#!/usr/bin/env python # coding: utf-8 # # Import # In[1]: import os # os.environ["CUDA_VISIBLE_DEVICES"] = "-1" import numpy as np from pdg_const import pdg import matplotlib import matplotlib.pyplot as plt import pickle as pkl import sys import time from helperfunctions import display_time, prepare_plot import cmath as c import scipy.integrate as integrate from scipy.optimize import fminbound from array import array as arr import collections from itertools import compress import tensorflow as tf import zfit from zfit import ztf # from IPython.display import clear_output import os import tensorflow_probability as tfp tfd = tfp.distributions # In[2]: # chunksize = 10000 # zfit.run.chunking.active = True # zfit.run.chunking.max_n_points = chunksize # # Build model and graphs # ## Create graphs # In[3]: def formfactor( q2, subscript): #returns real value #check if subscript is viable if subscript != "0" and subscript != "+" and subscript != "T": raise ValueError('Wrong subscript entered, choose either 0, + or T') #get constants mK = ztf.constant(pdg['Ks_M']) mbstar0 = ztf.constant(pdg["mbstar0"]) mbstar = ztf.constant(pdg["mbstar"]) b0 = ztf.constant(pdg["b0"]) bplus = ztf.constant(pdg["bplus"]) bT = ztf.constant(pdg["bT"]) mmu = ztf.constant(pdg['muon_M']) mb = ztf.constant(pdg['bquark_M']) ms = ztf.constant(pdg['squark_M']) mB = ztf.constant(pdg['Bplus_M']) #N comes from derivation in paper N = 3 #some helperfunctions tpos = (mB - mK)**2 tzero = (mB + mK)*(ztf.sqrt(mB)-ztf.sqrt(mK))**2 z_oben = ztf.sqrt(tpos - q2) - ztf.sqrt(tpos - tzero) z_unten = ztf.sqrt(tpos - q2) + ztf.sqrt(tpos - tzero) z = tf.divide(z_oben, z_unten) #calculate f0 if subscript == "0": prefactor = 1/(1 - q2/(mbstar0**2)) _sum = 0 for i in range(N): _sum += b0[i]*(tf.pow(z,i)) return tf.complex(prefactor * _sum, ztf.constant(0.0)) #calculate f+ or fT else: prefactor = 1/(1 - q2/(mbstar**2)) _sum = 0 if subscript == "T": b = bT else: b = bplus for i in range(N): _sum += b[i] * (tf.pow(z, i) - ((-1)**(i-N)) * (i/N) * tf.pow(z, N)) return tf.complex(prefactor * _sum, ztf.constant(0.0)) def resonance(q, _mass, width, phase, scale): q2 = tf.pow(q, 2) mmu = ztf.constant(pdg['muon_M']) p = 0.5 * ztf.sqrt(q2 - 4*(mmu**2)) p0 = 0.5 * ztf.sqrt(_mass**2 - 4*mmu**2) gamma_j = tf.divide(p, q) * _mass * width / p0 #Calculate the resonance _top = tf.complex(_mass * width, ztf.constant(0.0)) _bottom = tf.complex(_mass**2 - q2, -_mass*gamma_j) com = _top/_bottom #Rotate by the phase r = ztf.to_complex(scale*tf.abs(com)) _phase = tf.angle(com) _phase += phase com = r * tf.exp(tf.complex(ztf.constant(0.0), _phase)) return com def bifur_gauss(q, mean, sigma_L, sigma_R, scale): _exp = tf.where(q < mean, ztf.exp(- tf.pow((q-mean),2) / (2 * sigma_L**2)), ztf.exp(- tf.pow((q-mean),2) / (2 * sigma_R**2))) #Scale so the total area under curve is 1 and the top of the cusp is continuous dgamma = scale*_exp/(ztf.sqrt(2*np.pi))*2*(sigma_L*sigma_R)/(sigma_L+sigma_R) com = ztf.complex(dgamma, ztf.constant(0.0)) return com def axiv_nonres(q): GF = ztf.constant(pdg['GF']) alpha_ew = ztf.constant(pdg['alpha_ew']) Vtb = ztf.constant(pdg['Vtb']) Vts = ztf.constant(pdg['Vts']) C10eff = ztf.constant(pdg['C10eff']) mmu = ztf.constant(pdg['muon_M']) mb = ztf.constant(pdg['bquark_M']) ms = ztf.constant(pdg['squark_M']) mK = ztf.constant(pdg['Ks_M']) mB = ztf.constant(pdg['Bplus_M']) q2 = tf.pow(q, 2) #Some helperfunctions beta = ztf.sqrt(tf.abs(1. - 4. * mmu**2. / q2)) kabs = ztf.sqrt(mB**2. +tf.pow(q2, 2)/mB**2. + mK**4./mB**2. - 2. * (mB**2. * mK**2. + mK**2. * q2 + mB**2. * q2) / mB**2.) #prefactor in front of whole bracket prefactor1 = GF**2. *alpha_ew**2. * (tf.abs(Vtb*Vts))**2. * kabs * beta / (128. * np.pi**5.) #left term in bracket bracket_left = 2./3. * kabs**2. * beta**2. *tf.abs(tf.complex(C10eff, ztf.constant(0.0))*formfactor(q2, "+"))**2. #middle term in bracket _top = 4. * mmu**2. * (mB**2. - mK**2.) * (mB**2. - mK**2.) _under = q2 * mB**2. bracket_middle = _top/_under *tf.pow(tf.abs(tf.complex(C10eff, ztf.constant(0.0)) * formfactor(q2, "0")), 2) #Note sqrt(q2) comes from derivation as we use q2 and plot q return prefactor1 * (bracket_left + bracket_middle) * 2 *ztf.sqrt(q2) def vec(q, funcs): q2 = tf.pow(q, 2) GF = ztf.constant(pdg['GF']) alpha_ew = ztf.constant(pdg['alpha_ew']) Vtb = ztf.constant(pdg['Vtb']) Vts = ztf.constant(pdg['Vts']) C7eff = ztf.constant(pdg['C7eff']) mmu = ztf.constant(pdg['muon_M']) mb = ztf.constant(pdg['bquark_M']) ms = ztf.constant(pdg['squark_M']) mK = ztf.constant(pdg['Ks_M']) mB = ztf.constant(pdg['Bplus_M']) #Some helperfunctions beta = ztf.sqrt(tf.abs(1. - 4. * mmu**2. / q2)) kabs = ztf.sqrt(mB**2. + tf.pow(q2, 2)/mB**2. + mK**4./mB**2. - 2 * (mB**2 * mK**2 + mK**2 * q2 + mB**2 * q2) / mB**2) #prefactor in front of whole bracket prefactor1 = GF**2. *alpha_ew**2. * (tf.abs(Vtb*Vts))**2 * kabs * beta / (128. * np.pi**5.) #right term in bracket prefactor2 = kabs**2 * (1. - 1./3. * beta**2) abs_bracket = tf.abs(c9eff(q, funcs) * formfactor(q2, "+") + tf.complex(2.0 * C7eff * (mb + ms)/(mB + mK), ztf.constant(0.0)) * formfactor(q2, "T"))**2 bracket_right = prefactor2 * abs_bracket #Note sqrt(q2) comes from derivation as we use q2 and plot q return prefactor1 * bracket_right * 2 * ztf.sqrt(q2) def c9eff(q, funcs): C9eff_nr = tf.complex(ztf.constant(pdg['C9eff']), ztf.constant(0.0)) c9 = C9eff_nr c9 = c9 + funcs return c9 # In[4]: def G(y): def inner_rect_bracket(q): return tf.log(ztf.to_complex((1+tf.sqrt(q))/(1-tf.sqrt(q)))-tf.complex(ztf.constant(0), -1*ztf.constant(np.pi))) def inner_right(q): return ztf.to_complex(2 * tf.atan(1/tf.sqrt(tf.math.real(-q)))) big_bracket = tf.where(tf.math.real(y) > ztf.constant(0.0), inner_rect_bracket(y), inner_right(y)) return ztf.to_complex(tf.sqrt(tf.abs(y))) * big_bracket def h_S(m, q): return ztf.to_complex(2) - G(ztf.to_complex(1) - ztf.to_complex(4*tf.pow(m, 2)) / ztf.to_complex(tf.pow(q, 2))) def h_P(m, q): return ztf.to_complex(2/3) + (ztf.to_complex(1) - ztf.to_complex(4*tf.pow(m, 2)) / ztf.to_complex(tf.pow(q, 2))) * h_S(m,q) def two_p_ccbar(mD, m_D_bar, m_D_star, q): #Load constants nu_D_bar = ztf.to_complex(pdg["nu_D_bar"]) nu_D = ztf.to_complex(pdg["nu_D"]) nu_D_star = ztf.to_complex(pdg["nu_D_star"]) phase_D_bar = ztf.to_complex(pdg["phase_D_bar"]) phase_D = ztf.to_complex(pdg["phase_D"]) phase_D_star = ztf.to_complex(pdg["phase_D_star"]) #Calculation left_part = nu_D_bar * tf.exp(tf.complex(ztf.constant(0.0), phase_D_bar)) * h_S(m_D_bar, q) right_part_D = nu_D * tf.exp(tf.complex(ztf.constant(0.0), phase_D)) * h_P(m_D, q) right_part_D_star = nu_D_star * tf.exp(tf.complex(ztf.constant(0.0), phase_D_star)) * h_P(m_D_star, q) return left_part + right_part_D + right_part_D_star # ## C_q,qbar constraint # In[5]: # r = rho_scale * rho_width/rho_mass * np.cos(rho_phase)*(1-np.tan(rho_phase)*rho_width/rho_mass) # o = omega_scale*np.cos(omega_phase)*omega_width/omega_mass # p = phi_scale*np.cos(phi_phase)*phi_width/phi_mass # # phi_s = np.linspace(-500, 5000, 100000) # # p_ = phi_s*np.cos(phi_phase)*phi_width/phi_mass # # p_y = r+o+p_ # # plt.plot(phi_s, p_y) # print(r + o + p) # ## Build pdf # In[6]: class total_pdf(zfit.pdf.ZPDF): _N_OBS = 1 # dimension, can be omitted _PARAMS = ['rho_mass', 'rho_scale', 'rho_phase', 'rho_width', 'jpsi_mass', 'jpsi_scale', 'jpsi_phase', 'jpsi_width', 'psi2s_mass', 'psi2s_scale', 'psi2s_phase', 'psi2s_width', 'p3770_mass', 'p3770_scale', 'p3770_phase', 'p3770_width', 'p4040_mass', 'p4040_scale', 'p4040_phase', 'p4040_width', 'p4160_mass', 'p4160_scale', 'p4160_phase', 'p4160_width', 'p4415_mass', 'p4415_scale', 'p4415_phase', 'p4415_width', 'omega_mass', 'omega_scale', 'omega_phase', 'omega_width', 'phi_mass', 'phi_scale', 'phi_phase', 'phi_width', 'Dbar_mass', 'Dbar_scale', 'Dbar_phase', 'DDstar_mass', 'DDstar_scale', 'DDstar_phase', 'tau_mass', 'C_tt'] # the name of the parameters def _unnormalized_pdf(self, x): x = x.unstack_x() def rho_res(q): return resonance(q, _mass = self.params['rho_mass'], scale = self.params['rho_scale'], phase = self.params['rho_phase'], width = self.params['rho_width']) def omega_res(q): return resonance(q, _mass = self.params['omega_mass'], scale = self.params['omega_scale'], phase = self.params['omega_phase'], width = self.params['omega_width']) def phi_res(q): return resonance(q, _mass = self.params['phi_mass'], scale = self.params['phi_scale'], phase = self.params['phi_phase'], width = self.params['phi_width']) def jpsi_res(q): return resonance(q, _mass = self.params['jpsi_mass'], scale = self.params['jpsi_scale'], phase = self.params['jpsi_phase'], width = self.params['jpsi_width']) def psi2s_res(q): return resonance(q, _mass = self.params['psi2s_mass'], scale = self.params['psi2s_scale'], phase = self.params['psi2s_phase'], width = self.params['psi2s_width']) def p3770_res(q): return resonance(q, _mass = self.params['p3770_mass'], scale = self.params['p3770_scale'], phase = self.params['p3770_phase'], width = self.params['p3770_width']) def p4040_res(q): return resonance(q, _mass = self.params['p4040_mass'], scale = self.params['p4040_scale'], phase = self.params['p4040_phase'], width = self.params['p4040_width']) def p4160_res(q): return resonance(q, _mass = self.params['p4160_mass'], scale = self.params['p4160_scale'], phase = self.params['p4160_phase'], width = self.params['p4160_width']) def p4415_res(q): return resonance(q, _mass = self.params['p4415_mass'], scale = self.params['p4415_scale'], phase = self.params['p4415_phase'], width = self.params['p4415_width']) def P2_D(q): Dbar_contrib = ztf.to_complex(self.params['Dbar_scale'])*tf.exp(tf.complex(ztf.constant(0.0), self.params['Dbar_phase']))*ztf.to_complex(h_S(self.params['Dbar_mass'], q)) DDstar_contrib = ztf.to_complex(self.params['DDstar_scale'])*tf.exp(tf.complex(ztf.constant(0.0), self.params['DDstar_phase']))*ztf.to_complex(h_P(self.params['DDstar_mass'], q)) return Dbar_contrib + DDstar_contrib def ttau_cusp(q): return ztf.to_complex(self.params['C_tt'])*(ztf.to_complex((h_S(self.params['tau_mass'], q))) - ztf.to_complex(h_P(self.params['tau_mass'], q))) funcs = rho_res(x) + omega_res(x) + phi_res(x) + jpsi_res(x) + psi2s_res(x) + p3770_res(x) + p4040_res(x)+ p4160_res(x) + p4415_res(x) + P2_D(x) + ttau_cusp(x) vec_f = vec(x, funcs) axiv_nr = axiv_nonres(x) tot = vec_f + axiv_nr return tot # ## Load data # In[7]: x_min = 2*pdg['muon_M'] x_max = (pdg["Bplus_M"]-pdg["Ks_M"]-0.1) obs = zfit.Space('q', limits = (x_min, x_max)) # with open(r"./data/slim_points/slim_points_toy_0_range({0}-{1}).pkl".format(int(x_min), int(x_max)), "rb") as input_file: # part_set = pkl.load(input_file) # x_part = part_set['x_part'] # x_part = x_part.astype('float64') # data = zfit.data.Data.from_numpy(array=x_part, obs=obs) # ## Setup parameters # In[8]: #rho rho_mass, rho_width, rho_phase, rho_scale = pdg["rho"] rho_m = zfit.Parameter("rho_m", ztf.constant(rho_mass), floating = False) #lower_limit = rho_mass - rho_width, # upper_limit = rho_mass + rho_width) rho_w = zfit.Parameter("rho_w", ztf.constant(rho_width), floating = False) rho_p = zfit.Parameter("rho_p", ztf.constant(rho_phase), floating = False) #, lower_limit=-2*np.pi, upper_limit=2*np.pi) rho_s = zfit.Parameter("rho_s", ztf.constant(rho_scale), floating = False) #, lower_limit=rho_scale-np.sqrt(rho_scale), upper_limit=rho_scale+np.sqrt(rho_scale)) #omega omega_mass, omega_width, omega_phase, omega_scale = pdg["omega"] omega_m = zfit.Parameter("omega_m", ztf.constant(omega_mass), floating = False) omega_w = zfit.Parameter("omega_w", ztf.constant(omega_width), floating = False) omega_p = zfit.Parameter("omega_p", ztf.constant(omega_phase), floating = False) #, lower_limit=-2*np.pi, upper_limit=2*np.pi) omega_s = zfit.Parameter("omega_s", ztf.constant(omega_scale), floating = False) #, lower_limit=omega_scale-np.sqrt(omega_scale), upper_limit=omega_scale+np.sqrt(omega_scale)) #phi phi_mass, phi_width, phi_phase, phi_scale = pdg["phi"] phi_m = zfit.Parameter("phi_m", ztf.constant(phi_mass), floating = False) phi_w = zfit.Parameter("phi_w", ztf.constant(phi_width), floating = False) phi_p = zfit.Parameter("phi_p", ztf.constant(phi_phase), floating = False) #, lower_limit=-2*np.pi, upper_limit=2*np.pi) phi_s = zfit.Parameter("phi_s", ztf.constant(phi_scale), floating = False) #, lower_limit=phi_scale-np.sqrt(phi_scale), upper_limit=phi_scale+np.sqrt(phi_scale)) #jpsi jpsi_mass, jpsi_width, jpsi_phase, jpsi_scale = pdg["jpsi"] # jpsi_scale *= pdg["factor_jpsi"] jpsi_m = zfit.Parameter("jpsi_m", ztf.constant(jpsi_mass), floating = False) jpsi_w = zfit.Parameter("jpsi_w", ztf.constant(jpsi_width), floating = False) jpsi_p = zfit.Parameter("jpsi_p", ztf.constant(jpsi_phase), lower_limit=-2*np.pi, upper_limit=2*np.pi) jpsi_s = zfit.Parameter("jpsi_s", ztf.constant(jpsi_scale), lower_limit=jpsi_scale-np.sqrt(jpsi_scale), upper_limit=jpsi_scale+np.sqrt(jpsi_scale)) #psi2s psi2s_mass, psi2s_width, psi2s_phase, psi2s_scale = pdg["psi2s"] psi2s_m = zfit.Parameter("psi2s_m", ztf.constant(psi2s_mass), floating = False) psi2s_w = zfit.Parameter("psi2s_w", ztf.constant(psi2s_width), floating = False) psi2s_p = zfit.Parameter("psi2s_p", ztf.constant(psi2s_phase), lower_limit=-2*np.pi, upper_limit=2*np.pi) psi2s_s = zfit.Parameter("psi2s_s", ztf.constant(psi2s_scale), lower_limit=psi2s_scale-np.sqrt(psi2s_scale), upper_limit=psi2s_scale+np.sqrt(psi2s_scale)) #psi(3770) p3770_mass, p3770_width, p3770_phase, p3770_scale = pdg["p3770"] p3770_m = zfit.Parameter("p3770_m", ztf.constant(p3770_mass), floating = False) p3770_w = zfit.Parameter("p3770_w", ztf.constant(p3770_width), floating = False) p3770_p = zfit.Parameter("p3770_p", ztf.constant(p3770_phase), floating = False) #, lower_limit=-2*np.pi, upper_limit=2*np.pi) p3770_s = zfit.Parameter("p3770_s", ztf.constant(p3770_scale), floating = False) #, lower_limit=p3770_scale-np.sqrt(p3770_scale), upper_limit=p3770_scale+np.sqrt(p3770_scale)) #psi(4040) p4040_mass, p4040_width, p4040_phase, p4040_scale = pdg["p4040"] p4040_m = zfit.Parameter("p4040_m", ztf.constant(p4040_mass), floating = False) p4040_w = zfit.Parameter("p4040_w", ztf.constant(p4040_width), floating = False) p4040_p = zfit.Parameter("p4040_p", ztf.constant(p4040_phase), floating = False) #, lower_limit=-2*np.pi, upper_limit=2*np.pi) p4040_s = zfit.Parameter("p4040_s", ztf.constant(p4040_scale), floating = False) #, lower_limit=p4040_scale-np.sqrt(p4040_scale), upper_limit=p4040_scale+np.sqrt(p4040_scale)) #psi(4160) p4160_mass, p4160_width, p4160_phase, p4160_scale = pdg["p4160"] p4160_m = zfit.Parameter("p4160_m", ztf.constant(p4160_mass), floating = False) p4160_w = zfit.Parameter("p4160_w", ztf.constant(p4160_width), floating = False) p4160_p = zfit.Parameter("p4160_p", ztf.constant(p4160_phase), floating = False) #, lower_limit=-2*np.pi, upper_limit=2*np.pi) p4160_s = zfit.Parameter("p4160_s", ztf.constant(p4160_scale), floating = False) #, lower_limit=p4160_scale-np.sqrt(p4160_scale), upper_limit=p4160_scale+np.sqrt(p4160_scale)) #psi(4415) p4415_mass, p4415_width, p4415_phase, p4415_scale = pdg["p4415"] p4415_m = zfit.Parameter("p4415_m", ztf.constant(p4415_mass), floating = False) p4415_w = zfit.Parameter("p4415_w", ztf.constant(p4415_width), floating = False) p4415_p = zfit.Parameter("p4415_p", ztf.constant(p4415_phase), floating = False) #, lower_limit=-2*np.pi, upper_limit=2*np.pi) p4415_s = zfit.Parameter("p4415_s", ztf.constant(p4415_scale), floating = False) #, lower_limit=p4415_scale-np.sqrt(p4415_scale), upper_limit=p4415_scale+np.sqrt(p4415_scale)) # ## Dynamic generation of 2 particle contribution # In[9]: _0 = jpsi_scale*np.cos(jpsi_phase)*jpsi_width/jpsi_mass**3 + psi2s_scale*np.cos(psi2s_phase)*psi2s_width/psi2s_mass**3 _1 = p3770_scale*np.cos(p3770_phase)*p3770_width/p3770_mass**3 + p4040_scale*np.cos(p4040_phase)*p4040_width/p4040_mass**3 _2 = p4160_scale*np.cos(p4160_phase)*p4160_width/p4160_mass**3 + p4415_scale*np.cos(p4415_phase)*p4415_width/p4415_mass**3 C_pert = np.random.uniform(0.03, 0.1) # c_pert = 0.1 m_c = 1300 cDDstar_phase = 10 DDstar_eta = 0 Dbar_phase = np.random.uniform(0.0, 2*np.pi) DDstar_phase = np.random.uniform(0.0, 2*np.pi) DDstar_mass = pdg['D0_M'] if Dbar_phase < np.pi: Dbar_phase = 0.0 else: Dbar_phase = np.pi R = (C_pert/(m_c**2) - ((_0 + _1 + _2))) Dbar_mass = (pdg['D0_M']+pdg['Dst_M'])/2 Dbar_eta = R/np.cos(Dbar_phase)*(6*Dbar_mass**2) # print(np.cos(Dbar_phase)) # cDDstar_phase = R_*10*DDstar_mass**2/DDstar_eta # print(Dbar_eta) Dbar_s = zfit.Parameter("Dbar_s", ztf.constant(Dbar_eta), lower_limit=-1.464, upper_limit=1.464) Dbar_m = zfit.Parameter("Dbar_m", ztf.constant(Dbar_mass), floating = False) Dbar_p = zfit.Parameter("Dbar_p", ztf.constant(Dbar_phase), floating = False) DDstar_s = zfit.Parameter("DDstar_s", ztf.constant(DDstar_eta), floating = False) DDstar_m = zfit.Parameter("DDstar_m", ztf.constant(DDstar_mass), floating = False) DDstar_p = zfit.Parameter("DDstar_p", ztf.constant(DDstar_phase), floating = False) Dbar_s.set_value(0.0) DDstar_s.set_value(0.0) # ## Tau parameters # In[10]: tau_m = zfit.Parameter("tau_m", ztf.constant(pdg['tau_M']), floating = False) Ctt = zfit.Parameter("Ctt", ztf.constant(0.0), lower_limit=-0.5, upper_limit=0.5) # ## Setup pdf # In[11]: total_f = total_pdf(obs=obs, jpsi_mass = jpsi_m, jpsi_scale = jpsi_s, jpsi_phase = jpsi_p, jpsi_width = jpsi_w, psi2s_mass = psi2s_m, psi2s_scale = psi2s_s, psi2s_phase = psi2s_p, psi2s_width = psi2s_w, p3770_mass = p3770_m, p3770_scale = p3770_s, p3770_phase = p3770_p, p3770_width = p3770_w, p4040_mass = p4040_m, p4040_scale = p4040_s, p4040_phase = p4040_p, p4040_width = p4040_w, p4160_mass = p4160_m, p4160_scale = p4160_s, p4160_phase = p4160_p, p4160_width = p4160_w, p4415_mass = p4415_m, p4415_scale = p4415_s, p4415_phase = p4415_p, p4415_width = p4415_w, rho_mass = rho_m, rho_scale = rho_s, rho_phase = rho_p, rho_width = rho_w, omega_mass = omega_m, omega_scale = omega_s, omega_phase = omega_p, omega_width = omega_w, phi_mass = phi_m, phi_scale = phi_s, phi_phase = phi_p, phi_width = phi_w, DDstar_mass = DDstar_m, DDstar_scale = DDstar_s, DDstar_phase = DDstar_p, Dbar_mass = Dbar_m, Dbar_scale = Dbar_s, Dbar_phase = Dbar_p, tau_mass = tau_m, C_tt = Ctt) # print(total_pdf.obs) # print(calcs_test) # for param in total_f.get_dependents(): # print(zfit.run(param)) # ## Test if graphs actually work and compute values # In[12]: # def total_test_tf(xq): # def jpsi_res(q): # return resonance(q, jpsi_m, jpsi_s, jpsi_p, jpsi_w) # def psi2s_res(q): # return resonance(q, psi2s_m, psi2s_s, psi2s_p, psi2s_w) # def cusp(q): # return bifur_gauss(q, cusp_m, sig_L, sig_R, cusp_s) # funcs = jpsi_res(xq) + psi2s_res(xq) + cusp(xq) # vec_f = vec(xq, funcs) # axiv_nr = axiv_nonres(xq) # tot = vec_f + axiv_nr # return tot def jpsi_res(q): return resonance(q, jpsi_m, jpsi_s, jpsi_p, jpsi_w) # calcs = zfit.run(total_test_tf(x_part)) test_q = np.linspace(x_min, x_max, 200000) probs = total_f.pdf(test_q) calcs_test = zfit.run(probs) res_y = zfit.run(jpsi_res(test_q)) f0_y = zfit.run(formfactor(test_q,"0")) fplus_y = zfit.run(formfactor(test_q,"+")) fT_y = zfit.run(formfactor(test_q,"T")) # In[13]: plt.clf() # plt.plot(x_part, calcs, '.') plt.plot(test_q, calcs_test, label = 'pdf') # plt.plot(test_q, f0_y, label = '0') # plt.plot(test_q, fT_y, label = 'T') # plt.plot(test_q, fplus_y, label = '+') # plt.plot(test_q, res_y, label = 'res') plt.legend() plt.ylim(0.0, 6e-6) # plt.yscale('log') # plt.xlim(770, 785) plt.savefig('test.png') # print(jpsi_width) # In[14]: # probs = mixture.prob(test_q) # probs_np = zfit.run(probs) # probs_np *= np.max(calcs_test) / np.max(probs_np) # plt.figure() # plt.semilogy(test_q, probs_np,label="importance sampling") # plt.semilogy(test_q, calcs_test, label = 'pdf') # In[15]: # 0.213/(0.00133+0.213+0.015) # ## Adjust scaling of different parts # In[16]: total_f.update_integration_options(draws_per_dim=200000, mc_sampler=None) # inte = total_f.integrate(limits = (2000, x_max), norm_range=False) # inte_fl = zfit.run(inte) # print(inte_fl) # print(pdg["jpsi_BR"]/pdg["NR_BR"], inte_fl*pdg["psi2s_auc"]/pdg["NR_auc"]) # In[17]: # # print("jpsi:", inte_fl) # # print("Increase am by factor:", np.sqrt(pdg["jpsi_BR"]/pdg["NR_BR"]*pdg["NR_auc"]/inte_fl)) # # print("New amp:", pdg["jpsi"][3]*np.sqrt(pdg["jpsi_BR"]/pdg["NR_BR"]*pdg["NR_auc"]/inte_fl)) # # print("psi2s:", inte_fl) # # print("Increase am by factor:", np.sqrt(pdg["psi2s_BR"]/pdg["NR_BR"]*pdg["NR_auc"]/inte_fl)) # # print("New amp:", pdg["psi2s"][3]*np.sqrt(pdg["psi2s_BR"]/pdg["NR_BR"]*pdg["NR_auc"]/inte_fl)) # name = "phi" # print(name+":", inte_fl) # print("Increase am by factor:", np.sqrt(pdg[name+"_BR"]/pdg["NR_BR"]*pdg["NR_auc"]/inte_fl)) # print("New amp:", pdg[name][3]*np.sqrt(pdg[name+"_BR"]/pdg["NR_BR"]*pdg["NR_auc"]/inte_fl)) # # print(x_min) # # print(x_max) # # # total_f.update_integration_options(draws_per_dim=2000000, mc_sampler=None) # # total_f.update_integration_options(mc_sampler=lambda dim, num_results, # # dtype: tf.random_uniform(maxval=1., shape=(num_results, dim), dtype=dtype), # # draws_per_dim=1000000) # # # _ = [] # # # for i in range(10): # # # inte = total_f.integrate(limits = (x_min, x_max)) # # # inte_fl = zfit.run(inte) # # # print(inte_fl) # # # _.append(inte_fl) # # # print("mean:", np.mean(_)) # # _ = time.time() # # inte = total_f.integrate(limits = (x_min, x_max)) # # inte_fl = zfit.run(inte) # # print(inte_fl) # # print("Time taken: {}".format(display_time(int(time.time() - _)))) # print(pdg['NR_BR']/pdg['NR_auc']*inte_fl) # print(0.25**2*4.2/1000) # # Sampling # ## Toys # In[18]: # print(list_of_borders[:9]) # print(list_of_borders[-9:]) class UniformSampleAndWeights(zfit.util.execution.SessionHolderMixin): def __call__(self, limits, dtype, n_to_produce): # n_to_produce = tf.cast(n_to_produce, dtype=tf.int32) low, high = limits.limit1d low = tf.cast(low, dtype=dtype) high = tf.cast(high, dtype=dtype) # uniform = tfd.Uniform(low=low, high=high) # uniformjpsi = tfd.Uniform(low=tf.constant(3080, dtype=dtype), high=tf.constant(3112, dtype=dtype)) # uniformpsi2s = tfd.Uniform(low=tf.constant(3670, dtype=dtype), high=tf.constant(3702, dtype=dtype)) # list_of_borders = [] # _p = [] # splits = 10 # _ = np.linspace(x_min, x_max, splits) # for i in range(splits): # list_of_borders.append(tf.constant(_[i], dtype=dtype)) # _p.append(tf.constant(1/splits, dtype=dtype)) # mixture = tfd.MixtureSameFamily(mixture_distribution=tfd.Categorical(probs=_p[:(splits-1)]), # components_distribution=tfd.Uniform(low=list_of_borders[:(splits-1)], # high=list_of_borders[-(splits-1):])) mixture = tfd.MixtureSameFamily(mixture_distribution=tfd.Categorical(probs=[tf.constant(0.05, dtype=dtype), tf.constant(0.93, dtype=dtype), tf.constant(0.05, dtype=dtype), tf.constant(0.065, dtype=dtype), tf.constant(0.04, dtype=dtype), tf.constant(0.05, dtype=dtype)]), components_distribution=tfd.Uniform(low=[tf.constant(x_min, dtype=dtype), tf.constant(3090, dtype=dtype), tf.constant(3681, dtype=dtype), tf.constant(3070, dtype=dtype), tf.constant(1000, dtype=dtype), tf.constant(3660, dtype=dtype)], high=[tf.constant(x_max, dtype=dtype), tf.constant(3102, dtype=dtype), tf.constant(3691, dtype=dtype), tf.constant(3110, dtype=dtype), tf.constant(1040, dtype=dtype), tf.constant(3710, dtype=dtype)])) # dtype = tf.float64 # mixture = tfd.MixtureSameFamily(mixture_distribution=tfd.Categorical(probs=[tf.constant(0.04, dtype=dtype), # tf.constant(0.90, dtype=dtype), # tf.constant(0.02, dtype=dtype), # tf.constant(0.07, dtype=dtype), # tf.constant(0.02, dtype=dtype)]), # components_distribution=tfd.Uniform(low=[tf.constant(x_min, dtype=dtype), # tf.constant(3089, dtype=dtype), # tf.constant(3103, dtype=dtype), # tf.constant(3681, dtype=dtype), # tf.constant(3691, dtype=dtype)], # high=[tf.constant(3089, dtype=dtype), # tf.constant(3103, dtype=dtype), # tf.constant(3681, dtype=dtype), # tf.constant(3691, dtype=dtype), # tf.constant(x_max, dtype=dtype)])) # mixture = tfd.Uniform(tf.constant(x_min, dtype=dtype), tf.constant(x_max, dtype=dtype)) # sample = tf.random.uniform((n_to_produce, 1), dtype=dtype) sample = mixture.sample((n_to_produce, 1)) # sample = tf.random.uniform((n_to_produce, 1), dtype=dtype) weights = mixture.prob(sample)[:,0] # weights = tf.broadcast_to(tf.constant(1., dtype=dtype), shape=(n_to_produce,)) # sample = tf.expand_dims(sample, axis=-1) # print(sample, weights) # weights = tf.ones(shape=(n_to_produce,), dtype=dtype) weights_max = None thresholds = tf.random_uniform(shape=(n_to_produce,), dtype=dtype) return sample, thresholds, weights, weights_max, n_to_produce # In[19]: total_f._sample_and_weights = UniformSampleAndWeights # In[20]: # 0.00133/(0.00133+0.213+0.015)*(x_max-3750)/(x_max-x_min) # In[21]: # zfit.settings.set_verbosity(10) # In[22]: # # zfit.run.numeric_checks = False # nr_of_toys = 1 # nevents = int(pdg["number_of_decays"]) # nevents = pdg["number_of_decays"] # event_stack = 1000000 # # zfit.settings.set_verbosity(10) # calls = int(nevents/event_stack + 1) # total_samp = [] # start = time.time() # sampler = total_f.create_sampler(n=event_stack) # for toy in range(nr_of_toys): # dirName = 'data/zfit_toys/toy_{0}'.format(toy) # if not os.path.exists(dirName): # os.mkdir(dirName) # print("Directory " , dirName , " Created ") # for call in range(calls): # sampler.resample(n=event_stack) # s = sampler.unstack_x() # sam = zfit.run(s) # # clear_output(wait=True) # c = call + 1 # print("{0}/{1} of Toy {2}/{3}".format(c, calls, toy+1, nr_of_toys)) # print("Time taken: {}".format(display_time(int(time.time() - start)))) # print("Projected time left: {}".format(display_time(int((time.time() - start)/(c+calls*(toy))*((nr_of_toys-toy)*calls-c))))) # with open("data/zfit_toys/toy_{0}/{1}.pkl".format(toy, call), "wb") as f: # pkl.dump(sam, f, pkl.HIGHEST_PROTOCOL) # In[23]: # with open(r"data/zfit_toys/toy_0/0.pkl", "rb") as input_file: # sam = pkl.load(input_file) # print(sam[:10]) # with open(r"data/zfit_toys/toy_0/1.pkl", "rb") as input_file: # sam2 = pkl.load(input_file) # print(sam2[:10]) # print(np.sum(sam-sam2)) # In[24]: # print("Time to generate full toy: {} s".format(int(time.time()-start))) # total_samp = [] # for call in range(calls): # with open(r"data/zfit_toys/toy_0/{}.pkl".format(call), "rb") as input_file: # sam = pkl.load(input_file) # total_samp = np.append(total_samp, sam) # total_samp = total_samp.astype('float64') # data2 = zfit.data.Data.from_numpy(array=total_samp[:int(nevents)], obs=obs) # data3 = zfit.data.Data.from_numpy(array=total_samp, obs=obs) # print(total_samp[:nevents].shape) # In[25]: # plt.clf() # bins = int((x_max-x_min)/7) # # calcs = zfit.run(total_test_tf(samp)) # print(total_samp[:nevents].shape) # plt.hist(total_samp[:nevents], bins = bins, range = (x_min,x_max), label = 'data') # # plt.plot(test_q, calcs_test*nevents , label = 'pdf') # # plt.plot(sam, calcs, '.') # # plt.plot(test_q, calcs_test) # # plt.yscale('log') # plt.ylim(0, 200) # # plt.xlim(3080, 3110) # plt.legend() # plt.savefig('test2.png') # In[26]: # sampler = total_f.create_sampler(n=nevents) # nll = zfit.loss.UnbinnedNLL(model=total_f, data=sampler, fit_range = (x_min, x_max)) # # for param in pdf.get_dependents(): # # param.set_value(initial_value) # sampler.resample(n=nevents) # # Randomise initial values # # for param in pdf.get_dependents(): # # param.set_value(random value here) # # Minimise the NLL # minimizer = zfit.minimize.MinuitMinimizer(verbosity = 10) # minimum = minimizer.minimize(nll) # In[27]: # jpsi_width # In[28]: # plt.hist(sample, weights=1 / prob(sample)) # # Fitting # In[29]: # start = time.time() # for param in total_f.get_dependents(): # param.randomize() # # for param in total_f.get_dependents(): # # print(zfit.run(param)) # nll = zfit.loss.UnbinnedNLL(model=total_f, data=data2, fit_range = (x_min, x_max)) # minimizer = zfit.minimize.MinuitMinimizer(verbosity = 5) # # minimizer._use_tfgrad = False # result = minimizer.minimize(nll) # # param_errors = result.error() # # for var, errors in param_errors.items(): # # print('{}: ^{{+{}}}_{{{}}}'.format(var.name, errors['upper'], errors['lower'])) # print("Function minimum:", result.fmin) # # print("Results:", result.params) # print("Hesse errors:", result.hesse()) # In[30]: # print("Time taken for fitting: {}".format(display_time(int(time.time()-start)))) # # probs = total_f.pdf(test_q) # calcs_test = zfit.run(probs) # res_y = zfit.run(jpsi_res(test_q)) # In[31]: # plt.clf() # # plt.plot(x_part, calcs, '.') # plt.plot(test_q, calcs_test, label = 'pdf') # # plt.plot(test_q, res_y, label = 'res') # plt.legend() # plt.ylim(0.0, 10e-6) # # plt.yscale('log') # # plt.xlim(3080, 3110) # plt.savefig('test3.png') # # print(jpsi_width) # In[32]: # _tot = 4.37e-7+6.02e-5+4.97e-6 # _probs = [] # _probs.append(6.02e-5/_tot) # _probs.append(4.97e-6/_tot) # _probs.append(4.37e-7/_tot) # print(_probs) # In[33]: # dtype = 'float64' # # mixture = tfd.Uniform(tf.constant(x_min, dtype=dtype), tf.constant(x_max, dtype=dtype)) # mixture = tfd.MixtureSameFamily(mixture_distribution=tfd.Categorical(probs=[tf.constant(0.007, dtype=dtype), # tf.constant(0.917, dtype=dtype), # tf.constant(0.076, dtype=dtype)]), # components_distribution=tfd.Uniform(low=[tf.constant(x_min, dtype=dtype), # tf.constant(3080, dtype=dtype), # tf.constant(3670, dtype=dtype)], # high=[tf.constant(x_max, dtype=dtype), # tf.constant(3112, dtype=dtype), # tf.constant(3702, dtype=dtype)])) # # for i in range(10): # # print(zfit.run(mixture.prob(mixture.sample((10, 1))))) # In[34]: # print((zfit.run(jpsi_p)%(2*np.pi))/np.pi) # print((zfit.run(psi2s_p)%(2*np.pi))/np.pi) # In[35]: # def jpsi_res(q): # return resonance(q, _mass = jpsi_mass, scale = jpsi_scale, # phase = jpsi_phase, width = jpsi_width) # def psi2s_res(q): # return resonance(q, _mass = psi2s_mass, scale = psi2s_scale, # phase = psi2s_phase, width = psi2s_width) # def p3770_res(q): # return resonance(q, _mass = p3770_mass, scale = p3770_scale, # phase = p3770_phase, width = p3770_width) # def p4040_res(q): # return resonance(q, _mass = p4040_mass, scale = p4040_scale, # phase = p4040_phase, width = p4040_width) # def p4160_res(q): # return resonance(q, _mass = p4160_mass, scale = p4160_scale, # phase = p4160_phase, width = p4160_width) # def p4415_res(q): # return resonance(q, _mass = p4415_mass, scale = p4415_scale, # phase = p4415_phase, width = p4415_width) # In[36]: # 0.15**2*4.2/1000 # result.hesse() # # Analysis # In[ ]: # zfit.run.numeric_checks = False Ctt_list = [] Ctt_error_list = [] nr_of_toys = 1 nevents = int(pdg["number_of_decays"]) nevents = pdg["number_of_decays"] event_stack = 1000000 # zfit.settings.set_verbosity(10) calls = int(nevents/event_stack + 1) total_samp = [] start = time.time() sampler = total_f.create_sampler(n=event_stack) for toy in range(nr_of_toys): ### Generate data print("Toy {}: Generating data...".format(toy)) dirName = 'data/zfit_toys/toy_{0}'.format(toy) if not os.path.exists(dirName): os.mkdir(dirName) print("Directory " , dirName , " Created ") for call in range(calls): sampler.resample(n=event_stack) s = sampler.unstack_x() sam = zfit.run(s) # clear_output(wait=True) c = call + 1 with open("data/zfit_toys/toy_{0}/{1}.pkl".format(toy, call), "wb") as f: pkl.dump(sam, f, pkl.HIGHEST_PROTOCOL) print("Toy {}: Data generation finished".format(toy)) ### Load data print("Toy {}: Loading data...".format(toy)) for call in range(calls): with open(r"data/zfit_toys/toy_0/{}.pkl".format(call), "rb") as input_file: sam = pkl.load(input_file) total_samp = np.append(total_samp, sam) total_samp = total_samp.astype('float64') data = zfit.data.Data.from_numpy(array=total_samp[:int(nevents)], obs=obs) print("Toy {}: Loading data finished".format(toy)) ### Fit data print("Toy {}: Fitting pdf...".format(toy)) for param in total_f.get_dependents(): param.randomize() nll = zfit.loss.UnbinnedNLL(model=total_f, data=data, fit_range = (jpsi_mass+50.0, psi2s_mass-50.0)) minimizer = zfit.minimize.MinuitMinimizer(verbosity = 5) # minimizer._use_tfgrad = False result = minimizer.minimize(nll) print("Toy {}: Fitting finished".format(toy)) print("Function minimum:", result.fmin) print("Hesse errors:", result.hesse()) params = result.params Ctt_list.append(params[Ctt]['value']) Ctt_error_list.append(params[Ctt]['minuit_hesse']['error']) print("Toy {0}/{1}".format(toy+1, nr_of_toys)) print("Time taken: {}".format(display_time(int(time.time() - start)))) print("Projected time left: {}".format(display_time(int((time.time() - start)/(c+calls*(toy))*((nr_of_toys-toy)*calls-c))))) # In[ ]: # In[ ]: print('Mean Ctt value = {}'.format(np.mean(Ctt_list))) print('Mean Ctt error = {}'.format(np.mean(Ctt_error_list))) # In[ ]: