# coding: utf-8 # In[1]: import pandas as pd import numpy as np import matplotlib as mpl import random import math import numpy as np import matplotlib.pyplot as plt import tensorflow as tf from tensorflow.python.framework import ops from sklearn import preprocessing import pickle as pkl from pathlib import Path # In[2]: ### Reshape original array into the shape (particlenumber, timesteps, input = coordinates)### def reshapor(arr_orig): timesteps = int(arr_orig.shape[1]/3) number_examples = int(arr_orig.shape[0]) arr = np.zeros((number_examples, timesteps, 3)) for i in range(number_examples): for t in range(timesteps): arr[i,t,0:3] = arr_orig[i,3*t:3*t+3] return arr def reshapor_inv(array_shaped): timesteps = int(array_shaped.shape[1]) num_examples = int(array_shaped.shape[0]) arr = np.zeros((num_examples, timesteps*3)) for i in range(num_examples): for t in range(timesteps): arr[i,3*t:3*t+3] = array_shaped[i,t,:] return arr # In[3]: ### create the training set and the test set### def create_random_sets(dataset, train_to_total_ratio): #shuffle the dataset num_examples = dataset.shape[0] p = np.random.permutation(num_examples) dataset = dataset[p,:] #evaluate siye of training and test set and initialize them train_set_size = np.int(num_examples*train_to_total_ratio) test_set_size = num_examples - train_set_size train_set = np.zeros((train_set_size, dataset.shape[1])) test_set = np.zeros((test_set_size, dataset.shape[1])) #fill train and test sets for i in range(num_examples): if train_set_size > i: train_set[i,:] += dataset[i,:] else: test_set[i - train_set_size,:] += dataset[i,:] return train_set, test_set # In[4]: testset = pd.read_pickle('matched_8hittracks.pkl') tset = np.array(testset) tset = tset.astype('float32') train_set, test_set = create_random_sets(tset, 0.99) # In[5]: #Normalize the data advanced version with scikit learn #set the transormation based on training set def set_min_max_scaler(arr, feature_range= (-1,1)): min_max_scalor = preprocessing.MinMaxScaler(feature_range=feature_range) if len(arr.shape) == 3: arr = reshapor(min_max_scalor.fit_transform(reshapor_inv(arr))) else: arr = min_max_scalor.fit_transform(arr) return min_max_scalor min_max_scalor = set_min_max_scaler(train_set) #transform data def min_max_scaler(arr, min_max_scalor= min_max_scalor): if len(arr.shape) == 3: if arr.shape[1] == 8: arr = reshapor(min_max_scalor.transform(reshapor_inv(arr))) else: arr_ = np.zeros((arr.shape[0],24)) arr = reshapor_inv(arr) arr_[:,:arr.shape[1]] += arr arr = min_max_scalor.transform(arr_)[:,:arr.shape[1]] arr = reshapor(arr) else: if arr.shape[1] == 24: arr = min_max_scalor.transform(arr) else: arr_ = np.zeros((arr.shape[0],24)) arr_[:,:arr.shape[1]] += arr arr = min_max_scalor.transform(arr_)[:,:arr.shape[1]] return arr #inverse transformation def min_max_scaler_inv(arr, min_max_scalor= min_max_scalor): if len(arr.shape) == 3: if arr.shape[1] == 8: arr = reshapor(min_max_scalor.inverse_transform(reshapor_inv(arr))) else: arr_ = np.zeros((arr.shape[0],24)) arr = reshapor_inv(arr) arr_[:,:arr.shape[1]] += arr arr = min_max_scalor.inverse_transform(arr_)[:,:arr.shape[1]] arr = reshapor(arr) else: if arr.shape[1] == 24: arr = min_max_scalor.inverse_transform(arr) else: arr_ = np.zeros((arr.shape[0],24)) arr_[:,:arr.shape[1]] += arr arr = min_max_scalor.nverse_transform(arr_)[:,:arr.shape[1]] return arr # In[6]: #Normalize the data advanced version with scikit learn - Standard scaler #set the transormation based on training set def set_std_scaler(arr): std_scalor = preprocessing.StandardScaler() if len(arr.shape) == 3: arr = reshapor(std_scalor.fit(reshapor_inv(arr))) else: arr = std_scalor.fit(arr) return std_scalor std_scalor = set_std_scaler(train_set) #transform data def std_scaler(arr, std_scalor= std_scalor): if len(arr.shape) == 3: if arr.shape[1] == 8: arr = reshapor(std_scalor.transform(reshapor_inv(arr))) else: arr_ = np.zeros((arr.shape[0],24)) arr = reshapor_inv(arr) arr_[:,:arr.shape[1]] += arr arr = std_scalor.transform(arr_)[:,:arr.shape[1]] arr = reshapor(arr) else: if arr.shape[1] == 24: arr = std_scalor.transform(arr) else: arr_ = np.zeros((arr.shape[0],24)) arr_[:,:arr.shape[1]] += arr arr = std_scalor.transform(arr_)[:,:arr.shape[1]] return arr #inverse transformation def std_scaler_inv(arr, std_scalor= std_scalor): if len(arr.shape) == 3: if arr.shape[1] == 8: arr = reshapor(std_scalor.inverse_transform(reshapor_inv(arr))) else: arr_ = np.zeros((arr.shape[0],24)) arr = reshapor_inv(arr) arr_[:,:arr.shape[1]] += arr arr = std_scalor.inverse_transform(arr_)[:,:arr.shape[1]] arr = reshapor(arr) else: if arr.shape[1] == 24: arr = std_scalor.inverse_transform(arr) else: arr_ = np.zeros((arr.shape[0],24)) arr_[:,:arr.shape[1]] += arr arr = std_scalor.inverse_transform(arr_)[:,:arr.shape[1]] return arr # In[7]: train_set = reshapor(train_set) test_set = reshapor(test_set) # In[8]: #Scale data either with MinMax scaler or with Standard scaler #Return scalor if fit = True and and scaled array otherwise def scaler(arr, std_scalor= std_scalor, min_max_scalor= min_max_scalor, scalerfunc= "std"): if scalerfunc == "std": arr = std_scaler(arr, std_scalor= std_scalor) return arr elif scalerfunc == "minmax": arr = min_max_scaler(arr, min_max_scalor= min_max_scalor) return arr else: raise ValueError("Uknown scaler chosen: {}".format(scalerfunc)) def scaler_inv(arr, std_scalor= std_scalor, min_max_scalor= min_max_scalor, scalerfunc= "std"): if scalerfunc == "std": arr = std_scaler_inv(arr, std_scalor= std_scalor) return arr elif scalerfunc == "minmax": arr = min_max_scaler_inv(arr, min_max_scalor= std_scalor) return arr else: raise ValueError("Uknown scaler chosen: {}".format(scalerfunc)) # In[9]: #scale the data func = "minmax" train_set = scaler(train_set, scalerfunc = func) test_set = scaler(test_set, scalerfunc = func) if func == "minmax": scalor = min_max_scalor elif func == "std": scalor = std_scalor #print(train_set[0,:,:]) # In[10]: ###create random mini_batches### def unison_shuffled_copies(a, b): assert a.shape[0] == b.shape[0] p = np.random.permutation(a.shape[0]) return a[p,:,:], b[p,:,:] def random_mini_batches(inputt, target, minibatch_size = 500): num_examples = inputt.shape[0] #Number of complete batches number_of_batches = int(num_examples/minibatch_size) minibatches = [] #shuffle particles _i, _t = unison_shuffled_copies(inputt, target) #print(_t.shape) for i in range(number_of_batches): minibatch_train = _i[minibatch_size*i:minibatch_size*(i+1), :, :] minibatch_true = _t[minibatch_size*i:minibatch_size*(i+1), :, :] minibatches.append((minibatch_train, minibatch_true)) minibatches.append((_i[number_of_batches*minibatch_size:, :, :], _t[number_of_batches*minibatch_size:, :, :])) return minibatches # In[11]: #Create random minibatches of train and test set with input and target array minibatches = random_mini_batches(train_set[:,:-1,:], train_set[:,1:,:], minibatch_size = 1000) #_train, _target = minibatches[0] test_input, test_target = test_set[:,:-1,:], test_set[:,1:,:] #print(train[0,:,:], target[0,:,:]) # In[12]: class RNNPlacePrediction(): def __init__(self, time_steps, future_steps, ninputs, ncells, num_output, cell_type="basic_rnn", activation="relu", scalor= scalor): self.nsteps = time_steps self.future_steps = future_steps self.ninputs = ninputs self.ncells = ncells self.num_output = num_output self._ = cell_type #later used to create folder name self.__ = activation #later used to create folder name self.loss_list = [] self.scalor = scalor #### The input is of shape (num_examples, time_steps, ninputs) #### ninputs is the dimentionality (number of features) of the time series (here coordinates) self.X = tf.placeholder(dtype=tf.float32, shape=(None, self.nsteps, ninputs)) self.Y = tf.placeholder(dtype=tf.float32, shape=(None, self.nsteps, ninputs)) #Check if activation function valid and set activation if self.__=="relu": self.activation = tf.nn.relu elif self.__=="tanh": self.activation = tf.nn.tanh elif self.__=="leaky_relu": self.activation = tf.nn.leaky_relu elif self.__=="elu": self.activation = tf.nn.elu else: raise ValueError("Wrong rnn avtivation function: {}".format(self.__)) #Check if cell type valid and set cell_type if self._=="basic_rnn": self.cell_type = tf.contrib.rnn.BasicRNNCell elif self._=="lstm": self.cell_type = tf.contrib.rnn.BasicLSTMCell elif self._=="GRU": self.cell_type = tf.contrib.rnn.GRUCell else: raise ValueError("Wrong rnn cell type: {}".format(self._)) #Check Input of ncells if (type(self.ncells) == int): self.ncells = [self.ncells] if (type(self.ncells) != list): raise ValueError("Wrong type of Input for ncells") for _ in range(len(self.ncells)): if type(self.ncells[_]) != int: raise ValueError("Wrong type of Input for ncells") self.activationlist = [] for _ in range(len(self.ncells)-1): self.activationlist.append(self.activation) self.activationlist.append(tf.nn.tanh) self.cell = tf.contrib.rnn.MultiRNNCell([self.cell_type(num_units=self.ncells[layer], activation=self.activationlist[layer]) for layer in range(len(self.ncells))]) #### I now define the output self.RNNCell = tf.contrib.rnn.OutputProjectionWrapper(self.cell, output_size= num_output) self.sess = tf.Session() def set_cost_and_functions(self, LR=0.001): #### I define here the function that unrolls the RNN cell self.output, self.state = tf.nn.dynamic_rnn(self.RNNCell, self.X, dtype=tf.float32) #### I define the cost function as the mean_squared_error (distance of predicted point to target) self.cost = tf.reduce_mean(tf.losses.mean_squared_error(self.Y, self.output)) #### the rest proceed as usual self.train = tf.train.AdamOptimizer(LR).minimize(self.cost) #### Variable initializer self.init = tf.global_variables_initializer() self.saver = tf.train.Saver() self.sess.run(self.init) def save(self, rnn_folder="./rnn_model/rnn_basic"): self.saver.save(self.sess, rnn_folder) def load(self, filename="./rnn_model/rnn_basic"): self.saver.restore(self.sess, filename) def fit(self, minibatches, epochs, print_step, checkpoint = 5, patience = 200): patience_cnt = 0 start = len(self.loss_list) epoche_save = start folder = "./rnn_model_" + str(self._)+ "_" + self.__ + "_" + str(self.ncells).replace(" ","") + "c" + "_checkpoint/rnn_basic" for iep in range(start, start + epochs): loss = 0 batches = len(minibatches) #Here I iterate over the batches for batch in range(batches): #### Here I train the RNNcell #### The X is the time series, the Y is shifted by 1 time step train, target = minibatches[batch] self.sess.run(self.train, feed_dict={self.X:train, self.Y:target}) loss += self.sess.run(self.cost, feed_dict={self.X:train, self.Y:target}) #Normalize loss over number of batches and scale it back before normaliziation loss /= batches self.loss_list.append(loss) #print(loss) #Here I create the checkpoint if the perfomance is better if iep > 1 and iep%checkpoint == 0 and self.loss_list[iep] < self.loss_list[epoche_save]: #print("Checkpoint created at epoch: ", iep) self.save(folder) epoche_save = iep #early stopping with patience if iep > 1 and abs(self.loss_list[iep]-self.loss_list[iep-1]) < 1.5/10**7: patience_cnt += 1 #print("Patience now at: ", patience_cnt, " of ", patience) if patience_cnt + 1 > patience: print("\n", "Early stopping at epoch ", iep, ", difference: ", abs(self.loss_list[iep]-self.loss_list[iep-1])) print("Cost: ",loss) break #Note that the loss here is multiplied with 1000 for easier reading if iep%print_step==0: print("Epoch number ",iep) print("Cost: ",loss*10**6, "e-6") print("Patience: ",patience_cnt, "/", patience) print("Last checkpoint at: Epoch ", epoche_save, "\n") #Set model back to the last checkpoint if performance was better if self.loss_list[epoche_save] < self.loss_list[iep]: self.load(folder) print("\n") print("State of last checkpoint checkpoint at epoch ", epoche_save, " restored") print("Performance at last checkpoint is " ,(self.loss_list[iep] - self.loss_list[epoche_save])/self.loss_list[iep]*100, "% better" ) folder = "./rnn_model_" + str(self._)+ "_" + self.__ + "_" + str(self.ncells).replace(" ","") + "c/rnn_basic" self.save(folder) print("\n") print("Model saved in at: ", folder) def predict(self, x): return self.sess.run(self.output, feed_dict={self.X:x}) # In[13]: #saves the rnn model and all its parameters including the scaler used #optional also saves the minibatches used to train and the test set def full_save(rnn, train= True, test= True): folder = "./rnn_model_" + str(rnn._)+ "_" + rnn.__ + "_" + str(rnn.ncells).replace(" ","") + "c/rnn_basic" rnn.save(folder) pkl_name = folder[2:-10] + ".pkl" pkl_dic = {"ncells": rnn.ncells, "ninputs": rnn.ninputs, "future_steps": rnn.future_steps, "nsteps": rnn.nsteps, "num_output": rnn.num_output, "cell_type": rnn._, #cell_type "activation": rnn.__, #Activation "loss_list": rnn.loss_list, "scalor": rnn.scalor} if train == True: pkl_dic["minibatches"] = minibatches if test == True: pkl_dic["test_input"] = test_input pkl_dic["test_target"] = test_target pkl.dump( pkl_dic, open(pkl_name , "wb" ) ) print("Model saved at: ", folder) print("Remaining data saved as: {}".format(pkl_name)) #loads the rnn model with all its parameters including the scaler used #Checks if the pkl data also contains the training or test sets an return them accordingly def full_load(folder): #returns state of rnn with all information and returns the train and test set used #Directory of pkl file pkl_name = folder[2:-10] + ".pkl" #Check if pkl file exists my_file = Path(pkl_name) if my_file.is_file() == False: raise ValueError("There is no .pkl file with the name: {}".format(pkl_name)) pkl_dic = pkl.load( open(pkl_name , "rb" ) ) ncells = pkl_dic["ncells"] ninputs = pkl_dic["ninputs"] scalor = pkl_dic["scalor"] future_steps = pkl_dic["future_steps"] timesteps = pkl_dic["nsteps"] num_output = pkl_dic["num_output"] cell_type = pkl_dic["cell_type"] activation = pkl_dic["activation"] #Check if test or trainng set in dictionary batch = False test = False if "minibatches" in pkl_dic: batch = True minibatches = pkl_dic["minibatches"] if "test_input" in pkl_dic: test = True test_input = ["test_input"] test_target = ["test_target"] #loads and initializes a new model with the exact same properties tf.reset_default_graph() rnn = RNNPlacePrediction(time_steps=timesteps, future_steps=future_steps, ninputs=ninputs, ncells=ncells, num_output=num_output, cell_type=cell_type, activation=activation, scalor=scalor) rnn.set_cost_and_functions() rnn.load(folder) rnn.loss_list = pkl_dic["loss_list"] print("Model succesfully loaded") if batch and test: data = [minibatches, test_input, test_target] print("Minibatches (=training data) and test_input and test_target in data loaded") return rnn, data elif batch: data = [minibatches] print("Minibatches (=training data) loaded in data") return rnn, data elif test: data = [test_input, test_target] print("test_input and test_target loaded in data") return rnn, data else: data = [] print("Only Model restored, no trainig or test data found in {}".format(pkl_name)) print("Returned data is empty!") return rnn, data #returns the folder name used by full_save and full_load for a given architecture def get_rnn_folder(ncells, cell_type, activation): folder = "./rnn_model_" + cell_type + "_" + activation + "_" + str(ncells).replace(" ","") + "c/rnn_basic" return folder # In[15]: #Plot the loss def plot_loss_list(loss_list): plt.plot(loss_list) plt.xlabel("Epoch") plt.ylabel("Cost") plt.show() # In[17]: def rnn_test(rnn, test_input= test_input, test_target= test_target): #Here I predict based on my test set test_pred = rnn.predict(test_input) #Here i subtract a prediction (random particle) from the target to get an idea of the predictions #scaler_inv(test_input, scalerfunc = func)[0,:,:] diff = scaler_inv(test_pred, scalerfunc = func)-scaler_inv(test_target, scalerfunc = func ) print(diff[0,:,:]) #Here I evaluate my model on the test set based on mean_squared_error loss = rnn.sess.run(rnn.cost, feed_dict={rnn.X:test_input, rnn.Y:test_target}) print("Loss on test set:", loss) return test_pred, loss