Newer
Older
rnn_bachelor_thesis / Report / 00_main.tex
\documentclass[12pt,a4paper]{article}
\usepackage[utf8]{inputenc}
\usepackage[english]{babel}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{graphicx}
\usepackage{fancyhdr}
\usepackage{paralist}
\pagestyle{fancy}
\usepackage{pdfpages}
\usepackage{subcaption}
\usepackage{float}
\usepackage{hyperref}
\usepackage{physics}
\usepackage{tabstackengine}
\usepackage[bottom]{footmisc}
\setlength{\skip\footins}{1.2pc plus 5pt minus 2pt}
\title{Particle Track reconstruction using a recurrent neural network at the $\mu-3e$ experiment}
\author{\textit{Bachelor thesis of}\\ Sascha Liechti}
\date{06.04.2018}

\lhead{}
\chead{}
\rhead{}

\lfoot{}
\cfoot{\thepage}
\rfoot{}

\renewcommand{\headrulewidth}{0.4pt}
\renewcommand{\footrulewidth}{0pt}

\setlength{\parindent}{0pt}

\begin{document}

\maketitle

\begin{center}
\textit{Supervised by}\\
Prof. Nicola Serra\\
Dr. Patrick Owen\\
\end{center}

\textbf{\large{Abstract}}
During the $\mu-3e$ experiment we faced the challenge of reconstructing the paths of certain low momentum particles that curled back into the detector and cause additional hits. To face this, a recurrent neural network was used which found the right track for $87 \%$ of these particles.

\newpage
\tableofcontents

\newpage

\include{01_Standard_Model}

\include{02_mu_to_3e_decay}

\include{03_experimental_setup}

\include{04_machine_learning}

%\include{05_Graphics}
%
%\include{06_Calculus}
%
%\include{07_Error-Calculus}

\bibliographystyle{unsrt}
\bibliography{bib/General}
\end{document}