 0.07), ztf.constant(0.237), ztf.constant(0.372), ztf.constant(0.332), ztf.constant( 0.59), ztf.constant( 1.), ztf.constant(0.897)],\n", " [ztf.constant(0.117), ztf.constant(0.287), ztf.constant(0.196), ztf.constant(0.192), ztf.constant(0.272), ztf.constant(0.269), ztf.constant(0.515), ztf.constant(0.897), ztf.constant( 1.)]]\n", "\n", "def triGauss(val1,val2,val3,m = Cov_matrix):\n", "\n", " mean1 = ztf.constant(0.466)\n", " mean2 = ztf.constant(-0.885)\n", " mean3 = ztf.constant(-0.213)\n", " sigma1 = ztf.constant(0.014)\n", " sigma2 = ztf.constant(0.128)\n", " sigma3 = ztf.constant(0.548)\n", " x1 = (val1-mean1)/sigma1\n", " x2 = (val2-mean2)/sigma2\n", " x3 = (val3-mean3)/sigma3\n", " rho12 = m[0][1]\n", " rho13 = m[0][2]\n", " rho23 = m[1][2]\n", " w = x1*x1*(rho23*rho23-1) + x2*x2*(rho13*rho13-1)+x3*x3*(rho12*rho12-1)+2*(x1*x2*(rho12-rho13*rho23)+x1*x3*(rho13-rho12*rho23)+x2*x3*(rho23-rho12*rho13))\n", " d = 2*(rho12*rho12+rho13*rho13+rho23*rho23-2*rho12*rho13*rho23-1)\n", " \n", " fcn = -w/d\n", " chisq = -2*fcn\n", " return chisq\n", "\n", "constraint4 = triGauss(bplus_0, bplus_1, bplus_2)\n", "\n", "# mean1 = ztf.constant(0.466)\n", "# mean2 = ztf.constant(-0.885)\n", "# mean3 = ztf.constant(-0.213)\n", "# sigma1 = ztf.constant(0.014)\n", "# sigma2 = ztf.constant(0.128)\n", "# sigma3 = ztf.constant(0.548)\n", "# constraint4_0 = tf.pow((bplus_0-mean1)/sigma1,2)/ztf.constant(2.)\n", "# constraint4_1 = tf.pow((bplus_1-mean2)/sigma2,2)/ztf.constant(2.)\n", "# constraint4_2 = tf.pow((bplus_2-mean3)/sigma3,2)/ztf.constant(2.)\n", "\n", "# 5. Constraint - Abs. of sum of light contribs\n", "\n", "sum_list_5 = []\n", "\n", "sum_list_5.append(rho_s*rho_w/rho_m)\n", "sum_list_5.append(omega_s*omega_w/omega_m)\n", "sum_list_5.append(phi_s*phi_w/phi_m)\n", "\n", "\n", "sum_ru_5 = ztf.constant(0.0)\n", "\n", "for part in sum_list_5:\n", " sum_ru_5 += part\n", "\n", "constraint5 = tf.cond(tf.greater_equal(tf.abs(sum_ru_5), ztf.constant(0.02)), lambda: 100000., lambda: 0.)\n", "\n", "# 6. Constraint on phases of Jpsi and Psi2s for cut out fit\n", "\n", "\n", "# constraint6_0 = zfit.constraint.GaussianConstraint(params = jpsi_p, mu = ztf.constant(pdg[\"jpsi_phase_unc\"]),\n", "# sigma = ztf.constant(jpsi_phase))\n", "# constraint6_1 = zfit.constraint.GaussianConstraint(params = psi2s_p, mu = ztf.constant(pdg[\"psi2s_phase_unc\"]),\n", "# sigma = ztf.constant(psi2s_phase))\n", "\n", "constraint6_0 = tf.pow((jpsi_p-ztf.constant(jpsi_phase))/ztf.constant(pdg[\"jpsi_phase_unc\"]),2)/ztf.constant(2.)\n", "constraint6_1 = tf.pow((psi2s_p-ztf.constant(psi2s_phase))/ztf.constant(pdg[\"psi2s_phase_unc\"]),2)/ztf.constant(2.)\n", "\n", "# 7. Constraint on Ctt with higher limits\n", "\n", "constraint7 = tf.cond(tf.greater_equal(Ctt*Ctt, 0.25), lambda: 100000., lambda: 0.)\n", "\n", "constraint7dtype = tf.float64\n", "\n", "# zfit.run(constraint6_0)\n", "\n", "# ztf.convert_to_tensor(constraint6_0)\n", "\n", "#List of all constraints\n", "\n", "constraints = [constraint1, constraint2, constraint3_0, constraint3_1,# constraint4, #constraint4_0, constraint4_1, constraint4_2,\n", " constraint6_0, constraint6_1]#, constraint7]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Reset params" ] }, { "cell_type": "code", "execution_count": 38, "metadata": {}, "outputs": [], "source": [ "def reset_param_values(): \n", " jpsi_m.set_value(jpsi_mass)\n", " jpsi_s.set_value(jpsi_scale)\n", " jpsi_p.set_value(jpsi_phase)\n", " jpsi_w.set_value(jpsi_width)\n", " psi2s_m.set_value(psi2s_mass)\n", " psi2s_s.set_value(psi2s_scale)\n", " psi2s_p.set_value(psi2s_phase)\n", " psi2s_w.set_value(psi2s_width)\n", " p3770_m.set_value(p3770_mass)\n", " p3770_s.set_value(p3770_scale)\n", " p3770_p.set_value(p3770_phase)\n", " p3770_w.set_value(p3770_width)\n", " p4040_m.set_value(p4040_mass)\n", " p4040_s.set_value(p4040_scale)\n", " p4040_p.set_value(p4040_phase)\n", " p4040_w.set_value(p4040_width)\n", " p4160_m.set_value(p4160_mass)\n", " p4160_s.set_value(p4160_scale)\n", " p4160_p.set_value(p4160_phase)\n", " p4160_w.set_value(p4160_width)\n", " p4415_m.set_value(p4415_mass)\n", " p4415_s.set_value(p4415_scale)\n", " p4415_p.set_value(p4415_phase)\n", " p4415_w.set_value(p4415_width)\n", " rho_m.set_value(rho_mass)\n", " rho_s.set_value(rho_scale)\n", " rho_p.set_value(rho_phase)\n", " rho_w.set_value(rho_width)\n", " omega_m.set_value(omega_mass)\n", " omega_s.set_value(omega_scale)\n", " omega_p.set_value(omega_phase)\n", " omega_w.set_value(omega_width)\n", " phi_m.set_value(phi_mass)\n", " phi_s.set_value(phi_scale)\n", " phi_p.set_value(phi_phase)\n", " phi_w.set_value(phi_width)\n", " Dstar_m.set_value(Dstar_mass)\n", " DDstar_s.set_value(0.0)\n", " DDstar_p.set_value(0.0)\n", " D_m.set_value(D_mass)\n", " Dbar_m.set_value(Dbar_mass)\n", " Dbar_s.set_value(0.0)\n", " Dbar_p.set_value(0.0)\n", " tau_m.set_value(pdg['tau_M'])\n", " Ctt.set_value(0.0)\n", " b0_0.set_value(0.292)\n", " b0_1.set_value(0.281)\n", " b0_2.set_value(0.150)\n", " bplus_0.set_value(0.466)\n", " bplus_1.set_value(-0.885)\n", " bplus_2.set_value(-0.213)\n", " bT_0.set_value(0.460)\n", " bT_1.set_value(-1.089)\n", " bT_2.set_value(-1.114)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Analysis" ] }, { "cell_type": "code", "execution_count": 39, "metadata": { "scrolled": false }, "outputs": [], "source": [ "# # zfit.run.numeric_checks = False \n", "\n", "# fitting_range = 'cut'\n", "# total_BR = 1.7e-10 + 4.9e-10 + 2.5e-9 + 6.02e-5 + 4.97e-6 + 1.38e-9 + 4.2e-10 + 2.6e-9 + 6.1e-10 + 4.37e-7\n", "# cut_BR = 1.0 - (6.02e-5 + 4.97e-6)/total_BR\n", "\n", "# Ctt_list = []\n", "# Ctt_error_list = []\n", "\n", "# nr_of_toys = 1\n", "# if fitting_range == 'cut':\n", "# nevents = int(pdg[\"number_of_decays\"]*cut_BR)\n", "# else:\n", "# nevents = int(pdg[\"number_of_decays\"])\n", "# # nevents = pdg[\"number_of_decays\"]\n", "# event_stack = 1000000\n", "# # nevents *= 41\n", "# # zfit.settings.set_verbosity(10)\n", "# calls = int(nevents/event_stack + 1)\n", "\n", "# total_samp = []\n", "\n", "# start = time.time()\n", "\n", "# sampler = total_f.create_sampler(n=event_stack)\n", "\n", "# for toy in range(nr_of_toys):\n", " \n", "# ### Generate data\n", " \n", "# # clear_output(wait=True)\n", " \n", "# print(\"Toy {}: Generating data...\".format(toy))\n", " \n", "# dirName = 'data/zfit_toys/toy_{0}'.format(toy)\n", " \n", "# if not os.path.exists(dirName):\n", "# os.mkdir(dirName)\n", "# print(\"Directory \" , dirName , \" Created \")\n", " \n", "# reset_param_values()\n", " \n", "# if fitting_range == 'cut':\n", " \n", "# sampler.resample(n=nevents)\n", "# s = sampler.unstack_x()\n", "# sam = zfit.run(s)\n", "# calls = 0\n", "# c = 1\n", " \n", "# else: \n", "# for call in range(calls):\n", "\n", "# sampler.resample(n=event_stack)\n", "# s = sampler.unstack_x()\n", "# sam = zfit.run(s)\n", "\n", "# c = call + 1\n", "\n", "# with open(\"data/zfit_toys/toy_{0}/{1}.pkl\".format(toy, call), \"wb\") as f:\n", "# pkl.dump(sam, f, pkl.HIGHEST_PROTOCOL)\n", " \n", "# print(\"Toy {}: Data generation finished\".format(toy))\n", " \n", "# ### Load data\n", " \n", "# print(\"Toy {}: Loading data...\".format(toy))\n", " \n", "# if fitting_range == 'cut':\n", " \n", "# total_samp = sam\n", " \n", "# else:\n", " \n", "# for call in range(calls):\n", "# with open(r\"data/zfit_toys/toy_0/{}.pkl\".format(call), \"rb\") as input_file:\n", "# sam = pkl.load(input_file)\n", "# total_samp = np.append(total_samp, sam)\n", "\n", "# total_samp = total_samp.astype('float64')\n", " \n", "# if fitting_range == 'full':\n", "\n", "# data = zfit.data.Data.from_numpy(array=total_samp[:int(nevents)], obs=obs)\n", " \n", "# print(\"Toy {}: Loading data finished\".format(toy))\n", "\n", "# ### Fit data\n", "\n", "# print(\"Toy {}: Fitting pdf...\".format(toy))\n", "\n", "# for param in total_f.get_dependents():\n", "# param.randomize()\n", "\n", "# nll = zfit.loss.UnbinnedNLL(model=total_f, data=data, fit_range = (x_min, x_max), constraints = constraints)\n", "\n", "# minimizer = zfit.minimize.MinuitMinimizer(verbosity = 5)\n", "# # minimizer._use_tfgrad = False\n", "# result = minimizer.minimize(nll)\n", "\n", "# print(\"Toy {}: Fitting finished\".format(toy))\n", "\n", "# print(\"Function minimum:\", result.fmin)\n", "# print(\"Hesse errors:\", result.hesse())\n", "\n", "# params = result.params\n", "# Ctt_list.append(params[Ctt]['value'])\n", "# Ctt_error_list.append(params[Ctt]['minuit_hesse']['error'])\n", "\n", "# #plotting the result\n", "\n", "# plotdirName = 'data/plots'.format(toy)\n", "\n", "# if not os.path.exists(plotdirName):\n", "# os.mkdir(plotdirName)\n", "# # print(\"Directory \" , dirName , \" Created \")\n", " \n", "# probs = total_f.pdf(test_q, norm_range=False)\n", "# calcs_test = zfit.run(probs)\n", "# plt.clf()\n", "# plt.plot(test_q, calcs_test, label = 'pdf')\n", "# plt.legend()\n", "# plt.ylim(0.0, 6e-6)\n", "# plt.savefig(plotdirName + '/toy_fit_full_range{}.png'.format(toy))\n", "\n", "# print(\"Toy {0}/{1}\".format(toy+1, nr_of_toys))\n", "# print(\"Time taken: {}\".format(display_time(int(time.time() - start))))\n", "# print(\"Projected time left: {}\".format(display_time(int((time.time() - start)/(c+calls*(toy))*((nr_of_toys-toy)*calls-c)))))\n", " \n", "# if fitting_range == 'cut':\n", " \n", "# _1 = np.where((total_samp >= x_min) & (total_samp <= (jpsi_mass - 60.)))\n", " \n", "# tot_sam_1 = total_samp[_1]\n", " \n", "# _2 = np.where((total_samp >= (jpsi_mass + 70.)) & (total_samp <= (psi2s_mass - 50.)))\n", " \n", "# tot_sam_2 = total_samp[_2]\n", "\n", "# _3 = np.where((total_samp >= (psi2s_mass + 50.)) & (total_samp <= x_max))\n", " \n", "# tot_sam_3 = total_samp[_3]\n", "\n", "# tot_sam = np.append(tot_sam_1, tot_sam_2)\n", "# tot_sam = np.append(tot_sam, tot_sam_3)\n", " \n", "# data = zfit.data.Data.from_numpy(array=tot_sam[:int(nevents)], obs=obs_fit)\n", " \n", "# print(\"Toy {}: Loading data finished\".format(toy))\n", " \n", "# ### Fit data\n", "\n", "# print(\"Toy {}: Fitting pdf...\".format(toy))\n", "\n", "# for param in total_f_fit.get_dependents():\n", "# param.randomize()\n", "\n", "# nll = zfit.loss.UnbinnedNLL(model=total_f_fit, data=data, constraints = constraints)\n", "\n", "# minimizer = zfit.minimize.MinuitMinimizer(verbosity = 5)\n", "# # minimizer._use_tfgrad = False\n", "# result = minimizer.minimize(nll)\n", "\n", "# print(\"Function minimum:\", result.fmin)\n", "# print(\"Hesse errors:\", result.hesse())\n", "\n", "# params = result.params\n", " \n", "# if result.converged:\n", "# Ctt_list.append(params[Ctt]['value'])\n", "# Ctt_error_list.append(params[Ctt]['minuit_hesse']['error'])\n", "\n", "# #plotting the result\n", "\n", "# plotdirName = 'data/plots'.format(toy)\n", "\n", "# if not os.path.exists(plotdirName):\n", "# os.mkdir(plotdirName)\n", "# # print(\"Directory \" , dirName , \" Created \")\n", " \n", "# plt.clf()\n", "# plt.hist(tot_sam, bins = int((x_max-x_min)/7.), label = 'toy data')\n", "# plt.savefig(plotdirName + '/toy_histo_cut_region{}.png'.format(toy))\n", "\n", " \n", "# probs = total_f_fit.pdf(test_q, norm_range=False)\n", "# calcs_test = zfit.run(probs)\n", "# plt.clf()\n", "# plt.plot(test_q, calcs_test, label = 'pdf')\n", "# plt.axvline(x=jpsi_mass-60.,color='red', linewidth=0.7, linestyle = 'dotted')\n", "# plt.axvline(x=jpsi_mass+70.,color='red', linewidth=0.7, linestyle = 'dotted')\n", "# plt.axvline(x=psi2s_mass-50.,color='red', linewidth=0.7, linestyle = 'dotted')\n", "# plt.axvline(x=psi2s_mass+50.,color='red', linewidth=0.7, linestyle = 'dotted')\n", "# plt.legend()\n", "# plt.ylim(0.0, 1.5e-6)\n", "# plt.savefig(plotdirName + '/toy_fit_cut_region{}.png'.format(toy))\n", " \n", "# print(\"Toy {0}/{1}\".format(toy+1, nr_of_toys))\n", "# print(\"Time taken: {}\".format(display_time(int(time.time() - start))))\n", "# print(\"Projected time left: {}\".format(display_time(int((time.time() - start)/(toy+1))*((nr_of_toys-toy-1)))))\n", " " ] }, { "cell_type": "code", "execution_count": 40, "metadata": {}, "outputs": [ { "ename": "NameError", "evalue": "name 'Ctt_list' is not defined", "output_type": "error", "traceback": [ "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[1;31mNameError\u001b[0m Traceback (most recent call last)", "\u001b[1;32m<ipython-input-40-c798fff4d6cd>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[1;32mwith\u001b[0m \u001b[0mopen\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m\"data/results/Ctt_list.pkl\"\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;34m\"wb\"\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;32mas\u001b[0m \u001b[0mf\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 2\u001b[1;33m \u001b[0mpkl\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mdump\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mCtt_list\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mf\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mpkl\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mHIGHEST_PROTOCOL\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 3\u001b[0m \u001b[1;32mwith\u001b[0m \u001b[0mopen\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m\"data/results/Ctt_error_list.pkl\"\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;34m\"wb\"\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;32mas\u001b[0m \u001b[0mf\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 4\u001b[0m \u001b[0mpkl\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mdump\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mCtt_error_list\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mf\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mpkl\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mHIGHEST_PROTOCOL\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;31mNameError\u001b[0m: name 'Ctt_list' is not defined" ] } ], "source": [ "# with open(\"data/results/Ctt_list.pkl\", \"wb\") as f:\n", "# pkl.dump(Ctt_list, f, pkl.HIGHEST_PROTOCOL)\n", "# with open(\"data/results/Ctt_error_list.pkl\", \"wb\") as f:\n", "# pkl.dump(Ctt_error_list, f, pkl.HIGHEST_PROTOCOL)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# print('{0}/{1} fits converged'.format(len(Ctt_list), nr_of_toys))\n", "# print('Mean Ctt value = {}'.format(np.mean(Ctt_list)))\n", "# print('Mean Ctt error = {}'.format(np.mean(Ctt_error_list)))\n", "# print('95 Sensitivy = {}'.format(((2*np.mean(Ctt_error_list))**2)*4.2/1000))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# plt.hist(tot_sam, bins = int((x_max-x_min)/7.))\n", "\n", "# plt.show()\n", "\n", "# # _ = np.where((total_samp >= x_min) & (total_samp <= (jpsi_mass - 50.)))\n", "\n", "# tot_sam.shape" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Ctt.floating = False" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# zfit.run(nll.value())" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# result.fmin" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# BR_steps = np.linspace(0.0, 1e-3, 11)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# CLS Code" ] }, { "cell_type": "code", "execution_count": 47, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Step: 0/11\n", "Current Ctt: 0.0\n", "Ctt floating: True\n", "Toy 0/1\n" ] }, { "ename": "RuntimeError", "evalue": "exception was raised in user function\nUser function arguments:\n p4415_s = +0.738610\n psi2s_p = +1.596704\n p4415_p = +5.534902\n phi_s = +14.820266\n DDstar_s = +0.055634\n p3770_s = +3.056326\n p4160_s = +3.013799\n omega_s = +8.221504\n p3770_p = +3.227282\n phi_p = -1.956867\n Ctt = -0.074235\n DDstar_p = -3.658252\n rho_p = +3.220475\n Dbar_p = +1.482929\n p4040_p = -1.211697\n rho_s = +0.426552\n jpsi_p = -4.776017\n omega_p = +2.899561\n p4160_p = -1.589904\n p4040_s = +1.161008\n Dbar_s = +0.130791\nOriginal python exception in user function:\nKeyboardInterrupt: \n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\minimizers\\minimizer_minuit.py\", line 101, in func\n loss_evaluated = self.sess.run(loss_val)\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\client\\session.py\", line 929, in run\n run_metadata_ptr)\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\client\\session.py\", line 1152, in _run\n feed_dict_tensor, options, run_metadata)\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\client\\session.py\", line 1328, in _do_run\n run_metadata)\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\client\\session.py\", line 1334, in _do_call\n return fn(*args)\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\client\\session.py\", line 1319, in _run_fn\n options, feed_dict, fetch_list, target_list, run_metadata)\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\client\\session.py\", line 1407, in _call_tf_sessionrun\n run_metadata)\n", "output_type": "error", "traceback": [ "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[1;31mRuntimeError\u001b[0m Traceback (most recent call last)", "\u001b[1;32m<ipython-input-47-feca68d05694>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m\u001b[0m\n\u001b[0;32m 76\u001b[0m \u001b[0mminimizer\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mzfit\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mminimize\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mMinuitMinimizer\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mverbosity\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;36m5\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 77\u001b[0m \u001b[1;31m# minimizer._use_tfgrad = False\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 78\u001b[1;33m \u001b[0mresult\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mminimizer\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mminimize\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mnll\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 79\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 80\u001b[0m \u001b[1;31m# print(\"Function minimum:\", result.fmin)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32m~\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\minimizers\\baseminimizer.py\u001b[0m in \u001b[0;36mminimize\u001b[1;34m(self, loss, params)\u001b[0m\n\u001b[0;32m 205\u001b[0m \u001b[0mtuple\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mstack\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0menter_context\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mparam\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mset_sess\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0msess\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;32mfor\u001b[0m \u001b[0mparam\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mparams\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 206\u001b[0m \u001b[1;32mtry\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 207\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_hook_minimize\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mloss\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mloss\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mparams\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mparams\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 208\u001b[0m \u001b[1;32mexcept\u001b[0m \u001b[1;33m(\u001b[0m\u001b[0mFailMinimizeNaN\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mRuntimeError\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;32mas\u001b[0m \u001b[0merror\u001b[0m\u001b[1;33m:\u001b[0m \u001b[1;31m# iminuit raises RuntimeError if user raises Error\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 209\u001b[0m \u001b[0mfail_result\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mstrategy\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfit_result\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32m~\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\minimizers\\baseminimizer.py\u001b[0m in \u001b[0;36m_hook_minimize\u001b[1;34m(self, loss, params)\u001b[0m\n\u001b[0;32m 214\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 215\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0m_hook_minimize\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mloss\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mparams\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 216\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_call_minimize\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mloss\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mloss\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mparams\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mparams\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 217\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 218\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0m_call_minimize\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mloss\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mparams\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32m~\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\minimizers\\baseminimizer.py\u001b[0m in \u001b[0;36m_call_minimize\u001b[1;34m(self, loss, params)\u001b[0m\n\u001b[0;32m 218\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0m_call_minimize\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mloss\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mparams\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 219\u001b[0m \u001b[1;32mtry\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 220\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_minimize\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mloss\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mloss\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mparams\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mparams\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 221\u001b[0m \u001b[1;32mexcept\u001b[0m \u001b[0mNotImplementedError\u001b[0m \u001b[1;32mas\u001b[0m \u001b[0merror\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 222\u001b[0m \u001b[1;32mtry\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32m~\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\minimizers\\minimizer_minuit.py\u001b[0m in \u001b[0;36m_minimize\u001b[1;34m(self, loss, params)\u001b[0m\n\u001b[0;32m 136\u001b[0m minimizer_setter)\n\u001b[0;32m 137\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_minuit_minimizer\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mminimizer\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 138\u001b[1;33m \u001b[0mresult\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mminimizer\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mmigrad\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m**\u001b[0m\u001b[0mminimize_options\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 139\u001b[0m \u001b[0mparams_result\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;33m[\u001b[0m\u001b[0mp_dict\u001b[0m \u001b[1;32mfor\u001b[0m \u001b[0mp_dict\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mresult\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 140\u001b[0m \u001b[0mresult_vals\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;33m[\u001b[0m\u001b[0mres\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m\"value\"\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;32mfor\u001b[0m \u001b[0mres\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mparams_result\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32miminuit\\_libiminuit.pyx\u001b[0m in \u001b[0;36miminuit._libiminuit.Minuit.migrad\u001b[1;34m()\u001b[0m\n", "\u001b[1;31mRuntimeError\u001b[0m: exception was raised in user function\nUser function arguments:\n p4415_s = +0.738610\n psi2s_p = +1.596704\n p4415_p = +5.534902\n phi_s = +14.820266\n DDstar_s = +0.055634\n p3770_s = +3.056326\n p4160_s = +3.013799\n omega_s = +8.221504\n p3770_p = +3.227282\n phi_p = -1.956867\n Ctt = -0.074235\n DDstar_p = -3.658252\n rho_p = +3.220475\n Dbar_p = +1.482929\n p4040_p = -1.211697\n rho_s = +0.426552\n jpsi_p = -4.776017\n omega_p = +2.899561\n p4160_p = -1.589904\n p4040_s = +1.161008\n Dbar_s = +0.130791\nOriginal python exception in user function:\nKeyboardInterrupt: \n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\minimizers\\minimizer_minuit.py\", line 101, in func\n loss_evaluated = self.sess.run(loss_val)\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\client\\session.py\", line 929, in run\n run_metadata_ptr)\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\client\\session.py\", line 1152, in _run\n feed_dict_tensor, options, run_metadata)\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\client\\session.py\", line 1328, in _do_run\n run_metadata)\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\client\\session.py\", line 1334, in _do_call\n return fn(*args)\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\client\\session.py\", line 1319, in _run_fn\n options, feed_dict, fetch_list, target_list, run_metadata)\n File \"C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\client\\session.py\", line 1407, in _call_tf_sessionrun\n run_metadata)\n" ] } ], "source": [ "# zfit.run.numeric_checks = False \n", "\n", "fitting_range = 'cut'\n", "total_BR = 1.7e-10 + 4.9e-10 + 2.5e-9 + 6.02e-5 + 4.97e-6 + 1.38e-9 + 4.2e-10 + 2.6e-9 + 6.1e-10 + 4.37e-7\n", "cut_BR = 1.0 - (6.02e-5 + 4.97e-6)/total_BR\n", "\n", "Ctt_list = []\n", "Ctt_error_list = []\n", "\n", "nr_of_toys = 1\n", "nevents = int(pdg[\"number_of_decays\"]*cut_BR)\n", "# nevents = pdg[\"number_of_decays\"]\n", "event_stack = 1000000\n", "# nevents *= 41\n", "# zfit.settings.set_verbosity(10)\n", "\n", "mi = 0.0\n", "ma = 1e-3\n", "ste = 11\n", "\n", "BR_steps = np.linspace(mi, ma, ste)\n", "\n", "Ctt_steps = np.sqrt(BR_steps/4.2*1000)\n", "\n", "total_samp = []\n", "\n", "start = time.time()\n", "\n", "Nll_list = []\n", "\n", "sampler = total_f.create_sampler(n=nevents)\n", "\n", "__ = -1\n", "\n", "for Ctt_step in Ctt_steps:\n", " \n", " __ += 1\n", " \n", " for floaty in [True, False]:\n", "\n", " Ctt_floating = floaty\n", " \n", " Nll_list.append([])\n", "\n", " while len(Nll_list[-1]) <= nr_of_toys:\n", " \n", " print('Step: {0}/{1}'.format(__, ste))\n", " \n", " print('Current Ctt: {0}'.format(Ctt_step))\n", " print('Ctt floating: {0}'.format(floaty))\n", " \n", " print('Toy {0}/{1}'.format(len(Nll_list[-1]), nr_of_toys))\n", " \n", " reset_param_values()\n", " \n", " if floaty:\n", " Ctt.set_value(Ctt_step)\n", " else:\n", " Ctt.set_value(0.0)\n", "\n", " sampler.resample(n=nevents)\n", " s = sampler.unstack_x()\n", " total_samp = zfit.run(s)\n", " calls = 0\n", " c = 1\n", "\n", " data = zfit.data.Data.from_numpy(array=total_samp[:int(nevents)], obs=obs_fit)\n", "\n", " ### Fit data\n", "\n", " for param in total_f_fit.get_dependents():\n", " param.randomize()\n", "\n", " nll = zfit.loss.UnbinnedNLL(model=total_f_fit, data=data, constraints = constraints)\n", "\n", " minimizer = zfit.minimize.MinuitMinimizer(verbosity = 5)\n", " # minimizer._use_tfgrad = False\n", " result = minimizer.minimize(nll)\n", "\n", " # print(\"Function minimum:\", result.fmin)\n", " # print(\"Hesse errors:\", result.hesse())\n", "\n", " params = result.params\n", "\n", " if result.converged:\n", " Nll_list[-1].append(result.fmin)\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "dirName = 'data/CLs'\n", "\n", "CLs_values = []\n", "\n", "for i in range(len(Nll_list)/2):\n", " CLs_values.append([])\n", " for j in range(nr_of_toys):\n", " CLs_values[i].append(Nll_list[i][j]-Nll_list[i+1][j])\n", "\n", "if not os.path.exists(dirName):\n", " os.mkdir(dirName)\n", " print(\"Directory \" , dirName , \" Created \")\n", "\n", "with open(\"'data/CLs/CLs_Nll_list.pkl\", \"wb\") as f:\n", " pkl.dump(Nll_list, f, pkl.HIGHEST_PROTOCOL)\n", "\n", "with open(\"'data/CLs/CLs_list.pkl\", \"wb\") as f:\n", " pkl.dump(CLs_values, f, pkl.HIGHEST_PROTOCOL)" ] }, { "cell_type": "code", "execution_count": 45, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " 1.0E-03\n" ] } ], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.3" } }, "nbformat": 4, "nbformat_minor": 2 }