import ROOT #from ROOT import TTree, TFile, Double import numpy as np from pdg_const import pdg import matplotlib matplotlib.use("Qt5Agg") import matplotlib.pyplot as plt import pickle as pkl import sys import time from helperfunctions import display_time mmu = pdg['muon_M'] mb = pdg["bquark_M"] ms = pdg["squark_M"] mK = pdg["Ks_M"] mB = pdg["Bplus_M"] class model: def __init__(self): self.mmu = pdg['muon_M'] self.mb = pdg["bquark_M"] self.ms = pdg["squark_M"] self.mK = pdg["Ks_M"] self.mB = pdg["Bplus_M"] self.C7eff = pdg["C7eff"] self.C9eff = pdg["C9eff"] self.C10eff = pdg["C10eff"] #self.C1 = pdg["C1"] #self.C2 = pdg["C2"] #self.C3 = pdg["C3"] #self.C4 = pdg["C4"] self.GF = pdg["GF"] #Fermi coupling const. self.alpha_ew = pdg["alpha_ew"] self.Vts = pdg["Vts"] self.Vtb = pdg["Vtb"] self.x_min = 2*self.mmu self.x_max = (self.mB - self.mK) - 0.1 self.total_pdf_string = "self.total_nonres(q2)" def formfactor(self, q2, subscript): #check if subscript is viable if subscript != "0" and subscript != "+" and subscript != "T": raise ValueError('Wrong subscript entered, choose either 0, + or T') #get constants mh = self.mK mbstar0 = pdg["mbstar0"] mbstar = pdg["mbstar"] b0 = pdg["b0"] bplus = pdg["bplus"] bT = pdg["bT"] N = 3 #some helperfunctions tpos = (self.mB - self.mK)**2 tzero = (self.mB + self.mK)*(np.sqrt(self.mB)-np.sqrt(self.mK))**2 z_oben = np.sqrt(tpos - q2) - np.sqrt(tpos - tzero) z_unten = np.sqrt(tpos - q2) + np.sqrt(tpos - tzero) z = z_oben/z_unten #calculate f0 if subscript == "0": prefactor = 1/(1 - q2/(mbstar0**2)) _sum = 0 for i in range(N): _sum += b0[i]*(z**i) return prefactor * _sum #calculate f+ or fT else: prefactor = 1/(1 - q2/(mbstar**2)) _sum = 0 if subscript == "T": b = bT else: b = bplus for i in range(N): _sum += b[i] * (z**i - ((-1)**(i-N)) * (i/N) * z**N) return prefactor * _sum def axiv_nonres(self, q2): GF = self.GF alpha_ew = self.alpha_ew Vtb = self.Vtb Vts = self.Vts C10eff = self.C10eff mmu = self.mmu mb = self.mb ms = self.ms mK = self.mK mB = self.mB #Some helperfunctions beta = np.sqrt(np.abs(1. - 4. * self.mmu**2. / q2)) kabs = np.sqrt(mB**2 + q2**2/mB**2 + mK**4/mB**2 - 2 * (mB**2 * mK**2 + mK**2 * q2 + mB**2 * q2) / mB**2) #prefactor in front of whole bracket prefactor1 = GF**2. *alpha_ew**2. * (np.abs(Vtb*Vts))**2 * kabs * beta / (128. * np.pi**5.) #left term in bracket bracket_left = 2./3. * kabs**2 * beta**2 * np.abs(C10eff*self.formfactor(q2, "+"))**2 #middle term in bracket _top = 4. * mmu**2 * (mB**2 - mK**2) * (mB**2 - mK**2) _under = q2 * mB**2 bracket_middle = _top/_under * np.abs(C10eff * self.formfactor(q2, "0"))**2 return prefactor1 * (bracket_left + bracket_middle) * 2 * np.sqrt(q2) def vec_nonres(self, q2): GF = self.GF alpha_ew = self.alpha_ew Vtb = self.Vtb Vts = self.Vts C7eff = self.C7eff C9eff = self.C9eff mmu = self.mmu mb = self.mb ms = self.ms mK = self.mK mB = self.mB #Some helperfunctions beta = np.sqrt(np.abs(1. - 4. * self.mmu**2. / q2)) kabs = np.sqrt(mB**2 + q2**2/mB**2 + mK**4/mB**2 - 2 * (mB**2 * mK**2 + mK**2 * q2 + mB**2 * q2) / mB**2) #prefactor in front of whole bracket prefactor1 = GF**2. *alpha_ew**2. * (np.abs(Vtb*Vts))**2 * kabs * beta / (128. * np.pi**5.) #right term in bracket prefactor2 = kabs**2 * (1. - 1./3. * beta**2) abs_bracket = np.abs(C9eff * self.formfactor(q2, "+") + 2 * C7eff * (mb + ms)/(mB + mK) * self.formfactor(q2, "T"))**2 bracket_right = prefactor2 * abs_bracket return prefactor1 * bracket_right * 2 * np.sqrt(q2) def total_nonres(self, q2): #Get constants GF = self.GF alpha_ew = self.alpha_ew Vtb = self.Vtb Vts = self.Vts C10eff = self.C10eff C9eff = self.C9eff C7eff = self.C7eff mmu = self.mmu mb = self.mb ms = self.ms mK = self.mK mB = self.mB #vector nonresonant part vec_nonres_part = self.vec_nonres(q2) #axial verctor nonresonant part including C7 axiv_nonres_part = self.axiv_nonres(q2) #Complete term return vec_nonres_part + axiv_nonres_part def generate_points(self, set_size = 10000, x_min = 2* mmu, x_max = (mB - mK) - 0.1, save = True, verbose = 1): #Setup contants and variables mB = self.mB mK = self.mK mmu = self.mmu #Range of function in MeV dq = np.linspace(x_min, x_max ,5000) #Translate to MeV**2 dgamma_tot = [] for i in dq: dgamma_tot.append(self.total_pdf(i**2)) dq2 = [] for i in dq: dq2.append(i**2) #Generate random points psi2s_mass, psi2s_width, psi2s_phase, psi2s_scale = pdg["psi2s"] _max = max(dgamma_tot) x = [] y = [] x_part = [] y_part = [] print("Generating set of size {}...".format(int(set_size))) #print(len(y)) #ROOT.TRandom1().SetSeed(0) if verbose != 0: verbose_calls = [] j = 0 o = 0 while j < 100: j += verbose verbose_calls.append(int(set_size*j/100)) start = time.time() while len(x_part) < set_size: x.append(ROOT.TRandom1().Uniform(x_min, x_max)) y.append(ROOT.TRandom1().Uniform(0, _max*1.05)) if y[-1] < self.total_pdf(x[-1]**2): x_part.append(x[-1]) y_part.append(y[-1]) #progress calls if verbose != 0: end = time.time() if o*verbose+verbose < 100 and len(x)%200 == 0: print(" {0}{1} completed".format(o*verbose+verbose, "%")) print(" Projected time left: {0}".format(display_time(int((end-start)*set_size/(len(x_part)+1)-(end-start))))) sys.stdout.write("\033[F") sys.stdout.write("\x1b[2K") sys.stdout.write("\033[F") sys.stdout.write("\x1b[2K") if o*verbose + verbose >=100: sys.stdout.write("\033[F") sys.stdout.write("\x1b[2K") print(" Time to generate set: {0}".format(display_time(int(end-start)))) if len(x_part) == verbose_calls[o]: o += 1 print("{0} out of {1} particles chosen!".format(len(x_part), len(x))) print("Set generated!") #Save the set if save: part_set = {"x_part" : x_part, "y_part": y_part, "x": x, "y": y} pkl.dump( part_set, open("set_{0}.pkl".format(int(set_size)) , "wb" ) ) print("Set saved!") print #returns all the chosen points (x_part, y_part) and all the random points generated (x, y) return x_part, y_part, x, y def draw_plots(self, part_set, x_min = 2* mmu, x_max = (mB - mK) - 0.1, resolution = 7): #Resolution based on experiment chosen to be ~7MeV #Setup contants and variables print("Generating plots") mB = self.mB mK = self.mK mmu = self.mmu #Range of function in MeV dq = np.linspace(x_min, x_max ,5000) #Translate to MeV**2 dq2 = [] for i in dq: dq2.append(i**2) #calculate formfactors ff_plus = [] ff_T = [] ff_0 = [] for i in dq: ff_0.append(self.formfactor(i**2, "0")) ff_T.append(self.formfactor(i**2, "T")) ff_plus.append(self.formfactor(i**2, "+")) #calculate nonresonant dgamma_axiv_nonres = [] dgamma_vec_nonres = [] dgamma_tot = [] for i in dq: dgamma_axiv_nonres.append(self.axiv_nonres(i**2)) dgamma_vec_nonres.append(self.vec_nonres(i**2)) dgamma_tot.append(self.total_pdf(i**2)) #Plot formfactors plt.plot(dq2, ff_0, label = "0") plt.plot(dq2, ff_T, label = "T") plt.plot(dq2, ff_plus, label = "+") plt.grid() plt.title("Formfactors") plt.legend() plt.savefig("ff.png") print("ff.png created") plt.clf() #Plot nonresonant part plt.plot(dq, dgamma_axiv_nonres, label = "axiv") plt.plot(dq, dgamma_vec_nonres, label = "vec") plt.grid() plt.title("Nonresonant axial vector and vector parts") plt.legend() plt.savefig("vec_axiv.png") print("vec_axiv.png created") plt.clf() plt.plot(dq, dgamma_tot, label = "total") plt.grid() plt.title("Total pdf") plt.legend() plt.savefig("tot.png") print("tot.png created") #Particle set x_part, y_part, x, y = part_set set_size = len(x_part) #Plot generated generate_points plt.clf() plt.plot(x, y, label = "total", marker = ".", linewidth = 0) plt.plot(x_part, y_part, label = "chosen", marker = ".", linewidth = 0) plt.plot(dq, dgamma_tot, label = "pdf") plt.grid() plt.title("Random points generated and pdf") plt.legend() plt.savefig("points_raw.png") print("points_raw.png created") #Histo unnormalized bins = int((x_max-x_min)/resolution) plt.clf() _y, _x, _ = plt.hist(x_part, bins=bins, range=(x_min, x_max), label = "toy data binned ({0} points)".format(set_size)) _mean_histo = float(np.mean(_y)) plt.legend() plt.title("Binned toy data") plt.savefig("histo_raw.png") print("histo_raw.png created") _max = max(dgamma_tot) #Histo and pdf normailzed plt.clf() for i in range(len(dgamma_tot)): dgamma_tot[i] = dgamma_tot[i]/(float(set_size)*_max * 2.0 * mmu / float(len(x))) _mean = np.mean(dgamma_tot) #Attempt for marked field of std-dev #dgamma_min = [] #dgamma_plu = [] #for i in range(len(dgamma_tot)): #dgamma_min.append(dgamma_tot[i]-np.sqrt(dgamma_tot[i])) #dgamma_plu.append(dgamma_tot[i]+np.sqrt(dgamma_tot[i])) #plt.plot(dq, dgamma_min, alpha = 0.5) #plt.plot(dq, dgamma_plu, alpha = 0.5) #plt.fill_between(dq, dgamma_min, dgamma_plu) #Plot histo plt.hist(x_part, bins=bins, range=(x_min, x_max), weights = np.ones_like(x_part)/(_mean_histo/_mean), label = "toy data binned") plt.plot(dq, dgamma_tot, label = "pdf") #print(_max) plt.grid() plt.legend() plt.title("{0} random points generated according to pdf".format(len(x_part))) plt.savefig("histo.png") print("histo.png created") print("All plots drawn \n") return def total_pdf(self, q2): #Calculate the pdf with the added resonances exec("_sum = " + self.total_pdf_string) return _sum def resonance(self, q2, _mass, width, phase, scale): #returns [real, imaginary] #calculate the resonance ---------------------------------------------> Formula correct? #if np.abs(np.sqrt(q2) - _mass) < 300: #return 0., 0. np.sqrt(mB**2 + q2**2/mB**2 + mK**4/mB**2 - 2 * (mB**2 * mK**2 + mK**2 * q2 + mB**2 * q2) / mB**2) #print(q2) p = 0.5 * np.sqrt(q2 - 4*(mmu**2)) p0 = 0.5 * np.sqrt(_mass**2 - 4*mmu**2) gamma_j = p / p0 * _mass /q2 * width _top_im = - _mass**2 * width * gamma_j _top_re = _mass * width * (_mass**2 - q2) _bottom = (_mass**2 - q2) + _mass**2 * gamma_j**2 real = _top_re/_bottom imaginary = _top_im/_bottom length = np.sqrt(real**2 + imaginary**2) real = np.cos(phase)*length imaginary = np.sin(phase)*length return [scale * real, scale * imaginary] def add_resonance(self, _mass, width, phase, scale): #Adds the resonace to the pdf in form of a string (to be executed later) self.total_pdf_string += "+ self.resonance(q2,{0},{1},{2},{3})[0]".format(_mass, width, phase, scale) modl = model() load_set = False draw = True set_size = 1e5 jpsi_mass, jpsi_width, jpsi_phase, jpsi_scale = pdg["jpsi"] #modl.add_resonance(jpsi_mass, jpsi_width, jpsi_phase, jpsi_scale) psi2s_mass, psi2s_width, psi2s_phase, psi2s_scale = pdg["psi2s"] #modl.add_resonance(psi2s_mass, psi2s_width, psi2s_phase, psi2s_scale) ##modl.add_resonance(0.09, 3096.0, 1.02, -1.5) #if load_set: #with open(r"set.pkl", "rb") as input_file: #set_dic = pkl.load(input_file) #part_set = (set_dic["x_part"], set_dic["y_part"], set_dic["x"], set_dic["y"]) #else: #part_set = modl.generate_points(set_size) #if draw: #modl.draw_plots(part_set = part_set) #print(modl.total_pdf_string) test_x = np.linspace(modl.x_min, modl.x_max, 1000) #print(test_x[1]**2 - modl.x_min**2) test_y = [] for i in range(len(test_x)): #print(i**2 - 4*(mmu**2)) test_y.append(modl.resonance(test_x[i]**2, jpsi_mass, jpsi_width, jpsi_phase, jpsi_scale)) #resonance(self, q2, _mass, width, phase, scale): #w[i] = np.sqrt(w[i]) #print(test_y[i]) plt.clf() plt.plot(test_x, test_y) plt.savefig("test.png") print("Run finished")