#!/usr/bin/env python # coding: utf-8 # # Import # In[ ]: import os # os.environ["CUDA_VISIBLE_DEVICES"] = "-1" import random import numpy as np from pdg_const1 import pdg import matplotlib import matplotlib.pyplot as plt import pickle as pkl import sys import time from helperfunctions import display_time, prepare_plot import cmath as c import scipy.integrate as integrate from scipy.optimize import fminbound from array import array as arr import collections from itertools import compress import tensorflow as tf import zfit from zfit import ztf # from IPython.display import clear_output import os import tensorflow_probability as tfp tfd = tfp.distributions # In[ ]: # chunksize = 10000 # zfit.run.chunking.active = True # zfit.run.chunking.max_n_points = chunksize # # Build model and graphs # ## Create graphs # In[ ]: # In[ ]: def formfactor(q2, subscript, b0_0, b0_1, b0_2, bplus_0, bplus_1, bplus_2, bT_0, bT_1, bT_2): #returns real value #check if subscript is viable if subscript != "0" and subscript != "+" and subscript != "T": raise ValueError('Wrong subscript entered, choose either 0, + or T') #get constants mK = ztf.constant(pdg['Ks_M']) mbstar0 = ztf.constant(pdg["mbstar0"]) mbstar = ztf.constant(pdg["mbstar"]) mmu = ztf.constant(pdg['muon_M']) mb = ztf.constant(pdg['bquark_M']) ms = ztf.constant(pdg['squark_M']) mB = ztf.constant(pdg['Bplus_M']) #N comes from derivation in paper N = 3 #some helperfunctions tpos = (mB - mK)**2 tzero = (mB + mK)*(ztf.sqrt(mB)-ztf.sqrt(mK))**2 z_oben = ztf.sqrt(tpos - q2) - ztf.sqrt(tpos - tzero) z_unten = ztf.sqrt(tpos - q2) + ztf.sqrt(tpos - tzero) z = tf.divide(z_oben, z_unten) #calculate f0 if subscript == "0": prefactor = 1/(1 - q2/(mbstar0**2)) _sum = 0 b0 = [b0_0, b0_1, b0_2] for i in range(N): _sum += b0[i]*(tf.pow(z,i)) return ztf.to_complex(prefactor * _sum) #calculate f+ or fT else: prefactor = 1/(1 - q2/(mbstar**2)) _sum = 0 if subscript == "T": bT = [bT_0, bT_1, bT_2] for i in range(N): _sum += bT[i] * (tf.pow(z, i) - ((-1)**(i-N)) * (i/N) * tf.pow(z, N)) else: bplus = [bplus_0, bplus_1, bplus_2] for i in range(N): _sum += bplus[i] * (tf.pow(z, i) - ((-1)**(i-N)) * (i/N) * tf.pow(z, N)) return ztf.to_complex(prefactor * _sum) def resonance(q, _mass, width, phase, scale): q2 = tf.pow(q, 2) mmu = ztf.constant(pdg['muon_M']) p = 0.5 * ztf.sqrt(q2 - 4*(mmu**2)) p0 = 0.5 * ztf.sqrt(_mass**2 - 4*mmu**2) gamma_j = tf.divide(p, q) * _mass * width / p0 #Calculate the resonance _top = tf.complex(_mass * width, ztf.constant(0.0)) _bottom = tf.complex(_mass**2 - q2, -_mass*gamma_j) com = _top/_bottom #Rotate by the phase r = ztf.to_complex(scale*tf.abs(com)) _phase = tf.angle(com) _phase += phase com = r * tf.exp(tf.complex(ztf.constant(0.0), _phase)) return com def axiv_nonres(q, b0_0, b0_1, b0_2, bplus_0, bplus_1, bplus_2, bT_0, bT_1, bT_2): GF = ztf.constant(pdg['GF']) alpha_ew = ztf.constant(pdg['alpha_ew']) Vtb = ztf.constant(pdg['Vtb']) Vts = ztf.constant(pdg['Vts']) C10eff = ztf.constant(pdg['C10eff']) mmu = ztf.constant(pdg['muon_M']) mb = ztf.constant(pdg['bquark_M']) ms = ztf.constant(pdg['squark_M']) mK = ztf.constant(pdg['Ks_M']) mB = ztf.constant(pdg['Bplus_M']) q2 = tf.pow(q, 2) #Some helperfunctions beta = 1. - 4. * mmu**2. / q2 kabs = ztf.sqrt(mB**2. + tf.pow(q2, 2)/mB**2. + mK**4./mB**2. - 2. * (mB**2. * mK**2. + mK**2. * q2 + mB**2. * q2) / mB**2.) #prefactor in front of whole bracket prefactor1 = GF**2. *alpha_ew**2. * (tf.abs(Vtb*Vts))**2. * kabs * beta / (128. * np.pi**5.) #left term in bracket bracket_left = 2./3. * tf.pow(kabs,2) * tf.pow(beta,2) * tf.pow(tf.abs(ztf.to_complex(C10eff)*formfactor(q2, "+", b0_0, b0_1, b0_2, bplus_0, bplus_1, bplus_2, bT_0, bT_1, bT_2)),2) #middle term in bracket _top = 4. * mmu**2. * (mB**2. - mK**2.) * (mB**2. - mK**2.) _under = q2 * mB**2. bracket_middle = _top/_under *tf.pow(tf.abs(ztf.to_complex(C10eff) * formfactor(q2, "0", b0_0, b0_1, b0_2, bplus_0, bplus_1, bplus_2, bT_0, bT_1, bT_2)), 2) #Note sqrt(q2) comes from derivation as we use q2 and plot q return prefactor1 * (bracket_left + bracket_middle) * 2 * q def vec(q, funcs, b0_0, b0_1, b0_2, bplus_0, bplus_1, bplus_2, bT_0, bT_1, bT_2): q2 = tf.pow(q, 2) GF = ztf.constant(pdg['GF']) alpha_ew = ztf.constant(pdg['alpha_ew']) Vtb = ztf.constant(pdg['Vtb']) Vts = ztf.constant(pdg['Vts']) C7eff = ztf.constant(pdg['C7eff']) mmu = ztf.constant(pdg['muon_M']) mb = ztf.constant(pdg['bquark_M']) ms = ztf.constant(pdg['squark_M']) mK = ztf.constant(pdg['Ks_M']) mB = ztf.constant(pdg['Bplus_M']) #Some helperfunctions beta = 1. - 4. * mmu**2. / q2 kabs = ztf.sqrt(mB**2. + tf.pow(q2, 2)/mB**2. + mK**4./mB**2. - 2 * (mB**2 * mK**2 + mK**2 * q2 + mB**2 * q2) / mB**2) #prefactor in front of whole bracket prefactor1 = GF**2. *alpha_ew**2. * (tf.abs(Vtb*Vts))**2 * kabs * beta / (128. * np.pi**5.) #right term in bracket prefactor2 = tf.pow(kabs,2) * (1. - 1./3. * beta) abs_bracket = tf.pow(tf.abs(c9eff(q, funcs) * formfactor(q2, "+", b0_0, b0_1, b0_2, bplus_0, bplus_1, bplus_2, bT_0, bT_1, bT_2) + ztf.to_complex(2.0 * C7eff * (mb + ms)/(mB + mK)) * formfactor(q2, "T", b0_0, b0_1, b0_2, bplus_0, bplus_1, bplus_2, bT_0, bT_1, bT_2)),2) bracket_right = prefactor2 * abs_bracket #Note sqrt(q2) comes from derivation as we use q2 and plot q return prefactor1 * bracket_right * 2 * q def c9eff(q, funcs): C9eff_nr = ztf.to_complex(ztf.constant(pdg['C9eff'])) c9 = C9eff_nr + funcs return c9 # In[ ]: def G(y): def inner_rect_bracket(q): return tf.log(ztf.to_complex((1+tf.sqrt(q))/(1-tf.sqrt(q)))-tf.complex(ztf.constant(0), -1*ztf.constant(np.pi))) def inner_right(q): return ztf.to_complex(2 * tf.atan(1/tf.sqrt(tf.math.real(-q)))) big_bracket = tf.where(tf.math.real(y) > ztf.constant(0.0), inner_rect_bracket(y), inner_right(y)) return ztf.to_complex(tf.sqrt(tf.abs(y))) * big_bracket def h_S(m, q): return ztf.to_complex(2) - G(ztf.to_complex(1) - ztf.to_complex(4*tf.pow(m, 2)) / ztf.to_complex(tf.pow(q, 2))) def h_P(m, q): return ztf.to_complex(2/3) + (ztf.to_complex(1) - ztf.to_complex(4*tf.pow(m, 2)) / ztf.to_complex(tf.pow(q, 2))) * h_S(m,q) def two_p_ccbar(mD, m_D_bar, m_D_star, q): #Load constants nu_D_bar = ztf.to_complex(pdg["nu_D_bar"]) nu_D = ztf.to_complex(pdg["nu_D"]) nu_D_star = ztf.to_complex(pdg["nu_D_star"]) phase_D_bar = ztf.to_complex(pdg["phase_D_bar"]) phase_D = ztf.to_complex(pdg["phase_D"]) phase_D_star = ztf.to_complex(pdg["phase_D_star"]) #Calculation left_part = nu_D_bar * tf.exp(tf.complex(ztf.constant(0.0), phase_D_bar)) * h_S(m_D_bar, q) right_part_D = nu_D * tf.exp(tf.complex(ztf.constant(0.0), phase_D)) * h_P(m_D, q) right_part_D_star = nu_D_star * tf.exp(tf.complex(ztf.constant(0.0), phase_D_star)) * h_P(m_D_star, q) return left_part + right_part_D + right_part_D_star # ## Build pdf # In[ ]: class total_pdf_cut(zfit.pdf.ZPDF): _N_OBS = 1 # dimension, can be omitted _PARAMS = ['b0_0', 'b0_1', 'b0_2', 'bplus_0', 'bplus_1', 'bplus_2', 'bT_0', 'bT_1', 'bT_2', 'rho_mass', 'rho_scale', 'rho_phase', 'rho_width', 'jpsi_mass', 'jpsi_scale', 'jpsi_phase', 'jpsi_width', 'psi2s_mass', 'psi2s_scale', 'psi2s_phase', 'psi2s_width', 'p3770_mass', 'p3770_scale', 'p3770_phase', 'p3770_width', 'p4040_mass', 'p4040_scale', 'p4040_phase', 'p4040_width', 'p4160_mass', 'p4160_scale', 'p4160_phase', 'p4160_width', 'p4415_mass', 'p4415_scale', 'p4415_phase', 'p4415_width', 'omega_mass', 'omega_scale', 'omega_phase', 'omega_width', 'phi_mass', 'phi_scale', 'phi_phase', 'phi_width', 'Dbar_mass', 'Dbar_scale', 'Dbar_phase', 'Dstar_mass', 'DDstar_scale', 'DDstar_phase', 'D_mass', 'tau_mass', 'C_tt'] # the name of the parameters def _unnormalized_pdf(self, x): x = x.unstack_x() b0 = [self.params['b0_0'], self.params['b0_1'], self.params['b0_2']] bplus = [self.params['bplus_0'], self.params['bplus_1'], self.params['bplus_2']] bT = [self.params['bT_0'], self.params['bT_1'], self.params['bT_2']] def rho_res(q): return resonance(q, _mass = self.params['rho_mass'], scale = self.params['rho_scale'], phase = self.params['rho_phase'], width = self.params['rho_width']) def omega_res(q): return resonance(q, _mass = self.params['omega_mass'], scale = self.params['omega_scale'], phase = self.params['omega_phase'], width = self.params['omega_width']) def phi_res(q): return resonance(q, _mass = self.params['phi_mass'], scale = self.params['phi_scale'], phase = self.params['phi_phase'], width = self.params['phi_width']) def jpsi_res(q): return ztf.to_complex(tf.pow(q, 2) / tf.pow(self.params['jpsi_mass'], 2)) * resonance(q, _mass = self.params['jpsi_mass'], scale = self.params['jpsi_scale'], phase = self.params['jpsi_phase'], width = self.params['jpsi_width']) def psi2s_res(q): return ztf.to_complex(tf.pow(q, 2) / tf.pow(self.params['psi2s_mass'], 2)) * resonance(q, _mass = self.params['psi2s_mass'], scale = self.params['psi2s_scale'], phase = self.params['psi2s_phase'], width = self.params['psi2s_width']) def p3770_res(q): return ztf.to_complex(tf.pow(q, 2) / tf.pow(self.params['p3770_mass'], 2)) * resonance(q, _mass = self.params['p3770_mass'], scale = self.params['p3770_scale'], phase = self.params['p3770_phase'], width = self.params['p3770_width']) def p4040_res(q): return ztf.to_complex(tf.pow(q, 2) / tf.pow(self.params['p4040_mass'], 2)) * resonance(q, _mass = self.params['p4040_mass'], scale = self.params['p4040_scale'], phase = self.params['p4040_phase'], width = self.params['p4040_width']) def p4160_res(q): return ztf.to_complex(tf.pow(q, 2) / tf.pow(self.params['p4160_mass'], 2)) * resonance(q, _mass = self.params['p4160_mass'], scale = self.params['p4160_scale'], phase = self.params['p4160_phase'], width = self.params['p4160_width']) def p4415_res(q): return ztf.to_complex(tf.pow(q, 2) / tf.pow(self.params['p4415_mass'], 2)) * resonance(q, _mass = self.params['p4415_mass'], scale = self.params['p4415_scale'], phase = self.params['p4415_phase'], width = self.params['p4415_width']) def P2_D(q): Dbar_contrib = ztf.to_complex(self.params['Dbar_scale'])*tf.exp(tf.complex(ztf.constant(0.0), self.params['Dbar_phase']))*ztf.to_complex(h_S(self.params['Dbar_mass'], q)) DDstar_contrib = ztf.to_complex(self.params['DDstar_scale'])*tf.exp(tf.complex(ztf.constant(0.0), self.params['DDstar_phase']))*(ztf.to_complex(h_P(self.params['Dstar_mass'], q)) + ztf.to_complex(h_P(self.params['D_mass'], q))) return Dbar_contrib + DDstar_contrib def ttau_cusp(q): return ztf.to_complex(self.params['C_tt'])*(ztf.to_complex((h_S(self.params['tau_mass'], q))) - ztf.to_complex(h_P(self.params['tau_mass'], q))) funcs = rho_res(x) + omega_res(x) + phi_res(x) + jpsi_res(x) + psi2s_res(x) + p3770_res(x) + p4040_res(x)+ p4160_res(x) + p4415_res(x) + P2_D(x) + ttau_cusp(x) vec_f = vec(x, funcs, b0_0, b0_1, b0_2, bplus_0, bplus_1, bplus_2, bT_0, bT_1, bT_2) axiv_nr = axiv_nonres(x, b0_0, b0_1, b0_2, bplus_0, bplus_1, bplus_2, bT_0, bT_1, bT_2) tot = vec_f + axiv_nr #Cut out jpsi and psi2s tot = tf.where(tf.math.logical_or(x < ztf.constant(jpsi_mass-60.), x > ztf.constant(jpsi_mass+70.)), tot, 0.0*tot) tot = tf.where(tf.math.logical_or(x < ztf.constant(psi2s_mass-50.), x > ztf.constant(psi2s_mass+50.)), tot, 0.0*tot) return tot class total_pdf_full(zfit.pdf.ZPDF): _N_OBS = 1 # dimension, can be omitted _PARAMS = ['b0_0', 'b0_1', 'b0_2', 'bplus_0', 'bplus_1', 'bplus_2', 'bT_0', 'bT_1', 'bT_2', 'rho_mass', 'rho_scale', 'rho_phase', 'rho_width', 'jpsi_mass', 'jpsi_scale', 'jpsi_phase', 'jpsi_width', 'psi2s_mass', 'psi2s_scale', 'psi2s_phase', 'psi2s_width', 'p3770_mass', 'p3770_scale', 'p3770_phase', 'p3770_width', 'p4040_mass', 'p4040_scale', 'p4040_phase', 'p4040_width', 'p4160_mass', 'p4160_scale', 'p4160_phase', 'p4160_width', 'p4415_mass', 'p4415_scale', 'p4415_phase', 'p4415_width', 'omega_mass', 'omega_scale', 'omega_phase', 'omega_width', 'phi_mass', 'phi_scale', 'phi_phase', 'phi_width', 'Dbar_mass', 'Dbar_scale', 'Dbar_phase', 'Dstar_mass', 'DDstar_scale', 'DDstar_phase', 'D_mass', 'tau_mass', 'C_tt'] # the name of the parameters def _unnormalized_pdf(self, x): x = x.unstack_x() b0 = [self.params['b0_0'], self.params['b0_1'], self.params['b0_2']] bplus = [self.params['bplus_0'], self.params['bplus_1'], self.params['bplus_2']] bT = [self.params['bT_0'], self.params['bT_1'], self.params['bT_2']] def rho_res(q): return resonance(q, _mass = self.params['rho_mass'], scale = self.params['rho_scale'], phase = self.params['rho_phase'], width = self.params['rho_width']) def omega_res(q): return resonance(q, _mass = self.params['omega_mass'], scale = self.params['omega_scale'], phase = self.params['omega_phase'], width = self.params['omega_width']) def phi_res(q): return resonance(q, _mass = self.params['phi_mass'], scale = self.params['phi_scale'], phase = self.params['phi_phase'], width = self.params['phi_width']) def jpsi_res(q): return ztf.to_complex(tf.pow(q, 2) / tf.pow(self.params['jpsi_mass'], 2)) * resonance(q, _mass = self.params['jpsi_mass'], scale = self.params['jpsi_scale'], phase = self.params['jpsi_phase'], width = self.params['jpsi_width']) def psi2s_res(q): return ztf.to_complex(tf.pow(q, 2) / tf.pow(self.params['psi2s_mass'], 2)) * resonance(q, _mass = self.params['psi2s_mass'], scale = self.params['psi2s_scale'], phase = self.params['psi2s_phase'], width = self.params['psi2s_width']) def p3770_res(q): return ztf.to_complex(tf.pow(q, 2) / tf.pow(self.params['p3770_mass'], 2)) * resonance(q, _mass = self.params['p3770_mass'], scale = self.params['p3770_scale'], phase = self.params['p3770_phase'], width = self.params['p3770_width']) def p4040_res(q): return ztf.to_complex(tf.pow(q, 2) / tf.pow(self.params['p4040_mass'], 2)) * resonance(q, _mass = self.params['p4040_mass'], scale = self.params['p4040_scale'], phase = self.params['p4040_phase'], width = self.params['p4040_width']) def p4160_res(q): return ztf.to_complex(tf.pow(q, 2) / tf.pow(self.params['p4160_mass'], 2)) * resonance(q, _mass = self.params['p4160_mass'], scale = self.params['p4160_scale'], phase = self.params['p4160_phase'], width = self.params['p4160_width']) def p4415_res(q): return ztf.to_complex(tf.pow(q, 2) / tf.pow(self.params['p4415_mass'], 2)) * resonance(q, _mass = self.params['p4415_mass'], scale = self.params['p4415_scale'], phase = self.params['p4415_phase'], width = self.params['p4415_width']) def P2_D(q): Dbar_contrib = ztf.to_complex(self.params['Dbar_scale'])*tf.exp(tf.complex(ztf.constant(0.0), self.params['Dbar_phase']))*ztf.to_complex(h_S(self.params['Dbar_mass'], q)) DDstar_contrib = ztf.to_complex(self.params['DDstar_scale'])*tf.exp(tf.complex(ztf.constant(0.0), self.params['DDstar_phase']))*(ztf.to_complex(h_P(self.params['Dstar_mass'], q)) + ztf.to_complex(h_P(self.params['D_mass'], q))) return Dbar_contrib + DDstar_contrib def ttau_cusp(q): return ztf.to_complex(self.params['C_tt'])*(ztf.to_complex((h_S(self.params['tau_mass'], q))) - ztf.to_complex(h_P(self.params['tau_mass'], q))) funcs = rho_res(x) + omega_res(x) + phi_res(x) + jpsi_res(x) + psi2s_res(x) + p3770_res(x) + p4040_res(x)+ p4160_res(x) + p4415_res(x) + P2_D(x) + ttau_cusp(x) vec_f = vec(x, funcs, b0_0, b0_1, b0_2, bplus_0, bplus_1, bplus_2, bT_0, bT_1, bT_2) axiv_nr = axiv_nonres(x, b0_0, b0_1, b0_2, bplus_0, bplus_1, bplus_2, bT_0, bT_1, bT_2) tot = vec_f + axiv_nr #Cut out jpsi and psi2s # tot = tf.where(tf.math.logical_or(x < ztf.constant(jpsi_mass-60.), x > ztf.constant(jpsi_mass+70.)), tot, 0.0*tot) # tot = tf.where(tf.math.logical_or(x < ztf.constant(psi2s_mass-50.), x > ztf.constant(psi2s_mass+50.)), tot, 0.0*tot) return tot # ## Setup parameters # In[ ]: # formfactors b0_0 = zfit.Parameter("b0_0", ztf.constant(0.292), floating = False) #, lower_limit = -2.0, upper_limit= 2.0) b0_1 = zfit.Parameter("b0_1", ztf.constant(0.281), floating = False) #, lower_limit = -2.0, upper_limit= 2.0) b0_2 = zfit.Parameter("b0_2", ztf.constant(0.150), floating = False) #, lower_limit = -2.0, upper_limit= 2.0) bplus_0 = zfit.Parameter("bplus_0", ztf.constant(0.466), lower_limit = -2.0, upper_limit= 2.0) bplus_1 = zfit.Parameter("bplus_1", ztf.constant(-0.885), lower_limit = -2.0, upper_limit= 2.0) bplus_2 = zfit.Parameter("bplus_2", ztf.constant(-0.213), lower_limit = -2.0, upper_limit= 2.0) bT_0 = zfit.Parameter("bT_0", ztf.constant(0.460), floating = False) #, lower_limit = -2.0, upper_limit= 2.0) bT_1 = zfit.Parameter("bT_1", ztf.constant(-1.089), floating = False) #, lower_limit = -2.0, upper_limit= 2.0) bT_2 = zfit.Parameter("bT_2", ztf.constant(-1.114), floating = False) #, lower_limit = -2.0, upper_limit= 2.0) #rho rho_mass, rho_width, rho_phase, rho_scale = pdg["rho"] rho_m = zfit.Parameter("rho_m", ztf.constant(rho_mass), floating = False) #lower_limit = rho_mass - rho_width, upper_limit = rho_mass + rho_width) rho_w = zfit.Parameter("rho_w", ztf.constant(rho_width), floating = False) rho_p = zfit.Parameter("rho_p", ztf.constant(rho_phase), lower_limit=-2*np.pi, upper_limit=2*np.pi) rho_s = zfit.Parameter("rho_s", ztf.constant(rho_scale), lower_limit=rho_scale-np.sqrt(rho_scale), upper_limit=rho_scale+np.sqrt(rho_scale)) #omega omega_mass, omega_width, omega_phase, omega_scale = pdg["omega"] omega_m = zfit.Parameter("omega_m", ztf.constant(omega_mass), floating = False) omega_w = zfit.Parameter("omega_w", ztf.constant(omega_width), floating = False) omega_p = zfit.Parameter("omega_p", ztf.constant(omega_phase), lower_limit=-2*np.pi, upper_limit=2*np.pi) omega_s = zfit.Parameter("omega_s", ztf.constant(omega_scale), lower_limit=omega_scale-np.sqrt(omega_scale), upper_limit=omega_scale+np.sqrt(omega_scale)) #phi phi_mass, phi_width, phi_phase, phi_scale = pdg["phi"] phi_m = zfit.Parameter("phi_m", ztf.constant(phi_mass), floating = False) phi_w = zfit.Parameter("phi_w", ztf.constant(phi_width), floating = False) phi_p = zfit.Parameter("phi_p", ztf.constant(phi_phase), lower_limit=-2*np.pi, upper_limit=2*np.pi) phi_s = zfit.Parameter("phi_s", ztf.constant(phi_scale), lower_limit=phi_scale-np.sqrt(phi_scale), upper_limit=phi_scale+np.sqrt(phi_scale)) #jpsi jpsi_mass, jpsi_width, jpsi_phase, jpsi_scale = pdg["jpsi"] jpsi_m = zfit.Parameter("jpsi_m", ztf.constant(jpsi_mass), floating = False) jpsi_w = zfit.Parameter("jpsi_w", ztf.constant(jpsi_width), floating = False) jpsi_p = zfit.Parameter("jpsi_p", ztf.constant(jpsi_phase), lower_limit=-2*np.pi, upper_limit=2*np.pi) jpsi_s = zfit.Parameter("jpsi_s", ztf.constant(jpsi_scale), floating = False) #, lower_limit=jpsi_scale-np.sqrt(jpsi_scale), upper_limit=jpsi_scale+np.sqrt(jpsi_scale)) #psi2s psi2s_mass, psi2s_width, psi2s_phase, psi2s_scale = pdg["psi2s"] psi2s_m = zfit.Parameter("psi2s_m", ztf.constant(psi2s_mass), floating = False) psi2s_w = zfit.Parameter("psi2s_w", ztf.constant(psi2s_width), floating = False) psi2s_p = zfit.Parameter("psi2s_p", ztf.constant(psi2s_phase), lower_limit=-2*np.pi, upper_limit=2*np.pi) psi2s_s = zfit.Parameter("psi2s_s", ztf.constant(psi2s_scale), floating = False) #, lower_limit=psi2s_scale-np.sqrt(psi2s_scale), upper_limit=psi2s_scale+np.sqrt(psi2s_scale)) #psi(3770) p3770_mass, p3770_width, p3770_phase, p3770_scale = pdg["p3770"] p3770_m = zfit.Parameter("p3770_m", ztf.constant(p3770_mass), floating = False) p3770_w = zfit.Parameter("p3770_w", ztf.constant(p3770_width), floating = False) p3770_p = zfit.Parameter("p3770_p", ztf.constant(p3770_phase), lower_limit=-2*np.pi, upper_limit=2*np.pi) p3770_s = zfit.Parameter("p3770_s", ztf.constant(p3770_scale), lower_limit=p3770_scale-np.sqrt(p3770_scale), upper_limit=p3770_scale+np.sqrt(p3770_scale)) #psi(4040) p4040_mass, p4040_width, p4040_phase, p4040_scale = pdg["p4040"] p4040_m = zfit.Parameter("p4040_m", ztf.constant(p4040_mass), floating = False) p4040_w = zfit.Parameter("p4040_w", ztf.constant(p4040_width), floating = False) p4040_p = zfit.Parameter("p4040_p", ztf.constant(p4040_phase), lower_limit=-2*np.pi, upper_limit=2*np.pi) p4040_s = zfit.Parameter("p4040_s", ztf.constant(p4040_scale), lower_limit=p4040_scale-np.sqrt(p4040_scale), upper_limit=p4040_scale+np.sqrt(p4040_scale)) #psi(4160) p4160_mass, p4160_width, p4160_phase, p4160_scale = pdg["p4160"] p4160_m = zfit.Parameter("p4160_m", ztf.constant(p4160_mass), floating = False) p4160_w = zfit.Parameter("p4160_w", ztf.constant(p4160_width), floating = False) p4160_p = zfit.Parameter("p4160_p", ztf.constant(p4160_phase), lower_limit=-2*np.pi, upper_limit=2*np.pi) p4160_s = zfit.Parameter("p4160_s", ztf.constant(p4160_scale), lower_limit=p4160_scale-np.sqrt(p4160_scale), upper_limit=p4160_scale+np.sqrt(p4160_scale)) #psi(4415) p4415_mass, p4415_width, p4415_phase, p4415_scale = pdg["p4415"] p4415_m = zfit.Parameter("p4415_m", ztf.constant(p4415_mass), floating = False) p4415_w = zfit.Parameter("p4415_w", ztf.constant(p4415_width), floating = False) p4415_p = zfit.Parameter("p4415_p", ztf.constant(p4415_phase), lower_limit=-2*np.pi, upper_limit=2*np.pi) p4415_s = zfit.Parameter("p4415_s", ztf.constant(p4415_scale), lower_limit=p4415_scale-np.sqrt(p4415_scale), upper_limit=p4415_scale+np.sqrt(p4415_scale)) # ## Dynamic generation of 2 particle contribution # In[ ]: m_c = 1300 Dbar_phase = 0.0 DDstar_phase = 0.0 Dstar_mass = pdg['Dst_M'] Dbar_mass = pdg['D0_M'] D_mass = pdg['D0_M'] Dbar_s = zfit.Parameter("Dbar_s", ztf.constant(0.0), lower_limit=-0.3, upper_limit=0.3) Dbar_m = zfit.Parameter("Dbar_m", ztf.constant(Dbar_mass), floating = False) Dbar_p = zfit.Parameter("Dbar_p", ztf.constant(Dbar_phase), lower_limit=-2*np.pi, upper_limit=2*np.pi)#, floating = False) DDstar_s = zfit.Parameter("DDstar_s", ztf.constant(0.0), lower_limit=-0.3, upper_limit=0.3)#, floating = False) Dstar_m = zfit.Parameter("Dstar_m", ztf.constant(Dstar_mass), floating = False) D_m = zfit.Parameter("D_m", ztf.constant(D_mass), floating = False) DDstar_p = zfit.Parameter("DDstar_p", ztf.constant(DDstar_phase), lower_limit=-2*np.pi, upper_limit=2*np.pi)#, floating = False) # ## Tau parameters # In[ ]: tau_m = zfit.Parameter("tau_m", ztf.constant(pdg['tau_M']), floating = False) Ctt = zfit.Parameter("Ctt", ztf.constant(0.0), lower_limit=-2.5, upper_limit=2.5) # ## Load data # In[ ]: x_min = 2*pdg['muon_M'] x_max = (pdg["Bplus_M"]-pdg["Ks_M"]-0.1) # # Full spectrum obs_toy = zfit.Space('q', limits = (x_min, x_max)) # Jpsi and Psi2s cut out obs1 = zfit.Space('q', limits = (x_min, jpsi_mass - 60.)) obs2 = zfit.Space('q', limits = (jpsi_mass + 70., psi2s_mass - 50.)) obs3 = zfit.Space('q', limits = (psi2s_mass + 50., x_max)) obs_fit = obs1 + obs2 + obs3 # with open(r"./data/slim_points/slim_points_toy_0_range({0}-{1}).pkl".format(int(x_min), int(x_max)), "rb") as input_file: # part_set = pkl.load(input_file) # x_part = part_set['x_part'] # x_part = x_part.astype('float64') # data = zfit.data.Data.from_numpy(array=x_part, obs=obs) # ## Setup pdf # In[ ]: total_f = total_pdf_cut(obs=obs_toy, jpsi_mass = jpsi_m, jpsi_scale = jpsi_s, jpsi_phase = jpsi_p, jpsi_width = jpsi_w, psi2s_mass = psi2s_m, psi2s_scale = psi2s_s, psi2s_phase = psi2s_p, psi2s_width = psi2s_w, p3770_mass = p3770_m, p3770_scale = p3770_s, p3770_phase = p3770_p, p3770_width = p3770_w, p4040_mass = p4040_m, p4040_scale = p4040_s, p4040_phase = p4040_p, p4040_width = p4040_w, p4160_mass = p4160_m, p4160_scale = p4160_s, p4160_phase = p4160_p, p4160_width = p4160_w, p4415_mass = p4415_m, p4415_scale = p4415_s, p4415_phase = p4415_p, p4415_width = p4415_w, rho_mass = rho_m, rho_scale = rho_s, rho_phase = rho_p, rho_width = rho_w, omega_mass = omega_m, omega_scale = omega_s, omega_phase = omega_p, omega_width = omega_w, phi_mass = phi_m, phi_scale = phi_s, phi_phase = phi_p, phi_width = phi_w, Dstar_mass = Dstar_m, DDstar_scale = DDstar_s, DDstar_phase = DDstar_p, D_mass = D_m, Dbar_mass = Dbar_m, Dbar_scale = Dbar_s, Dbar_phase = Dbar_p, tau_mass = tau_m, C_tt = Ctt, b0_0 = b0_0, b0_1 = b0_1, b0_2 = b0_2, bplus_0 = bplus_0, bplus_1 = bplus_1, bplus_2 = bplus_2, bT_0 = bT_0, bT_1 = bT_1, bT_2 = bT_2) total_f_fit = total_pdf_full(obs=obs_fit, jpsi_mass = jpsi_m, jpsi_scale = jpsi_s, jpsi_phase = jpsi_p, jpsi_width = jpsi_w, psi2s_mass = psi2s_m, psi2s_scale = psi2s_s, psi2s_phase = psi2s_p, psi2s_width = psi2s_w, p3770_mass = p3770_m, p3770_scale = p3770_s, p3770_phase = p3770_p, p3770_width = p3770_w, p4040_mass = p4040_m, p4040_scale = p4040_s, p4040_phase = p4040_p, p4040_width = p4040_w, p4160_mass = p4160_m, p4160_scale = p4160_s, p4160_phase = p4160_p, p4160_width = p4160_w, p4415_mass = p4415_m, p4415_scale = p4415_s, p4415_phase = p4415_p, p4415_width = p4415_w, rho_mass = rho_m, rho_scale = rho_s, rho_phase = rho_p, rho_width = rho_w, omega_mass = omega_m, omega_scale = omega_s, omega_phase = omega_p, omega_width = omega_w, phi_mass = phi_m, phi_scale = phi_s, phi_phase = phi_p, phi_width = phi_w, Dstar_mass = Dstar_m, DDstar_scale = DDstar_s, DDstar_phase = DDstar_p, D_mass = D_m, Dbar_mass = Dbar_m, Dbar_scale = Dbar_s, Dbar_phase = Dbar_p, tau_mass = tau_m, C_tt = Ctt, b0_0 = b0_0, b0_1 = b0_1, b0_2 = b0_2, bplus_0 = bplus_0, bplus_1 = bplus_1, bplus_2 = bplus_2, bT_0 = bT_0, bT_1 = bT_1, bT_2 = bT_2) # print(total_pdf.obs) # print(calcs_test) # for param in total_f.get_dependents(): # print(zfit.run(param)) # In[ ]: # total_f_fit.normalization(obs_fit) # ## Test if graphs actually work and compute values # In[ ]: # def total_test_tf(xq): # def jpsi_res(q): # return resonance(q, jpsi_m, jpsi_s, jpsi_p, jpsi_w) # def psi2s_res(q): # return resonance(q, psi2s_m, psi2s_s, psi2s_p, psi2s_w) # def cusp(q): # return bifur_gauss(q, cusp_m, sig_L, sig_R, cusp_s) # funcs = jpsi_res(xq) + psi2s_res(xq) + cusp(xq) # vec_f = vec(xq, funcs) # axiv_nr = axiv_nonres(xq) # tot = vec_f + axiv_nr # return tot # def jpsi_res(q): # return resonance(q, jpsi_m, jpsi_s, jpsi_p, jpsi_w) # calcs = zfit.run(total_test_tf(x_part)) test_q = np.linspace(x_min, x_max, int(2e6)) probs = total_f_fit.pdf(test_q, norm_range=False) calcs_test = zfit.run(probs) Ctt.set_value(0.5) calcs_test1 = zfit.run(probs) Ctt.set_value(0.0) Dbar_s.set_value(0.3) DDstar_s.set_value(0.3) calcs_test2 = zfit.run(probs) # res_y = zfit.run(jpsi_res(test_q)) # b0 = [b0_0, b0_1, b0_2] # bplus = [bplus_0, bplus_1, bplus_2] # bT = [bT_0, bT_1, bT_2] # f0_y = zfit.run(tf.math.real(formfactor(test_q,"0", b0, bplus, bT))) # fplus_y = zfit.run(tf.math.real(formfactor(test_q,"+", b0, bplus, bT))) # fT_y = zfit.run(tf.math.real(formfactor(test_q,"T", b0, bplus, bT))) # In[ ]: plt.clf() # plt.plot(x_part, calcs, '.') plt.plot(test_q, calcs_test, label = 'pdf (Ctt = 0.0)') plt.plot(test_q, calcs_test1, label = 'pdf (Ctt = 0.5)') plt.plot(test_q, calcs_test2, label = 'pdf (D-contribs = 0.3)') # plt.plot(test_q, f0_y, label = '0') # plt.plot(test_q, fT_y, label = 'T') # plt.plot(test_q, fplus_y, label = '+') # plt.plot(test_q, res_y, label = 'res') plt.legend() plt.ylim(0.0, 1.5e-6) # plt.yscale('log') # plt.xlim(770, 785) plt.savefig('test.png') # print(jpsi_width) # In[ ]: # probs = mixture.prob(test_q) # probs_np = zfit.run(probs) # probs_np *= np.max(calcs_test) / np.max(probs_np) # plt.figure() # plt.semilogy(test_q, probs_np,label="importance sampling") # plt.semilogy(test_q, calcs_test, label = 'pdf') # In[ ]: # 0.213/(0.00133+0.213+0.015) # ## Adjust scaling of different parts # In[ ]: total_f.update_integration_options(draws_per_dim=2000000, mc_sampler=None) # inte = total_f.integrate(limits = (950., 1050.), norm_range=False) # inte_fl = zfit.run(inte) # print(inte_fl/4500) # print(pdg["jpsi_BR"]/pdg["NR_BR"], inte_fl*pdg["psi2s_auc"]/pdg["NR_auc"]) # In[ ]: # # print("jpsi:", inte_fl) # # print("Increase am by factor:", np.sqrt(pdg["jpsi_BR"]/pdg["NR_BR"]*pdg["NR_auc"]/inte_fl)) # # print("New amp:", pdg["jpsi"][3]*np.sqrt(pdg["jpsi_BR"]/pdg["NR_BR"]*pdg["NR_auc"]/inte_fl)) # # print("psi2s:", inte_fl) # # print("Increase am by factor:", np.sqrt(pdg["psi2s_BR"]/pdg["NR_BR"]*pdg["NR_auc"]/inte_fl)) # # print("New amp:", pdg["psi2s"][3]*np.sqrt(pdg["psi2s_BR"]/pdg["NR_BR"]*pdg["NR_auc"]/inte_fl)) # name = "phi" # print(name+":", inte_fl) # print("Increase am by factor:", np.sqrt(pdg[name+"_BR"]/pdg["NR_BR"]*pdg["NR_auc"]/inte_fl)) # print("New amp:", pdg[name][0]*np.sqrt(pdg[name+"_BR"]/pdg["NR_BR"]*pdg["NR_auc"]/inte_fl)) # print(x_min) # print(x_max) # # total_f.update_integration_options(draws_per_dim=2000000, mc_sampler=None) # total_f.update_integration_options(mc_sampler=lambda dim, num_results, # dtype: tf.random_uniform(maxval=1., shape=(num_results, dim), dtype=dtype), # draws_per_dim=1000000) # # _ = [] # # for i in range(10): # # inte = total_f.integrate(limits = (x_min, x_max)) # # inte_fl = zfit.run(inte) # # print(inte_fl) # # _.append(inte_fl) # # print("mean:", np.mean(_)) # _ = time.time() # inte = total_f.integrate(limits = (x_min, x_max)) # inte_fl = zfit.run(inte) # print(inte_fl) # print("Time taken: {}".format(display_time(int(time.time() - _)))) # print(pdg['NR_BR']/pdg['NR_auc']*inte_fl) # print(0.25**2*4.2/1000) # # Sampling # ## Mixture distribution for sampling # In[ ]: # print(list_of_borders[:9]) # print(list_of_borders[-9:]) class UniformSampleAndWeights(zfit.util.execution.SessionHolderMixin): def __call__(self, limits, dtype, n_to_produce): # n_to_produce = tf.cast(n_to_produce, dtype=tf.int32) low, high = limits.limit1d low = tf.cast(low, dtype=dtype) high = tf.cast(high, dtype=dtype) # uniform = tfd.Uniform(low=low, high=high) # uniformjpsi = tfd.Uniform(low=tf.constant(3080, dtype=dtype), high=tf.constant(3112, dtype=dtype)) # uniformpsi2s = tfd.Uniform(low=tf.constant(3670, dtype=dtype), high=tf.constant(3702, dtype=dtype)) # list_of_borders = [] # _p = [] # splits = 10 # _ = np.linspace(x_min, x_max, splits) # for i in range(splits): # list_of_borders.append(tf.constant(_[i], dtype=dtype)) # _p.append(tf.constant(1/splits, dtype=dtype)) # mixture = tfd.MixtureSameFamily(mixture_distribution=tfd.Categorical(probs=_p[:(splits-1)]), # components_distribution=tfd.Uniform(low=list_of_borders[:(splits-1)], # high=list_of_borders[-(splits-1):])) mixture = tfd.MixtureSameFamily(mixture_distribution=tfd.Categorical(probs=[tf.constant(0.05, dtype=dtype), tf.constant(0.93, dtype=dtype), tf.constant(0.05, dtype=dtype), tf.constant(0.065, dtype=dtype), tf.constant(0.04, dtype=dtype), tf.constant(0.05, dtype=dtype)]), components_distribution=tfd.Uniform(low=[tf.constant(x_min, dtype=dtype), tf.constant(3090, dtype=dtype), tf.constant(3681, dtype=dtype), tf.constant(3070, dtype=dtype), tf.constant(1000, dtype=dtype), tf.constant(3660, dtype=dtype)], high=[tf.constant(x_max, dtype=dtype), tf.constant(3102, dtype=dtype), tf.constant(3691, dtype=dtype), tf.constant(3110, dtype=dtype), tf.constant(1040, dtype=dtype), tf.constant(3710, dtype=dtype)])) # dtype = tf.float64 # mixture = tfd.MixtureSameFamily(mixture_distribution=tfd.Categorical(probs=[tf.constant(0.04, dtype=dtype), # tf.constant(0.90, dtype=dtype), # tf.constant(0.02, dtype=dtype), # tf.constant(0.07, dtype=dtype), # tf.constant(0.02, dtype=dtype)]), # components_distribution=tfd.Uniform(low=[tf.constant(x_min, dtype=dtype), # tf.constant(3089, dtype=dtype), # tf.constant(3103, dtype=dtype), # tf.constant(3681, dtype=dtype), # tf.constant(3691, dtype=dtype)], # high=[tf.constant(3089, dtype=dtype), # tf.constant(3103, dtype=dtype), # tf.constant(3681, dtype=dtype), # tf.constant(3691, dtype=dtype), # tf.constant(x_max, dtype=dtype)])) # mixture = tfd.Uniform(tf.constant(x_min, dtype=dtype), tf.constant(x_max, dtype=dtype)) # sample = tf.random.uniform((n_to_produce, 1), dtype=dtype) sample = mixture.sample((n_to_produce, 1)) # sample = tf.random.uniform((n_to_produce, 1), dtype=dtype) weights = mixture.prob(sample)[:,0] # weights = tf.broadcast_to(tf.constant(1., dtype=dtype), shape=(n_to_produce,)) # sample = tf.expand_dims(sample, axis=-1) # print(sample, weights) # weights = tf.ones(shape=(n_to_produce,), dtype=dtype) weights_max = None thresholds = tf.random_uniform(shape=(n_to_produce,), dtype=dtype) return sample, thresholds, weights, weights_max, n_to_produce # In[ ]: # total_f._sample_and_weights = UniformSampleAndWeights # In[ ]: # 0.00133/(0.00133+0.213+0.015)*(x_max-3750)/(x_max-x_min) # In[ ]: # zfit.settings.set_verbosity(10) # In[ ]: # # zfit.run.numeric_checks = False # nr_of_toys = 1 # nevents = int(pdg["number_of_decays"]) # nevents = pdg["number_of_decays"] # event_stack = 1000000 # # zfit.settings.set_verbosity(10) # calls = int(nevents/event_stack + 1) # total_samp = [] # start = time.time() # sampler = total_f.create_sampler(n=event_stack) # for toy in range(nr_of_toys): # dirName = 'data/zfit_toys/toy_{0}'.format(toy) # if not os.path.exists(dirName): # os.mkdir(dirName) # print("Directory " , dirName , " Created ") # for call in range(calls): # sampler.resample(n=event_stack) # s = sampler.unstack_x() # sam = zfit.run(s) # # clear_output(wait=True) # c = call + 1 # print("{0}/{1} of Toy {2}/{3}".format(c, calls, toy+1, nr_of_toys)) # print("Time taken: {}".format(display_time(int(time.time() - start)))) # print("Projected time left: {}".format(display_time(int((time.time() - start)/(c+calls*(toy))*((nr_of_toys-toy)*calls-c))))) # with open("data/zfit_toys/toy_{0}/{1}.pkl".format(toy, call), "wb") as f: # pkl.dump(sam, f, pkl.HIGHEST_PROTOCOL) # In[ ]: # with open(r"data/zfit_toys/toy_0/0.pkl", "rb") as input_file: # sam = pkl.load(input_file) # print(sam[:10]) # with open(r"data/zfit_toys/toy_0/1.pkl", "rb") as input_file: # sam2 = pkl.load(input_file) # print(sam2[:10]) # print(np.sum(sam-sam2)) # In[ ]: # print("Time to generate full toy: {} s".format(int(time.time()-start))) # total_samp = [] # for call in range(calls): # with open(r"data/zfit_toys/toy_0/{}.pkl".format(call), "rb") as input_file: # sam = pkl.load(input_file) # total_samp = np.append(total_samp, sam) # total_samp = total_samp.astype('float64') # data2 = zfit.data.Data.from_numpy(array=total_samp[:int(nevents)], obs=obs) # data3 = zfit.data.Data.from_numpy(array=total_samp, obs=obs) # print(total_samp[:nevents].shape) # In[ ]: # plt.clf() # bins = int((x_max-x_min)/7) # # calcs = zfit.run(total_test_tf(samp)) # print(total_samp[:nevents].shape) # plt.hist(total_samp[:nevents], bins = bins, range = (x_min,x_max), label = 'data') # # plt.plot(test_q, calcs_test*nevents , label = 'pdf') # # plt.plot(sam, calcs, '.') # # plt.plot(test_q, calcs_test) # # plt.yscale('log') # plt.ylim(0, 200) # # plt.xlim(3080, 3110) # plt.legend() # plt.savefig('test2.png') # In[ ]: # sampler = total_f.create_sampler(n=nevents) # nll = zfit.loss.UnbinnedNLL(model=total_f, data=sampler, fit_range = (x_min, x_max)) # # for param in pdf.get_dependents(): # # param.set_value(initial_value) # sampler.resample(n=nevents) # # Randomise initial values # # for param in pdf.get_dependents(): # # param.set_value(random value here) # # Minimise the NLL # minimizer = zfit.minimize.MinuitMinimizer(verbosity = 10) # minimum = minimizer.minimize(nll) # In[ ]: # jpsi_width # In[ ]: # plt.hist(sample, weights=1 / prob(sample)) # # Fitting # In[ ]: # start = time.time() # for param in total_f.get_dependents(): # param.randomize() # # for param in total_f.get_dependents(): # # print(zfit.run(param)) # nll = zfit.loss.UnbinnedNLL(model=total_f, data=data2, fit_range = (x_min, x_max)) # minimizer = zfit.minimize.MinuitMinimizer(verbosity = 5) # # minimizer._use_tfgrad = False # result = minimizer.minimize(nll) # # param_errors = result.error() # # for var, errors in param_errors.items(): # # print('{}: ^{{+{}}}_{{{}}}'.format(var.name, errors['upper'], errors['lower'])) # print("Function minimum:", result.fmin) # # print("Results:", result.params) # print("Hesse errors:", result.hesse()) # In[ ]: # print("Time taken for fitting: {}".format(display_time(int(time.time()-start)))) # # probs = total_f.pdf(test_q) # calcs_test = zfit.run(probs) # res_y = zfit.run(jpsi_res(test_q)) # In[ ]: # plt.clf() # # plt.plot(x_part, calcs, '.') # plt.plot(test_q, calcs_test, label = 'pdf') # # plt.plot(test_q, res_y, label = 'res') # plt.legend() # plt.ylim(0.0, 10e-6) # # plt.yscale('log') # # plt.xlim(3080, 3110) # plt.savefig('test3.png') # # print(jpsi_width) # In[ ]: # _tot = 4.37e-7+6.02e-5+4.97e-6 # _probs = [] # _probs.append(6.02e-5/_tot) # _probs.append(4.97e-6/_tot) # _probs.append(4.37e-7/_tot) # print(_probs) # In[ ]: # dtype = 'float64' # # mixture = tfd.Uniform(tf.constant(x_min, dtype=dtype), tf.constant(x_max, dtype=dtype)) # mixture = tfd.MixtureSameFamily(mixture_distribution=tfd.Categorical(probs=[tf.constant(0.007, dtype=dtype), # tf.constant(0.917, dtype=dtype), # tf.constant(0.076, dtype=dtype)]), # components_distribution=tfd.Uniform(low=[tf.constant(x_min, dtype=dtype), # tf.constant(3080, dtype=dtype), # tf.constant(3670, dtype=dtype)], # high=[tf.constant(x_max, dtype=dtype), # tf.constant(3112, dtype=dtype), # tf.constant(3702, dtype=dtype)])) # # for i in range(10): # # print(zfit.run(mixture.prob(mixture.sample((10, 1))))) # In[ ]: # print((zfit.run(jpsi_p)%(2*np.pi))/np.pi) # print((zfit.run(psi2s_p)%(2*np.pi))/np.pi) # In[ ]: # def jpsi_res(q): # return resonance(q, _mass = jpsi_mass, scale = jpsi_scale, # phase = jpsi_phase, width = jpsi_width) # def psi2s_res(q): # return resonance(q, _mass = psi2s_mass, scale = psi2s_scale, # phase = psi2s_phase, width = psi2s_width) # def p3770_res(q): # return resonance(q, _mass = p3770_mass, scale = p3770_scale, # phase = p3770_phase, width = p3770_width) # def p4040_res(q): # return resonance(q, _mass = p4040_mass, scale = p4040_scale, # phase = p4040_phase, width = p4040_width) # def p4160_res(q): # return resonance(q, _mass = p4160_mass, scale = p4160_scale, # phase = p4160_phase, width = p4160_width) # def p4415_res(q): # return resonance(q, _mass = p4415_mass, scale = p4415_scale, # phase = p4415_phase, width = p4415_width) # In[ ]: # 0.15**2*4.2/1000 # result.hesse() # ## Constraints # In[ ]: # 1. Constraint - Real part of sum of Psi contrib and D contribs sum_list = [] sum_list.append(ztf.to_complex(jpsi_s) * tf.exp(tf.complex(ztf.constant(0.0), jpsi_p)) * ztf.to_complex(jpsi_w / (tf.pow(jpsi_m,3)))) sum_list.append(ztf.to_complex(psi2s_s) * tf.exp(tf.complex(ztf.constant(0.0), psi2s_p)) * ztf.to_complex(psi2s_w / (tf.pow(psi2s_m,3)))) sum_list.append(ztf.to_complex(p3770_s) * tf.exp(tf.complex(ztf.constant(0.0), p3770_p)) * ztf.to_complex(p3770_w / (tf.pow(p3770_m,3)))) sum_list.append(ztf.to_complex(p4040_s) * tf.exp(tf.complex(ztf.constant(0.0), p4040_p)) * ztf.to_complex(p4040_w / (tf.pow(p4040_m,3)))) sum_list.append(ztf.to_complex(p4160_s) * tf.exp(tf.complex(ztf.constant(0.0), p4160_p)) * ztf.to_complex(p4160_w / (tf.pow(p4160_m,3)))) sum_list.append(ztf.to_complex(p4415_s) * tf.exp(tf.complex(ztf.constant(0.0), p4415_p)) * ztf.to_complex(p4415_w / (tf.pow(p4415_m,3)))) sum_list.append(ztf.to_complex(DDstar_s) * tf.exp(tf.complex(ztf.constant(0.0), DDstar_p)) * (ztf.to_complex(1.0 / (10.0*tf.pow(Dstar_m,2)) + 1.0 / (10.0*tf.pow(D_m,2))))) sum_list.append(ztf.to_complex(Dbar_s) * tf.exp(tf.complex(ztf.constant(0.0), Dbar_p)) * ztf.to_complex(1.0 / (6.0*tf.pow(Dbar_m,2)))) sum_ru_1 = ztf.to_complex(ztf.constant(0.0)) for part in sum_list: sum_ru_1 += part sum_1 = tf.math.real(sum_ru_1) # constraint1 = zfit.constraint.GaussianConstraint(params = sum_1, mu = ztf.constant(1.7*10**-8), # sigma = ztf.constant(2.2*10**-8)) constraint1 = tf.pow((sum_1-ztf.constant(1.7*10**-8))/ztf.constant(2.2*10**-8),2)/ztf.constant(2.) # 2. Constraint - Abs. of sum of Psi contribs and D contribs sum_2 = tf.abs(sum_ru_1) constraint2 = tf.cond(tf.greater_equal(sum_2, 5.0e-8), lambda: 100000., lambda: 0.) # 3. Constraint - Maximum eta of D contribs constraint3_0 = tf.cond(tf.greater_equal(tf.abs(Dbar_s), 0.2), lambda: 100000., lambda: 0.) constraint3_1 = tf.cond(tf.greater_equal(tf.abs(DDstar_s), 0.2), lambda: 100000., lambda: 0.) # 4. Constraint - Formfactor multivariant gaussian covariance fplus Cov_matrix = [[ztf.constant( 1.), ztf.constant( 0.45), ztf.constant( 0.19), ztf.constant(0.857), ztf.constant(0.598), ztf.constant(0.531), ztf.constant(0.752), ztf.constant(0.229), ztf.constant(0.117)], [ztf.constant( 0.45), ztf.constant( 1.), ztf.constant(0.677), ztf.constant(0.708), ztf.constant(0.958), ztf.constant(0.927), ztf.constant(0.227), ztf.constant(0.443), ztf.constant(0.287)], [ztf.constant( 0.19), ztf.constant(0.677), ztf.constant( 1.), ztf.constant(0.595), ztf.constant(0.770), ztf.constant(0.819),ztf.constant(-0.023), ztf.constant( 0.07), ztf.constant(0.196)], [ztf.constant(0.857), ztf.constant(0.708), ztf.constant(0.595), ztf.constant( 1.), ztf.constant( 0.83), ztf.constant(0.766), ztf.constant(0.582), ztf.constant(0.237), ztf.constant(0.192)], [ztf.constant(0.598), ztf.constant(0.958), ztf.constant(0.770), ztf.constant( 0.83), ztf.constant( 1.), ztf.constant(0.973), ztf.constant(0.324), ztf.constant(0.372), ztf.constant(0.272)], [ztf.constant(0.531), ztf.constant(0.927), ztf.constant(0.819), ztf.constant(0.766), ztf.constant(0.973), ztf.constant( 1.), ztf.constant(0.268), ztf.constant(0.332), ztf.constant(0.269)], [ztf.constant(0.752), ztf.constant(0.227),ztf.constant(-0.023), ztf.constant(0.582), ztf.constant(0.324), ztf.constant(0.268), ztf.constant( 1.), ztf.constant( 0.59), ztf.constant(0.515)], [ztf.constant(0.229), ztf.constant(0.443), ztf.constant( 0.07), ztf.constant(0.237), ztf.constant(0.372), ztf.constant(0.332), ztf.constant( 0.59), ztf.constant( 1.), ztf.constant(0.897)], [ztf.constant(0.117), ztf.constant(0.287), ztf.constant(0.196), ztf.constant(0.192), ztf.constant(0.272), ztf.constant(0.269), ztf.constant(0.515), ztf.constant(0.897), ztf.constant( 1.)]] def triGauss(val1,val2,val3,m = Cov_matrix): mean1 = ztf.constant(0.466) mean2 = ztf.constant(-0.885) mean3 = ztf.constant(-0.213) sigma1 = ztf.constant(0.014/3.) sigma2 = ztf.constant(0.128/3.) sigma3 = ztf.constant(0.548/3.) x1 = (val1-mean1)/sigma1 x2 = (val2-mean2)/sigma2 x3 = (val3-mean3)/sigma3 rho12 = m[0][1] rho13 = m[0][2] rho23 = m[1][2] w = x1*x1*(rho23*rho23-1) + x2*x2*(rho13*rho13-1)+x3*x3*(rho12*rho12-1)+2*(x1*x2*(rho12-rho13*rho23)+x1*x3*(rho13-rho12*rho23)+x2*x3*(rho23-rho12*rho13)) d = 2*(rho12*rho12+rho13*rho13+rho23*rho23-2*rho12*rho13*rho23-1) fcn = -w/d chisq = -2*fcn return chisq constraint4 = triGauss(bplus_0, bplus_1, bplus_2) # mean1 = ztf.constant(0.466) # mean2 = ztf.constant(-0.885) # mean3 = ztf.constant(-0.213) # sigma1 = ztf.constant(0.014) # sigma2 = ztf.constant(0.128) # sigma3 = ztf.constant(0.548) # constraint4_0 = tf.pow((bplus_0-mean1)/sigma1,2)/ztf.constant(2.) # constraint4_1 = tf.pow((bplus_1-mean2)/sigma2,2)/ztf.constant(2.) # constraint4_2 = tf.pow((bplus_2-mean3)/sigma3,2)/ztf.constant(2.) # 5. Constraint - Abs. of sum of light contribs sum_list_5 = [] sum_list_5.append(rho_s*rho_w/rho_m) sum_list_5.append(omega_s*omega_w/omega_m) sum_list_5.append(phi_s*phi_w/phi_m) sum_ru_5 = ztf.constant(0.0) for part in sum_list_5: sum_ru_5 += part constraint5 = tf.cond(tf.greater_equal(tf.abs(sum_ru_5), ztf.constant(0.02)), lambda: 100000., lambda: 0.) # 6. Constraint on phases of Jpsi and Psi2s for cut out fit # constraint6_0 = zfit.constraint.GaussianConstraint(params = jpsi_p, mu = ztf.constant(pdg["jpsi_phase_unc"]), # sigma = ztf.constant(jpsi_phase)) # constraint6_1 = zfit.constraint.GaussianConstraint(params = psi2s_p, mu = ztf.constant(pdg["psi2s_phase_unc"]), # sigma = ztf.constant(psi2s_phase)) constraint6_0 = tf.pow((jpsi_p-ztf.constant(jpsi_phase))/ztf.constant(pdg["jpsi_phase_unc"]),2)/ztf.constant(2.) constraint6_1 = tf.pow((psi2s_p-ztf.constant(psi2s_phase))/ztf.constant(pdg["psi2s_phase_unc"]),2)/ztf.constant(2.) # 7. Constraint on Ctt with higher limits constraint7 = tf.cond(tf.greater_equal(Ctt*Ctt, 0.25), lambda: 100000., lambda: 0.) constraint7dtype = tf.float64 # zfit.run(constraint6_0) # ztf.convert_to_tensor(constraint6_0) #List of all constraints constraints = [constraint1, constraint2, constraint3_0, constraint3_1, constraint4, #constraint4_0, constraint4_1, constraint4_2, constraint6_0, constraint6_1]#, constraint7] # ## Reset params # In[ ]: param_values_dic = { 'jpsi_m': jpsi_mass, 'jpsi_s': jpsi_scale, 'jpsi_p': jpsi_phase, 'jpsi_w': jpsi_width, 'psi2s_m': psi2s_mass, 'psi2s_s': psi2s_scale, 'psi2s_p': psi2s_phase, 'psi2s_w': psi2s_width, 'p3770_m': p3770_mass, 'p3770_s': p3770_scale, 'p3770_p': p3770_phase, 'p3770_w': p3770_width, 'p4040_m': p4040_mass, 'p4040_s': p4040_scale, 'p4040_p': p4040_phase, 'p4040_w': p4040_width, 'p4160_m': p4160_mass, 'p4160_s': p4160_scale, 'p4160_p': p4160_phase, 'p4160_w': p4160_width, 'p4415_m': p4415_mass, 'p4415_s': p4415_scale, 'p4415_p': p4415_phase, 'p4415_w': p4415_width, 'rho_m': rho_mass, 'rho_s': rho_scale, 'rho_p': rho_phase, 'rho_w': rho_width, 'omega_m': omega_mass, 'omega_s': omega_scale, 'omega_p': omega_phase, 'omega_w': omega_width, 'phi_m': phi_mass, 'phi_s': phi_scale, 'phi_p': phi_phase, 'phi_w': phi_width, 'Dstar_m': Dstar_mass, 'DDstar_s': 0.0, 'DDstar_p': 0.0, 'D_m': D_mass, 'Dbar_m': Dbar_mass, 'Dbar_s': 0.0, 'Dbar_p': 0.0, 'tau_m': pdg['tau_M'], 'Ctt': 0.0, 'b0_0': 0.292, 'b0_1': 0.281, 'b0_2': 0.150, 'bplus_0': 0.466, 'bplus_1': -0.885, 'bplus_2': -0.213, 'bT_0': 0.460, 'bT_1': -1.089, 'bT_2': -1.114} def reset_param_values(variation = 0.05): for param in total_f_fit.get_dependents(): if param.floating: param.set_value(param_values_dic[param.name] + random.uniform(-1, 1) * param_values_dic[param.name]* variation) # print(param.name) # for param in totalf.get_dependents(): # param.set_value() # # Analysis # In[ ]: # # zfit.run.numeric_checks = False # fitting_range = 'cut' # total_BR = 1.7e-10 + 4.9e-10 + 2.5e-9 + 6.02e-5 + 4.97e-6 + 1.38e-9 + 4.2e-10 + 2.6e-9 + 6.1e-10 + 4.37e-7 # cut_BR = 1.0 - (6.02e-5 + 4.97e-6)/total_BR # Ctt_list = [] # Ctt_error_list = [] # nr_of_toys = 1 # if fitting_range == 'cut': # nevents = int(pdg["number_of_decays"]*cut_BR) # else: # nevents = int(pdg["number_of_decays"]) # # nevents = pdg["number_of_decays"] # event_stack = 1000000 # # nevents *= 41 # # zfit.settings.set_verbosity(10) # calls = int(nevents/event_stack + 1) # total_samp = [] # start = time.time() # sampler = total_f.create_sampler(n=event_stack) # for toy in range(nr_of_toys): # ### Generate data # # clear_output(wait=True) # print("Toy {}: Generating data...".format(toy)) # dirName = 'data/zfit_toys/toy_{0}'.format(toy) # if not os.path.exists(dirName): # os.mkdir(dirName) # print("Directory " , dirName , " Created ") # reset_param_values() # if fitting_range == 'cut': # sampler.resample(n=nevents) # s = sampler.unstack_x() # sam = zfit.run(s) # calls = 0 # c = 1 # else: # for call in range(calls): # sampler.resample(n=event_stack) # s = sampler.unstack_x() # sam = zfit.run(s) # c = call + 1 # with open("data/zfit_toys/toy_{0}/{1}.pkl".format(toy, call), "wb") as f: # pkl.dump(sam, f, pkl.HIGHEST_PROTOCOL) # print("Toy {}: Data generation finished".format(toy)) # ### Load data # print("Toy {}: Loading data...".format(toy)) # if fitting_range == 'cut': # total_samp = sam # else: # for call in range(calls): # with open(r"data/zfit_toys/toy_0/{}.pkl".format(call), "rb") as input_file: # sam = pkl.load(input_file) # total_samp = np.append(total_samp, sam) # total_samp = total_samp.astype('float64') # if fitting_range == 'full': # data = zfit.data.Data.from_numpy(array=total_samp[:int(nevents)], obs=obs) # print("Toy {}: Loading data finished".format(toy)) # ### Fit data # print("Toy {}: Fitting pdf...".format(toy)) # for param in total_f.get_dependents(): # param.randomize() # nll = zfit.loss.UnbinnedNLL(model=total_f, data=data, fit_range = (x_min, x_max), constraints = constraints) # minimizer = zfit.minimize.MinuitMinimizer(verbosity = 5) # # minimizer._use_tfgrad = False # result = minimizer.minimize(nll) # print("Toy {}: Fitting finished".format(toy)) # print("Function minimum:", result.fmin) # print("Hesse errors:", result.hesse()) # params = result.params # Ctt_list.append(params[Ctt]['value']) # Ctt_error_list.append(params[Ctt]['minuit_hesse']['error']) # #plotting the result # plotdirName = 'data/plots'.format(toy) # if not os.path.exists(plotdirName): # os.mkdir(plotdirName) # # print("Directory " , dirName , " Created ") # probs = total_f.pdf(test_q, norm_range=False) # calcs_test = zfit.run(probs) # plt.clf() # plt.plot(test_q, calcs_test, label = 'pdf') # plt.legend() # plt.ylim(0.0, 6e-6) # plt.savefig(plotdirName + '/toy_fit_full_range{}.png'.format(toy)) # print("Toy {0}/{1}".format(toy+1, nr_of_toys)) # print("Time taken: {}".format(display_time(int(time.time() - start)))) # print("Projected time left: {}".format(display_time(int((time.time() - start)/(c+calls*(toy))*((nr_of_toys-toy)*calls-c))))) # if fitting_range == 'cut': # _1 = np.where((total_samp >= x_min) & (total_samp <= (jpsi_mass - 60.))) # tot_sam_1 = total_samp[_1] # _2 = np.where((total_samp >= (jpsi_mass + 70.)) & (total_samp <= (psi2s_mass - 50.))) # tot_sam_2 = total_samp[_2] # _3 = np.where((total_samp >= (psi2s_mass + 50.)) & (total_samp <= x_max)) # tot_sam_3 = total_samp[_3] # tot_sam = np.append(tot_sam_1, tot_sam_2) # tot_sam = np.append(tot_sam, tot_sam_3) # data = zfit.data.Data.from_numpy(array=tot_sam[:int(nevents)], obs=obs_fit) # print("Toy {}: Loading data finished".format(toy)) # ### Fit data # print("Toy {}: Fitting pdf...".format(toy)) # for param in total_f_fit.get_dependents(): # param.randomize() # nll = zfit.loss.UnbinnedNLL(model=total_f_fit, data=data, constraints = constraints) # minimizer = zfit.minimize.MinuitMinimizer(verbosity = 5) # # minimizer._use_tfgrad = False # result = minimizer.minimize(nll) # print("Function minimum:", result.fmin) # print("Hesse errors:", result.hesse()) # params = result.params # if result.converged: # Ctt_list.append(params[Ctt]['value']) # Ctt_error_list.append(params[Ctt]['minuit_hesse']['error']) # #plotting the result # plotdirName = 'data/plots'.format(toy) # if not os.path.exists(plotdirName): # os.mkdir(plotdirName) # # print("Directory " , dirName , " Created ") # plt.clf() # plt.hist(tot_sam, bins = int((x_max-x_min)/7.), label = 'toy data') # plt.savefig(plotdirName + '/toy_histo_cut_region{}.png'.format(toy)) # probs = total_f_fit.pdf(test_q, norm_range=False) # calcs_test = zfit.run(probs) # plt.clf() # plt.plot(test_q, calcs_test, label = 'pdf') # plt.axvline(x=jpsi_mass-60.,color='red', linewidth=0.7, linestyle = 'dotted') # plt.axvline(x=jpsi_mass+70.,color='red', linewidth=0.7, linestyle = 'dotted') # plt.axvline(x=psi2s_mass-50.,color='red', linewidth=0.7, linestyle = 'dotted') # plt.axvline(x=psi2s_mass+50.,color='red', linewidth=0.7, linestyle = 'dotted') # plt.legend() # plt.ylim(0.0, 1.5e-6) # plt.savefig(plotdirName + '/toy_fit_cut_region{}.png'.format(toy)) # print("Toy {0}/{1}".format(toy+1, nr_of_toys)) # print("Time taken: {}".format(display_time(int(time.time() - start)))) # print("Projected time left: {}".format(display_time(int((time.time() - start)/(toy+1))*((nr_of_toys-toy-1))))) # In[ ]: # with open("data/results/Ctt_list.pkl", "wb") as f: # pkl.dump(Ctt_list, f, pkl.HIGHEST_PROTOCOL) # with open("data/results/Ctt_error_list.pkl", "wb") as f: # pkl.dump(Ctt_error_list, f, pkl.HIGHEST_PROTOCOL) # In[ ]: # print('{0}/{1} fits converged'.format(len(Ctt_list), nr_of_toys)) # print('Mean Ctt value = {}'.format(np.mean(Ctt_list))) # print('Mean Ctt error = {}'.format(np.mean(Ctt_error_list))) # print('95 Sensitivy = {}'.format(((2*np.mean(Ctt_error_list))**2)*4.2/1000)) # In[ ]: # plt.hist(tot_sam, bins = int((x_max-x_min)/7.)) # plt.show() # # _ = np.where((total_samp >= x_min) & (total_samp <= (jpsi_mass - 50.))) # tot_sam.shape # In[ ]: # Ctt.floating = False # In[ ]: # zfit.run(nll.value()) # In[ ]: # result.fmin # In[ ]: # BR_steps = np.linspace(0.0, 1e-3, 11) pull_dic = {} mi = 0e-4 ma = 4e-4 ste = 4 for param in total_f_fit.get_dependents(): if param.floating: pull_dic[param.name] = [] for step in range(2*ste): pull_dic[param.name].append([]) def save_pulls(step): for param in total_f_fit.get_dependents(): if param.floating: pull_dic[param.name][step].append((params[param]['value'] - param_values_dic[param.name])/params[param]['minuit_hesse']['error']) # for key in pull_dic.keys(): # print(np.shape(pull_dic[key])) # save_pulls(New_step=True) # params[Ctt]['value'] # In[ ]: # for param in total_f_fit.get_dependents(): # if param.floating: # print(param.name) # print(params[Ctt]) # # CLS Code # In[ ]: # zfit.run.numeric_checks = False load = False bo = True D_contribs = True if not D_contribs: Dbar_s.floating = False Dbar_p.floating = False DDstar_s.floating = False DDstar_p.floating = False bo_set = 1 fitting_range = 'cut' total_BR = 1.7e-10 + 4.9e-10 + 2.5e-9 + 6.02e-5 + 4.97e-6 + 1.38e-9 + 4.2e-10 + 2.6e-9 + 6.1e-10 + 4.37e-7 cut_BR = 1.0 - (6.02e-5 + 4.97e-6)/total_BR Ctt_list = [] Ctt_error_list = [] nr_of_toys = 1 nevents = int(pdg["number_of_decays"]*cut_BR) # nevents = pdg["number_of_decays"] event_stack = 1000000 nevents *= 41 # zfit.settings.set_verbosity(10) # mi = 1e-4 # ma = 3e-3 # ste = 13 BR_steps = np.linspace(mi, ma, ste) BR_steps[0] = 0.0 print(BR_steps) Ctt_steps = np.sqrt(BR_steps/4.2*1000) Ctt_steps = [0.0, 0.1, 0.25, 0.5] print(Ctt_steps) # total_samp = [] start = time.time() Nll_list = [] sampler = total_f.create_sampler(n=nevents, fixed_params = False) sampler.set_data_range(obs_fit) __ = -1 #----------------------------------------------------- if not load: for Ctt_step in Ctt_steps: __ += 1 for i in range(2): Ctt_list.append([]) Ctt_error_list.append([]) Nll_list.append([]) for param in total_f_fit.get_dependents(): if param.floating: pull_dic[param.name].append([]) for toy in range(nr_of_toys): newset = True while newset: for floaty in [True, False]: Ctt.floating = floaty for bo_step in range(bo_set): print('Step: {0}/{1}'.format(int(__), ste)) print('Current Ctt: {0}'.format(Ctt_step)) print('Ctt floating: {0}'.format(floaty)) reset_param_values(variation = 0.0) if floaty: print('Toy {0}/{1} - Fit {2}/{3}'.format(toy, nr_of_toys, bo_step, bo_set)) Ctt.set_value(Ctt_step) else: Ctt.set_value(0.0) print('Toy {0}/{1} - Fit {2}/{3}'.format(toy, nr_of_toys, bo_step, bo_set)) if newset: sampler.resample(n=nevents) data = sampler newset = False ### Fit data if floaty: _step = 2*__ else: _step = 2*__+1 nll = zfit.loss.UnbinnedNLL(model=total_f_fit, data=data, constraints = constraints) minimizer = zfit.minimize.MinuitMinimizer(verbosity = 5) # minimizer._use_tfgrad = False result = minimizer.minimize(nll) print("Function minimum:", result.fmin) print("Hesse errors:", result.hesse()) params = result.params if result.converged: save_pulls(step = _step) if floaty: Nll_list[-2].append(result.fmin) Ctt_list[-2].append(params[Ctt]['value']) Ctt_error_list[-2].append(params[Ctt]['minuit_hesse']['error']) else: Nll_list[-1].append(result.fmin) Ctt_list[-1].append(0.0) Ctt_error_list[-1].append(0.0) else: for _ in [1,2]: del Nll_list[-_][toy*bo_set:] # print(np.shape(Nll_list[-_])) del Ctt_list[-_][toy*bo_set:] del Ctt_error_list[-_][toy*bo_set:] for param in total_f_fit.get_dependents(): if param.floating: del pull_dic[param.name][_step+1-_][toy*bo_set:] newset = True break if not result.converged: break print() print('Time taken: {}'.format(display_time(int(time.time()-start)))) print('Estimated time left: {}'.format(display_time(int((time.time()-start)/(__+(toy+1)/nr_of_toys)*(ste-__-(nr_of_toys-toy-1)/nr_of_toys))))) # In[ ]: if load: phase_combi = '-+' if D_contribs: D_dir = 'D-True' else: D_dir = 'D-False' _dir = 'data/CLs/finished/f1d1/{}/{}/'.format(phase_combi, D_dir) jobs = os.listdir(_dir) First = True print('Number of jobs: {}'.format(len(jobs))) for job in jobs: dirName = _dir + str(job) + '/data/CLs' if not os.path.exists("{}/{}-{}_{}s{}b{}t--CLs_Nll_list.pkl".format(dirName, mi,ma,ste,bo_set,nr_of_toys)): # print(job) continue with open(r"{}/variab.pkl".format(dirName), "rb") as input_file: variab = pkl.load(input_file) # print(variab) ### sanity check: if variab['mi'] != mi or variab['ma'] != ma or variab['ste'] != ste or bo_set != bo_set: print('Fitting parameters of data dont equal the ones given -- Job {} skipped!'.format(job)) with open(r"{}/{}-{}_{}s{}b{}t--CLs_Nll_list.pkl".format(dirName, mi,ma,ste,bo_set,nr_of_toys), "rb") as input_file: _Nll_list = pkl.load(input_file) with open(r"{}/{}-{}_{}s{}b{}t--Ctt_list.pkl".format(dirName, mi,ma,ste,bo_set,nr_of_toys), "rb") as input_file: _Ctt_list = pkl.load(input_file) with open(r"{}/{}-{}_{}s{}b{}t--Ctt_error_list.pkl".format(dirName, mi,ma,ste,bo_set,nr_of_toys), "rb") as input_file: _Ctt_error_list = pkl.load(input_file) with open(r"{}/{}-{}_{}s{}b{}t--pull_dic.pkl".format(dirName, mi,ma,ste,bo_set,nr_of_toys), "rb") as input_file: _pull_dic = pkl.load(input_file) with open(r"{}/{}-{}_{}s--CLs_list.pkl".format(dirName, mi,ma,ste), "rb") as input_file: _CLs_list = pkl.load(input_file) if First: Nll_list = _Nll_list Ctt_list = _Ctt_list Ctt_error_list = _Ctt_error_list pull_dic = _pull_dic # print(_pull_dic) CLs_list = _CLs_list First = False else: for step in range(2*ste): # print(Nll_list[step], step) Nll_list[step].extend(_Nll_list[step]) Ctt_list[step].extend(_Ctt_list[step]) Ctt_error_list[step].extend(_Ctt_error_list[step]) for key in pull_dic.keys(): # print(key, np.shape(pull_dic[key])) pull_dic[key][step].extend(_pull_dic[key][step]) for step in range(ste): CLs_list[step].extend(_CLs_list[step]) # print('----------------------') # In[ ]: dirName = 'data/CLs' # if bo and not load: # for s in range(2*ste): # Nll_list[s] = [np.min(Nll_list[s])] if not load: if not os.path.exists(dirName): os.mkdir(dirName) print("Directory " , dirName , " Created ") with open("{}/{}-{}_{}s{}b{}t--CLs_Nll_list.pkl".format(dirName, mi,ma,ste,bo_set,nr_of_toys), "wb") as f: pkl.dump(Nll_list, f, pkl.HIGHEST_PROTOCOL) with open("{}/{}-{}_{}s{}b{}t--Ctt_list.pkl".format(dirName, mi,ma,ste,bo_set,nr_of_toys), "wb") as f: pkl.dump(Ctt_list, f, pkl.HIGHEST_PROTOCOL) with open("{}/{}-{}_{}s{}b{}t--Ctt_error_list.pkl".format(dirName, mi,ma,ste,bo_set,nr_of_toys), "wb") as f: pkl.dump(Ctt_error_list, f, pkl.HIGHEST_PROTOCOL) with open("{}/{}-{}_{}s{}b{}t--pull_dic.pkl".format(dirName, mi,ma,ste,bo_set,nr_of_toys), "wb") as f: pkl.dump(pull_dic, f, pkl.HIGHEST_PROTOCOL) variab = {'mi': mi, 'ma': ma, 'ste': ste, 'bo_set': bo_set, 'nr_of_toys': nr_of_toys} with open("{}/variab.pkl".format(dirName), "wb") as f: pkl.dump(variab, f, pkl.HIGHEST_PROTOCOL) CLs_values = [] toy_size = bo_set print(np.shape(Nll_list)) print(Nll_list[0:1]) for step in range(ste): CLs_values.append([]) for toy in range(nr_of_toys): float_min = np.min(Nll_list[2*step][toy*bo_set:(toy+1)*bo_set]) fix_min = np.min(Nll_list[2*step+1][toy*bo_set:(toy+1)*bo_set]) CLs_values[step].append(float_min-fix_min) print(np.shape(CLs_values)) with open("{}/{}-{}_{}s--CLs_list.pkl".format(dirName, mi,ma,ste), "wb") as f: pkl.dump(CLs_values, f, pkl.HIGHEST_PROTOCOL) # In[ ]: # print(variab['mi'] != mi) # ## Plot # In[ ]: # l = [] # if load: # CLs_values = -1*np.array(CLs_list) # if not os.path.exists('data/CLs/plots'): # os.mkdir('data/CLs/plots') # print("Directory " , 'data/CLs/plots' , " Created ") # print(np.shape(CLs_values)) # for step in range(1,ste): # plt.clf() # plt.title('Ctt value: {:.2f}'.format(Ctt_steps[step])) # plt.hist(CLs_values[0], bins = 150, range = (-25, 50), label = 'Ctt fixed to 0') # plt.hist(CLs_values[step], bins = 150, range = (-25, 50), label = 'Ctt floating') # plt.axvline(x=np.mean(CLs_values[0]),color='red', linewidth=1.0, linestyle = 'dotted') # plt.legend() # plt.savefig('data/CLs/plots/CLs-BR({:.1E}).png'.format(BR_steps[step])) # l.append(len(np.where(np.array(CLs_values[step]) < np.mean(CLs_values[0]))[0])) # for step in range(2*ste): # if step%2 == 0: # floaty = True # else: # floaty = False # for key in pull_dic.keys(): # if not os.path.exists('data/CLs/plots/{}'.format(key)): # os.mkdir('data/CLs/plots/{}'.format(key)) # plt.clf() # plt.title('Pull {} - Ctt value {:.2f} - floating {}'.format(key, Ctt_steps[int(step/2)], floaty)) # plt.hist(pull_dic[key][step], bins = 50, range = (-5,5)) # plt.xlabel('Pull') # plt.savefig('data/CLs/plots/{}/{:.2f}Ctt{}s{}f.png'.format(key, Ctt_steps[int(step/2)], step, floaty)) # In[ ]: # for s in range(len(l)): # print('BR: {:.4f}'.format(BR_steps[s+1])) # print(2*l[s]/len(CLs_values[s])) # print() # In[ ]: # for step in range(2*ste): # for key in pull_dic.keys(): # print(pull_dic[key][step]) # In[ ]: # for param in total_f_fit.get_dependents(): # if param.floating: # print(params[param]['value']) # In[ ]: print(display_time(int(time.time()-start))) # In[ ]: # variab['mi'] =! mi