{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "c:\\users\\sa_li\\anaconda3\\envs\\rnn-tf-ker\\lib\\site-packages\\h5py\\__init__.py:36: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`.\n", " from ._conv import register_converters as _register_converters\n" ] } ], "source": [ "#Here i do all the preprocessing of my data and define my functions and the RNNPlacePrediction class\n", "\n", "exec(open(\"requiremements.py\").read())" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "timesteps = 7\n", "future_steps = 1\n", "ninputs = 3\n", "num_output = 3\n", "\n", "#ncells as int or list of int\n", "ncells = [50, 40, 30, 20, 10]\n", "\n", "cell_type = \"lstm\"\n", "activation = \"leaky_relu\"" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "tf.reset_default_graph()\n", "rnn = RNNPlacePrediction(time_steps=timesteps, future_steps=future_steps, ninputs=ninputs, \n", " ncells=ncells, num_output=num_output, cell_type=cell_type, activation=activation)\n", "rnn.set_cost_and_functions()" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Epoch number 0\n", "Cost: 373770.60410824226 e-6\n", "Patience: 0 / 200\n", "Last checkpoint at: Epoch 0 \n", "\n", "\n", "\n", "Model saved in at: ./rnn_model_lstm_leaky_relu_[50,40,30,20,10]c/rnn_basic\n", "Model saved at: ./rnn_model_lstm_leaky_relu_[50,40,30,20,10]c/rnn_basic\n", "Remaining data saved as: rnn_model_lstm_leaky_relu_[50,40,30,20,10]c.pkl\n" ] } ], "source": [ "rnn.fit(minibatches, epochs = 5, print_step=5)\n", "full_save(rnn)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "#plot_loss_list(loss_list = rnn.loss_list)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "#folder = get_rnn_folder(ncells = ncells, cell_type = \"lstm\", activation = \"leaky_relu\")\n", "#rnn, data = full_load(folder)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[ 0.24988278 -16.92240567 -11.00905584]\n", " [ -0.95585176 -19.82122722 -9.62447234]\n", " [ 2.90237107 -13.03493918 -11.99622082]\n", " [ -2.20826846 4.92884641 12.53874474]\n", " [-20.9477203 13.2462497 -1.09616262]\n", " [-31.69245226 0.34849761 4.28013375]\n", " [ 0.24281463 5.55824599 3.57549133]]\n", "Loss on test set: 0.17207867\n" ] } ], "source": [ "test_pred, test_loss = rnn_test(rnn = rnn)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.5" } }, "nbformat": 4, "nbformat_minor": 2 }