{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Import" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\zfit\\util\\execution.py:57: UserWarning: Not running on Linux. Determining available cpus for thread can failand be overestimated. Workaround (only if too many cpus are used):`zfit.run.set_n_cpu(your_cpu_number)`\n", " warnings.warn(\"Not running on Linux. Determining available cpus for thread can fail\"\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\n", "WARNING: The TensorFlow contrib module will not be included in TensorFlow 2.0.\n", "For more information, please see:\n", " * https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md\n", " * https://github.com/tensorflow/addons\n", "If you depend on functionality not listed there, please file an issue.\n", "\n" ] } ], "source": [ "import os\n", "\n", "# os.environ[\"CUDA_VISIBLE_DEVICES\"] = \"-1\"\n", "\n", "import numpy as np\n", "from pdg_const import pdg\n", "import matplotlib\n", "import matplotlib.pyplot as plt\n", "import pickle as pkl\n", "import sys\n", "import time\n", "from helperfunctions import display_time, prepare_plot\n", "import cmath as c\n", "import scipy.integrate as integrate\n", "from scipy.optimize import fminbound\n", "from array import array as arr\n", "import collections\n", "from itertools import compress\n", "import tensorflow as tf\n", "import zfit\n", "from zfit import ztf\n", "from IPython.display import clear_output\n", "import os\n", "import tensorflow_probability as tfp\n", "tfd = tfp.distributions" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "# chunksize = 10000\n", "# zfit.run.chunking.active = True\n", "# zfit.run.chunking.max_n_points = chunksize" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Build model and graphs\n", "## Create graphs" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "def formfactor( q2, subscript): #returns real value\n", " #check if subscript is viable\n", "\n", " if subscript != \"0\" and subscript != \"+\" and subscript != \"T\":\n", " raise ValueError('Wrong subscript entered, choose either 0, + or T')\n", "\n", " #get constants\n", "\n", " mK = ztf.constant(pdg['Ks_M'])\n", " mbstar0 = ztf.constant(pdg[\"mbstar0\"])\n", " mbstar = ztf.constant(pdg[\"mbstar\"])\n", " b0 = ztf.constant(pdg[\"b0\"])\n", " bplus = ztf.constant(pdg[\"bplus\"])\n", " bT = ztf.constant(pdg[\"bT\"])\n", "\n", " mmu = ztf.constant(pdg['muon_M'])\n", " mb = ztf.constant(pdg['bquark_M'])\n", " ms = ztf.constant(pdg['squark_M'])\n", " mB = ztf.constant(pdg['Bplus_M'])\n", "\n", " #N comes from derivation in paper\n", "\n", " N = 3\n", "\n", " #some helperfunctions\n", "\n", " tpos = (mB - mK)**2\n", " tzero = (mB + mK)*(ztf.sqrt(mB)-ztf.sqrt(mK))**2\n", "\n", " z_oben = ztf.sqrt(tpos - q2) - ztf.sqrt(tpos - tzero)\n", " z_unten = ztf.sqrt(tpos - q2) + ztf.sqrt(tpos - tzero)\n", " z = tf.divide(z_oben, z_unten)\n", "\n", " #calculate f0\n", "\n", " if subscript == \"0\":\n", " prefactor = 1/(1 - q2/(mbstar0**2))\n", " _sum = 0\n", "\n", " for i in range(N):\n", " _sum += b0[i]*(tf.pow(z,i))\n", "\n", " return tf.complex(prefactor * _sum, ztf.constant(0.0))\n", "\n", " #calculate f+ or fT\n", "\n", " else:\n", " prefactor = 1/(1 - q2/(mbstar**2))\n", " _sum = 0\n", "\n", " if subscript == \"T\":\n", " b = bT\n", " else:\n", " b = bplus\n", "\n", " for i in range(N):\n", " _sum += b[i] * (tf.pow(z, i) - ((-1)**(i-N)) * (i/N) * tf.pow(z, N))\n", "\n", " return tf.complex(prefactor * _sum, ztf.constant(0.0))\n", "\n", "def resonance(q, _mass, width, phase, scale):\n", "\n", " q2 = tf.pow(q, 2)\n", "\n", " mmu = ztf.constant(pdg['muon_M'])\n", "\n", " p = 0.5 * ztf.sqrt(q2 - 4*(mmu**2))\n", "\n", " p0 = 0.5 * ztf.sqrt(_mass**2 - 4*mmu**2)\n", "\n", " gamma_j = tf.divide(p, q) * _mass * width / p0\n", "\n", " #Calculate the resonance\n", "\n", " _top = tf.complex(_mass * width, ztf.constant(0.0))\n", "\n", " _bottom = tf.complex(_mass**2 - q2, -_mass*gamma_j)\n", "\n", " com = _top/_bottom\n", "\n", " #Rotate by the phase\n", "\n", " r = ztf.to_complex(scale*tf.abs(com))\n", "\n", " _phase = tf.angle(com)\n", "\n", " _phase += phase\n", "\n", " com = r * tf.exp(tf.complex(ztf.constant(0.0), _phase))\n", "\n", " return com\n", "\n", "def bifur_gauss(q, mean, sigma_L, sigma_R, scale):\n", "\n", " _exp = tf.where(q < mean, ztf.exp(- tf.pow((q-mean),2) / (2 * sigma_L**2)), ztf.exp(- tf.pow((q-mean),2) / (2 * sigma_R**2)))\n", "\n", " #Scale so the total area under curve is 1 and the top of the cusp is continuous\n", "\n", " dgamma = scale*_exp/(ztf.sqrt(2*np.pi))*2*(sigma_L*sigma_R)/(sigma_L+sigma_R)\n", "\n", " com = ztf.complex(dgamma, ztf.constant(0.0))\n", "\n", " return com\n", "\n", "def axiv_nonres(q):\n", "\n", " GF = ztf.constant(pdg['GF'])\n", " alpha_ew = ztf.constant(pdg['alpha_ew'])\n", " Vtb = ztf.constant(pdg['Vtb'])\n", " Vts = ztf.constant(pdg['Vts'])\n", " C10eff = ztf.constant(pdg['C10eff'])\n", "\n", " mmu = ztf.constant(pdg['muon_M'])\n", " mb = ztf.constant(pdg['bquark_M'])\n", " ms = ztf.constant(pdg['squark_M'])\n", " mK = ztf.constant(pdg['Ks_M'])\n", " mB = ztf.constant(pdg['Bplus_M'])\n", "\n", " q2 = tf.pow(q, 2)\n", "\n", " #Some helperfunctions\n", "\n", " beta = ztf.sqrt(tf.abs(1. - 4. * mmu**2. / q2))\n", "\n", " kabs = ztf.sqrt(mB**2. +tf.pow(q2, 2)/mB**2. + mK**4./mB**2. - 2. * (mB**2. * mK**2. + mK**2. * q2 + mB**2. * q2) / mB**2.)\n", "\n", " #prefactor in front of whole bracket\n", "\n", " prefactor1 = GF**2. *alpha_ew**2. * (tf.abs(Vtb*Vts))**2. * kabs * beta / (128. * np.pi**5.)\n", "\n", " #left term in bracket\n", "\n", " bracket_left = 2./3. * kabs**2. * beta**2. *tf.abs(tf.complex(C10eff, ztf.constant(0.0))*formfactor(q2, \"+\"))**2.\n", "\n", " #middle term in bracket\n", "\n", " _top = 4. * mmu**2. * (mB**2. - mK**2.) * (mB**2. - mK**2.)\n", "\n", " _under = q2 * mB**2.\n", "\n", " bracket_middle = _top/_under *tf.pow(tf.abs(tf.complex(C10eff, ztf.constant(0.0)) * formfactor(q2, \"0\")), 2)\n", "\n", " #Note sqrt(q2) comes from derivation as we use q2 and plot q\n", "\n", " return prefactor1 * (bracket_left + bracket_middle) * 2 *ztf.sqrt(q2)\n", "\n", "def vec(q, funcs):\n", " \n", " q2 = tf.pow(q, 2)\n", "\n", " GF = ztf.constant(pdg['GF'])\n", " alpha_ew = ztf.constant(pdg['alpha_ew'])\n", " Vtb = ztf.constant(pdg['Vtb'])\n", " Vts = ztf.constant(pdg['Vts'])\n", " C7eff = ztf.constant(pdg['C7eff'])\n", "\n", " mmu = ztf.constant(pdg['muon_M'])\n", " mb = ztf.constant(pdg['bquark_M'])\n", " ms = ztf.constant(pdg['squark_M'])\n", " mK = ztf.constant(pdg['Ks_M'])\n", " mB = ztf.constant(pdg['Bplus_M'])\n", "\n", " #Some helperfunctions\n", "\n", " beta = ztf.sqrt(tf.abs(1. - 4. * mmu**2. / q2))\n", "\n", " kabs = ztf.sqrt(mB**2. + tf.pow(q2, 2)/mB**2. + mK**4./mB**2. - 2 * (mB**2 * mK**2 + mK**2 * q2 + mB**2 * q2) / mB**2)\n", "\n", " #prefactor in front of whole bracket\n", "\n", " prefactor1 = GF**2. *alpha_ew**2. * (tf.abs(Vtb*Vts))**2 * kabs * beta / (128. * np.pi**5.)\n", "\n", " #right term in bracket\n", "\n", " prefactor2 = kabs**2 * (1. - 1./3. * beta**2)\n", "\n", " abs_bracket = tf.abs(c9eff(q, funcs) * formfactor(q2, \"+\") + tf.complex(2.0 * C7eff * (mb + ms)/(mB + mK), ztf.constant(0.0)) * formfactor(q2, \"T\"))**2\n", "\n", " bracket_right = prefactor2 * abs_bracket\n", "\n", " #Note sqrt(q2) comes from derivation as we use q2 and plot q\n", "\n", " return prefactor1 * bracket_right * 2 * ztf.sqrt(q2)\n", "\n", "def c9eff(q, funcs):\n", "\n", " C9eff_nr = tf.complex(ztf.constant(pdg['C9eff']), ztf.constant(0.0))\n", "\n", " c9 = C9eff_nr\n", "\n", " c9 = c9 + funcs\n", "\n", " return c9" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "def G(y):\n", " \n", " def inner_rect_bracket(q):\n", " return tf.log(ztf.to_complex((1+tf.sqrt(q))/(1-tf.sqrt(q)))-tf.complex(ztf.constant(0), -1*ztf.constant(np.pi))) \n", " \n", " def inner_right(q):\n", " return ztf.to_complex(2 * tf.atan(1/tf.sqrt(-q)))\n", " \n", " big_bracket = tf.where(y > ztf.const(0.0), inner_rect_bracket(y), inner_right(y))\n", " \n", " return ztf.to_complex(tf.sqrt(tf.abs(y))) * big_bracket\n", "\n", "def h_S(m, q):\n", " \n", " return ztf.to_complex(2) - G(ztf.to_complex(1) - 4*tf.pow(m, 2) / ztf.to_complex(tf.pow(q, 2)))\n", "\n", "def h_P(m, q):\n", " \n", " return ztf.to_complex(2/3) + (ztf.to_complex(1) - 4*tf.pow(m, 2) / ztf.to_complex(tf.pow(q, 2))) * h_S(m,q)\n", "\n", "def two_p_ccbar(mD, m_D_bar, m_D_star, q):\n", " \n", " \n", " #Load constants\n", " nu_D_bar = ztf.to_complex(pdg[\"nu_D_bar\"])\n", " nu_D = ztf.to_complex(pdg[\"nu_D\"])\n", " nu_D_star = ztf.to_complex(pdg[\"nu_D_star\"])\n", " \n", " phase_D_bar = ztf.to_complex(pdg[\"phase_D_bar\"])\n", " phase_D = ztf.to_complex(pdg[\"phase_D\"])\n", " phase_D_star = ztf.to_complex(pdg[\"phase_D_star\"])\n", " \n", " #Calculation\n", " left_part = nu_D_bar * tf.exp(tf.complex(ztf.constant(0.0), phase_D_bar)) * h_S(m_D_bar, q) \n", " \n", " right_part_D = nu_D * tf.exp(tf.complex(ztf.constant(0.0), phase_D)) * h_P(m_D, q) \n", " \n", " right_part_D_star = nu_D_star * tf.exp(tf.complex(ztf.constant(0.0), phase_D_star)) * h_P(m_D_star, q) \n", "\n", " return left_part + right_part_D + right_part_D_star" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## C_q,qbar constraint" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "# r = rho_scale * rho_width/rho_mass * np.cos(rho_phase)*(1-np.tan(rho_phase)*rho_width/rho_mass)\n", "# o = omega_scale*np.cos(omega_phase)*omega_width/omega_mass\n", "# p = phi_scale*np.cos(phi_phase)*phi_width/phi_mass\n", "\n", "# # phi_s = np.linspace(-500, 5000, 100000)\n", "\n", "# # p_ = phi_s*np.cos(phi_phase)*phi_width/phi_mass\n", "\n", "# # p_y = r+o+p_\n", "\n", "# # plt.plot(phi_s, p_y)\n", "\n", "# print(r + o + p)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Build pdf" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "class total_pdf(zfit.pdf.ZPDF):\n", " _N_OBS = 1 # dimension, can be omitted\n", " _PARAMS = ['rho_mass', 'rho_scale', 'rho_phase', 'rho_width',\n", " 'jpsi_mass', 'jpsi_scale', 'jpsi_phase', 'jpsi_width',\n", " 'psi2s_mass', 'psi2s_scale', 'psi2s_phase', 'psi2s_width',\n", " 'p3770_mass', 'p3770_scale', 'p3770_phase', 'p3770_width',\n", " 'p4040_mass', 'p4040_scale', 'p4040_phase', 'p4040_width',\n", " 'p4160_mass', 'p4160_scale', 'p4160_phase', 'p4160_width',\n", " 'p4415_mass', 'p4415_scale', 'p4415_phase', 'p4415_width',\n", " 'omega_mass', 'omega_scale', 'omega_phase', 'omega_width',\n", " 'phi_mass', 'phi_scale', 'phi_phase', 'phi_width'] # the name of the parameters\n", "\n", " def _unnormalized_pdf(self, x):\n", " \n", " x = x.unstack_x()\n", " \n", " def rho_res(q):\n", " return resonance(q, _mass = self.params['rho_mass'], scale = self.params['rho_scale'],\n", " phase = self.params['rho_phase'], width = self.params['rho_width'])\n", " \n", " def omega_res(q):\n", " return resonance(q, _mass = self.params['omega_mass'], scale = self.params['omega_scale'],\n", " phase = self.params['omega_phase'], width = self.params['omega_width'])\n", " \n", " def phi_res(q):\n", " return resonance(q, _mass = self.params['phi_mass'], scale = self.params['phi_scale'],\n", " phase = self.params['phi_phase'], width = self.params['phi_width'])\n", "\n", " def jpsi_res(q):\n", " return resonance(q, _mass = self.params['jpsi_mass'], scale = self.params['jpsi_scale'],\n", " phase = self.params['jpsi_phase'], width = self.params['jpsi_width'])\n", "\n", " def psi2s_res(q):\n", " return resonance(q, _mass = self.params['psi2s_mass'], scale = self.params['psi2s_scale'],\n", " phase = self.params['psi2s_phase'], width = self.params['psi2s_width'])\n", " \n", " def p3770_res(q):\n", " return resonance(q, _mass = self.params['p3770_mass'], scale = self.params['p3770_scale'],\n", " phase = self.params['p3770_phase'], width = self.params['p3770_width'])\n", " \n", " def p4040_res(q):\n", " return resonance(q, _mass = self.params['p4040_mass'], scale = self.params['p4040_scale'],\n", " phase = self.params['p4040_phase'], width = self.params['p4040_width'])\n", " \n", " def p4160_res(q):\n", " return resonance(q, _mass = self.params['p4160_mass'], scale = self.params['p4160_scale'],\n", " phase = self.params['p4160_phase'], width = self.params['p4160_width'])\n", " \n", " def p4415_res(q):\n", " return resonance(q, _mass = self.params['p4415_mass'], scale = self.params['p4415_scale'],\n", " phase = self.params['p4415_phase'], width = self.params['p4415_width'])\n", " \n", "\n", " funcs = rho_res(x) + omega_res(x) + phi_res(x) + jpsi_res(x) + psi2s_res(x) + p3770_res(x) + p4040_res(x)+ p4160_res(x) + p4415_res(x)\n", "\n", " vec_f = vec(x, funcs)\n", "\n", " axiv_nr = axiv_nonres(x)\n", "\n", " tot = vec_f + axiv_nr\n", "\n", " return tot" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Load data" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "x_min = 2*pdg['muon_M']\n", "x_max = (pdg[\"Bplus_M\"]-pdg[\"Ks_M\"]-0.1)\n", "\n", "obs = zfit.Space('q', limits = (x_min, x_max))\n", "\n", "# with open(r\"./data/slim_points/slim_points_toy_0_range({0}-{1}).pkl\".format(int(x_min), int(x_max)), \"rb\") as input_file:\n", "# part_set = pkl.load(input_file)\n", "\n", "# x_part = part_set['x_part']\n", "\n", "# x_part = x_part.astype('float64')\n", "\n", "# data = zfit.data.Data.from_numpy(array=x_part, obs=obs)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Setup parameters" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "WARNING:tensorflow:From C:\\Users\\sa_li\\.conda\\envs\\rmd\\lib\\site-packages\\tensorflow\\python\\ops\\resource_variable_ops.py:435: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.\n", "Instructions for updating:\n", "Colocations handled automatically by placer.\n" ] } ], "source": [ "#rho\n", "\n", "rho_mass, rho_width, rho_phase, rho_scale = pdg[\"rho\"]\n", "\n", "rho_m = zfit.Parameter(\"rho_m\", ztf.constant(rho_mass), floating = False) #lower_limit = rho_mass - rho_width,\n", "# upper_limit = rho_mass + rho_width)\n", "rho_w = zfit.Parameter(\"rho_w\", ztf.constant(rho_width), floating = False)\n", "rho_p = zfit.Parameter(\"rho_p\", ztf.constant(rho_phase), lower_limit=-2*np.pi, upper_limit=2*np.pi)\n", "rho_s = zfit.Parameter(\"rho_s\", ztf.constant(rho_scale), floating = False)\n", "\n", "#omega\n", "\n", "omega_mass, omega_width, omega_phase, omega_scale = pdg[\"omega\"]\n", "\n", "omega_m = zfit.Parameter(\"omega_m\", ztf.constant(omega_mass), floating = False)\n", "omega_w = zfit.Parameter(\"omega_w\", ztf.constant(omega_width), floating = False)\n", "omega_p = zfit.Parameter(\"omega_p\", ztf.constant(omega_phase), lower_limit=-2*np.pi, upper_limit=2*np.pi)\n", "omega_s = zfit.Parameter(\"omega_s\", ztf.constant(omega_scale), floating = False)\n", "\n", "\n", "#phi\n", "\n", "phi_mass, phi_width, phi_phase, phi_scale = pdg[\"phi\"]\n", "\n", "phi_m = zfit.Parameter(\"phi_m\", ztf.constant(phi_mass), floating = False)\n", "phi_w = zfit.Parameter(\"phi_w\", ztf.constant(phi_width), floating = False)\n", "phi_p = zfit.Parameter(\"phi_p\", ztf.constant(phi_phase), lower_limit=-2*np.pi, upper_limit=2*np.pi)\n", "phi_s = zfit.Parameter(\"phi_s\", ztf.constant(phi_scale), floating = False)\n", "\n", "#jpsi\n", "\n", "jpsi_mass, jpsi_width, jpsi_phase, jpsi_scale = pdg[\"jpsi\"]\n", "# jpsi_scale *= pdg[\"factor_jpsi\"]\n", "\n", "jpsi_m = zfit.Parameter(\"jpsi_m\", ztf.constant(jpsi_mass), floating = False)\n", "jpsi_w = zfit.Parameter(\"jpsi_w\", ztf.constant(jpsi_width), floating = False)\n", "jpsi_p = zfit.Parameter(\"jpsi_p\", ztf.constant(jpsi_phase), lower_limit=-2*np.pi, upper_limit=2*np.pi)\n", "jpsi_s = zfit.Parameter(\"jpsi_s\", ztf.constant(jpsi_scale), floating = False)\n", "\n", "#psi2s\n", "\n", "psi2s_mass, psi2s_width, psi2s_phase, psi2s_scale = pdg[\"psi2s\"]\n", "\n", "psi2s_m = zfit.Parameter(\"psi2s_m\", ztf.constant(psi2s_mass), floating = False)\n", "psi2s_w = zfit.Parameter(\"psi2s_w\", ztf.constant(psi2s_width), floating = False)\n", "psi2s_p = zfit.Parameter(\"psi2s_p\", ztf.constant(psi2s_phase), lower_limit=-2*np.pi, upper_limit=2*np.pi)\n", "psi2s_s = zfit.Parameter(\"psi2s_s\", ztf.constant(psi2s_scale), floating = False)\n", "\n", "#psi(3770)\n", "\n", "p3770_mass, p3770_width, p3770_phase, p3770_scale = pdg[\"p3770\"]\n", "\n", "p3770_m = zfit.Parameter(\"p3770_m\", ztf.constant(p3770_mass), floating = False)\n", "p3770_w = zfit.Parameter(\"p3770_w\", ztf.constant(p3770_width), floating = False)\n", "p3770_p = zfit.Parameter(\"p3770_p\", ztf.constant(p3770_phase), lower_limit=-2*np.pi, upper_limit=2*np.pi)\n", "p3770_s = zfit.Parameter(\"p3770_s\", ztf.constant(p3770_scale), floating = False)\n", "\n", "#psi(4040)\n", "\n", "p4040_mass, p4040_width, p4040_phase, p4040_scale = pdg[\"p4040\"]\n", "\n", "p4040_m = zfit.Parameter(\"p4040_m\", ztf.constant(p4040_mass), floating = False)\n", "p4040_w = zfit.Parameter(\"p4040_w\", ztf.constant(p4040_width), floating = False)\n", "p4040_p = zfit.Parameter(\"p4040_p\", ztf.constant(p4040_phase), lower_limit=-2*np.pi, upper_limit=2*np.pi)\n", "p4040_s = zfit.Parameter(\"p4040_s\", ztf.constant(p4040_scale), floating = False)\n", "\n", "#psi(4160)\n", "\n", "p4160_mass, p4160_width, p4160_phase, p4160_scale = pdg[\"p4160\"]\n", "\n", "p4160_m = zfit.Parameter(\"p4160_m\", ztf.constant(p4160_mass), floating = False)\n", "p4160_w = zfit.Parameter(\"p4160_w\", ztf.constant(p4160_width), floating = False)\n", "p4160_p = zfit.Parameter(\"p4160_p\", ztf.constant(p4160_phase), lower_limit=-2*np.pi, upper_limit=2*np.pi)\n", "p4160_s = zfit.Parameter(\"p4160_s\", ztf.constant(p4160_scale), floating = False)\n", "\n", "#psi(4415)\n", "\n", "p4415_mass, p4415_width, p4415_phase, p4415_scale = pdg[\"p4415\"]\n", "\n", "p4415_m = zfit.Parameter(\"p4415_m\", ztf.constant(p4415_mass), floating = False)\n", "p4415_w = zfit.Parameter(\"p4415_w\", ztf.constant(p4415_width), floating = False)\n", "p4415_p = zfit.Parameter(\"p4415_p\", ztf.constant(p4415_phase), lower_limit=-2*np.pi, upper_limit=2*np.pi)\n", "p4415_s = zfit.Parameter(\"p4415_s\", ztf.constant(p4415_scale), floating = False)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Setup pdf" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "total_f = total_pdf(obs=obs, jpsi_mass = jpsi_m, jpsi_scale = jpsi_s, jpsi_phase = jpsi_p, jpsi_width = jpsi_w,\n", " psi2s_mass = psi2s_m, psi2s_scale = psi2s_s, psi2s_phase = psi2s_p, psi2s_width = psi2s_w,\n", " p3770_mass = p3770_m, p3770_scale = p3770_s, p3770_phase = p3770_p, p3770_width = p3770_w,\n", " p4040_mass = p4040_m, p4040_scale = p4040_s, p4040_phase = p4040_p, p4040_width = p4040_w,\n", " p4160_mass = p4160_m, p4160_scale = p4160_s, p4160_phase = p4160_p, p4160_width = p4160_w,\n", " p4415_mass = p4415_m, p4415_scale = p4415_s, p4415_phase = p4415_p, p4415_width = p4415_w,\n", " rho_mass = rho_m, rho_scale = rho_s, rho_phase = rho_p, rho_width = rho_w,\n", " omega_mass = omega_m, omega_scale = omega_s, omega_phase = omega_p, omega_width = omega_w,\n", " phi_mass = phi_m, phi_scale = phi_s, phi_phase = phi_p, phi_width = phi_w) \n", " \n", "# print(total_pdf.obs)\n", "\n", "# print(calcs_test)\n", "\n", "# for param in total_f.get_dependents():\n", "# print(zfit.run(param))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Test if graphs actually work and compute values" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "# def total_test_tf(xq):\n", "\n", "# def jpsi_res(q):\n", "# return resonance(q, jpsi_m, jpsi_s, jpsi_p, jpsi_w)\n", "\n", "# def psi2s_res(q):\n", "# return resonance(q, psi2s_m, psi2s_s, psi2s_p, psi2s_w)\n", "\n", "# def cusp(q):\n", "# return bifur_gauss(q, cusp_m, sig_L, sig_R, cusp_s)\n", "\n", "# funcs = jpsi_res(xq) + psi2s_res(xq) + cusp(xq)\n", "\n", "# vec_f = vec(xq, funcs)\n", "\n", "# axiv_nr = axiv_nonres(xq)\n", "\n", "# tot = vec_f + axiv_nr\n", " \n", "# return tot\n", "\n", "def jpsi_res(q):\n", " return resonance(q, jpsi_m, jpsi_s, jpsi_p, jpsi_w)\n", "\n", "# calcs = zfit.run(total_test_tf(x_part))\n", "\n", "test_q = np.linspace(x_min, x_max, 200000)\n", "\n", "probs = total_f.pdf(test_q)\n", "\n", "calcs_test = zfit.run(probs)\n", "res_y = zfit.run(jpsi_res(test_q))\n", "f0_y = zfit.run(formfactor(test_q,\"0\"))\n", "fplus_y = zfit.run(formfactor(test_q,\"+\"))\n", "fT_y = zfit.run(formfactor(test_q,\"T\"))" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ8AAAD8CAYAAACo9anUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO2deXyc1XX3v2dmtEuWLFnyIsmWjGW82xhhCBDCjllNAiROQkqWt7Qp9H0b2rdAszSh4W1J05C0JSEkJKEkwRAgwQGHfQkJixdsvIGxLG+yjSVr32e77x/zzGg0mk2yNJvO9/PRxzN37nPuncfS/Oace+65YoxBURRFURKJLdkTUBRFUSYfKj6KoihKwlHxURRFURKOio+iKIqScFR8FEVRlISj4qMoiqIknLjER0RWi8geEWkQkTvCvJ4jIo9ar78tIjVBr91pte8Rkcti2RSRWsvGXstmdhxjLBORN0Vkl4jsEJHcsdwMRVEUJTHEFB8RsQP3AZcDi4BPi8iikG5fAtqNMfOAe4F7rGsXAWuBxcBq4IciYo9h8x7gXmNMHdBu2Y42hgP4JfDXxpjFwPmAa5T3QVEURUkg8Xg+q4AGY0yjMcYJrAPWhPRZAzxkPX4cuEhExGpfZ4wZNMbsBxose2FtWtdcaNnAsnltjDEuBbYbY94FMMa0GmM88d8CRVEUJdE44uhTCRwOet4EnBmpjzHGLSKdQJnV/lbItZXW43A2y4AOY4w7TP9IY8wHjIg8B5TjE7vvhL4JEbkZuBmgoKDg9AULFsTx1hVl8nKiZ5BjnQMsnjUFm8iI1z/sGqCle5CllcVJmN0QO450UlGUw/Qpvmh7Y0svAHPLC5I5rYxky5YtJ4wx5eNhKx7xGflbB6E1eSL1idQezuOK1j/aGA7gXOAMoA94SUS2GGNeGtbRmAeABwDq6+vN5s2bw5hTFMXPj17dxz3Pvs8b/7Ka3Cz7iNe/9/we/vPlBjb96xVIGHFKBB6v4ZR/2sBtl8znf19UB8DaB97Ea+Cxv/pIUuaUyYjIwfGyFU/YrQmoDnpeBRyN1MdagykG2qJcG6n9BFBi2QgdK9oYrxljThhj+oANwMo43peiKFHweL0A2G3hhcVmtXuTWB7Sa9WmDJ6iTQStWZn6xCM+m4A6KwstG18CwfqQPuuBm6zH1wMvG9///npgrZWpVgvUARsj2bSuecWygWXzqRhjPAcsE5F8S5Q+BuyO/xYoihIOt6Uq9ghejcP6xPckUX384hPsedlEkiqISnzEDLtZ6yu34vuQtwM/M8bsEpG7gM3GmPXAg8DDItKAzxtZa127S0QewycGbuAWfzJAOJvWkLcD60Tk28BWyzZRxmgXke/hEzQDbDDGPHNSd0VRFNweg02GPJxQbCkgPn4HJ3hNSmRIlJTUJZ41H4wxG/CFs4LbvhH0eAC4IcK1dwN3x2PTam/Elw0X2h5tjF/iS7dWFGWccHsNDlvk4IjfI/Ik8YM+UtgtGXrocrloampiYGAg8YOPM7m5uVRVVZGVlTVhY8QlPoqiTD48Xi8Oe+REAnsKeD7eMJ6PTUjKmk9TUxNFRUXU1NQkLQFjPDDG0NraSlNTE7W1tRM2jpbXURQlLG6viZhsAEPi402i+PiFT0I8n2QI4sDAAGVlZWktPOBbPysrK5twD07FR1GUsHi8JpBUEA6/+LiTuuZjhs0FfGtRyZpSuguPn0S8DxUfRVHC4vIY7FHWfPyhrmQu7qdS2E0ZHSo+Ch6vobk7/RdJlfHF4/VG9XxSKdV6ZMKBik8kXn31Va666ioABgcHufjii1mxYgWPPvpoQuehCQcK33n2fX78x0Y2f+1iphXmJHs6Sorg9pqoCQepkGodEBnd5zMmtm7disvlYtu2bQkfWz0fhRffOw5AR58zyTNRUgm3J0bCgaSA+HiHzwUm9z6fAwcOsGDBAm666SaWLVvG9ddfT19fH88++ywLFizg3HPP5cknnwSgubmZG2+8kW3btrFixQr27duX0Lmq56MoSljcXi/Z9sjfT/1eUTL3+bgt9QkOD/rK6yRrRj6+9ftd7D7aNa42F82awj9fvThmvz179vDggw9yzjnn8MUvfpHvfe97/PjHP+bll19m3rx5fOpTnwKgoqKCn/70p3z3u9/l6aefHte5xoN6PoqihMXpNjiiiE8g4SAFPB+bbXjCQTK9sWRTXV3NOeecA8CNN97I5s2bqa2tpa6uDhHhxhtvTPIMfajno4woUa4oAC6Pl+x4Npkm0c3wBFKth9p8qdbJ/a2Ox0OZKELTpDs7O1MyBVw9H0VRwuL2esmKw/Nxe5K/ydQmqRV2SyaHDh3izTffBOCRRx7h4osvZv/+/YE1nUceeSSZ0wug4qMoSlhcbhNVfBy2VNjnE2aT6SROOABYuHAhDz30EMuWLaOtrY2vfOUrPPDAA1x55ZWce+65zJkzJ9lTBDTspihKBJweL0VZkT8iUqG2myfMsQ+TfZ+PzWbj/vvvH9a2evVq3n///RF9zz//fM4///wEzWw46vkoihKWWNluthTwfAJhN1twqrXu80kHVHwURQlLvGG3ZK75BMJuWl4HgJqaGnbu3JnsacSFio+iKGFxebxkOWInHCQ1280bbs0neZ5PpoheIt6Hio8SROqlYyrJw+nxkhXXkQqJmtFIwotPctahcnNzaW1tTXsB8p/nk5ubO6HjaMKBoihhcXuih938L6Wc55OkfT5VVVU0NTXR0tKS8LHHG/9JphOJio+iKGHxhd2ieT4+9fEk0fXxmNTZ55OVlTWhJ39mGhp2UxQlLE6PF0eU83yGCosmakYjCRQW1X0+aYeKj6IoYXF5vGRHSzjwh92Suc8nXHmdSb7PJ11Q8VEUJSy+NZ9oh8n5w27JLCw6Muym+3zSAxUfRVFG4PUa3N40TTiYxPt80gkVH0VRRuCyFlPiKSyazCMVIiUcTOYjFdIFFR9FUUbgsqoWRAu7pUJtN2/EVOtkzUiJFxUfRQ/0UUbg9sT2fFJBfPyejyMk7AYaekt1VHwURRmBMw7x8b/mSuY+nzCFRQPhQNWelCYu8RGR1SKyR0QaROSOMK/niMij1utvi0hN0Gt3Wu17ROSyWDZFpNaysdeymR1tDBGpEZF+Edlm/QyvJa4oyqiJJ+yWCoVFwx+p4PtX061Tm5jiIyJ24D7gcmAR8GkRWRTS7UtAuzFmHnAvcI917SJgLbAYWA38UETsMWzeA9xrjKkD2i3bEcew2GeMWWH9/PWo7oCiKCNwuWN7Pg6/55PEXabhst0k4Pmo+KQy8Xg+q4AGY0yjMcYJrAPWhPRZAzxkPX4cuEh8vwFrgHXGmEFjzH6gwbIX1qZ1zYWWDSyb18YYQzlZ9C4qIbjjyHbze0XuZCYcmMhhN9We1CYe8akEDgc9b7LawvYxxriBTqAsyrWR2suADstG6FiRxgCoFZGtIvKaiHw0jvekKEoUnO54wm6+jw93Uj0f378adks/4iksGu63L/R/NVKfSO3hRC9a/2hjHANmG2NaReR04HcistgY0zVsgiI3AzcDzJ49O4wpRVH8uOJKOBCrb/Kz3Wwh5XUguVl4Smzi8XyagOqg51XA0Uh9RMQBFANtUa6N1H4CKLFshI4VdgwrpNcKYIzZAuwD5oe+CWPMA8aYemNMfXl5eRxvexKhf6NKCPGIj4hgt0kgRJcMvOESDmya7ZYOxCM+m4A6KwstG18CwfqQPuuBm6zH1wMvG1+S/XpgrZWpVgvUARsj2bSuecWygWXzqWhjiEi5lcCAiMy1xmiM/xYoihKK00o4yIlSWBR8GW9J9XwilNcB3eeT6sQMuxlj3CJyK/AcYAd+ZozZJSJ3AZuNMeuBB4GHRaQBn8ez1rp2l4g8BuwG3MAtxhgPQDib1pC3A+tE5NvAVss2kcYAzgPuEhE34AH+2hjTNvZboijKoF98suxR+2XbbUnNdouWcKCeT2oT12FyxpgNwIaQtm8EPR4Abohw7d3A3fHYtNob8WXDhbaHHcMY8wTwRMw3oShK3Ay6PUAcno9dkrrPx59pF67Cga75pDZa4UBRlBEMxht2s9uSuubjCXOkgv+EVc12S21UfBRFGcGgK76wW1aS13zCFRYNVF5QzyelUfFRFGUE8YfdbMnd52NGZrsFCp4mURSV2Kj4KAG0XoTiJ/6wm+BKZlVrr0FkeMKBPeD5JE8Uldio+CiKMoIh8YkVdkuu5+PyGLJswz/G7IF9Pur5pDIqPoqijGDQ5UEkenkdgCxHctd83B4vjpA5hq75GGOSmg6uhEfFR1GUEQy6veQ4bIEK0ZFw2JK7z8ftNcPSrCEo7GaJ4nee20PdV/+Q8Lkp0VHxURRlBD7xiR5yA59nlMx9Pi6Pd0QJoNATVn/06j5gKIliovnXP7zH9174ICFjpTMqPoqijGDQ7YmZbAA+zyeZC/tujxkRdrNHSLXuHZx48fF6DT9+rZH/fGmvlveJgYqPoigjGHR5ycmKQ3zsyV3zcXm9gaMd/DgibDLtHXQz0Rzp6A88bukZnPDx0hkVH0WLWisjiD/slnzPJzQpInTNx0+fc+I9n9ZeZ+Bxc5eKTzRUfBRFGUH8Ybdk13bzBo7z9hO65uOn1znxnk+wdxUsRMpIVHwURRmBP9stFllJrmrt8kTJdgvxyPoT4Pl0DwyJz4lu9XyioeKjBND1UcXPoCv+bLdk7/MJzXZzRNhkmgjxGe75qPhEQ8VHUZQRDLo9cSYcJLfCgdsbJdstRBT7XRMvPj1B4tPR55rw8dIZFR8lCHV9FB/xh92SW9vN5fGOKK/jFyP/mk+25RklUnwKcxx0Daj4REPFR1GUEQy4PGTHEXZzJLm2m9tjhh2nAEMVrv37fPzZcIkIu/UMusmyC9MKs+nqn/gEh3RGxUcJoGs+ip8+p4f8GGf5QPJPMnVFCbv513yyHAn0fAbcFOY4mJKXpZ5PDFR8FEUZQb/LQ152fPt8nMk8z8cbLuHA99wviv4EhEQlHBTmOpiSm0VXv4pPNFR8lADq+Ch++p0e8uMQnxyHL9U6WaVk3OFSrUPWfPxLUonwfLoH3RRkOyjOy6JTxScqKj6KogzD6fbi9pq4xcdrkndkddjCoiFrPv59SAlZ8xlwU5TrYEqeg64BXfOJhoqPoijD8H9I52U7YvbNttZT/IfPJZpoqdb+I7b9HlAiPJ9ep5uCHA27xYOKjxJAEw4UgD6X7xt7fJ6Pr89gAj7Yw+ELu4XfZOqxPB53AsUnOOFg0O1lIEn3JR1Q8VEUZRj+Apzxht0geZ6PL+wWfs3HLzoBzydBqdZFuQ6m5Pq8xm4NvUVExUcJYDTlQCEo7BZHqrW/CoIzlcJuMpRwYIxJuPgUZPs8H0DTraOg4qMoyjCGPJ/Yaz6BsFsSPZ/QsFvwmk9wIsREh908XkOf0+NLtbbERzPeIqPiowTQNR8FoM86eiCefT7+0jWJOqI6lEH3yEPvhtZ8zLBjFSZ6/cV/ZENhji/VGlR8oqHioyjKMPpHs+aTlbw1H2MMzjCH3gUfox3s+Uz0YXI9A2HER4uLRiQu8RGR1SKyR0QaROSOMK/niMij1utvi0hN0Gt3Wu17ROSyWDZFpNaysdeymR1rDOv12SLSIyL/MNqboPhQz0eB0SYc+LPdEi8+/soKoQVQRQSb+MJgHk/iwm7+4xQKcx2UqOcTk5jiIyJ24D7gcmAR8GkRWRTS7UtAuzFmHnAvcI917SJgLbAYWA38UETsMWzeA9xrjKkD2i3bEccI4l7gD/G+cUVRwtPn8u/ziT/bzelJfNjNn+QQrvq2w2az1nx8fbLswsAEez7dlvgU5OiaTzzE4/msAhqMMY3GGCewDlgT0mcN8JD1+HHgIhERq32dMWbQGLMfaLDshbVpXXOhZQPL5rUxxkBErgUagV3xv3XFT7JKoyipSb/Tv88njoQDf9gtCZ6PP9SXHUZ87DbBExR2K8rNos/lmdDfdb/nU5TjIMtuoyDbrmf6RCEe8akEDgc9b7LawvYxxriBTqAsyrWR2suADstG6FhhxxCRAuB24FvR3oSI3Cwim0Vkc0tLS4y3PDnRVGsFhsJu8aRaDyUcJCHsFtXzEVweb0B8CnMceLxmQk9d9a/5FOT4RLskP1s9nyjEIz4Spi30fzBSn/FqjzbGt/CF6XrCvD7U0ZgHjDH1xpj68vLyaF0VZVLT5/SQm2UbcU5OOHKy/KnWiQ+7DQbEZ6RIOuwybM2nyNr0OZHrPt1BB8kBTNHiolGJ7Vf7vI/qoOdVwNEIfZpExAEUA20xrg3XfgIoERGH5d0E9480xpnA9SLyHaAE8IrIgDHmv+N4b0oQGn1TALoHXBTlZsXVN7DmkwTPxy944cJuWXabVSDVNy+/IAy4PIFMtPEmEHazhK44z0Fnv3NCxsoE4vF8NgF1VhZaNr4EgvUhfdYDN1mPrwdeNr7g6npgrZWpVgvUARsj2bSuecWygWXzqWhjGGM+aoypMcbUAN8H/p8Kj6KMnS6rMnM8JLO8TrSwm/+cIY93uOczkenWoWE3PVYhOjF/w4wxbhG5FXgOsAM/M8bsEpG7gM3GmPXAg8DDItKAzxtZa127S0QeA3YDbuAWY4wHIJxNa8jbgXUi8m1gq2WbSGMoijK+dA+44/Z8klnVOlrYzXfO0NAaj//9TGSJnR6nm2yHLXDEQ0leNp39HRM2XroT19cbY8wGYENI2zeCHg8AN0S49m7g7nhsWu2N+LLhQtsjjhHU55vRXlcUJTbdA65AYcxYBBIOklC92Rkl2y3LbsPlHun5TOiaz4B72H0rzs/SbLcoaIUDJYCu+Sjg93ziEx8RIcdhS5Ln4xOSsGE3h+D0jFzzmVDPxzpOwU+xHqsQFRUfRVGG0T3gGvYhGotkiU9MzydozacwAZ5Pz6A7MA4QSGzQQ+XCo+KjKMowekax5gOQm2VPyHEFoQxGSTjIDmS7WWG3nASIz4Cbopyh++YXnw4Vn7Co+CgBdJOp4vEaep2euMNu4Mvu6ktCaMlfVSEnzGbYbIfP83GHJBxMZImd7giej2a8hUfFR1GUAP504dF4PvnZdvoGE39iZ9Q1HyvVOnTNx39cxETQM+gKeFgAJfmW56NJB2FR8VECaMKB4j95czSeT362fcKPKwhHtOrb2XYbLrcJs+YzcWtTPQPDPZ+p+dkAtPUOTtiY6YyKj6IoAbotzyfeVGvwFSCdSI8iEr1ODyKQG2afT5Y/7GaJT0H2xK75GGN8CQdBnk95UQ4AJ3q0ykE4VHyUAOr4KEOezyjDbknwfPqdbvKy7NjC1KDLsguDQft8shxCXpY9ULF7vBl0e3F5zDDPJzfLTlGOg5Zu9XzCoeKjKEqAjj7ft3R/yCgefJ5P4sWn1+mJeOBddkiqtcMm5E2gSPo9xqKQFPVpRTm09Kj4hEPFRwmg5/oobb0+z2dqwWg9n8SH3fqdnohnDvmz3fziY7fZJrTWWrflMRaGhCunFWZzQj2fsKj4KIoSoH0snk9OcsJuvYPuiJ6Pb5Pp0GFyDptQMoHlbtotu6H3rbwohxPq+YRFxUcJoH6P0t7rJC/LTm4cB8n5yc9yDFtfSRT9rshhN/+RCh4r1dpuE6bmZwfEdbxp7w0v2tMKczThIAIqPoqiBGjrc1JaEL/XA1CQ4xOARIfefJ5PhLCb3VfbzV/V2uEXn96JEYI2S9RC7920whw6+11JOWwv1VHxURQlQEefa1TrPQB52X7xSewHbF+0hIOQox58nk9WIDw23gQ8n4KRYTeAVvV+RqDiowTQfAOlrdc5qvUeGNpDk2jxiRV2AwKp1Q6bjakF2fS7PBNSZbq9z0W23UZByHwqLPE53jUw7mOmOyo+iqIEaO8bvfj4PZ/eBJfY6R30kBch7BYQH0to7HYJvK+JSDpo73VSkp+FyPA9R7NK8gA40tE/7mOmOyo+ShDq+kx22nudTM0fXdjNv6s/0eLTNeBiSl7kVGsY8sYcVtgNfN7deNPaOxh2raxyqiU+7So+oaj4KIoC+Ap1dg24KS3IGdV1U6xqCF0DiROfAZcHp9sbGDuUvKzh3pjdJoH1l+bu8Q+BHe0YYGZx7oj2KblZFOU61PMJg4qPEkDXfCY3/jIw06eMTnyScXSAfyz/2KH4Q4E9fvERYaYVAvuwc+zi09nvCrtm9GHXQMB+KJUleer5hEHFR1EUAJoD4jPyG3w0kiE+XbHEx/J8ugfc2ARsNqGiKAcRODpG8Wlo7mHV3S/yiR++gdszVB17wOWhrdfJrDCeD0DV1Dz1fMKg4qMEUMdnctNsZWT5w1Px4i8pk0qeT26Q+Dhsvo+5LLuN8sIcPuwcmxD8busRBt1edh/r4pkdxwLtRy1hmVmsns9oUPFRFAWA411j83zsNqEo1xHwRhLBaMJu9qCq1zNL8jg2Rs9n+5FOFs+aQk1ZPg+9cSDQvq+lF4Da8oKw11VNzad70D1hG1zTFRUfRT0eBfDtRbHbhLJRVjgAnwgkQ3ymxAi79Qy4cQSLz5TcgKcyWpra+5hTls+NZ83hnUMd7DzSCcAHx7sBqKsoDHvdKRU+UdrX0jOmcTMVFR8lgCYcTG6auwcpL8wJez5OLCayYnQ4Yno+WUGej33o/cwpy+dwW/+wNZt4MMZwpL2f6qn53HB6NblZNh5+8yAAu492UVmSF/EMpFPKfaKk4jMcFR9FUQCf5zPaTDc/U3ITKz7tvU5EIp+4mpvt+2jrGRzu+ZxSUYjT4+XwKNdgWnoGGXR7qZqaR3F+FteuqOSpd4/Q3uvkzcZWzqwtjXht1dR8sh22QHhO8aHiowTQ83wmN8c6B0a93uMn0Z5PS88gZQU5OOzhP8LygqpyB6/5BLyQ5tF5IYfbfGJVNTUfgM99ZA4DLi+f//lG2nqdXLiwIuK1dpswd1oBDaMcM9NR8VEUBWMMTe19VJfmj+n6hItP92DUrLzgIyFyHEOP51nrMg2jDIE1tfcBvrRpgMWzirl6+SzebepkwYwiLls8I+r1p1QUatgthLjER0RWi8geEWkQkTvCvJ4jIo9ar78tIjVBr91pte8Rkcti2RSRWsvGXstmdrQxRGSViGyzft4VkY+P9WZMdtTvmby09Awy4PJSPTV8unAsygqzaet14k3QmT6xxCfLbiPLWuvxl9oBn0hOn5LD+8e6RjVekxWmqwy6P9//1Aqe+PJHePzLZwdqyUWirqKQQ219CS9BlMrEFB8RsQP3AZcDi4BPi8iikG5fAtqNMfOAe4F7rGsXAWuBxcBq4IciYo9h8x7gXmNMHdBu2Y44BrATqDfGrLDG+LGIhA8EK4oSFn9YaayeT3lRDm6voSNB3s+JHiflhdHXp/zeT45j+Mfc8qoSth3uGNV4Te39lBVkDzs/yG4TTp9TGqhtF42llcUYA7tHKXqZTDyezyqgwRjTaIxxAuuANSF91gAPWY8fBy4SX3nXNcA6Y8ygMWY/0GDZC2vTuuZCywaWzWujjWGM6TPG+L9O5KJf4MeMLvlMXvxhpZMRHxgq0TORGGNiej4wtO6THSI+K+dM5UBr36gKjDa19wVCbmNhaWUxANubOsdsI9OIR3wqgcNBz5ustrB9LCHoBMqiXBupvQzoCBKT4LEijYGInCkiu4AdwF8HXR9ARG4Wkc0isrmlpSWOt60okwd/WGmsH7B+L+REz8SLT1uvE6fHGzgrJxJ+jyQ7JCR2WnUJAO8cbI97zKb2/kCywViomJLL9Ck5gb1BkegecHHFD17nF3/eP+ax0oV4xCdc0n/od+RIfcarPeo8jDFvG2MWA2cAd4rIiJQdY8wDxph6Y0x9eXl5GFOKMnk53NbHtMLsiMdSxyKRno8/TXp2DC/NvwE1J2v4AW/Lq0vIy7Lz+t74voR6vb49PlWlY/d8wOf9bG+KHu57fe8Jdh/r4pu/353x2afxiE8TUB30vAo4GqmPtd5SDLRFuTZS+wmgJGjNJnisSGMEMMa8B/QCS+J4X0oIRiOWk5Z9LT3MnRZ+h348JFJ8DrXFFyIssc7vCfV8crPsnDNvGi++1xzXB3xLzyBOj/ekPB+ApZUlNJ7opWsg8rpYcPWFpgyvBxeP+GwC6qwstGx8CQTrQ/qsB26yHl8PvGx8/6vrgbVWplotUAdsjGTTuuYVywaWzaeijWHZcACIyBzgVOBA3HdAUSY5xhg+ON7DvOljF5/CHAe5WTZaEhB2OxwQn+ieSEnA8xn5MXfRwgqOdPTz3rHumOOFplmPlTNqp2IMbD7QFrFPcN25PR/Gnls6E1N8rPWTW4HngPeAx4wxu0TkLhG5xur2IFAmIg3AbcAd1rW7gMeA3cCzwC3GGE8km5at24HbLFtllu2IYwDnAu+KyDbgt8DfGGNOjO12THLU8ZmUtPQM0tnvilibLB5EhIqi3JM6Kyde4g0RlljHZheFyUa7bPEMsuzC41ua4hjPygQ8SfFZOXsq2XYbbzVGE5/+wFrWnuOZLT5xBXiNMRuADSFt3wh6PADcEOHau4G747FptTfiy4YLbQ87hjHmYeDhmG9CUZSwNBz3bX6sqyg6KTvVpXkctryEiaShuYfaaeErSAfjr/tWEEZ8SguyuXTxDJ7c2sQ/rj512KbUUPxhvpMNu+Vm2VleXczbja0R+xzrHKBueiFZdlugYGmmohUOlADq+ExO9lplX+pOIuwGvgQAf0hsovB6De9/2M3CmVNi9i2y6r71OUeePArw2TNn09Hn4jebD4d93c+htj5mTMmNKlDxctbcMnYe7QqcsBrKsY4BZhbnMX96IXuPZ3ZFBBUfRff3THLe/7CbKbmOmKnLsaiams+JHueE7uI/0tFPz6CbBTNii88586YBcNbc8EU/PzK3jPo5U7nvlX1hj8b2c6itL2ZmXbycNbcMj9ewcf9I78ft8dLcPcCs4lzqphexr6UHT4IqRiQDFR8lgIrQ5GR7UwfLqkrw7fEeO/4P6IkMve066qsQsGBm7BDhwplTeOfrl7BmRei2RB8iwm2XzufDrgF+/FpjRDsHTvSOefNtKKfPmUpelp1X94xM827uHsRrYEZxHvMqChl0ewPJDpmIio+iKdaTmAGXhz0fdmRsk9IAACAASURBVLOsqvikbfk/oA+2TtwH5qYDbWQ7bCyKI+wGvrWdaJx9yjSuWT6L+15poKF55BrLiZ5BmrsHWRiH2MWDL827jJffH5nm7c90m1mSG0j+yOTQm4qPEkBFaPKx+1gXbq9hWVXJSduaax0jPZFHB7y9v5XTqkvGZf3Fz9evWkRBjp1bf72VPufwkOFuy9NaNCs+sYuHCxZU0NTeP6LK9bFOX1bdzOLcQPXtvRl8DIOKj6LhtknMdqvA5vLqk/d8puRmUTU1b8KKZ3b0Odl9tIsz55aNq93yohx+sPY09hzv5vYndgyrzL1xfxt2m7Ck8uTvj5/zT/Wd/fPK+8NDb/409ZnFvlNRZxbnsjeMN5YpqPgoKj6TmE0H25lZnMuMMR4iF8rCmVNGfVxBvDy/+zheAxdHObhtrJw3v5x/vGwBv3/3KN9YvxOv12CM4YXdx1k5u4QpEY7IHguVJXmcOr2Il94/Pqz9aMcA+dn2wOms8yoyO+NNjx5QAqgITS68XsNb+1r52KnlJ51s4GfhzCm89N5x+p0e8rLHLzQGsGHHMSpL8gIVosebv/7YXDr7Xdz/2j6OtPezonoqe45382+fWDruY126eDr3vdIwrDr3sc5+ZhbnBv4v6iqKeGTjIbxeg802Pv8/qYR6PooySfmguZvWXidnnzJt3GwuryrGaxj1eTmxONzWx2sftHDtabPGTShDERFuX30q37pmMW/sa+XeFz/gI3PLuO70qnEf68plM/EaeHbXh4G2Ix39VAZtZK2bXki/y8ORjsys8aaejxLIulHHZ3Lx5j7fXpOPnDJ+ayj1NaXYBN5sbB1Xuz//8wHsInzurJpxsxkOEeGms2u49rRKDrf1sXDmFOwT4HWcOr2IU8oLeGb7UT531hwAjrT3szgoscGf8dbQ3DNuqd6phHo+iorOJOXl95uZO62AypKTq1kWTHFeFotnFfPWvsglZEbLodY+fvnWQa49rZIZxeOzNhWL4rwsllQWT4jwgE/krlw2i43722juHqDf6aG11zns/2Io4y0zkw5UfJQAmX5+iDJEZ7+LN/e1csni6eNu+6N109hyqJ3Wcahw7fUavvbUTuw24f9eduo4zC51uNoKva3fdpQDrb3A8GMiSvKzKS/KydikAxUfRRMNJiGv7mnG7TVctnjGuNu+atksPF7Dhp0fxu4cgx+9to8/ftDCP125kOnjlJGXKtRNL+L0OVP55VsHAyecLg7ZT1RXUZixe31UfJQAqkGThw07jlFRlMOKcdhcGsrCmUXMn17Io5sOnZQ3/cjGQ/z7c3u4evksbjxz9jjOMHW46ewaDrT2cceTO5iS66A25EC/uopC9h7vHrb3KFNQ8VG0ssEko7VnkJfea2bNilkTksIrInzp3Fp2HunitQ/iO6o6GK/X8N3n9nDnkzv42PxyvnvDsgnLcEs2VyyZwfKqYjxew5oVlSPWmBbPKqbX6WG/FZbLJDTbTdGw2yTjt1uP4PYabqivjt15jHz8tCr++5UGvvX73ZxZWxb3np+G5m7ueGIHmw+286n6av7l2iVkOzL3O7LDbuOhL67ijX2tXLhg5ObZZVblie1NHZxSfnJHXqQamfu/qoweFaGMxxjDo5sOs6K6hPnTx6dYZjiyHTbu+cQy9p/o5e8e3YrT7Y3a/1BrH3c8sZ3V33+dvc09fPeG5fzbdUszWnj8lORnc8XSmWHr1c0rLyQ3y8b2ps4kzGxiUc9HUc2ZRLz6QUvgw32iOXveNP756kV86/e7+cSP/sxtl8zn7FOmkZtlx+3xcqC1j7caW3lm+zHebGwl22Hjs2fO5tYL6wK7/ic7DruNJbOKVXyUzEbXfjKfH7+2j5nFuVyzfFZCxvvCObXMLM7ln9fv4ou/2IxNoCDbQa/TjX8NfU5ZPrddMp9PnVGdcRlt48GyqhJ+vfEgbo8Xhz1zPEEVH0XXfCYJWw628VZjG1+7cmFCw1mrl8zkwgXTeX1vC9ubOukacFGU46CqNJ9VNaXMKcvP2ISC8WB5dTE/+7OXD473jOvRDslGxUfBH3hTEcpcjDHc/cx7VBTl8JkkpC1nO2xctHA6Fy0c/02tmY7/rKV3mzoySnwyx4dTxoyKTubz7M4PeedQB7ddMp/8bP3OmU7UlOVTWpDNloPtyZ7KuKLiowRQEcpMugdc/MvTuzl1etGEplcrE4OIcPqcqWw+0JbsqYwrKj6KphlkOPc8+z7Hugb41+uWTlihTGViOaNmKgda+2juHkj2VMYNFR9FC4pmMH/ae4JfvnWIL55Ty8rZU5M9HWWM1NeUArDlQOaE3lR8lAAqQZnFh50D/J91W6mrKOTvL52f7OkoJ8GSWcXkOGxszqB1HxUfRUUnA3G6vfztI+/Q7/LwoxtXapJBmpPtsLGiuiSj1n3iEh8RWS0ie0SkQUTuCPN6jog8ar3+tojUBL12p9W+R0Qui2VTRGotG3stm9nRxhCRS0Rki4jssP69cKw3Y7Kj4bfMwBjD7U9sZ9OBdv7tumXMq5i4MjpK4jijppSdR7voc7qTPZVxIab4iIgduA+4HFgEfFpEFoV0+xLQboyZB9wL3GNduwhYCywGVgM/FBF7DJv3APcaY+qAdst2xDGAE8DVxpilwE3Aw6O7BYpqTmbxnef28NutR/iHS+cnrJKBMvGcXjMVj9ew7VBHsqcyLsTj+awCGowxjcYYJ7AOWBPSZw3wkPX4ceAi8W1ZXgOsM8YMGmP2Aw2WvbA2rWsutGxg2bw22hjGmK3GmKNW+y4gV0S0MNQYUA1Kf/7rpb386NV9fObM2dxywbxkT0cZR1bOnooIbMyQ0Fs84lMJHA563mS1he1jjHEDnUBZlGsjtZcBHZaN0LEijRHMdcBWY8yI83tF5GYR2Swim1taRn/GSCaj4bb0xxjD957fw3+88AGfOK2Su65ZrCVrMozivCxOnV7E5gzJeItHfML9Bod+WkXqM17tMechIovxheL+Kkw/jDEPGGPqjTH15eXl4bpMelSD0hOv11c65z9fbuCT9VX8+w3LM6oApTLEqtpS3jnUjtsT/YiKdCCe39AmIHhbdBVwNFIfEXEAxUBblGsjtZ8ASiwboWNFGgMRqQJ+C/yFMWZfHO9JCUI1J33pd3r48q+28NM/7efzZ9fwb59YphtJM5gzakrpc3rYfawr2VM5aeIRn01AnZWFlo0vgWB9SJ/1+Bb7Aa4HXja+WM56YK2VqVYL1AEbI9m0rnnFsoFl86loY4hICfAMcKcx5s+jefOKjyGPR2UonTjeNcCnHniT53cf55+vXsQ3r1k8IcdiK6nDGdZm043703/dJ6b4WOsrtwLPAe8BjxljdonIXSJyjdXtQaBMRBqA24A7rGt3AY8Bu4FngVuMMZ5INi1btwO3WbbKLNsRx7DszAO+LiLbrJ+R59EqSgbxp70nuOIHr9PQ3MNPPlfPF86pTfaUlAQwoziX6tI8NmVA0kFcO8+MMRuADSFt3wh6PADcEOHau4G747FptTfiy4YLbQ87hjHm28C3Y74JJSKacJA+eLyG/3p5Lz94aS/zygv50Y0rdR/PJOOMmlJe29OCMSatk0p0VVIJoBqU2hzp6OdzD77N91/cy8dXVPLUreeo8ExCVtWU0trrpPFEb7KnclJozQ1FV3pSHGMMv9ncxF1P78YYwz3XLeWT9dVp/a1XGTv+IqOb9rdxSnlhkmczdlR8lAAqQqlHc9cAdz65g5feb+asuaX8+/XLqS7NT/a0lCRySnkBZQXZbDzQxtpViT+VdrxQ8VE03JaCeLyGX719kH9/bg9Ot5dvXLWIz59do9lsCiJCfc3UtN9squKj4LXUR0UoNdjR1MlXf7eD7U2dnDtvGnetWczcNA6vKOPPGTWlPLfrOMe7Bpg+JTfZ0xkTKj5KQHyU5NI14OJ7z3/A/7x5gNKCHH6wdgXXLJ+lazvKCIL3+1ydpsVjVXwUvJb2GF31SQpuj5dHNh3m3hc+oL3PyefOmsPfX3oqxXlZyZ6akqIsnjWF/Gw7mw6o+ChpjMeropMsXt3TzN3PvMfe5h5W1ZbyjasWsaSyONnTUlIch93GytlT2ZTG6z4qPoqSBD443s3dz7zHax+0MKcsn/tvPJ3LFk/XEJsSN/U1U/nBS3vp7HelpZes4qME0KWfiaepvY8fvLiXJ95poiDHwdeuXMjnPjKHHIc92VNT0oxVNaUYA+8cbOeCBelXUUzFR1ESQHP3APe93MCvNx5CEG46u4a/vbCO0oLsZE9NSVNOmz0Vh03YeKBNxUdJb9TxGX86+pzc/1ojv3hjPy6P4ZP1VfzthXXMKslL9tSUNCcv286SymI2p2mRURUfRZkAugZc/OLPB/jJHxvpcbq5ZvksvnLxfGqmFSR7akoGcUbNVB564yADLg+5WekVulXxUQJodeuTp73Xyc/+vJ9fvHGA7gE3lyyazt9fOp8FM6Yke2pKBnJGTSk/eX0/25s6WVVbmuzpjAoVH0UZB1q6B/np6408/NZB+pweLl8yg1sumKdp08qEEigyeqBNxUdRJhMfdg5w/2v7eGTjIVweL1cvn8UtF8xj/nQ96kCZeEoLsplXUZiWh8up+CjKGNh/opefvN7I45ub8BrDx0+r5Mvnn6I12JSEc0ZNKU9vP4rXa9Kq8KyKj6KMgi0H23ngj/t4fvdxsmw2rq+v4ssfO0WPOVCSxmmzS3hk4yEaT/Sk1eGCKj5KAM03CI/Xa3jhveP85I+NbD7YTnFeFrecP4+/OHsOFUXpWVFYyRxOqy4BYNvhThUfRckEBlwennznCD99vZHGE71UTc3jm1cv4ob6agpy9E9HSQ1OKS+kMMfBtsPtXH96VbKnEzf6F6QE0KrWPlp7BvnV24f4nzcPcKLHydLKYv7r06dx+ZIZOOy2ZE9PUYZhswnLqorZdrgj2VMZFSo+GcJYN5np3p4hdh7p5BdvHGD9u0dxur2cf2o5N583l4/MLdOCn0pKs6K6hAf+2JhWm01VfDKADTuO8Te/eofn/u48Tp0xuphv8HEKk1GH3B4vz+06zi/e2M+mA+3kZ9v5VH01N509J63i58rkZkV1CW6vYeeRzsDen1RHxScDePG94wDsONI5avFxerwTMaWUp63XySMbD/HLtw5yrHOA6tI8vnblQm6or07L8vTK5GbFbH/SQYeKj5IeuNyTy/PZfbSLh944wO+2HWHQ7eXcedP4lzVLuGBBBfY02iOhKMFUFOVSWZKXVus+Kj4ZgMvjU40s++g/PAc9nvGeTsox4PLwh53H+NVbh9h8sJ28LDvXn17FTWfXaCUCJWNYXp1eSQcqPhmA0+0TkBzH6DOx/MKViTS29PDIxkP8ZksTHX0uaqcV8NUrFvLJ+mqK8zW0pmQWK6pL2LDjQ070DDKtMCfZ04lJXJ9WIrJaRPaISIOI3BHm9RwRedR6/W0RqQl67U6rfY+IXBbLpojUWjb2Wjazo40hImUi8oqI9IjIf4/1RqQzg27fuo3DNnrxcbqH1nwyQYZcHi8bdhzjsz99iwv/4zV+/ucDnHPKNH79v87k5b//GH953lwVHiUjWVE9FYB308T7ien5iIgduA+4BGgCNonIemPM7qBuXwLajTHzRGQtcA/wKRFZBKwFFgOzgBdFZL51TSSb9wD3GmPWicj9lu0fRRoDGAC+DiyxfiYdLitpwDuGRRtXhiQcNLX3sW7jYR7dfJiW7kEqS/L4v5edyg31VVqFQJkULK0sxm4Tth3u4KKF05M9nZjEE3ZbBTQYYxoBRGQdsAYIFp81wDetx48D/y2+jRFrgHXGmEFgv4g0WPYIZ1NE3gMuBD5j9XnIsvujSGMYY3qBP4nIvFG874zC772MRXyGeT5plnHg9nh5dU8Lv954iFf2NCPAhQsq+OyZczhvfrkmECiTirxsO3UVhWxv6kz2VOIiHvGpBA4HPW8CzozUxxjjFpFOoMxqfyvk2krrcTibZUCHMcYdpn+kMU7E8R4yGr+AjMWJGXSnX8LB/hO9PLrpME+800RL9yDlRTncesE81q6aTaUeT61MYpZUFvPK+80YY1J+Y3Q84hPuHYR+RY7UJ1J7uMWJaP3jnUdERORm4GaA2bNnx3tZWjB4Ep5P94A78DiV/Z4+p5sNOz7ksU2H2XigDbtNuODUcj5ZX80FCyrI0rI3isLSymIe39LEh10DzCxO7S9i8YhPE1Ad9LwKOBqhT5OIOIBioC3GteHaTwAlIuKwvJ/g/pHGiAtjzAPAAwD19fWp/Dk7ak4m7NY7mLqejzGGd5s6eXTTYX7/7lF6Bt3UTivgH1efynUrq5g+RddyFCUY/8m5O5o6M0J8NgF1IlILHMGXQPCZkD7rgZuAN4HrgZeNMUZE1gO/FpHv4Us4qAM24vNiRti0rnnFsrHOsvlUtDHG9rYziz6nT0CCS+XES+/gkOeTKq5PW6+T3249wmObDrPneDe5WTauWDqTT9VXs6q2NOXDCYqSLBbNnIJNYOfRLi5dPCPZ04lKTPGx1lduBZ4D7MDPjDG7ROQuYLMxZj3wIPCwlVDQhk9MsPo9hi85wQ3cYozxAISzaQ15O7BORL4NbLVsE2kMy9YBYAqQLSLXApeGZONlNL1On4CMRXx6gsUniXi8htf3tvCbzU08v/tDXB7D8uoS7v74Eq5ePospuZoerSixyMu2M6+ikJ1HUj/pIK5NpsaYDcCGkLZvBD0eAG6IcO3dwN3x2LTaGxnKiAtujzZGTdQ3kOH4vZex+IHD13wS7/ocau3j8S2HeXxLE0c7B5ian8Xnzqrhk2dUsWDGlITPR1HSnSWzinm9IfXzsLTCQQbgd3g8Y1Cflp6BcZ5NbPzJA7/ZfJi397chAh+tK+erVy7i4kUV5DjSoyS8oqQiSyqLeXLrEZq7BqhI4XVRFZ80JzjU5h5D2K25a5CiHAfdExx+M8aw+WA7v9l8mGe2H6PX6aGmLJ9/uHQ+n1hZxSxNkVaUcWFplZV0cKSTi1R8lImiuXvIc/GORXy6B6mYkkN3i3tCqlof6+znyXeO8PiWJvaf6CU/286VS2dyQ301Z9RM1eQBRRlnFs2cggjsPNKV0pUOVHzSnKMdQ+IzWs/HGMOB1l5WVJewr6V33OY04PLwwu7j/GZLE3/a24LXwJm1pdxywTwuXzKDghz9tVOUiaIgx8HcaQXsSPGkA/0USHMOnBgSDY93dCUOWnoG6ehzceqMIl7d08IYHKdh7Gjq5LHNh3lq2xG6BtxUluRx6wXzuO70KuaUFZyccUVR4mZJZTFvN8a9DTIpqPikOTuOdCLiy3Qbrefz7mHfN6Ol1sa0sSQs9Ay6eWrbER7ZeIidR7rIcdhYvWQGN5xezdmnlGHT+mqKknCWVhbz1LajgfJTqYiKTxpjjOG1D1pYVVPK2/vb8IzybJ7XPmgmP9vOKuvYXfcoisPtaOrk1xsPsX7bEXqdHhbMKOKuNYtZs6JSj6FWlCSzeJbvC+XOo51ccGpFkmcTHhWfNOb1vSfYf6KXm8+by9v720bl+fQ7PazfdpQLFlSQl+1LbY61SdXjNTy360N+8nojWw91kJtl46pls/jMmbM5rbpEkwcUJUVYXOnbI7ezScVHGWc6+px87Xc7qZqaxydWVvLV3+4YVYWD+1/bR9eAmy+cXRM4hC7SqaaDbg+PbTrMT17fz6G2PmaX5vONqxZx3elV6uUoSgoyJTeL2hRPOlDxSUPae518/heb+LBzgHV/dRY5DjsOmy1uz+f1vS3c90oD1yyfRX1NadCRDMPDbsYYfrftCP/x/Ac0tfezcnYJd16+gEsXz9CzchQlxVlSWcw7B9uTPY2IqPikGY0tPfzVw1s42NbHf3/mNFbO9h2da7dJXNluG3Yc47bHtjGvopC7P+47+NVhCUmweB1u6+P2J7bzxr5WFs+awv/7+FI+WjdNQ2uKkiYsrZzC7989Sluvk9KC7GRPZwQqPmnE7989yp1P7sBhF37xhTM4+5RpgdccNonq+bR0D/KdZ9/nN1uaWDm7hAf+op4iq1inzSbYBNxW2G3zgTb+8n824/IY7v74Ej59xmzNWlOUNGPJrKFKBx+bX57k2YxExScNONrRzzfX7+L53cdZObuE//rMyhEndtrtErbCgdPt5aE3DvCfL+1lwO3hr86by1cumU9u1vD6af6w3XvHurjpZxupmJLLzz5/BrXTdH+OoqQji60tFDtVfJTR0jXg4qev7+fB1xvxGMPtqxfwvz5aG/bUznCez6t7mrnr6d00tvRy4YIKvnblQuaWF4Ydy2EXBlwe/vaRrRTmOvj1X56Z8odRKYoSmeK8LOaU5bOjKTWTDlR8UpD2Xie/evsgP3l9P539Li5fMoN/umIh1aX5Ea/xrfn4xOdQax93Pb2LF99rpnZaAT///BlcsCB6uqXdJvx64yGcbi8//Yt6FR5FyQCWVBaz7VBHsqcRFhWfFOK9Y1089MYBfrv1CINuLxctqOArl8wPHI0bDX/Y7Hdbj3DHk9uxi3Dn5Qv4wjm1ZDtGekojrxe63V4WzCjiooWpuS9AUZTRsbSymGe2H6O918nUFEs6UPFJMi3dgzyz/Sjr3z3KO9bGzU+srOKms+eM6jA1u014c18rT7zTxKqaUr6/dsWovJf2PhcAn6yv1ow2RckQ/KWzdhzp5LwUW/dR8UkCXQMunt35Ib9/9yh/bjiB18CCGUX80xUL+GR9NSX5o/+G4rAJh9r6qCzJ4+dfOIP87NH9184tL6CxpZc1K2aNemxFUVKT4Iw3FZ9JyoDLw0vvNbP+3SO8sqcFp9vL7NJ8/ub8eVyzYhbzpxedlP2WnkEAPr2qetTCA3DPdcto6R6krDA1ixAqijJ6ivOzmF2az84UrHSg4jOBuDxe/tRwgt9vO8pzuz6k1+mhvCiHz545m2uWz2LFONZD81ccuHLZ2DyXM6ziooqiZBZLK4t5tyn1kg5UfMYZYwxbD3fwu61HeHr7Mdp6nUzJdXDVslmsWTGLM+eWTUhpmq9fuYgth9p1X46iKMNYUlnMMztSL+lAxWecaO0Z5JGNh/jNliYOtvaR47Bx8aLpXLuikvPmTyPHYY9t5CS47vQqrju9akLHUBQl/fAnHew82slH61Jn3UfF5yRp7hrg3hf38sQ7TTjdXs4+pYxbL5jH6iUzAuVrFEVRksUS63iFHUdUfDICYwy/fOsg//qH93F5vNxQX80Xz6lhXsXJJQ4oiqKMJyX52VSX5rHrSFeypzIMFZ8x4PUa/um3O1i36TAfm1/OXWsWM6dM11oURUlNllYWp9zZPrG3visj+P6LH7Bu02FuueAUfv75M1R4FEVJaZZUFnOorY+2XmeypxJAxWeUfHC8m/te3ccnVlbyD5eeqkcNKIqS8pxZ69tK8XZja5JnMoSKzyh58PX9ZNttfP3KRVqGRlGUtGBZVQn52XbeTDfxEZHVIrJHRBpE5I4wr+eIyKPW62+LSE3Qa3da7XtE5LJYNkWk1rKx17KZPdYxxhtjDC+9f5xLFk1PqXx5RVGUaGTZbdTXlPLGvjQSHxGxA/cBlwOLgE+LyKKQbl8C2o0x84B7gXusaxcBa4HFwGrghyJij2HzHuBeY0wd0G7ZHvUYo70R8XC8a5ATPU7qa6ZOhHlFUZQJ49x5ZTQ097D/RG+ypwLE5/msAhqMMY3GGCewDlgT0mcN8JD1+HHgIvHFpNYA64wxg8aY/UCDZS+sTeuaCy0bWDavHeMY405rr69+WkWR1j9TFCW9uHZFJXab8B/P70n2VID4Uq0rgcNBz5uAMyP1Mca4RaQTKLPa3wq5ttJ6HM5mGdBhjHGH6T+WMQKIyM3AzdbTHhFpBU5EfNdRuPyesVyV0kxjjPciA9F74UPvwxAZdS/uA+777JgunQbMGa95xCM+4VbVTZx9IrWH87ii9R/LGMMbjHkAeMD/XEQ2G2Pqw1w76dB7MYTeCx96H4bQe+HDug8142UvnrBbE1Ad9LwKOBqpj4g4gGKgLcq1kdpPACWWjdCxRjuGoiiKkqLEIz6bgDorCy0b3+L++pA+64GbrMfXAy8bY4zVvtbKVKsF6oCNkWxa17xi2cCy+dQYx1AURVFSlJhhN2t95VbgOcAO/MwYs0tE7gI2G2PWAw8CD4tIAz5vZK117S4ReQzYDbiBW4wxHoBwNq0hbwfWici3ga2WbcYyRgweiN1l0qD3Ygi9Fz70Pgyh98LHuN4H8TkPiqIoipI4tMKBoiiKknBUfBRFUZSEMynFJ1a5oExARH4mIs0isjOorVREXrBKF70gIlOtdhGR/7Tux3YRWRl0zU1W/70iclO4sVIZEakWkVdE5D0R2SUi/8dqn1T3QkRyRWSjiLxr3YdvWe0pW85qorGqrWwVkaet55PyXojIARHZISLbRGSz1Tbxfx/GmEn1gy/BYR8wF8gG3gUWJXteE/A+zwNWAjuD2r4D3GE9vgO4x3p8BfAHfHumzgLettpLgUbr36nW46nJfm+jvA8zgZXW4yLgA3wlnSbVvbDeT6H1OAt423p/jwFrrfb7gS9bj/8GuN96vBZ41Hq8yPqbyQFqrb8le7Lf3xjvyW3Ar4GnreeT8l4AB4BpIW0T/vcxGT2feMoFpT3GmD/iywoMJrhEUWjpov8xPt7Ct9dqJnAZ8IIxps0Y0w68gK9+XtpgjDlmjHnHetwNvIevAsakuhfW++mxnmZZP4YULmc1kYhIFXAl8FPreUqX9koCE/73MRnFJ1y5oBHleDKU6caYY+D7UAYqrPZI9ySj7pUVLjkN37f+SXcvrDDTNqAZ34fDPuIsZwUEl7NK6/tg8X3gHwGv9Tzu0l5k3r0wwPMiskV8ZcggAX8fk/EY7bjK8UwyTqp0UTogIoXAE8DfGWO6JPJZTBl7L4xv/9sKESkBfgssDNfN+jdj3mdFeAAAAa1JREFU74OIXAU0G2O2iMj5/uYwXTP+XlicY4w5KiIVwAsi8n6UvuN2Lyaj5zOZy/Ect1xkrH+brfbRlkFKK0QkC5/w/MoY86TVPCnvBYAxpgN4FV/MfjKWszoHuEZEDuALu1+IzxOajPcCY8xR699mfF9KVpGAv4/JKD7xlAvKVIJLFIWWLvoLK5PlLKDTcrWfAy4VkalWtsulVlvaYMXmHwTeM8Z8L+ilSXUvRKTc8ngQkTzgYnzrX5OunJUx5k5jTJXxFclci++9fZZJeC9EpEBEivyP8f1e7yQRfx/JzrRIxg++jI0P8MW8v5rs+UzQe3wEOAa48H0r+RK+OPVLwF7r31Krr+CrtL4P2AHUB9n5Ir6F1AbgC8l+X2O4D+fic/+3A9usnysm270AluErV7Xd+nD5htU+F98HZgPwGyDHas+1njdYr88NsvVV6/7sAS5P9ns7yftyPkPZbpPuXljv+V3rZ5f/8zARfx9aXkdRFEVJOJMx7KYoiqIkGRUfRVEUJeGo+CiKoigJR8VHURRFSTgqPoqiKErCUfFRFEVREo6Kj6IoipJw/j+gX7eOJq2lrAAAAABJRU5ErkJggg==\n", "text/plain": [ "<Figure size 432x288 with 1 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.clf()\n", "# plt.plot(x_part, calcs, '.')\n", "plt.plot(test_q, calcs_test, label = 'pdf')\n", "# plt.plot(test_q, f0_y, label = '0')\n", "# plt.plot(test_q, fT_y, label = 'T')\n", "# plt.plot(test_q, fplus_y, label = '+')\n", "# plt.plot(test_q, res_y, label = 'res')\n", "plt.legend()\n", "plt.ylim(0.0, 6e-6)\n", "# plt.yscale('log')\n", "# plt.xlim(770, 785)\n", "plt.savefig('test.png')\n", "# print(jpsi_width)" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [], "source": [ "\n", "\n", "# probs = mixture.prob(test_q)\n", "# probs_np = zfit.run(probs)\n", "# probs_np *= np.max(calcs_test) / np.max(probs_np)\n", "# plt.figure()\n", "# plt.semilogy(test_q, probs_np,label=\"importance sampling\")\n", "# plt.semilogy(test_q, calcs_test, label = 'pdf')\n" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [], "source": [ "# 0.213/(0.00133+0.213+0.015)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Adjust scaling of different parts" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [], "source": [ "total_f.update_integration_options(draws_per_dim=200000, mc_sampler=None)\n", "# inte = total_f.integrate(limits = (1000, 1040), norm_range=False)\n", "# inte_fl = zfit.run(inte)\n", "# print(inte_fl)\n", "# # print(pdg[\"jpsi_BR\"]/pdg[\"NR_BR\"], inte_fl*pdg[\"psi2s_auc\"]/pdg[\"NR_auc\"])" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [], "source": [ "# # print(\"jpsi:\", inte_fl)\n", "# # print(\"Increase am by factor:\", np.sqrt(pdg[\"jpsi_BR\"]/pdg[\"NR_BR\"]*pdg[\"NR_auc\"]/inte_fl))\n", "# # print(\"New amp:\", pdg[\"jpsi\"][3]*np.sqrt(pdg[\"jpsi_BR\"]/pdg[\"NR_BR\"]*pdg[\"NR_auc\"]/inte_fl))\n", "\n", "# # print(\"psi2s:\", inte_fl)\n", "# # print(\"Increase am by factor:\", np.sqrt(pdg[\"psi2s_BR\"]/pdg[\"NR_BR\"]*pdg[\"NR_auc\"]/inte_fl))\n", "# # print(\"New amp:\", pdg[\"psi2s\"][3]*np.sqrt(pdg[\"psi2s_BR\"]/pdg[\"NR_BR\"]*pdg[\"NR_auc\"]/inte_fl))\n", "\n", "# name = \"phi\"\n", "\n", "# print(name+\":\", inte_fl)\n", "# print(\"Increase am by factor:\", np.sqrt(pdg[name+\"_BR\"]/pdg[\"NR_BR\"]*pdg[\"NR_auc\"]/inte_fl))\n", "# print(\"New amp:\", pdg[name][3]*np.sqrt(pdg[name+\"_BR\"]/pdg[\"NR_BR\"]*pdg[\"NR_auc\"]/inte_fl))\n", "\n", "\n", "# # print(x_min)\n", "# # print(x_max)\n", "# # # total_f.update_integration_options(draws_per_dim=2000000, mc_sampler=None)\n", "# # total_f.update_integration_options(mc_sampler=lambda dim, num_results,\n", "# # dtype: tf.random_uniform(maxval=1., shape=(num_results, dim), dtype=dtype),\n", "# # draws_per_dim=1000000)\n", "# # # _ = []\n", "\n", "# # # for i in range(10):\n", "\n", "# # # inte = total_f.integrate(limits = (x_min, x_max))\n", "# # # inte_fl = zfit.run(inte)\n", "# # # print(inte_fl)\n", "# # # _.append(inte_fl)\n", "\n", "# # # print(\"mean:\", np.mean(_))\n", "\n", "# # _ = time.time()\n", "\n", "# # inte = total_f.integrate(limits = (x_min, x_max))\n", "# # inte_fl = zfit.run(inte)\n", "# # print(inte_fl)\n", "# # print(\"Time taken: {}\".format(display_time(int(time.time() - _))))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Tensorflow scaling" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [], "source": [ "# def scaling_func(x):\n", "\n", "# funcs = resonance(x, _mass = ztf.constant(jpsi_mass), scale = ztf.constant(jpsi_scale), phase = ztf.constant(jpsi_phase), width = ztf.constant(jpsi_width)) + resonance(x, _mass = ztf.constant(psi2s_mass), scale = ztf.constant(psi2s_scale), phase = ztf.constant(psi2s_phase), width = ztf.constant(psi2s_width))\n", "\n", "# vec_f = vec(x, funcs)\n", "\n", "# axiv_nr = axiv_nonres(x)\n", "\n", "# tot = vec_f + axiv_nr\n", "\n", "# return tot\n", "\n", "\n", "# def s_func(x):\n", " \n", "# q = ztf.constant(x)\n", " \n", "# return zfit.run(scaling_func(q))\n", " \n", "\n", "# print(integrate.quad(s_func, x_min, x_max, limit = 50))" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [], "source": [ "# factor_jpsi = pdg[\"NR_auc\"]*pdg[\"jpsi_BR\"]/(pdg[\"NR_BR\"]*pdg[\"jpsi_auc\"])\n", "# factor_jpsi = pdg[\"NR_auc\"]*pdg[\"jpsi_BR\"]/(pdg[\"NR_BR\"]*inte_fl)\n", "# print(np.sqrt(factor_jpsi)*jpsi_scale)\n", "# print(np.sqrt(factor_jpsi))\n", "# # print(psi2s_scale)\n", "# factor_psi2s = pdg[\"NR_auc\"]*pdg[\"psi2s_BR\"]/(pdg[\"NR_BR\"]*pdg[\"psi2s_auc\"])\n", "# factor_psi2s = pdg[\"NR_auc\"]*pdg[\"psi2s_BR\"]/(pdg[\"NR_BR\"]*inte_fl)\n", "# print(np.sqrt(factor_psi2s)*psi2s_scale)\n", "# print(np.sqrt(factor_psi2s))" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [], "source": [ "# def _t_f(xq):\n", "\n", "# def jpsi_res(q):\n", "# return resonance(q, jpsi_m, jpsi_s, jpsi_p, jpsi_w)\n", "\n", "# def psi2s_res(q):\n", "# return resonance(q, psi2s_m, psi2s_s, psi2s_p, psi2s_w)\n", "\n", "# funcs = psi2s_res(xq) + jpsi_res(xq)\n", "\n", "# vec_f = vec(xq, funcs)\n", "\n", "# axiv_nr = axiv_nonres(xq)\n", "\n", "# tot = vec_f + axiv_nr\n", " \n", "# return tot\n", "\n", "# def t_f(x):\n", "# _ = np.array(x)\n", "# probs = zfit.run(_t_f(_))\n", "# return probs" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [], "source": [ "# print(36000*(1+ pdg[\"jpsi_BR\"]/pdg[\"NR_BR\"] + pdg[\"psi2s_BR\"]/pdg[\"NR_BR\"]))" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [], "source": [ "# start = time.time()\n", "\n", "# result, err = integrate.quad(lambda x: t_f(x), x_min, x_max, limit = 5)\n", "# print(result, \"{0:.2f} %\".format(err/result))\n", "# print(\"Time:\", time.time()-start)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Sampling\n", "## One sample\n", "! total_f.sample() always returns the same set !" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [], "source": [ "# nevents = int(pdg[\"number_of_decays\"])\n", "# event_stack = 5000\n", "\n", "# calls = int(nevents/event_stack + 1)\n", "\n", "# total_samp = []\n", "\n", "# start = time.time()\n", "\n", "# samp = total_f.sample(n=event_stack)\n", "# s = samp.unstack_x()\n", "\n", "# for call in range(calls):\n", "\n", "# sam = zfit.run(s)\n", "# clear_output(wait=True)\n", " \n", "# # if call != 0:\n", "# # print(np.sum(_last_sam-sam))\n", " \n", "# # _last_sam = sam\n", " \n", "# c = call + 1 \n", "# print(\"{0}/{1}\".format(c, calls))\n", "# print(\"Time taken: {}\".format(display_time(int(time.time() - start))))\n", "# print(\"Projected time left: {}\".format(display_time(int((time.time() - start)/c*(calls-c)))))\n", " \n", "# with open(\"data/zfit_toys/toy_1/{}.pkl\".format(call), \"wb\") as f:\n", "# pkl.dump(sam, f, pkl.HIGHEST_PROTOCOL)" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [], "source": [ "# print(\"Time to generate full toy: {} s\".format(int(time.time()-start)))\n", "\n", "# total_samp = []\n", "\n", "# for call in range(calls):\n", "# with open(r\"data/zfit_toys/toy_1/{}.pkl\".format(call), \"rb\") as input_file:\n", "# sam = pkl.load(input_file)\n", "# total_samp = np.append(total_samp, sam)\n", "\n", "# total_samp = total_samp.astype('float64')\n", "\n", "# data2 = zfit.data.Data.from_numpy(array=total_samp[:int(nevents)], obs=obs)\n", "\n", "# print(total_samp[:nevents].shape)" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [], "source": [ "# bins = int((x_max-x_min)/7)\n", "\n", "# # calcs = zfit.run(total_test_tf(samp))\n", "\n", "# plt.hist(total_samp[:event_stack], bins = bins, range = (x_min,x_max))\n", "\n", "# # plt.plot(sam, calcs, '.')\n", "# # plt.plot(test_q, calcs_test)\n", "# plt.ylim(0, 20)\n", "# # plt.xlim(3000, 3750)\n", "\n", "# plt.savefig('test2.png')\n", "# 1-(0.21+0.62)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Toys" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [], "source": [ "\n", " \n", "# print(list_of_borders[:9])\n", "# print(list_of_borders[-9:])\n", "\n", "\n", "class UniformSampleAndWeights(zfit.util.execution.SessionHolderMixin):\n", " def __call__(self, limits, dtype, n_to_produce):\n", " # n_to_produce = tf.cast(n_to_produce, dtype=tf.int32)\n", " low, high = limits.limit1d\n", " low = tf.cast(low, dtype=dtype)\n", " high = tf.cast(high, dtype=dtype)\n", "# uniform = tfd.Uniform(low=low, high=high)\n", "# uniformjpsi = tfd.Uniform(low=tf.constant(3080, dtype=dtype), high=tf.constant(3112, dtype=dtype))\n", "# uniformpsi2s = tfd.Uniform(low=tf.constant(3670, dtype=dtype), high=tf.constant(3702, dtype=dtype))\n", "\n", "# list_of_borders = []\n", "# _p = []\n", "# splits = 10\n", "\n", "# _ = np.linspace(x_min, x_max, splits)\n", "\n", "# for i in range(splits):\n", "# list_of_borders.append(tf.constant(_[i], dtype=dtype))\n", "# _p.append(tf.constant(1/splits, dtype=dtype))\n", " \n", "# mixture = tfd.MixtureSameFamily(mixture_distribution=tfd.Categorical(probs=_p[:(splits-1)]),\n", "# components_distribution=tfd.Uniform(low=list_of_borders[:(splits-1)], \n", "# high=list_of_borders[-(splits-1):]))\n", " mixture = tfd.MixtureSameFamily(mixture_distribution=tfd.Categorical(probs=[tf.constant(0.05, dtype=dtype),\n", " tf.constant(0.93, dtype=dtype),\n", " tf.constant(0.05, dtype=dtype),\n", " tf.constant(0.065, dtype=dtype),\n", " tf.constant(0.04, dtype=dtype),\n", " tf.constant(0.05, dtype=dtype)]),\n", " components_distribution=tfd.Uniform(low=[tf.constant(x_min, dtype=dtype), \n", " tf.constant(3090, dtype=dtype),\n", " tf.constant(3681, dtype=dtype), \n", " tf.constant(3070, dtype=dtype),\n", " tf.constant(1000, dtype=dtype),\n", " tf.constant(3660, dtype=dtype)], \n", " high=[tf.constant(x_max, dtype=dtype),\n", " tf.constant(3102, dtype=dtype), \n", " tf.constant(3691, dtype=dtype),\n", " tf.constant(3110, dtype=dtype),\n", " tf.constant(1040, dtype=dtype),\n", " tf.constant(3710, dtype=dtype)]))\n", "# dtype = tf.float64\n", "# mixture = tfd.MixtureSameFamily(mixture_distribution=tfd.Categorical(probs=[tf.constant(0.04, dtype=dtype),\n", "# tf.constant(0.90, dtype=dtype),\n", "# tf.constant(0.02, dtype=dtype),\n", "# tf.constant(0.07, dtype=dtype),\n", "# tf.constant(0.02, dtype=dtype)]),\n", "# components_distribution=tfd.Uniform(low=[tf.constant(x_min, dtype=dtype), \n", "# tf.constant(3089, dtype=dtype),\n", "# tf.constant(3103, dtype=dtype), \n", "# tf.constant(3681, dtype=dtype),\n", "# tf.constant(3691, dtype=dtype)], \n", "# high=[tf.constant(3089, dtype=dtype),\n", "# tf.constant(3103, dtype=dtype), \n", "# tf.constant(3681, dtype=dtype),\n", "# tf.constant(3691, dtype=dtype), \n", "# tf.constant(x_max, dtype=dtype)]))\n", "# mixture = tfd.Uniform(tf.constant(x_min, dtype=dtype), tf.constant(x_max, dtype=dtype))\n", "# sample = tf.random.uniform((n_to_produce, 1), dtype=dtype)\n", " sample = mixture.sample((n_to_produce, 1))\n", "# sample = tf.random.uniform((n_to_produce, 1), dtype=dtype)\n", " weights = mixture.prob(sample)[:,0]\n", "# weights = tf.broadcast_to(tf.constant(1., dtype=dtype), shape=(n_to_produce,))\n", " # sample = tf.expand_dims(sample, axis=-1)\n", "# print(sample, weights)\n", " \n", "# weights = tf.ones(shape=(n_to_produce,), dtype=dtype)\n", " weights_max = None\n", " thresholds = tf.random_uniform(shape=(n_to_produce,), dtype=dtype)\n", " return sample, thresholds, weights, weights_max, n_to_produce" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [], "source": [ "total_f._sample_and_weights = UniformSampleAndWeights" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [], "source": [ "# 0.00133/(0.00133+0.213+0.015)*(x_max-3750)/(x_max-x_min)" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [], "source": [ "# zfit.settings.set_verbosity(10)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "scrolled": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "3/6 of Toy 1/1\n", "Time taken: 3 min, 27 s\n", "Projected time left: 3 min, 27 s\n" ] } ], "source": [ "# zfit.run.numeric_checks = False \n", "\n", "nr_of_toys = 1\n", "nevents = int(pdg[\"number_of_decays\"])\n", "nevents = pdg[\"number_of_decays\"]\n", "event_stack = 1000000\n", "# zfit.settings.set_verbosity(10)\n", "calls = int(nevents/event_stack + 1)\n", "\n", "total_samp = []\n", "\n", "start = time.time()\n", "\n", "sampler = total_f.create_sampler(n=event_stack)\n", "\n", "for toy in range(nr_of_toys):\n", " \n", " dirName = 'data/zfit_toys/toy_{0}'.format(toy)\n", " \n", " if not os.path.exists(dirName):\n", " os.mkdir(dirName)\n", " print(\"Directory \" , dirName , \" Created \")\n", "\n", " for call in range(calls):\n", "\n", " sampler.resample(n=event_stack)\n", " s = sampler.unstack_x()\n", " sam = zfit.run(s)\n", " clear_output(wait=True)\n", "\n", " c = call + 1\n", " \n", " print(\"{0}/{1} of Toy {2}/{3}\".format(c, calls, toy+1, nr_of_toys))\n", " print(\"Time taken: {}\".format(display_time(int(time.time() - start))))\n", " print(\"Projected time left: {}\".format(display_time(int((time.time() - start)/(c+calls*(toy))*((nr_of_toys-toy)*calls-c)))))\n", "\n", " with open(\"data/zfit_toys/toy_{0}/{1}.pkl\".format(toy, call), \"wb\") as f:\n", " pkl.dump(sam, f, pkl.HIGHEST_PROTOCOL)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# with open(r\"data/zfit_toys/toy_0/0.pkl\", \"rb\") as input_file:\n", "# sam = pkl.load(input_file)\n", "# print(sam[:10])\n", "\n", "# with open(r\"data/zfit_toys/toy_0/1.pkl\", \"rb\") as input_file:\n", "# sam2 = pkl.load(input_file)\n", "# print(sam2[:10])\n", "\n", "# print(np.sum(sam-sam2))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "print(\"Time to generate full toy: {} s\".format(int(time.time()-start)))\n", "\n", "total_samp = []\n", "\n", "for call in range(calls):\n", " with open(r\"data/zfit_toys/toy_0/{}.pkl\".format(call), \"rb\") as input_file:\n", " sam = pkl.load(input_file)\n", " total_samp = np.append(total_samp, sam)\n", "\n", "total_samp = total_samp.astype('float64')\n", "\n", "data2 = zfit.data.Data.from_numpy(array=total_samp[:int(nevents)], obs=obs)\n", "\n", "data3 = zfit.data.Data.from_numpy(array=total_samp, obs=obs)\n", "\n", "print(total_samp[:nevents].shape)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "plt.clf()\n", "\n", "bins = int((x_max-x_min)/7)\n", "\n", "# calcs = zfit.run(total_test_tf(samp))\n", "print(total_samp[:nevents].shape)\n", "\n", "plt.hist(total_samp[:nevents], bins = bins, range = (x_min,x_max), label = 'data')\n", "# plt.plot(test_q, calcs_test*nevents , label = 'pdf')\n", "\n", "# plt.plot(sam, calcs, '.')\n", "# plt.plot(test_q, calcs_test)\n", "# plt.yscale('log')\n", "plt.ylim(0, 200)\n", "# plt.xlim(3080, 3110)\n", "\n", "plt.legend()\n", "\n", "plt.savefig('test2.png')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# sampler = total_f.create_sampler(n=nevents)\n", "# nll = zfit.loss.UnbinnedNLL(model=total_f, data=sampler, fit_range = (x_min, x_max))\n", "\n", "# # for param in pdf.get_dependents():\n", "# # param.set_value(initial_value)\n", "\n", "# sampler.resample(n=nevents)\n", "\n", "# # Randomise initial values\n", "# # for param in pdf.get_dependents():\n", "# # param.set_value(random value here)\n", "\n", "# # Minimise the NLL\n", "# minimizer = zfit.minimize.MinuitMinimizer(verbosity = 10)\n", "# minimum = minimizer.minimize(nll)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# jpsi_width" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# plt.hist(sample, weights=1 / prob(sample))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Fitting" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "start = time.time()\n", "\n", "for param in total_f.get_dependents():\n", " param.randomize()\n", " \n", "for param in total_f.get_dependents():\n", " print(zfit.run(param))\n", " \n", "nll = zfit.loss.UnbinnedNLL(model=total_f, data=data2, fit_range = (x_min, x_max))\n", "\n", "minimizer = zfit.minimize.MinuitMinimizer(verbosity = 5)\n", "# minimizer._use_tfgrad = False\n", "result = minimizer.minimize(nll)\n", "\n", "# param_errors = result.error()\n", "\n", "# for var, errors in param_errors.items():\n", "# print('{}: ^{{+{}}}_{{{}}}'.format(var.name, errors['upper'], errors['lower']))\n", "\n", "print(\"Function minimum:\", result.fmin)\n", "# print(\"Results:\", result.params)\n", "print(\"Hesse errors:\", result.hesse())" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "print(\"Time taken for fitting: {}\".format(display_time(int(time.time()-start))))\n", "\n", "# probs = total_f.pdf(test_q)\n", "\n", "calcs_test = zfit.run(probs)\n", "res_y = zfit.run(jpsi_res(test_q))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "plt.clf()\n", "# plt.plot(x_part, calcs, '.')\n", "plt.plot(test_q, calcs_test, label = 'pdf')\n", "# plt.plot(test_q, res_y, label = 'res')\n", "plt.legend()\n", "plt.ylim(0.0, 5e-6)\n", "# plt.yscale('log')\n", "# plt.xlim(3080, 3110)\n", "plt.savefig('test3.png')\n", "# print(jpsi_width)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# _tot = 4.37e-7+6.02e-5+4.97e-6\n", "# _probs = []\n", "# _probs.append(6.02e-5/_tot)\n", "# _probs.append(4.97e-6/_tot)\n", "# _probs.append(4.37e-7/_tot)\n", "# print(_probs)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# dtype = 'float64'\n", "# # mixture = tfd.Uniform(tf.constant(x_min, dtype=dtype), tf.constant(x_max, dtype=dtype))\n", "# mixture = tfd.MixtureSameFamily(mixture_distribution=tfd.Categorical(probs=[tf.constant(0.007, dtype=dtype),\n", "# tf.constant(0.917, dtype=dtype),\n", "# tf.constant(0.076, dtype=dtype)]),\n", "# components_distribution=tfd.Uniform(low=[tf.constant(x_min, dtype=dtype), \n", "# tf.constant(3080, dtype=dtype),\n", "# tf.constant(3670, dtype=dtype)], \n", "# high=[tf.constant(x_max, dtype=dtype),\n", "# tf.constant(3112, dtype=dtype), \n", "# tf.constant(3702, dtype=dtype)]))\n", "# # for i in range(10):\n", "# # print(zfit.run(mixture.prob(mixture.sample((10, 1)))))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# print((zfit.run(jpsi_p)%(2*np.pi))/np.pi)\n", "# print((zfit.run(psi2s_p)%(2*np.pi))/np.pi)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.3" } }, "nbformat": 4, "nbformat_minor": 2 }